[go: up one dir, main page]

JP2017187148A - Rolling body for conical roller bearing, and conical roller bearing - Google Patents

Rolling body for conical roller bearing, and conical roller bearing Download PDF

Info

Publication number
JP2017187148A
JP2017187148A JP2016078178A JP2016078178A JP2017187148A JP 2017187148 A JP2017187148 A JP 2017187148A JP 2016078178 A JP2016078178 A JP 2016078178A JP 2016078178 A JP2016078178 A JP 2016078178A JP 2017187148 A JP2017187148 A JP 2017187148A
Authority
JP
Japan
Prior art keywords
roller
diameter end
tapered roller
contact
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016078178A
Other languages
Japanese (ja)
Inventor
貴裕 大寺
Takahiro Odera
貴裕 大寺
佐藤 佳宏朗
Yoshihiro Sato
佳宏朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2016078178A priority Critical patent/JP2017187148A/en
Publication of JP2017187148A publication Critical patent/JP2017187148A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolling body for a conical roller bearing capable of suppressing occurrence of skew and high in high-speed rotation performance.SOLUTION: A surface shape of a roller large-diameter surface 22 is a torus surface formed by rotating a circular arc D, which is separated from a roller center shaft C1 by δ and which has a center Oon the same side as the center shaft C1, around the roller center shaft C1. A curvature radius Rca in a circumference direction of the roller large-diameter end surface 22 is made larger than a curvature radius Rcb in a circumferential direction of a large flange surface 17. The large-diameter end surface 22 and the large flange surface 17 contact with each other at two points E separated from each other in the circumferential direction.SELECTED DRAWING: Figure 1

Description

本発明は、円錐ころ軸受用転動体及び円錐ころ軸受に関する。   The present invention relates to a rolling element for a tapered roller bearing and a tapered roller bearing.

従来の円錐ころ軸受では、円錐ころのころ大径端面の表面形状は球面によって形成され、内輪の大つば面は、円錐面によって形成されており、円錐ころのころ大径端面と大つば面とは、1点で接触する。このような円錐ころがスキューを生じると、ころ大径端面と大つば面との接点が円錐ころの縁部側、且つ大つば面の外径側へ移動する。このように接点が移動することで、接点での荷重によってスキューを抑制する向きのモーメントが生じる。円錐ころのスキュー量に対してモーメントが大きいほど、円錐ころ軸受のスキューを抑制する効果が高く、高速回転による焼き付きが生じ難い。   In the conventional tapered roller bearing, the surface shape of the roller large-diameter end surface of the tapered roller is formed by a spherical surface, and the large collar surface of the inner ring is formed by a conical surface, and the roller large-diameter end surface and large collar surface of the tapered roller are Touch at one point. When such a tapered roller is skewed, the contact point between the roller large-diameter end face and the large collar surface moves to the edge side of the tapered roller and the outer diameter side of the large collar surface. By moving the contact in this manner, a moment is generated in a direction that suppresses skew by the load at the contact. The larger the moment is with respect to the amount of skew of the tapered roller, the higher the effect of suppressing the skew of the tapered roller bearing, and seizure due to high-speed rotation hardly occurs.

例えば、図13に示すように、ころ大径端面の曲率半径Rが大きい円錐ころ100Aと、曲率半径Rが小さい円錐ころ100Bとを比較すると、曲率半径Rの大きい円錐ころ100Aの方が接点の移動距離Hが大きいため、スキュー量αが同じであっても、モーメントMが大きくなる。   For example, as shown in FIG. 13, when comparing a tapered roller 100A having a large radius of curvature R at the end surface of the large roller and a tapered roller 100B having a small radius of curvature R, the tapered roller 100A having a larger radius of curvature R is the contact point. Since the movement distance H is large, the moment M is large even if the skew amount α is the same.

特許文献1には、円錐ころのころ大径端面と内輪の大つば面との接触に着目して、円錐ころのスキューを抑制するようにした円錐ころ軸受が提案されている。特許文献1の円錐ころ軸受は、大つば面と接触する円錐ころのころ大径端面が凸球面であり、大つば面が凹球面とされている。更に、凸球面(円錐ころのころ大径端面)の曲率半径を、凹球面(大つば面の内周面)の曲率半径よりも小さく設定することで、円錐ころのころ大径端面と大つば面とを1点で接触させている。この円錐ころ軸受は、大つば面が凹球面形状であるため、大つば面が円錐面形状である円錐ころ軸受と比較して、円錐ころのころ大径端面と大つば面との接点で、弾性変形により生じる接触楕円が大きくなる。また、円錐ころがスキューした際、ころ大径端面と大つば面との接点の移動距離も増えるため、復元モーメントが大きくなり、大きなスキュー抑制効果が得られる。   Patent Document 1 proposes a tapered roller bearing that suppresses the skew of the tapered roller by focusing on the contact between the large diameter end surface of the tapered roller and the large collar surface of the inner ring. In the tapered roller bearing of Patent Document 1, the large-diameter end surface of the tapered roller that contacts the large collar surface is a convex spherical surface, and the large collar surface is a concave spherical surface. Further, by setting the curvature radius of the convex spherical surface (the large diameter end surface of the tapered roller) to be smaller than the curvature radius of the concave spherical surface (the inner peripheral surface of the large collar surface), the roller large diameter end surface of the tapered roller and the large collar The surface is in contact with one point. This tapered roller bearing has a concave spherical shape on the large brim surface, so compared to a tapered roller bearing having a conical surface on the large brim surface, it is a contact point between the large diameter end surface of the tapered roller and the large brim surface. The contact ellipse generated by elastic deformation becomes large. Further, when the tapered roller is skewed, the moving distance of the contact point between the roller large-diameter end face and the large brim surface is increased, so that the restoring moment is increased and a large skew suppressing effect is obtained.

特許文献2の円錐ころ軸受は、ころ大径端面の曲面形状は、ころ中心軸の反対側に中心を持つ円弧を、ころ中心軸回りに回転させた曲面形状であり、ころ周方向の曲率半径は、ころ半径方向の曲率半径より大きく設定されている。また、内輪の大つば面の面形状は、軸受回転軸上に中心を持つ円錐面形状となっている。そして、ころ大径端面と内輪の大つば面とを、1点で滑り接触させている。これにより、ころ大径端面と内輪の大つば面との接触楕円が、長軸方向の長さは変えずに、短軸方向の長さだけが長くなった、接触面積が大きな接触楕円として、接触面圧低下による軸受損失の低減を図っている。   In the tapered roller bearing of Patent Document 2, the curved surface shape of the roller large-diameter end surface is a curved surface shape obtained by rotating an arc having a center on the opposite side of the roller center axis around the roller center axis, and has a radius of curvature in the roller circumferential direction. Is set larger than the radius of curvature in the roller radial direction. Moreover, the surface shape of the large collar surface of the inner ring is a conical surface shape having a center on the bearing rotation shaft. The roller large-diameter end surface and the large collar surface of the inner ring are in sliding contact at one point. As a result, the contact ellipse between the roller large-diameter end face and the large collar surface of the inner ring is the same as the contact ellipse with a large contact area, without changing the length in the major axis direction, only in the length in the minor axis direction. The bearing loss is reduced by reducing the contact surface pressure.

特許文献3の円錐ころのころ大径端面は、大端面中央部に形成され、ころ中心軸上に中心を持つ球面と、大端面外縁部に形成され、ころ中心軸上に中心がない円弧をころ中心軸回りに回転させた曲面との、2つの曲面で構成されている。そして、内輪の大つば面は、大端面中央部と接触し、大端面外縁部は、円錐ころがスキューしても、エッジ当たりを避け、接触部分の焼付きを生じにくくすることを図っている。   The roller large-diameter end surface of the tapered roller of Patent Document 3 is formed at the central portion of the large end surface, and has a spherical surface having a center on the roller central axis and an arc having no center on the roller central axis. It is composed of two curved surfaces, a curved surface rotated around the roller central axis. The large collar surface of the inner ring is in contact with the central portion of the large end surface, and the outer edge portion of the large end surface avoids edge contact even if the tapered roller is skewed, and makes it difficult to cause seizure of the contact portion. .

特開2001−173665号公報JP 2001-173665 A 特開2002−147461号公報JP 2002-147461 A 特開2006−316837号公報JP 2006-316837 A

しかしながら、特許文献1の円錐ころ軸受によると、スキューの初期段階のように、スキュー量が小さく、接点の移動量も小さい間は、十分な復元モーメントは得られず、そのため、円錐ころは、ある程度スキューした状態でなければ安定しない問題があった。   However, according to the tapered roller bearing of Patent Document 1, a sufficient restoring moment cannot be obtained while the skew amount is small and the contact movement amount is small as in the initial stage of skew. There was a problem that it was not stable unless it was skewed.

また、特許文献2の円錐ころ軸受は、接触面積の拡大により接触面圧を低下させて軸受損失の低減を図ったものであり、接触面の円周方向の長さに関連させた曲率半径の規定が行われておらず、スキューの抑制効果は期待できない。   Further, the tapered roller bearing of Patent Document 2 is intended to reduce the contact loss by reducing the contact surface pressure by expanding the contact area, and has a radius of curvature related to the circumferential length of the contact surface. No regulation has been made and no skew suppression effect can be expected.

また、特許文献3の円錐ころ軸受は、大端面外縁部の曲面によるスキュー発生時のエッジ当たりを防止するためのものであり、大端面中央部に形成された曲面と内輪の大つば面との接触は、1点で滑り接触しており、スキューの発生自体を抑制するものではない。   Further, the tapered roller bearing of Patent Document 3 is for preventing edge contact at the time of occurrence of skew due to the curved surface of the outer edge of the large end surface, and the curved surface formed at the center of the large end surface and the large collar surface of the inner ring. The contact is a sliding contact at one point, and does not suppress the occurrence of skew itself.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、スキューの発生を抑制して、高い高速回転性能を有する円錐ころ軸受用転動体及び円錐ころ軸受を提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a rolling element for a tapered roller bearing and a tapered roller bearing that have high-speed rotation performance while suppressing the occurrence of skew. .

本発明の上記目的は、下記の構成により達成される。
(1) 曲率中心がころ中心軸から離れた位置にある円弧を前記ころ中心軸回りに回転させることで得られる表面形状を持ったころ大径端面を備える、円錐ころ軸受用転動体。
(2) 前記ころ大径端面の表面形状は、トーラス面である、(1)に記載の円錐ころ軸受用転動体。
(3) 前記ころ大径端面は、内輪の大つば面と円周方向に2点で接触する、(1)又は(2)に記載の円錐ころ軸受用転動体。
(4) 内周面に外輪軌道面を有する外輪と、
外周面に内輪軌道面を有する内輪と、
前記外輪軌道面及び前記内輪軌道面間に転動自在に配置される、(1)又は(2)に記載の複数の転動体と、を備え、
前記転動体のころ大径端面が接触する前記内輪の大つば面は、前記円錐ころ軸受の回転軸上に中心を持つ円錐面である、円錐ころ軸受。
(5) 前記ころ大径端面の表面形状は、前記ころ中心軸と同じ側に中心を持つ円弧を、前記ころ中心軸回りに回転させて形成されるトーラス面であり、
前記転動体のころ大径端面と、前記内輪の大つば面とは、円周方向に2点で接触し、
前記ころ中心軸と軸受中心軸とを含む断面において、前記ころ大径端面と前記大つば面との距離が極小となる前記ころ大径端面上の点における前記ころ大径端面の円周方向の曲率半径Rcaと、前記ころ大径端面と前記大つば面との距離が極小となる前記大つば面上の点における前記大つば面の円周方向の曲率半径Rcbは、Rcb<Rcaの関係を満たす、(4)に記載の円錐ころ軸受。
(6) 前記ころ大径端面の前記円弧の半径をRra、前記円弧の中心と前記ころ中心軸との距離をδ、前記ころ大径端面と前記大つば面との距離が極小となる前記大つば面上の点から前記大つば面を形成する円錐面の頂点までの距離をL、前記転動体の転動面の半頂角をβ、前記内輪軌道面の半頂角をγ、前記大つば面の円錐面の半頂角をπ/2−φとしたとき、
L/tanφ<Rra+δ/sin(β+γ−φ)
の関係式を満たす、(5)に記載の円錐ころ軸受。
(7) 前記ころ大径端面の表面形状は、前記ころ中心軸の反対側に中心を持つ円弧を、前記ころ中心軸回りに回転させて形成され、
前記ころ大径端面の前記円弧の半径をRra、前記円弧の中心と前記ころ中心軸との距離をδ、前記ころ大径端面と前記大つば面との接点から前記大つば面の円錐面の頂点までの距離をL、前記転動体の転動面の半頂角をβ、前記内輪軌道面の半頂角をγ、前記大つば面の円錐面の半頂角をπ/2−φとしたとき、
{Rra−δ/sin(β+γ−φ))/(L/tanφ)≧0.85
の関係式を満たす、(4)に記載の円錐ころ軸受。
(8) 前記ころ大径端面の表面形状は、前記ころ中心軸と軸受中心軸とを含む断面内に前記ころ中心軸から外れた位置に中心を持つ第1円弧及び第2円弧の2つ円弧を、それぞれ前記ころ中心軸回りに回転させて形成される複合凸曲面であり、
前記大つば面と、前記転動体のころ大径端面とは、2点で接触する、(4)に記載の円錐ころ軸受。
(9) 前記ころ大径端面の前記第1円弧の半径をRr1、前記ころ大径端面の前記第2円弧の半径をRr2、前記第1円弧の中心と前記ころ中心軸との距離をδ1、前記第2円弧の中心と前記ころ中心軸との距離をδ2、前記第1円弧と前記大つば面との接点から前記大つば面の円錐面の頂点までの距離をL1、前記第2円弧と前記大つば面との接点から前記大つば面の円錐面の頂点までの距離をL2、前記転動体の転動面の半頂角をβ、前記内輪軌道面の半頂角をγ、前記大つば面の円錐面の半頂角をπ/2−φとしたとき、
{Rrn−δn/sin(β+γ−φ))/(Ln/tanφ)≧0.85 (n=1,2)
の関係式を満たす、(8)に記載の円錐ころ軸受。
The above object of the present invention can be achieved by the following constitution.
(1) A rolling element for a tapered roller bearing, comprising a roller large-diameter end surface having a surface shape obtained by rotating an arc having a center of curvature away from the roller center axis around the roller center axis.
(2) The rolling element for a tapered roller bearing according to (1), wherein a surface shape of the roller large-diameter end surface is a torus surface.
(3) The roller large-diameter end face is a rolling element for a tapered roller bearing according to (1) or (2), which is in contact with the large collar surface of the inner ring at two points in the circumferential direction.
(4) an outer ring having an outer ring raceway surface on the inner peripheral surface;
An inner ring having an inner ring raceway surface on the outer peripheral surface;
A plurality of rolling elements according to (1) or (2), arranged so as to be freely rollable between the outer ring raceway surface and the inner ring raceway surface,
A tapered roller bearing, wherein a large collar surface of the inner ring that contacts a roller large-diameter end surface of the rolling element is a conical surface having a center on a rotating shaft of the tapered roller bearing.
(5) The surface shape of the roller large-diameter end surface is a torus surface formed by rotating an arc having a center on the same side as the roller central axis around the roller central axis,
The roller large-diameter end face of the rolling element and the large collar face of the inner ring contact at two points in the circumferential direction,
In a cross section including the roller center axis and the bearing center axis, a circumferential direction of the roller large diameter end surface at a point on the roller large diameter end surface at which the distance between the roller large diameter end surface and the large collar surface is minimized. The curvature radius Rca and the curvature radius Rcb in the circumferential direction of the large brim surface at a point on the large brim surface where the distance between the large-diameter end surface of the roller and the large brim surface is minimized have a relationship of Rcb <Rca. The tapered roller bearing according to (4), wherein
(6) The radius of the arc of the roller large-diameter end surface is Rra, the distance between the center of the arc and the roller central axis is δ, and the distance between the roller large-diameter end surface and the large collar surface is minimal. The distance from a point on the collar surface to the apex of the conical surface forming the large collar surface is L, the half apex angle of the rolling surface of the rolling element is β, the half apex angle of the inner ring raceway surface is γ, and the large When the half apex angle of the conical surface of the collar surface is π / 2−φ,
L / tanφ <Rra + δ / sin (β + γ−φ)
The tapered roller bearing according to (5), which satisfies the relational expression:
(7) The surface shape of the roller large-diameter end surface is formed by rotating an arc having a center on the opposite side of the roller central axis around the roller central axis,
The radius of the arc of the roller large-diameter end surface is Rra, the distance between the center of the arc and the roller central axis is δ, and the conical surface of the large-rib surface from the contact point between the roller large-diameter end surface and the large collar surface. The distance to the apex is L, the half apex angle of the rolling surface of the rolling element is β, the half apex angle of the inner ring raceway surface is γ, and the half apex angle of the conical surface of the large brim surface is π / 2−φ. When
{Rra-δ / sin (β + γ-φ)) / (L / tanφ) ≧ 0.85
The tapered roller bearing according to (4), wherein
(8) The surface shape of the roller large-diameter end face is two arcs of a first arc and a second arc having a center at a position deviating from the roller center axis in a cross section including the roller center axis and the bearing center axis. Are each a convex convex surface formed by rotating around the central axis of the roller,
The tapered roller bearing according to (4), wherein the large collar surface and the roller large-diameter end surface of the rolling element contact at two points.
(9) The radius of the first arc of the roller large diameter end surface is Rr1, the radius of the second arc of the roller large diameter end surface is Rr2, and the distance between the center of the first arc and the roller central axis is δ1, The distance between the center of the second arc and the roller central axis is δ2, the distance from the contact point between the first arc and the large brim surface to the apex of the conical surface of the large brim surface is L1, and the second arc The distance from the contact point with the large brim surface to the apex of the conical surface of the large brim surface is L2, the half apex angle of the rolling surface of the rolling element is β, the half apex angle of the inner ring raceway surface is γ, When the half apex angle of the conical surface of the collar surface is π / 2−φ,
{Rrn−δn / sin (β + γ−φ)) / (Ln / tanφ) ≧ 0.85 (n = 1, 2)
The tapered roller bearing according to (8), wherein the following relational expression is satisfied.

本発明の円錐ころ軸受用転動体及び円錐ころ軸受によれば、ころ大径端面の形状が、ころ中心軸から離れた位置に曲率中心を持つ円弧を、ころ中心軸回りに回転させることで形成される転動体を備える。これにより、転動体のころ大径端面と、円錐ころ軸受の回転軸上に中心を持つ円錐面である内輪の大つば面との間で、スキューを抑制して、転動体のころ大径端面と内輪の大つば面との摩擦による発熱が低減して高速回転性能が向上する。   According to the rolling element for tapered roller bearing and tapered roller bearing of the present invention, the shape of the roller large-diameter end surface is formed by rotating an arc having a center of curvature at a position away from the roller center axis around the roller center axis. Provided with rolling elements. This suppresses skew between the roller large-diameter end surface of the rolling element and the large collar surface of the inner ring, which is a conical surface having a center on the rotation axis of the tapered roller bearing, and the roller large-diameter end surface of the rolling element. Heat generation due to friction between the inner ring and the large collar surface of the inner ring is reduced and high-speed rotation performance is improved.

本発明の第1実施形態に係る円錐ころ軸受の断面図である。It is sectional drawing of the tapered roller bearing which concerns on 1st Embodiment of this invention. 図1に示す円錐ころのころ中心軸を含む断面図である。It is sectional drawing containing the roller center axis | shaft of the tapered roller shown in FIG. 図1に示す内輪の軸受中心軸を含む断面図である。It is sectional drawing containing the bearing central axis of the inner ring | wheel shown in FIG. 図1に示す円錐ころのころ大径端面と内輪の大つば面とが、2点で接触する状態を示す側面図である。It is a side view which shows the state which the roller large diameter end surface of the tapered roller shown in FIG. 1 and the large collar surface of an inner ring contact at two points. 図1の円Vで囲まれた部分の拡大図である。FIG. 2 is an enlarged view of a portion surrounded by a circle V in FIG. 1. 本発明の第2実施形態に係る円錐ころ軸受の断面図である。It is sectional drawing of the tapered roller bearing which concerns on 2nd Embodiment of this invention. 図6に示す円錐ころのころ中心軸を含む断面図である。It is sectional drawing containing the roller center axis | shaft of the tapered roller shown in FIG. 従来の円錐ころ軸受における、円錐ころのころ大径端面と内輪の大つば面との距離が1μm以下となる範囲を接触面と平行な平面上に投影した図である。In the conventional tapered roller bearing, it is the figure which projected on the plane parallel to a contact surface the range from which the distance of the roller large diameter end surface of a tapered roller and the large collar surface of an inner ring | wheel is 1 micrometer or less. 図6に示す円錐ころ軸受における、円錐ころのころ大径端面と内輪の大つば面との距離が1μm以下となる範囲を接触面と平行な平面上に投影した図である。FIG. 7 is a diagram in which a range in which the distance between the roller large-diameter end surface of the tapered roller and the large collar surface of the inner ring is 1 μm or less in the tapered roller bearing shown in FIG. 6 is projected on a plane parallel to the contact surface. 図6に示す円錐ころ軸受の曲率半径比と、ころ大径端面と大つば面との距離が1μm以下である面積と、の関係を示すグラフである。It is a graph which shows the relationship between the curvature radius ratio of the tapered roller bearing shown in FIG. 6, and the area where the distance of a roller large diameter end surface and a large collar surface is 1 micrometer or less. 本発明の第3実施形態に係る円錐ころ軸受の断面図である。It is sectional drawing of the tapered roller bearing which concerns on 3rd Embodiment of this invention. 図11の円XIIで囲まれた部分の拡大図である。FIG. 12 is an enlarged view of a portion surrounded by a circle XII in FIG. 11. ころ大径端面が凸球面形状の円錐ころと、円錐形状の大つば面とが接触する、従来の円錐ころ軸受におけるスキュー状態を説明する模式図である。FIG. 5 is a schematic diagram illustrating a skew state in a conventional tapered roller bearing in which a tapered roller having a large-diameter end surface is in contact with a convex spherical surface and a large flange surface having a conical shape.

以下、本発明の各実施形態に係る円錐ころ軸受用転動体及び円錐ころ軸受を図面に基づいて詳細に説明する。   Hereinafter, rolling elements for tapered roller bearings and tapered roller bearings according to embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態に係る円錐ころ軸受の軸受中心軸と1つのころ中心軸を含む断面図、図2はころ中心軸を含む円錐ころの断面図、図3は内輪の軸受中心軸を含む断面図である。
(First embodiment)
FIG. 1 is a sectional view including a bearing central axis and one roller central axis of a tapered roller bearing according to a first embodiment of the present invention, FIG. 2 is a sectional view of a tapered roller including a roller central axis, and FIG. 3 is a bearing of an inner ring. It is sectional drawing containing a central axis.

図1に示すように、本実施形態の円錐ころ軸受10は、内周面に外輪軌道面11が設けられた外輪12と、外周面に内輪軌道面13が設けられた内輪14と、外輪軌道面11および内輪軌道面13間に多数配置された転動体である円錐ころ15と、を備えている。   As shown in FIG. 1, the tapered roller bearing 10 of this embodiment includes an outer ring 12 having an outer ring raceway surface 11 provided on an inner peripheral surface, an inner ring 14 provided with an inner ring raceway surface 13 on an outer peripheral surface, and an outer ring raceway. A plurality of tapered rollers 15 which are rolling elements arranged between the surface 11 and the inner ring raceway surface 13.

図3も参照して、内輪14は、内輪軌道面13に対して大径側軸方向端部に設けられた鍔部(大径鍔部)16を備えている。内輪14の内輪軌道面13は、軸受中心軸C2上に頂点Oを持つ半頂角γの円錐面であり、内輪14の大つば面17(鍔部16の内周面)は、軸受中心軸C2上に頂点Oを持ち、半頂角π/2−φの円錐面である。即ち、大つば面17上の点Pにおける、大つば面17の半径方向の曲率半径Rrb=∞であり、大つば面17上の点Pにおける円周方向の曲率半径Rcbは、大つば面17の点Pから、点Pを通る大つば面17の垂線と軸受中心軸C2の交点までの距離である。また、円錐ころ15の転動面21は、半頂角βの円錐面であるので、外輪12の外輪軌道面11は、半頂角γ+2βの円錐面である。 Referring also to FIG. 3, the inner ring 14 includes a flange portion (large diameter flange portion) 16 provided at an end portion in the axial direction on the large diameter side with respect to the inner ring raceway surface 13. The inner ring raceway surface 13 of the inner ring 14 is a conical surface with a half apex angle γ having a vertex O 2 on the bearing center axis C2, and the large collar surface 17 (the inner peripheral surface of the flange portion 16) of the inner ring 14 is the bearing center. It is a conical surface having an apex O 3 on the axis C2 and a half apex angle π / 2−φ. That is, the radius of curvature Rrb in the radial direction of the large brim surface 17 at the point P on the large brim surface 17 is ∞, and the radius of curvature Rcb in the circumferential direction at the point P on the large brim surface 17 is The distance from the point P to the intersection of the perpendicular of the large brim surface 17 passing through the point P and the bearing central axis C2. Further, since the rolling surface 21 of the tapered roller 15 is a conical surface having a half apex angle β, the outer ring raceway surface 11 of the outer ring 12 is a conical surface having a half apex angle γ + 2β.

図2も参照して、ころ大径端面22の形状は、ころ中心軸C1に対して同じ側(図2ではころ中心軸C1の下側)で、ころ中心軸C1からδだけ離れた位置にある点Oを中心にもつ半径Rraの円弧Dを、ころ中心軸C1回りに回転させた回転面である。したがって、ころ大径端面22の形状は、ころ大径端面22上の点Qにおける半径方向の曲率半径Rra、及びころ大径端面22上の点Qにおける円周方向の曲率半径Rcaで表される非球面(トーラス面)である。
なお、円周方向の曲率半径Rcaは、点Qと点Oとを結ぶ線の長さであり、点Oは、線OQところ中心軸C1との交点である。また、円錐ころ15の小径端面23の形状は、任意形状とされている。
Referring to FIG. 2 as well, the shape of the roller large-diameter end face 22 is on the same side with respect to the roller center axis C1 (lower side of the roller center axis C1 in FIG. 2) at a position separated by δ from the roller center axis C1. This is a rotation surface obtained by rotating an arc D having a radius Rra around a point O 1 around the roller central axis C1. Therefore, the shape of the roller large-diameter end surface 22 is represented by a radius of curvature Rra in the radial direction at a point Q on the roller large-diameter end surface 22 and a radius of curvature Rca in the circumferential direction at the point Q on the roller large-diameter end surface 22. An aspherical surface (torus surface).
Note that the radius of curvature Rca in the circumferential direction is the length of a line connecting the point Q and the point O 4 , and the point O 4 is an intersection of the line O 1 Q and the central axis C 1 . Further, the shape of the small diameter end face 23 of the tapered roller 15 is an arbitrary shape.

ころ大径端面22の形状が非球面である円錐ころ15を備える円錐ころ軸受10では、円錐ころ15の転動面21と、内輪軌道面13との頂点が一致し、線接触している状態において、図4に示すように、円錐ころ15のころ大径端面22と、内輪14の大つば面17とが、円周方向に離間する2つの点Eで接触している。   In the tapered roller bearing 10 including the tapered roller 15 having a roller large-diameter end surface 22 having an aspherical shape, the rolling surface 21 of the tapered roller 15 and the inner ring raceway surface 13 coincide with each other and are in line contact with each other. 4, the roller large-diameter end surface 22 of the tapered roller 15 and the large collar surface 17 of the inner ring 14 are in contact at two points E that are separated in the circumferential direction.

図5は、図1の円Vで囲まれた部分の拡大図であり、円錐ころ軸受10の軸受中心軸C2と1つのころ中心軸C1を含む断面図である。円錐ころ軸受10は、軸受中心軸C2ところ中心軸C1を含む断面上には、ころ大径端面22と大つば面17とが接触する点Eが存在しないため、図5の断面上での大つば面17ところ大径端面22との間には、隙間Sがある。   FIG. 5 is an enlarged view of a portion surrounded by a circle V in FIG. 1, and is a cross-sectional view including the bearing center axis C <b> 2 of the tapered roller bearing 10 and one roller center axis C <b> 1. The tapered roller bearing 10 does not have a point E where the roller large-diameter end face 22 and the large collar surface 17 are in contact with each other on the cross-section including the bearing central axis C2 and the central axis C1. There is a gap S between the flange surface 17 and the large-diameter end surface 22.

ここで、大つば面17ところ大径端面22との隙間Sが極小となる大つば面17上の点をP、ころ大径端面22上の点をQとし、点Pから大つば面17の軸受中心軸C2上の中心Oまでの距離をLとすると(図1参照)、ころ大径端面22と大つば面17とが、円周方向に離間して接触する2つの点Eを持つためには、点Pにおける大つば面17の円周方向の曲率半径Rcbと、点Qにおけるころ大径端面22の円周方向の曲率半径Rcaと、の間には、Rcb<Rcaの関係が成立する。 Here, the point on the large brim surface 17 where the gap S between the large brim surface 17 and the large diameter end surface 22 is minimum is P, the point on the roller large diameter end surface 22 is Q, and the point P When the distance to the center O 3 on the bearing axis C2 and L (see FIG. 1), rollers and the large diameter end faces 22 and the large rib face 17, has two point E in contact with circumferentially spaced Therefore, there is a relationship of Rcb <Rca between the radius of curvature Rcb in the circumferential direction of the large brim surface 17 at the point P and the radius of curvature Rca in the circumferential direction of the roller large diameter end surface 22 at the point Q. To establish.

ここで、大つば面17の円周方向の曲率半径Rcbは、L/tanφで近似でき、ころ大径端面22の円周方向の曲率半径Rcaは、Rra+δ/sin(β+γ−φ)で近似できるので、式(1)の関係が成立する。   Here, the radius of curvature Rcb in the circumferential direction of the large brim surface 17 can be approximated by L / tanφ, and the radius of curvature Rca in the circumferential direction of the roller large diameter end surface 22 can be approximated by Rra + δ / sin (β + γ−φ). Therefore, the relationship of Formula (1) is materialized.

L/tanφ<Rra+δ/sin(β+γ−φ) ―――(1)   L / tanφ <Rra + δ / sin (β + γ−φ) ――― (1)

従って、円錐ころ15のころ大径端面22と、内輪14の大つば面17との2点での接触は、式(1)を満足するように、ころ大径端面22の半径Rra、及び半径Rraの中心Oところ中心軸C1との距離δを求めることで、達成される。 Accordingly, the contact between the roller large-diameter end surface 22 of the tapered roller 15 and the large collar surface 17 of the inner ring 14 at two points satisfies the radius Rra and the radius of the roller large-diameter end surface 22 so as to satisfy Expression (1). by determining the distance δ between the center O 1 at the center axis C1 of Rra, it is achieved.

以上説明したように、円錐ころ15のころ大径端面22の表面形状は、中心Oがころ中心軸C1から離れた位置にある円弧Dをころ中心軸C1回りに回転させることで得られる非球面(トーラス面)であるので、ころ大径端面22の半径方向の曲率半径Rraと、円周方向の曲率半径Rcaとを異なる値に設定される。 As described above, the surface shape of the roller large-diameter end face 22 of the tapered roller 15 is obtained by rotating the arc D having the center O 1 away from the roller center axis C1 around the roller center axis C1. Since it is a spherical surface (torus surface), the radius of curvature Rra of the roller large-diameter end surface 22 and the radius of curvature Rca in the circumferential direction are set to different values.

そして、本実施形態の円錐ころ軸受10は、円錐ころ15のころ大径端面22と、円錐ころ軸受の回転軸C2上に中心Oを持つ円錐面である内輪14の大つば面17とが、円周方向に離間する2つの点Eで接触するので、従来の1点接触の円錐ころ軸受と比較して、点Eが、ころ大径端面22の縁部側、且つ大つば面17の外径側で接触している。従って、円錐ころ15にスキューが生じた際の復元力が大きくなり、スキュー量が小さい場合でも復元されて、スキューに対する安定性が向上する。これにより、スキューに起因する円錐ころ15のころ大径端面22と、内輪14の大つば面17との摩擦による発熱を抑制して、焼付きを防止することができ、高速回転性能が向上する。 The tapered roller bearing 10 of the present embodiment has a roller large-diameter end surface 22 of the tapered roller 15 and a large collar surface 17 of the inner ring 14 that is a conical surface having a center O 2 on the rotation axis C2 of the tapered roller bearing. Since the contact is made at two points E that are separated from each other in the circumferential direction, the point E corresponds to the edge side of the roller large-diameter end face 22 and the large brim surface 17 as compared with the conventional one-point contact tapered roller bearing. Contact on the outer diameter side. Therefore, the restoring force when the skew is generated in the tapered roller 15 is increased, and even when the skew amount is small, the restoring force is restored and the stability against the skew is improved. As a result, heat generation due to friction between the roller large-diameter end surface 22 of the tapered roller 15 and the large collar surface 17 of the inner ring 14 due to skew can be suppressed, seizure can be prevented, and high-speed rotation performance is improved. .

また、ころ大径端面の表面形状は、ころ中心軸C1と同じ側に中心Oを持つ円弧Dを、ころ中心軸C1回りに回転させて形成されるトーラス面であり、ころ大径端面22と大つば面17との距離Sが極小となるころ大径端面22上の点Qにおけるころ大径端面22の円周方向の曲率半径Rcaと、ころ大径端面22と大つば面17との距離Sが極小となる大つば面17上の点Pにおける大つば面17の円周方向の曲率半径Rcbが、Rcb<Rcaの関係を満たすことで、ころ大径端面22と大つば面17とが、円周方向に離間する2つの点Eで接触する。 The surface shape of the roller large-diameter end surface is a torus surface formed by rotating an arc D having the center O 1 on the same side as the roller central axis C1 around the roller central axis C1, and the roller large-diameter end surface 22 The radius of curvature Rca in the circumferential direction of the roller large-diameter end surface 22 at a point Q on the roller large-diameter end surface 22 at which the distance S between the roller large-diameter surface 17 and the large collar surface 17 is minimal, and the roller large-diameter end surface 22 and the large collar surface 17 When the radius of curvature Rcb in the circumferential direction of the large brim surface 17 at the point P on the large brim surface 17 at which the distance S is minimal satisfies the relationship Rcb <Rca, the roller large-diameter end surface 22 and the large brim surface 17 Contact at two points E that are spaced apart in the circumferential direction.

また、このような円錐ころ軸受10は、ころ大径端面22の円弧Dの半径をRra、円弧Dの中心Oところ中心軸C1との距離をδ、ころ大径端面22と大つば面17との距離Sが極小となる大つば面17上の点Pから大つば面17を形成する円錐面の頂点Oまでの距離をL、円錐ころ15の転動面21の半頂角をβ、内輪軌道面13の半頂角をγ、大つば面17の円錐面の半頂角をπ/2−φとしたとき、L/tanφ<Rra+δ/sin(β+γ−φ)の関係式を満たしている。 Moreover, such a tapered roller bearing 10 is a roller Rra the radius of the arc D of the large-diameter side end surface 22, the distance between the center O 1 at the center axis C1 of the arc D [delta], around the large diameter end faces 22 large rib surface 17 L is the distance from the point P on the large brim surface 17 at which the distance S to the minimum to the apex O 3 of the conical surface forming the large brim surface 17, and the half apex angle of the rolling surface 21 of the tapered roller 15 is β When the half apex angle of the inner ring raceway surface 13 is γ and the half apex angle of the conical surface of the large brim surface 17 is π / 2−φ, the relational expression L / tanφ <Rra + δ / sin (β + γ−φ) is satisfied. ing.

(第2実施形態)
次に、本発明の第2実施形態に係る円錐ころ軸受について、図6〜図10を参照して説明する。なお、第1実施形態と同一または同等部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(Second Embodiment)
Next, a tapered roller bearing according to a second embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol or an equivalent code | symbol is attached | subjected to the same or equivalent part as 1st Embodiment, and description is simplified or abbreviate | omitted.

第1実施形態の円錐ころ軸受10では、ころ大径端面22と大つば面17とが、円周方向に離間する2つの点Eで接触することで、スキューの抑制を図ったが、本実施形態の円錐ころ軸受10Aでは、ころ大径端面22と大つば面17との接触面を円周方向に広くすることで、スキューの抑制を図る。   In the tapered roller bearing 10 of the first embodiment, the roller large-diameter end face 22 and the large brim surface 17 are in contact with each other at two points E that are separated in the circumferential direction. In the tapered roller bearing 10 </ b> A of the embodiment, the contact surface between the roller large-diameter end surface 22 and the large collar surface 17 is widened in the circumferential direction, thereby suppressing skew.

具体的に、ころ大径端面22と大つば面17との接触面は、弾性変形により楕円形となる。この接触面が広くなるほど、又は接触面が内輪軌道面13から見て高い位置にあるほど、円錐ころ15Aのスキューの抑制効果が高くなる。   Specifically, the contact surface between the roller large-diameter end surface 22 and the large brim surface 17 becomes elliptical due to elastic deformation. The wider the contact surface, or the higher the contact surface as viewed from the inner ring raceway surface 13, the higher the effect of suppressing the skew of the tapered rollers 15A.

ころ大径端面22と大つば面17との接点Pにおけるころ大径端面22の半径方向の曲率半径をRra、ころ大径端面22の円周方向の曲率半径(点Pと点Oとを結ぶ線の長さ)をRca、大つば面17の半径方向の曲率半径をRrb、大つば面17の円周方向の曲率半径(点Pと点Oとを結ぶ線の長さ)をRcbとすると、大つば面17は円錐面であるので、Rrb=∞となり、Rcbが大きいほど接触面は半径方向に広がる。 The radius of curvature of the roller large-diameter end surface 22 at the contact point P between the roller large-diameter end surface 22 and the large brim surface 17 is Rra, and the radius of curvature of the roller large-diameter end surface 22 in the circumferential direction (point P and point O 4 is connecting length of the line) to Rca, Rcb radial radius of curvature Rrb of the large rib surface 17, the circumferential direction of the radius of curvature of the large rib surface 17 (the length of a line connecting the point P and the point O 2) Then, since the large brim surface 17 is a conical surface, Rrb = ∞, and the larger the Rcb, the wider the contact surface in the radial direction.

また、Rca−Rcbの値が0に近づくほど、ころ大径端面22と大つば面17と接触面は線接触に近づき、円周方向に広がるが、同時に接点Pは低くなる。これは、接点Pの位置を低くするほどRcaが大きくなり,Rcbが小さくなるためである。   Further, as the value of Rca-Rcb approaches 0, the roller large-diameter end surface 22, the large brim surface 17, and the contact surface approach line contact and expand in the circumferential direction, but at the same time, the contact P decreases. This is because as the position of the contact P is lowered, Rca increases and Rcb decreases.

従来のように、ころ大径端面22の形状が球面形状だと、Rra=Rcaであるため、接点を低くせずに接触面を広くすることはできない。一方、本実施形態の円錐ころ軸受10Aは、図7に示すように、円錐ころ15Aのころ大径端面22の形状が、ころ中心軸C1からδだけ離れた位置に中心Oをもつ半径Rraの円弧Dを、ころ中心軸C1回りに回転させた回転面(非球面)としたので、円周方向の曲率半径Rcaを変化させずに、半径方向の曲率半径Rraを大きくすることができ、接触面を広くすることができる。 If the shape of the roller large-diameter end surface 22 is a spherical shape as in the prior art, since Rra = Rca, the contact surface cannot be widened without lowering the contact. On the other hand, in the tapered roller bearing 10A of the present embodiment, as shown in FIG. 7, the radius Rra having a center O 1 in which the shape of the roller large-diameter end face 22 of the tapered roller 15A is separated from the roller center axis C1 by δ. Since the arc D is a rotating surface (aspherical surface) rotated about the roller center axis C1, the radius of curvature Rra in the radial direction can be increased without changing the radius of curvature Rca in the circumferential direction. The contact surface can be widened.

なお、本実施形態のころ大径端面22の表面形状は、ころ中心軸C1に対して対称な2つの円弧Dをつなげた形であるが、第1実施形態の円錐ころ15と異なり、半径Rraの円弧Dと、円弧Dの中心Oとは、ころ中心軸C1に対して互いに反対側に位置する。 In addition, the surface shape of the roller large-diameter end surface 22 of the present embodiment is a shape in which two circular arcs D symmetrical to the roller center axis C1 are connected. Unlike the tapered roller 15 of the first embodiment, the radius Rra an arc D of the center O 1 of the arc D, located opposite each other with respect to the central axis C1 rollers.

この円錐ころ軸受10Aにおいては、ころ大径端面22及び大つば面17の円周方向の曲率半径の差(Rca−Rcb)が0に近づくほど、又はころ大径端面22及び大つば面17の円周方向の曲率半径の比Kr=Rca/Rcbが1に近づくほど、接触面は線接触に近づき、円周方向に長くなる。   In this tapered roller bearing 10A, the difference in the radius of curvature (Rca-Rcb) in the circumferential direction between the roller large-diameter end surface 22 and the large brim surface 17 approaches zero, or between the roller large-diameter end surface 22 and the large brim surface 17. As the ratio Kr = Rca / Rcb of the radius of curvature in the circumferential direction approaches 1, the contact surface approaches line contact and becomes longer in the circumferential direction.

図6を参照して、本実施形態の円錐ころ軸受10Aでは、ころ大径端面22と大つば面17との接点Pにおける大つば面17の円周方向の曲率半径Rcbは、L/tanφで近似できる。また、接点Pにおけるころ大径端面22の円周方向の曲率半径Rcaは、Rra−δ/sin(β+γ−φ) で近似できる。   Referring to FIG. 6, in the tapered roller bearing 10A of the present embodiment, the radius of curvature Rcb in the circumferential direction of the large collar surface 17 at the contact point P between the roller large diameter end surface 22 and the large collar surface 17 is L / tanφ. Can be approximated. Further, the radius of curvature Rca in the circumferential direction of the roller large-diameter end face 22 at the contact P can be approximated by Rra−δ / sin (β + γ−φ).

従って、曲率半径比Kr(Rca/Rcb)は、式(2)となる。
Kr={Rra−δ/sin(β+γ−φ)}/(L/tanφ)―――(2)
Accordingly, the curvature radius ratio Kr (Rca / Rcb) is expressed by the following equation (2).
Kr = {Rra−δ / sin (β + γ−φ)} / (L / tanφ) −− (2)

ここで、曲率半径比Krが1に近づくように、Rraとδを決めることで、ころ大径端面22と大つば面17との接触面が円周方向に長く、接触面が広くなって、スキューの抑制効果が向上する。   Here, by determining Rra and δ so that the curvature radius ratio Kr approaches 1, the contact surface between the roller large-diameter end surface 22 and the large brim surface 17 is longer in the circumferential direction, and the contact surface becomes wider. The effect of suppressing skew is improved.

図8、図9は、従来例の軸受と、本実施形態の軸受のそれぞれについて、ころ大径端面と大つば面の距離が、1μm以下となる範囲を、接触面と平行な平面上に投影した図である。なお、ここでは、β=1.5°、γ=13.2°、π/2-φ=76.4°(φ=13.6°)、内輪軌道面13の最外径=85mmとした。また、従来例の軸受(図8)では、ころ大径端面のRra=177mm、δ=0mmの球面形状とし、本実施形態の軸受(図9)では、ころ大径端面のRra=355mm、δ=3.4mmの非球面とした。   FIG. 8 and FIG. 9 project the range in which the distance between the roller large-diameter end surface and the large collar surface is 1 μm or less on a plane parallel to the contact surface for each of the conventional bearing and the bearing of this embodiment. FIG. Here, β = 1.5 °, γ = 13.2 °, π / 2−φ = 76.4 ° (φ = 13.6 °), and the outermost diameter of the inner ring raceway surface 13 = 85 mm. . Further, in the conventional bearing (FIG. 8), the roller large-diameter end face has a spherical shape with Rra = 177 mm and δ = 0 mm. In the bearing of this embodiment (FIG. 9), the roller large-diameter end face Rra = 355 mm, δ = 3.4 mm aspherical surface.

どちらの軸受も、L=45mmとなり接点の高さが等しく、また、Kr=0.95と曲率半径比も同じになるが、図9に示す本実施形態の軸受の方が、ころ大径端面と大つば面との距離が1μm以下となる範囲が広く、同一荷重条件での接触面積が大きくなり、スキュー抑制効果が大きくなる。なお、図9では、ころ大径端面ところ転動面の面取り、及び、その面取りところ大径端面との間のだらし面を考慮していないため、距離1μm以下の範囲が、ころ輪郭にまで及んでいるが、実際には面取り及びだらし面が設けられるため、距離1μm以下の範囲は、図9より少し狭い範囲となる。   In both bearings, L = 45 mm, the contact height is equal, and the curvature radius ratio is the same as Kr = 0.95. However, the bearing of this embodiment shown in FIG. And a large collar surface have a wide range in which the distance is 1 μm or less, the contact area under the same load condition is increased, and the skew suppression effect is increased. In FIG. 9, since the chamfering of the roller large-diameter end surface and the rolling surface and the chamfering surface between the chamfering and the large-diameter end surface are not taken into consideration, a range of a distance of 1 μm or less extends to the roller contour. However, since chamfering and defacement surfaces are actually provided, the range of the distance of 1 μm or less is a slightly narrower range than FIG.

また、式(2)において、曲率半径比Krが0.70〜1.00となるように、Rraの値を変化させて、ころ大径端面と大つば面との距離が1μm以下となる範囲の面積を計算した。円錐ころ軸受の諸元は、図9と同じく、β=1.5°、γ=13.2°、φ=13.6°、内輪軌道面の最外径=85mm、δ=3.4mmとした。   Further, in Equation (2), the value of Rra is changed so that the curvature radius ratio Kr is 0.70 to 1.00, and the distance between the roller large-diameter end face and the large collar face is 1 μm or less. The area of was calculated. The specifications of the tapered roller bearing are as follows: β = 1.5 °, γ = 13.2 °, φ = 13.6 °, the outermost diameter of the inner ring raceway surface = 85 mm, and δ = 3.4 mm. did.

表1は、計算結果であり、図10は、円錐ころ軸受の曲率半径比Krと、ころ大径端面と大つば面との距離が1μm以下である面積と、の関係を示すグラフである。   Table 1 shows the calculation results, and FIG. 10 is a graph showing the relationship between the radius-of-curvature ratio Kr of the tapered roller bearing and the area where the distance between the roller large-diameter end surface and the large collar surface is 1 μm or less.

表1及び図10から分かるように、Kr≧0.85では、同一荷重条件下での接触面積が大きくなる。従って、式(3)の関係を満たすようにRraとδを設定すれば、スキューの抑制効果が向上する。
Kr={Rra−δ/sin(β+γ−φ)}/(L/tanφ)≧0.85 ―――(3)
As can be seen from Table 1 and FIG. 10, when Kr ≧ 0.85, the contact area under the same load condition increases. Therefore, if Rra and δ are set so as to satisfy the relationship of Expression (3), the effect of suppressing skew is improved.
Kr = {Rra−δ / sin (β + γ−φ)} / (L / tanφ) ≧ 0.85 ――― (3)

Figure 2017187148
Figure 2017187148

以上、説明したように、本実施形態の円錐ころ軸受10Aによれば、ころ大径端面22の表面形状は、円錐ころ15Aの中心軸C1の反対側に中心Oを持つ円弧Dを、円錐ころ15Aの中心軸C1回りに回転させて形成され、ころ大径端面22の円弧Dの半径をRra、円弧Dの中心Oと円錐ころ15Aの中心軸C1との距離をδ、ころ大径端面22と大つば面17との接点Pから大つば面17の円錐面の頂点Oまでの距離をL、円錐ころ15Aの転動面の半頂角をβ、内輪軌道面13の半頂角をγ、大つば面17の円錐面の半頂角をπ/2−φとしたとき、上述した式(3)の関係を満たすことで、ころ大径端面22と大つば面17との接触面積が大きくなり、効果的にスキューを抑制することができる。 As described above, according to the tapered roller bearing 10A of the present embodiment, the surface shape of the roller large-diameter end surface 22 is such that the circular arc D having the center O 1 on the opposite side of the central axis C1 of the tapered roller 15A is conical. is formed by rotating the center axis C1 around the rollers 15A, rollers Rra the radius of the arc D of the large-diameter side end surface 22, the distance between the center O 1 and the center axis C1 of the tapered roller 15A arc D [delta], roller diameter The distance from the contact point P between the end face 22 and the large collar surface 17 to the apex O 3 of the conical surface of the large collar surface 17 is L, the half apex angle of the rolling surface of the tapered roller 15A is β, and the half apex of the inner ring raceway surface 13 When the angle is γ and the half apex angle of the conical surface of the large brim surface 17 is π / 2−φ, the relationship between the roller large diameter end surface 22 and the large brim surface 17 is satisfied by satisfying the relationship of the above formula (3). The contact area is increased, and skew can be effectively suppressed.

(第3実施形態)
次に、本発明の第3実施形態に係る円錐ころ軸受について、図11及び図12を参照して説明する。なお、第1実施形態と同一または同等部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(Third embodiment)
Next, a tapered roller bearing according to a third embodiment of the present invention will be described with reference to FIGS. 11 and 12. In addition, the same code | symbol or an equivalent code | symbol is attached | subjected to the same or equivalent part as 1st Embodiment, and description is simplified or abbreviate | omitted.

第2実施形態で述べたように、ころ大径端面22と大つば面17との接触面が広くなるほど、又は接触面が内輪軌道面13から見て高い位置にあるほど、円錐ころ15Aのスキューの抑制効果が高くなる。第2実施形態の円錐ころ軸受10Aでは、ころ大径端面22と大つば面17との接触面を円周方向に広くすることで、スキューの抑制を図ったが、本実施形態の円錐ころ軸受10Bでは、ころ大径端面22の表面形状を2種類の曲面の組合せとすることで、広い接触面を形成して、スキューの抑制を図る。   As described in the second embodiment, the wider the contact surface between the roller large-diameter end surface 22 and the large collar surface 17, or the higher the contact surface as viewed from the inner ring raceway surface 13, the more the skew of the tapered roller 15 </ b> A. The suppression effect becomes higher. In the tapered roller bearing 10A of the second embodiment, the contact surface between the roller large-diameter end surface 22 and the large collar surface 17 is widened in the circumferential direction to suppress skew, but the tapered roller bearing of the present embodiment. In 10B, the surface shape of the roller large-diameter end surface 22 is a combination of two types of curved surfaces, thereby forming a wide contact surface and suppressing skew.

本実施形態の円錐ころ軸受10Bは、図11及び図12に示すように、円錐ころ15Bのころ大径端面22の形状が、ころ中心軸C1からδ1だけ離れた位置に中心Oをもつ半径Rr1の第1円弧D1を、ころ中心軸C1回りに回転させた回転面(非球面)と、ころ中心軸C1からδ2だけ離れた位置に中心Oをもつ半径Rr2の第2円弧D2を、ころ中心軸C1回りに回転させた回転面(非球面)と、からなる複合非球面で構成されている。第1及び第2円弧D1,D2の中心O,Oは、いずれも、ころ中心軸C1に対して第1円弧D1及び第2円弧D2の反対側にある。 As shown in FIGS. 11 and 12, the tapered roller bearing 10 </ b> B of the present embodiment is such that the shape of the roller large-diameter end surface 22 of the tapered roller 15 </ b> B has a center O 1 at a position away from the roller center axis C 1 by δ 1. A rotation surface (aspherical surface) obtained by rotating the first arc D1 of Rr1 around the roller center axis C1 and a second arc D2 of radius Rr2 having a center O 5 at a position separated by δ2 from the roller center axis C1. It is composed of a composite aspherical surface comprising a rotating surface (aspherical surface) rotated about the roller center axis C1. The centers O 1 and O 5 of the first and second arcs D1 and D2 are both on the opposite side of the first arc D1 and the second arc D2 with respect to the roller center axis C1.

したがって、図12に示すように、ころ大径端面22の複合非球面と大つば面17とは、半径方向に離間するP1,P2の2点で接触している。ころ中心軸C1から見て遠い側である外縁部の表面形状は、半径Rr1の第1円弧D1をころ中心軸C1回りに回転させた回転面(非球面)であり、ころ中心軸C1に近い側である中央部の表面形状は、半径Rr2の第2円弧D2をころ中心軸C1回りに回転させた回転面(非球面)である。   Therefore, as shown in FIG. 12, the composite aspherical surface of the roller large-diameter end surface 22 and the large brim surface 17 are in contact at two points P1 and P2 that are spaced apart in the radial direction. The surface shape of the outer edge on the side far from the roller center axis C1 is a rotating surface (aspheric surface) obtained by rotating the first arc D1 having the radius Rr1 around the roller center axis C1, and is close to the roller center axis C1. The surface shape of the central portion on the side is a rotating surface (aspherical surface) obtained by rotating the second arc D2 having the radius Rr2 around the roller central axis C1.

即ち、ころ大径端面22は、ころ大径端面22と大つば面17との接点P1において、半径方向の曲率半径Rr1、及び円周方向の曲率半径(点P1と点Oとを結ぶ線の長さ)Rc1を有し、また、ころ大径端面22と大つば面17との接点P2において、半径方向の曲率半径Rr2、及び円周方向の曲率半径(点P2と点Oとを結ぶ線の長さ)Rc2を有している。 That is, the roller large end face 22, a roller connecting the large-diameter end face 22 at point P1 of the large rib surface 17, the radial curvature Rr1, and a circumferential curvature radius (points P1 and O 4 lines has a length) Rc1 of, also, the roller and the large diameter end faces 22 in contact P2 of the large rib surface 17, the radial curvature Rr2, and a circumferential radius of curvature (point P2 and the point O 6 The length of the connecting line) Rc2.

本実施形態の円錐ころ軸受10Bは、ころ大径端面22の表面形状を、第1円弧D1及び第2円弧D2の回転面からなる2つの非球面の複合曲面とすることで、ころ大径端面22と大つば面17とを点P1,P2の2点で接触させると共に、各点P1,P2における接触面を円周方向に長く、接触面を広くして円錐ころ15Bのスキューを効果的に抑制している。   In the tapered roller bearing 10B of the present embodiment, the roller large-diameter end face 22 has a surface shape of the roller large-diameter end face 22 that is a composite curved surface of two aspheric surfaces composed of the rotating surfaces of the first arc D1 and the second arc D2. 22 and the large brim surface 17 are brought into contact at two points P1 and P2, the contact surfaces at the points P1 and P2 are long in the circumferential direction, and the contact surface is widened to effectively skew the tapered roller 15B. Suppressed.

即ち、図11に示すように、円錐ころ15の転動面21の半頂角をβ、内輪軌道面13の半頂角をγ、内輪14の大つば面17の半頂角をπ/2−φ、ころ中心軸C1から第1及び第2円弧D1,D2の中心O,Oまでの距離をそれぞれδ1,δ2、大つば面17を構成する円錐面の頂点Oからころ大径端面22と大つば面17との接点P1,P2までの距離をそれぞれL1,L2としたとき、第2実施形態と同様に、式(4)の関係を満たすように半径Rr1、δ1、及び半径Rr2、δ2を設定することで、ころ大径端面22と大つば面17との接触面が円周方向に長くなり、接触面積が広くなって、効果的にスキューを抑制することができる。 That is, as shown in FIG. 11, the half apex angle of the rolling surface 21 of the tapered roller 15 is β, the half apex angle of the inner ring raceway surface 13 is γ, and the half apex angle of the large collar surface 17 of the inner ring 14 is π / 2. -.phi, rollers δ1 central axis C1 from the center O 1 of the first and second arc D1, D2, O 5 up to a distance of each, .delta.2, apex O 3 Karakoro large-diameter conical surface constituting the large rib surface 17 When the distances between the end surface 22 and the large brim surface 17 to the contacts P1 and P2 are L1 and L2, respectively, as in the second embodiment, the radii Rr1, δ1, and the radius so as to satisfy the relationship of Expression (4) By setting Rr2 and δ2, the contact surface between the roller large-diameter end surface 22 and the large brim surface 17 becomes longer in the circumferential direction, the contact area becomes wider, and skew can be effectively suppressed.

Krn={Rrn−δn/sin(β+γ−φ) }/(Ln/tanφ)≧0.85 ――(4)
但し、n=1,2
Krn = {Rrn−δn / sin (β + γ−φ)} / (Ln / tanφ) ≧ 0.85 (4)
However, n = 1, 2

例えば、ころ中心軸C1から見て遠い側に形成される、曲率半径Rr1の第1円弧D1の回転面に注目し、曲率半径比Kr1が0.70〜1.00となるように、Rr1の値を変化させて、ころ大径端面と大つば面との距離が1μm以下となる範囲の面積を計算した結果は、表1、及び図10に示す第2実施形態の円錐ころ軸受10Bと同様に、Kr1≧0.85では、同一荷重条件下での接触面積が大きくなる。従って、式(4)の関係を満たすようにRr1とδ1を設定すれば、スキューを効果的に抑制することができる。但し、計算に用いた円錐ころ軸受の諸元は、第2実施形態の円錐ころ軸受10Bと同じ、β=1.5°、γ=13.2°、φ=13.6°、内輪軌道面の最外径=85mm、δ=3.4mmとした。   For example, paying attention to the rotating surface of the first arc D1 having the radius of curvature Rr1 formed on the side far from the roller center axis C1, the radius of curvature Rr1 is set to 0.70 to 1.00. The result of calculating the area in which the distance between the roller large-diameter end face and the large collar face is 1 μm or less by changing the value is the same as that of the tapered roller bearing 10B of the second embodiment shown in Table 1 and FIG. In addition, when Kr1 ≧ 0.85, the contact area under the same load condition increases. Therefore, if Rr1 and δ1 are set so as to satisfy the relationship of Expression (4), the skew can be effectively suppressed. However, the specifications of the tapered roller bearing used for the calculation are the same as the tapered roller bearing 10B of the second embodiment, β = 1.5 °, γ = 13.2 °, φ = 13.6 °, the inner ring raceway surface. The outermost diameter was 85 mm and δ was 3.4 mm.

ころ中心軸C1に近い側である中央部に形成される、曲率半径Rr2の第2円弧D2の回転面についても同様に、式(4)の関係を満たすようにRr2とδ2を設定することで、スキューの抑制効果が向上する。   By similarly setting Rr2 and δ2 so as to satisfy the relationship of the formula (4), the rotation surface of the second arc D2 having the radius of curvature Rr2 formed in the central portion on the side close to the roller central axis C1 is also set. The effect of suppressing skew is improved.

以上説明したように、本実施形態の円錐ころ軸受10Bによれば、ころ大径端面22の表面形状は、ころ中心軸C1と軸受中心軸C2とを含む断面内にころ中心軸C1から外れた位置に中心O,Oを持つ第1円弧D1及び第2円弧D2の2つ円弧を、それぞれころ中心軸C1回りに回転させて形成される複合凸曲面であり、大つば面17と、円錐ころ15のころ大径端面22とは、2点で接触するので、効果的にスキューを抑制することができる。 As described above, according to the tapered roller bearing 10B of the present embodiment, the surface shape of the roller large-diameter end face 22 deviates from the roller center axis C1 within the cross section including the roller center axis C1 and the bearing center axis C2. A complex convex curved surface formed by rotating two arcs of the first arc D1 and the second arc D2 having the centers O 1 and O 5 at positions around the roller central axis C1, respectively, Since the roller large-diameter end face 22 of the tapered roller 15 contacts at two points, the skew can be effectively suppressed.

また、ころ大径端面22の第1円弧D1の半径をRr1、ころ大径端面22の第2円弧D2の半径をRr2、第1円弧D1の中心Oところ中心軸C1との距離をδ1、第2円弧D2の中心Oところ中心軸C1との距離をδ2、第1円弧D1と大つば面17との接点P1から大つば面17の円錐面の頂点Oまでの距離をL1、第2円弧D2と大つば面17との接点P2から大つば面17の円錐面の頂点Oまでの距離をL2、円錐ころ15の転動面21の半頂角をβ、内輪軌道面13の半頂角をγ、大つば面17の円錐面の半頂角をπ/2−φとしたとき、
{Rrn−δn/sin(β+γ−φ) }/(Ln/tanφ)≧0.85 (n=1,2)
の関係式を満たすので、スキューの発生を抑制することができ、スキューに起因する円錐ころ15のころ大径端面22と、内輪14の大つば面17との摩擦による発熱を抑制して、焼付きを防止することができ、高速回転性能が向上する。
Further, the roller radius Rr1 of the first arc D1 of the large-diameter side end surface 22, the roller radius Rr2 of the second arc D2 of the large-diameter side end surface 22, the distance between the center O 1 at the center axis C1 of the first arc D1 .delta.1, the distance between the center O 5 at the central axis C1 of the second arc D2 .delta.2, the distance between the first arc D1 from the contact point P1 between the large rib surface 17 to the apex O 3 of the conical face of the large rib surface 17 L1, the and 2 arc D2 the distance from the contact point P2 to the vertex O 3 of the conical face of the large rib surface 17 of the large rib surface 17 L2, the half apex angle of the rolling surface 21 of the tapered rollers 15 beta, the inner ring raceway surface 13 When the half apex angle is γ and the half apex angle of the conical surface of the large brim surface 17 is π / 2−φ,
{Rrn−δn / sin (β + γ−φ)} / (Ln / tanφ) ≧ 0.85 (n = 1, 2)
Therefore, the occurrence of skew can be suppressed, and heat generation due to friction between the roller large-diameter end surface 22 of the tapered roller 15 and the large collar surface 17 of the inner ring 14 due to the skew can be suppressed. Sticking can be prevented and high-speed rotation performance is improved.

尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。   In addition, this invention is not limited to each embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.

10,10A,10B 円錐ころ軸受
11 外輪軌道面
12 外輪
13 内輪軌道面
14 内輪
15 円錐ころ(円錐ころ軸受用転動体)
17 大つば面
21 転動面
22 ころ大径端面
C1 ころ中心軸
C2 軸受中心軸(円錐ころ軸受の回転軸)
D 円弧
D1 第1円弧(円弧)
D2 第2円弧(円弧)
Kr 曲率半径比
L ころ大径端面と大つば面との接点から大つば面の円錐面の頂点までの距離
L1 第1円弧と大つば面との接点から大つば面の円錐面の頂点までの距離
L2 第2円弧と大つば面との接点から大つば面の円錐面の頂点までの距離
円弧の中心
円錐面の頂点
Rr1 第1円弧の半径方向の曲率半径(第1円弧の半径)
Rr2 第2円弧の半径方向の曲率半径(第2円弧の半径)
Rra ころ大径端面の半径方向の曲率半径(円弧の半径)
Rca ころ大径端面の円周方向の曲率半径
Rrb 大つば面の半径方向の曲率半径
Rcb 大つば面の円周方向の曲率半径
β 転動体の転動面の半頂角
γ 内輪軌道面の半頂角
δ 円弧の中心ところ中心軸との距離
δ1 第1円弧の中心ところ中心軸との距離
δ2 第2円弧の中心ところ中心軸との距離
π/2-φ 大つば面の円錐面の半頂角
10, 10A, 10B Tapered roller bearing 11 Outer ring raceway surface 12 Outer ring 13 Inner ring raceway surface 14 Inner ring 15 Tapered roller (rolling element for tapered roller bearing)
17 Large collar surface 21 Rolling surface 22 Roller large-diameter end surface C1 Roller center axis C2 Bearing center axis (rotary shaft of tapered roller bearing)
D Arc D1 First arc (arc)
D2 Second arc (arc)
Kr Curvature radius ratio L Distance from the contact point between the large roller end face and the large brim surface to the apex of the conical surface of the large brim surface L1 From the contact point of the first arc to the large brim surface to the apex of the conical surface of the large brim surface Distance L2 Distance from the contact point between the second arc and the large brim surface to the apex of the conical surface of the large brim surface O 1 Arc center O 3 Conical apex Rr1 Radial curvature radius of the first arc (the first arc radius)
Rr2 Radius of curvature of the second arc (radius of the second arc)
Rra The radius of curvature of the large diameter end face of the roller (radius of the arc)
Rca The radius of curvature of the roller large diameter end surface in the circumferential direction Rrb The radius of curvature of the large collar surface in the radial direction Rcb The radius of curvature of the large collar surface in the circumferential direction β The half apex angle γ of the rolling surface of the rolling element The half of the inner ring raceway surface Vertex angle δ Distance from the center of the arc to the center axis δ1 Distance from the center of the first arc to the center axis δ2 Distance from the center of the second arc to the center axis π / 2-φ Half-top of the conical surface of the large brim Corner

Claims (3)

曲率中心がころ中心軸から離れた位置にある円弧を前記ころ中心軸回りに回転させることで得られる表面形状を持ったころ大径端面を備える、円錐ころ軸受用転動体。   A rolling element for a tapered roller bearing, comprising a roller large-diameter end surface having a surface shape obtained by rotating an arc having a center of curvature away from the roller center axis around the roller center axis. 前記ころ大径端面の表面形状は、トーラス面である、請求項1に記載の円錐ころ軸受用転動体。   The rolling element for a tapered roller bearing according to claim 1, wherein a surface shape of the roller large-diameter end surface is a torus surface. 内周面に外輪軌道面を有する外輪と、
外周面に内輪軌道面を有する内輪と、
前記外輪軌道面及び前記内輪軌道面間に転動自在に配置される、請求項1又は2に記載の複数の転動体と、を備え、
前記転動体のころ大径端面が接触する前記内輪の大つば面は、前記円錐ころ軸受の回転軸上に中心を持つ円錐面である、円錐ころ軸受。
An outer ring having an outer ring raceway surface on the inner circumferential surface;
An inner ring having an inner ring raceway surface on the outer peripheral surface;
A plurality of rolling elements according to claim 1, wherein the rolling elements are arranged so as to be freely rollable between the outer ring raceway surface and the inner ring raceway surface;
A tapered roller bearing, wherein a large collar surface of the inner ring that contacts a roller large-diameter end surface of the rolling element is a conical surface having a center on a rotating shaft of the tapered roller bearing.
JP2016078178A 2016-04-08 2016-04-08 Rolling body for conical roller bearing, and conical roller bearing Pending JP2017187148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016078178A JP2017187148A (en) 2016-04-08 2016-04-08 Rolling body for conical roller bearing, and conical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016078178A JP2017187148A (en) 2016-04-08 2016-04-08 Rolling body for conical roller bearing, and conical roller bearing

Publications (1)

Publication Number Publication Date
JP2017187148A true JP2017187148A (en) 2017-10-12

Family

ID=60044727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016078178A Pending JP2017187148A (en) 2016-04-08 2016-04-08 Rolling body for conical roller bearing, and conical roller bearing

Country Status (1)

Country Link
JP (1) JP2017187148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116488A1 (en) * 2018-12-07 2020-06-11 Ntn株式会社 Tapered roller bearing
JP2020098026A (en) * 2018-12-07 2020-06-25 Ntn株式会社 Tapered roller bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147461A (en) * 2000-11-14 2002-05-22 Nissan Motor Co Ltd Toroidal type continuously variable transmission
JP2003130057A (en) * 2001-10-25 2003-05-08 Ntn Corp Roller bearing
JP2006226306A (en) * 2005-02-15 2006-08-31 Jtekt Corp Oil lubricating type roller bearing device
JP2012087924A (en) * 2009-11-17 2012-05-10 Nsk Ltd Conical roller bearing and method for manufacturing cage for conical roller bearing
JP2013545057A (en) * 2010-12-06 2013-12-19 アクツィエブーラゲート エスケイエフ Geometry concept for roller-to-collar contact in roller bearings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147461A (en) * 2000-11-14 2002-05-22 Nissan Motor Co Ltd Toroidal type continuously variable transmission
JP2003130057A (en) * 2001-10-25 2003-05-08 Ntn Corp Roller bearing
JP2006226306A (en) * 2005-02-15 2006-08-31 Jtekt Corp Oil lubricating type roller bearing device
JP2012087924A (en) * 2009-11-17 2012-05-10 Nsk Ltd Conical roller bearing and method for manufacturing cage for conical roller bearing
JP2013545057A (en) * 2010-12-06 2013-12-19 アクツィエブーラゲート エスケイエフ Geometry concept for roller-to-collar contact in roller bearings

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116488A1 (en) * 2018-12-07 2020-06-11 Ntn株式会社 Tapered roller bearing
JP2020098026A (en) * 2018-12-07 2020-06-25 Ntn株式会社 Tapered roller bearing
CN113167320A (en) * 2018-12-07 2021-07-23 Ntn株式会社 Tapered Roller Bearings
US11460071B2 (en) 2018-12-07 2022-10-04 Ntn Corporation Tapered roller bearing
CN113167320B (en) * 2018-12-07 2022-11-11 Ntn株式会社 Tapered roller bearing

Similar Documents

Publication Publication Date Title
US9683605B2 (en) Tapered roller bearing
JP2009520936A (en) Rolling bearing
WO2013051696A1 (en) Rolling bearing
US20120302360A1 (en) Sliding-type tripod constant velocity joint
JP2017187148A (en) Rolling body for conical roller bearing, and conical roller bearing
US1587184A (en) Ball bearing
JP2017166641A (en) Cage for conical roller bearing and conical roller bearing
JP5928241B2 (en) Rolling bearing
JP2017180589A (en) Washer
JP2003130059A (en) Tapered roller bearing
CN113864327B (en) Non-elliptical contact profile for roller bearings
CN105899831A (en) Improved torque-transmitting joint and joint components, methods of manufacturing, and methods of inspection
CN107044481B (en) Roller bearing
JP6350099B2 (en) Tapered roller bearing
JP2013142444A (en) Seal ring for ball bearing, and the ball bearing with the same
CN108779796B (en) Roller bearing with enhanced contact of roller ends with flanges
JP2007170418A (en) Tapered roller bearing
US11149787B2 (en) Thrust roller bearing
CN103573829A (en) Bearing with sealing slinger
US20170241476A1 (en) Bearing having an outer ring and rolling element piloted cage
CN101871489A (en) Rolling bearing inner ring and rolling bearing sealing structure
JP2003130057A (en) Roller bearing
JP2023111412A (en) tapered roller bearing
JP3202708U (en) Non-rotating bearing
JP7259402B2 (en) thrust roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519