JP2017183160A - Lead storage battery - Google Patents
Lead storage battery Download PDFInfo
- Publication number
- JP2017183160A JP2017183160A JP2016070935A JP2016070935A JP2017183160A JP 2017183160 A JP2017183160 A JP 2017183160A JP 2016070935 A JP2016070935 A JP 2016070935A JP 2016070935 A JP2016070935 A JP 2016070935A JP 2017183160 A JP2017183160 A JP 2017183160A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- electrode material
- lead
- pbo
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title abstract description 33
- 239000007774 positive electrode material Substances 0.000 claims abstract description 111
- 239000007773 negative electrode material Substances 0.000 claims abstract description 51
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 12
- 229910006529 α-PbO Inorganic materials 0.000 claims description 30
- 239000002253 acid Substances 0.000 claims description 28
- 238000002441 X-ray diffraction Methods 0.000 claims description 8
- 239000008151 electrolyte solution Substances 0.000 claims description 7
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 4
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 abstract description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 56
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 32
- 238000005259 measurement Methods 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 20
- 239000000126 substance Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000002994 raw material Substances 0.000 description 17
- 239000000835 fiber Substances 0.000 description 15
- 230000005484 gravity Effects 0.000 description 15
- 238000001179 sorption measurement Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000007772 electrode material Substances 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000011149 active material Substances 0.000 description 11
- -1 for example Chemical compound 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000003014 reinforcing effect Effects 0.000 description 9
- 229920002972 Acrylic fiber Polymers 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910000978 Pb alloy Inorganic materials 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000007600 charging Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 5
- 238000004438 BET method Methods 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 239000002388 carbon-based active material Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000010280 constant potential charging Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000006232 furnace black Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- OCWMFVJKFWXKNZ-UHFFFAOYSA-L lead(2+);oxygen(2-);sulfate Chemical compound [O-2].[O-2].[O-2].[Pb+2].[Pb+2].[Pb+2].[Pb+2].[O-]S([O-])(=O)=O OCWMFVJKFWXKNZ-UHFFFAOYSA-L 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000006231 channel black Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N lead dioxide Inorganic materials O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000006234 thermal black Substances 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- ZAJAQTYSTDTMCU-UHFFFAOYSA-N 3-aminobenzenesulfonic acid Chemical compound NC1=CC=CC(S(O)(=O)=O)=C1 ZAJAQTYSTDTMCU-UHFFFAOYSA-N 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- WUOBERCRSABHOT-UHFFFAOYSA-N diantimony Chemical compound [Sb]#[Sb] WUOBERCRSABHOT-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- TWFGNIBHAYQYNA-UHFFFAOYSA-N tributoxytin Chemical compound CCCCO[Sn](OCCCC)OCCCC TWFGNIBHAYQYNA-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、鉛蓄電池に関するものである。 The present invention relates to a lead-acid battery.
近年、自動車においては、大気汚染防止又は地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、例えば、エンジンの動作時間を少なくするアイドリングストップシステム車(以下、「ISS車」という)、エンジンの回転を無駄なく動力に使用する発電制御車等のマイクロハイブリッド車が検討されている。 In recent years, various measures for improving fuel efficiency have been studied for automobiles in order to prevent air pollution or global warming. Examples of automobiles with measures to improve fuel efficiency include micro hybrids such as idling stop system cars (hereinafter referred to as “ISS cars”) that reduce engine operation time, and power generation control cars that use engine rotation for power without waste. Cars are being considered.
ISS車では、エンジンの始動回数が多くなるため、鉛蓄電池の大電流放電が繰り返される。また、ISS車及び発電制御車では、オルタネータによる発電量が少なくなり、鉛蓄電池の充電が間欠的に行われるため充電が不充分となる。 In an ISS vehicle, the number of engine starts increases, so that a large current discharge of the lead storage battery is repeated. Further, in the ISS car and the power generation control car, the amount of power generated by the alternator is reduced, and the lead storage battery is charged intermittently, so that the charge is insufficient.
前記のような使われ方をする鉛蓄電池は、PSOC(Partial State Of Charge)と呼ばれる部分充電状態で使用されることになる。鉛蓄電池は、PSOC下で使用されると、満充電状態で使用される場合よりも寿命が短くなる。 The lead storage battery which is used as described above is used in a partially charged state called PSOC (Partial State Of Charge). Lead acid batteries have a shorter life when used under PSOC than when used in a fully charged state.
また、近年、欧州では、マイクロハイブリッド車の制御に則した、充放電サイクル中における鉛蓄電池の充電性が重要視されており、このような形態のDCA(Dynamic Charge Acceptance)評価が規格化されつつある。つまり、前記のような鉛蓄電池の使われ方は、重要視されてきている。 In recent years, in Europe, the chargeability of lead-acid batteries during charge / discharge cycles in accordance with the control of micro hybrid vehicles has been regarded as important, and DCA (Dynamic Charge Acceptance) evaluation in this form is being standardized. is there. In other words, the use of the lead storage battery as described above has been regarded as important.
これに対し、下記特許文献1には、PSOC下で使用される場合の電池の充電効率と寿命性能とを向上させるために、特定の比表面積の正極活物質を用いる技術が開示されている。 On the other hand, Patent Document 1 below discloses a technique that uses a positive electrode active material having a specific surface area in order to improve the charging efficiency and life performance of a battery when used under PSOC.
ところで、完全な充電が行われず充電が不足した状態で鉛蓄電池が使用される場合には、電池内の電極(極板等)における上部と下部との間で、電解液である希硫酸の濃淡差が生じる成層化現象が起こる。この場合、電極下部の希硫酸の濃度が高くなりサルフェーションが発生する。そのため、電極下部の反応性が低下し、電極上部のみが集中的に反応するようになる。その結果、活物質間の結びつきが弱くなる等の劣化が進み、電極上部において格子から活物質が剥離して、電池性能低下及び早期寿命に至る。 By the way, when a lead-acid battery is used in a state where charging is not complete and charging is insufficient, the concentration of dilute sulfuric acid, which is an electrolytic solution, between the upper part and the lower part of the electrodes (electrode plates, etc.) A stratification phenomenon occurs where a difference occurs. In this case, the concentration of dilute sulfuric acid in the lower part of the electrode becomes high and sulfation occurs. Therefore, the reactivity of the lower part of the electrode is lowered, and only the upper part of the electrode reacts intensively. As a result, the deterioration such as weakening of the connection between the active materials proceeds, and the active material is peeled from the lattice at the upper part of the electrode, leading to a decrease in battery performance and an early life.
そのため、最近のマイクロハイブリッド車鉛蓄電池においては、PSOC下で使用された場合の電池の寿命性能を向上させるため、充電受入性を向上させることが極めて重要な課題となっている。 Therefore, in recent micro hybrid vehicle lead-acid batteries, it is an extremely important issue to improve charge acceptability in order to improve battery life performance when used under PSOC.
一方、上記特許文献1では、電槽化成の条件を変更することで、正極活物質の比表面積を5.5m2/g以上に調整することが記載されている。しかしながら、電槽化成の条件を変更するだけでは正極活物質の比表面積を大きくすることに限界があり、更に充電受け入れ性を向上させることが困難であることが判明した。 On the other hand, Patent Document 1 describes that the specific surface area of the positive electrode active material is adjusted to 5.5 m 2 / g or more by changing the conditions for forming the battery case. However, it has been found that simply changing the conditions for forming the battery case has a limit in increasing the specific surface area of the positive electrode active material, and it is difficult to further improve the charge acceptability.
更に、エンジンの始動しにくい低温条件においては鉛蓄電池の高率放電特性が求められるため、鉛蓄電池の低温高率放電特性を向上させることも重要となっている。 Furthermore, since the high rate discharge characteristics of the lead storage battery are required under low temperature conditions where it is difficult to start the engine, it is also important to improve the low temperature high rate discharge characteristics of the lead storage battery.
本発明は、前記事情を鑑みてなされたものであり、更に充電受入性を向上させ、寿命性能及び低温高率放電特性に優れる鉛蓄電池を提供することを目的とする。 This invention is made | formed in view of the said situation, Furthermore, it aims at providing a lead storage battery which improves charge acceptance property and is excellent in lifetime performance and a low-temperature high-rate discharge characteristic.
本発明に係る鉛蓄電池は、セパレータを介して対向する正極板及び負極板と電解液とを備える鉛蓄電池であって、前記正極板は正極材を含み、前記負極板は負極材を含み、前記正極材の比表面積が10m2/g以上であり、前記正極材が錫酸化物を含む、鉛蓄電池である。本発明に係る鉛蓄電池によれば、充電受け入れ性を向上させ、寿命性能に優れる鉛蓄電池を得ることができる。 The lead storage battery according to the present invention is a lead storage battery including a positive electrode plate and a negative electrode plate facing each other with a separator interposed therebetween, and an electrolyte solution, wherein the positive electrode plate includes a positive electrode material, and the negative electrode plate includes a negative electrode material, The specific surface area of a positive electrode material is 10 m < 2 > / g or more, The said positive electrode material is a lead acid battery containing a tin oxide. According to the lead storage battery according to the present invention, it is possible to obtain a lead storage battery with improved charge acceptability and excellent life performance.
充電受入性の更なる向上の観点から、前記正極材がβ−PbO2及びα−PbO2を含み、β−PbO2及びα−PbO2のX線回折パターンのピーク強度の比率(α−PbO2/β−PbO2)が0.4以下であることが好ましい。 From the viewpoint of further improving the chargeability, the positive electrode material comprises a beta-PbO 2 and α-PbO 2, β-PbO 2 and alpha-PbO 2 in the ratio of the peak intensity of X-ray diffraction pattern (alpha-PbO 2 / β-PbO 2 ) is preferably 0.4 or less.
寿命性能の更なる向上の観点から、前記正極材がアンチモン酸化物を含むことが好ましい。 From the viewpoint of further improving the life performance, the positive electrode material preferably contains antimony oxide.
充分な電池容量が得られやすいと共に高い充電受け入れ性が得られやすい観点から、前記正極材の質量と前記負極材の質量の質量比(正極材/負極材)が1.05以上であることが好ましい。 From the standpoint that sufficient battery capacity is easily obtained and high charge acceptance is easily obtained, the mass ratio of the positive electrode material to the negative electrode material (positive electrode material / negative electrode material) is 1.05 or more. preferable.
本発明に係る鉛蓄電池によれば、優れた充電受入性を得ることが可能である。また、本発明に係る鉛蓄電池によれば、充電受入性を向上させ、優れたサイクル特性を得ることができる。本発明に係る鉛蓄電池は、低温高率放電特性に優れる。本発明に係る鉛蓄電池は、充電が間欠的に行われ、PSOC下で負極への高率放電が行われる液式鉛蓄電池として、ISS車等のマイクロハイブリッド車などにおいて好適に用いることができる。 According to the lead storage battery of the present invention, it is possible to obtain excellent charge acceptance. Moreover, according to the lead acid battery which concerns on this invention, charge acceptability can be improved and the outstanding cycling characteristics can be acquired. The lead acid battery according to the present invention is excellent in low temperature and high rate discharge characteristics. The lead storage battery according to the present invention can be suitably used in a micro hybrid vehicle such as an ISS vehicle as a liquid lead storage battery in which charging is intermittently performed and high rate discharge to the negative electrode is performed under PSOC.
以下、本発明の実施形態について詳細に説明する。なお、比重は、温度によって変化するため、本明細書においては20℃で換算した比重と定義する。 Hereinafter, embodiments of the present invention will be described in detail. In addition, since specific gravity changes with temperature, in this specification, it defines as specific gravity converted at 20 degreeC.
本実施形態に係る鉛蓄電池は、セパレータを介して対向する正極板及び負極板と電解液とを備える鉛蓄電池であって、前記正極板は正極材を含み、前記負極板は負極材を含み、前記正極材の比表面積が10m2/g以上であり、前記正極材が錫酸化物を含む、鉛蓄電池である。 The lead storage battery according to the present embodiment is a lead storage battery including a positive electrode plate and a negative electrode plate facing each other with a separator interposed therebetween, and an electrolyte solution, wherein the positive electrode plate includes a positive electrode material, and the negative electrode plate includes a negative electrode material, The positive electrode material has a specific surface area of 10 m 2 / g or more, and the positive electrode material is a lead storage battery containing tin oxide.
本発明に係る鉛蓄電池によれば、優れた充電受入性を得ることが可能である。従って、特に、初期の状態からある程度の充放電が繰り返されて活物質が充分に活性化した後において、マイクロハイブリッド車では低くなりがちなSOCを適正なレベルに維持することができる。本発明によれば充電受け入れ性を向上させ、寿命性能に優れる鉛蓄電池を得ることができる。 According to the lead storage battery of the present invention, it is possible to obtain excellent charge acceptance. Therefore, in particular, after the charge and discharge are repeated to some extent from the initial state and the active material is sufficiently activated, the SOC that tends to be low in the micro hybrid vehicle can be maintained at an appropriate level. According to the present invention, it is possible to obtain a lead storage battery with improved charge acceptability and excellent life performance.
<鉛蓄電池>
本実施形態に係る鉛蓄電池は、例えば、電極(電極板等)、電解液(硫酸等)及びセパレータを備えている。電極は、正極(正極板等)及び負極(負極板等)を有している。本実施形態に係る鉛蓄電池としては、液式鉛蓄電池、制御弁式鉛蓄電池、密閉式鉛蓄電池等が挙げられ、液式鉛蓄電池が好ましい。正極は、集電体(正極集電体)と、当該集電体に保持された正極材と、を有している。負極は、集電体(負極集電体)と、当該集電体に保持された負極材と、を有している。本実施形態において正極材及び負極材は、例えば、化成後(例えば満充電状態)の電極材である。電極材が未化成である場合、電極材(未化正極材及び未化負極材)は、電極活物質(正極活物質及び負極活物質)の原料等を含有している。集電体は、電極材からの電流の導電路を構成する。従来の鉛蓄電池と同様の構成を用いることができる。
<Lead battery>
The lead storage battery according to the present embodiment includes, for example, an electrode (electrode plate or the like), an electrolytic solution (sulfuric acid or the like), and a separator. The electrode has a positive electrode (positive electrode plate or the like) and a negative electrode (negative electrode plate or the like). Examples of the lead storage battery according to this embodiment include a liquid lead storage battery, a control valve type lead storage battery, a sealed lead storage battery, and the like, and a liquid lead storage battery is preferable. The positive electrode has a current collector (positive electrode current collector) and a positive electrode material held by the current collector. The negative electrode has a current collector (negative electrode current collector) and a negative electrode material held by the current collector. In the present embodiment, the positive electrode material and the negative electrode material are, for example, electrode materials after chemical conversion (for example, in a fully charged state). When the electrode material is unformed, the electrode material (unformed positive electrode material and unformed negative electrode material) contains a raw material of an electrode active material (positive electrode active material and negative electrode active material) and the like. The current collector constitutes a conductive path for current from the electrode material. A configuration similar to that of a conventional lead-acid battery can be used.
(正極材)
正極材は、正極活物質を含有している。正極材は、正極活物質の原料を含む正極材ペーストを熟成及び乾燥することにより未化成活物質を得た後に化成することで得ることができる。化成後の正極材は、β−二酸化鉛(β−PbO2)を含むことが好ましく、α−二酸化鉛(α−PbO2)を更に含んでいてもよい。正極活物質の原料としては、特に制限はなく、例えば鉛粉が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの紛体と鱗片状金属鉛の混合物)が挙げられる。正極活物質の原料として鉛丹(Pb3O4)を用いてもよい。未化成の正極材は、主成分として、三塩基性硫酸鉛を含む未化成の正極活物質を含有することが好ましい。
(Positive electrode material)
The positive electrode material contains a positive electrode active material. The positive electrode material can be obtained by chemical conversion after obtaining an unformed active material by aging and drying a positive electrode material paste containing a raw material for the positive electrode active material. The positive electrode material after chemical conversion preferably contains β-lead dioxide (β-PbO 2 ), and may further contain α-lead dioxide (α-PbO 2 ). There is no restriction | limiting in particular as a raw material of a positive electrode active material, For example, lead powder is mentioned. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a Burton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of the main component PbO and scale-like metal lead) Is mentioned. Red lead (Pb 3 O 4 ) may be used as a raw material for the positive electrode active material. The unformed positive electrode material preferably contains an unformed positive electrode active material containing tribasic lead sulfate as a main component.
化成後の正極材におけるβ−PbO2及びα−PbO2のX線回折パターンのピーク強度の比率(α−PbO2/β−PbO2)は、優れた充電受入性を得る観点から、0.4以下であることが好ましい。比率α−PbO2/β−PbO2が0.4以下であることにより、正極の過電圧を低くできることから、優れた充電受入性が得られると推測される。比率α−PbO2/β−PbO2は、更に優れた充電受入性を得る観点から、0.3以下がより好ましく、0.2以下が更に好ましく、0.06以下が更により好ましい。比率α−PbO2/β−PbO2は、0.05以下であってもよく、0.04以下であってもよく、0.03以下であってもよい。比率α−PbO2/β−PbO2は、正極材の形状保持性に優れる観点から、0.005以上が好ましく、0.01以上がより好ましく、0.02以上が更に好ましい。比率α−PbO2/β−PbO2は、例えば、化成時の温度等により調整することができる。例えば、化成温度が高くなるほどα−PbO2比率を高くすることができる。 The ratio of the peak intensities of the X-ray diffraction patterns of β-PbO 2 and α-PbO 2 (α-PbO 2 / β-PbO 2 ) in the positive electrode material after chemical conversion is from the viewpoint of obtaining excellent charge acceptance. 4 or less is preferable. When the ratio α-PbO 2 / β-PbO 2 is 0.4 or less, the overvoltage of the positive electrode can be lowered, so that it is estimated that excellent charge acceptability can be obtained. The ratio α-PbO 2 / β-PbO 2 is more preferably 0.3 or less, still more preferably 0.2 or less, and even more preferably 0.06 or less, from the viewpoint of obtaining further excellent charge acceptance. The ratio α-PbO 2 / β-PbO 2 may be 0.05 or less, 0.04 or less, or 0.03 or less. The ratio α-PbO 2 / β-PbO 2 is preferably 0.005 or more, more preferably 0.01 or more, and still more preferably 0.02 or more, from the viewpoint of excellent shape retention of the positive electrode material. The ratio α-PbO 2 / β-PbO 2 can be adjusted by, for example, the temperature at the time of chemical formation. For example, the α-PbO 2 ratio can be increased as the formation temperature increases.
正極の既化成正極活物質の広角X線回折測定からは、例えば、主な化合物としてα−PbO2、β−PbO2、PbSO4が検出される。α−PbO2及びβ−PbO2それぞれの化合物として特定される波形のメインピーク強度(cps)を用いて、「α−PbO2のメインピーク強度」/「β−PbO2のメインピーク強度」の比率を比率α−PbO2/β−PbO2として算出することができる。広角X線回折装置としては、例えば、X線回折装置SmartLab(リガク製)を用いることができる。 For example, α-PbO 2 , β-PbO 2 , and PbSO 4 are detected as main compounds from the wide-angle X-ray diffraction measurement of the preformed positive electrode active material of the positive electrode. Using the main peak intensities (cps) of the waveforms specified as the respective compounds of α-PbO 2 and β-PbO 2 , “α-PbO 2 main peak intensity” / “β-PbO 2 main peak intensity” The ratio can be calculated as the ratio α-PbO 2 / β-PbO 2 . As the wide-angle X-ray diffractometer, for example, an X-ray diffractometer SmartLab (manufactured by Rigaku) can be used.
広角X線回折測定は、例えば、以下のような方法で行うことができる。
[広角X線回折測定方法]
・測定装置:全自動多目的水平型X線回折装置 SmartLab(株式会社リガク製)
・X線源:Cu−Kα / 1.541862Å
・フィルター:Cu−Kβ
・出力:40kV、30mA
・スキャンモード:CONTINUOUS
・スキャン範囲:20.0000度〜60.0000度
・ステップ幅:0.0200度
・スキャン軸:2θ/θ
・スキャンスピード:10.0000度/分
・試料ホルダー:ガラス製、深さ0.2mm
・試料作製方法:測定試料は、下記の手順により作製できる。まず、化成した電池を解体して正極(正極板等)を取り出し水洗をした後、50℃で24時間乾燥する。次に、前記正極の中央部から正極材を3g採取してすり潰す。
Wide-angle X-ray diffraction measurement can be performed, for example, by the following method.
[Wide-angle X-ray diffraction measurement method]
-Measuring device: Fully automatic multipurpose horizontal X-ray diffractometer SmartLab (manufactured by Rigaku Corporation)
・ X-ray source: Cu-Kα / 1.541862Å
・ Filter: Cu-Kβ
・ Output: 40kV, 30mA
・ Scan mode: CONTINUOUS
Scan range: 20.0000 degrees to 60.000 degrees Step width: 0.0200 degrees Scan axis: 2θ / θ
・ Scanning speed: 10.0000 degrees / min ・ Sample holder: Glass, depth 0.2mm
Sample preparation method: The measurement sample can be prepared by the following procedure. First, the formed battery is disassembled, the positive electrode (positive electrode plate or the like) is taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 3 g of the positive electrode material is collected from the center of the positive electrode and ground.
・算出方法:正極材の厚みが試料ホルダーの深さと同等になるように正極材を充填し、平滑な試料面を作製する。広角X線回折を測定し、回折角(2θ)と回折ピーク強度とのX線回折パターン(X線回折チャート)を得る。X線回折パターンにおいては、例えば、回折角度28.6度に位置するα−PbO2、及び、回折角度25.3度に位置するβ−PbO2が検出される。α−PbO2(110面)及びβ−PbO2(111面)それぞれの化合物として特定される波形のピーク強度(cps)を用いて、「α−PbO2のピーク強度」/「β−PbO2のピーク強度」の比率を比率α−PbO2/β−PbO2として算出する。 Calculation method: Fill the positive electrode material so that the thickness of the positive electrode material is equal to the depth of the sample holder, and produce a smooth sample surface. Wide-angle X-ray diffraction is measured to obtain an X-ray diffraction pattern (X-ray diffraction chart) of diffraction angle (2θ) and diffraction peak intensity. In the X-ray diffraction pattern, for example, α-PbO 2 positioned at a diffraction angle of 28.6 degrees and β-PbO 2 positioned at a diffraction angle of 25.3 degrees are detected. Using the peak intensity (cps) of the waveform specified as each compound of α-PbO 2 (110 face) and β-PbO 2 (111 face), “peak intensity of α-PbO 2 ” / “β-PbO 2 Is calculated as a ratio α-PbO 2 / β-PbO 2 .
正極材は錫酸化物を含む。本発明では、正極材が錫酸化物を含むことで寿命性能が向上することを見出した。錫酸化物としては、例えば、二酸化錫(SnO2)が挙げられる。一般的に、放電時に生成する硫酸鉛は絶縁体であるため、正極板に硫酸鉛が蓄積するとその後の導電性が損なわれると考えられる。寿命性能が向上する理由としては、強酸性を示す希硫酸や酸化雰囲気中で安定している錫酸化物が正極材中に存在することにより、導電性を保つことができるためであると推測される。 The positive electrode material contains tin oxide. In this invention, it discovered that lifetime performance improved because the positive electrode material contains a tin oxide. Examples of tin oxide include tin dioxide (SnO 2 ). Generally, since lead sulfate generated at the time of discharge is an insulator, it is thought that subsequent conductivity is impaired when lead sulfate accumulates on the positive electrode plate. The reason why the life performance is improved is presumed to be that the presence of strong sulfuric acid dilute sulfuric acid and tin oxide that is stable in an oxidizing atmosphere in the positive electrode material can maintain conductivity. The
寿命性能を更に向上させる観点から、正極材がアンチモン酸化物を含んでいることが好ましい。アンチモン酸化物としては、例えば、五酸化二アンチモン(Sb2O5)が挙げられる。 From the viewpoint of further improving the life performance, it is preferable that the positive electrode material contains an antimony oxide. Examples of the antimony oxide include diantimony pentoxide (Sb 2 O 5 ).
本発明に係る鉛蓄電池の正極材の比表面積は、充電受入性が向上する観点から、10m2/g以上である。正極材の比表面積は、充電受入性が更に向上する観点から、11m2/g以上がより好ましい12m2/g以上がより好ましい。正極材の比表面積の上限に制限はないが、実用的な観点及び利用率の観点から、20m2/g以下が好ましく、15m2/g以下がより好ましく、13m2/g以下が更に好ましい。正極材の比表面積は、例えば、後述する正極活物質ペーストを作製する際の硫酸及び水の添加量を調整する方法、未化成の段階で活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。 The specific surface area of the positive electrode material of the lead storage battery according to the present invention is 10 m 2 / g or more from the viewpoint of improving charge acceptance. The specific surface area of the positive electrode material is more preferably 12 m 2 / g or more, more preferably 11 m 2 / g or more from the viewpoint of further improving charge acceptance. Although there is no limit to the upper limit of the specific surface area of the cathode material, from the viewpoint of practical aspects and utilization, is preferably from 20 m 2 / g, more preferably not more than 15 m 2 / g, more preferably 13m 2 / g or less. The specific surface area of the positive electrode material is, for example, a method of adjusting the amount of sulfuric acid and water added when preparing a positive electrode active material paste, which will be described later, a method of refining the active material in the unformed stage, and a method of changing the conversion conditions Etc. can be adjusted.
正極材の比表面積は、例えば、BET法で測定することができる。BET法は、一つの分子の大きさが既知の不活性ガス(例えば窒素ガス)を測定試料の表面に吸着させ、その吸着量と不活性ガスの占有面積とから表面積を求める方法であり、比表面積の一般的な測定手法である。具体的には、以下のBET式に基づいて測定する。 The specific surface area of the positive electrode material can be measured by, for example, the BET method. The BET method is a method in which an inert gas (for example, nitrogen gas) having a known molecular size is adsorbed on the surface of a measurement sample, and the surface area is obtained from the adsorption amount and the area occupied by the inert gas. This is a general method for measuring the surface area. Specifically, it is measured based on the following BET equation.
下記式(1)の関係式は、P/Poが0.05〜0.35の範囲でよく成立する。なお、式(1)中、各符号の詳細は下記のとおりである。 Relationship of the following formula (1), P / P o is established well in the range of 0.05 to 0.35. In addition, in Formula (1), the detail of each code | symbol is as follows.
P:一定温度で吸着平衡状態であるときの吸着平衡圧
Po:吸着温度における飽和蒸気圧
V:吸着平衡圧Pにおける吸着量
Vm:単分子層吸着量(気体分子が固体表面で単分子層を形成したときの吸着量)
C:BET定数(固体表面と吸着物質との間の相互作用に関するパラメータ)
P: adsorption equilibrium pressure P o when an adsorption equilibrium state at a constant temperature: the saturated vapor pressure at the adsorption temperature V: adsorption equilibrium pressure adsorption amount of P V m: monomolecular monolayer adsorption amount (gas molecules solid surface Adsorption amount when layer is formed)
C: BET constant (parameter relating to the interaction between the solid surface and the adsorbent)
式(1)を変形する(左辺の分子分母をPで割る)ことにより下記式(2)が得られる。測定に用いる比表面積計では、吸着占有面積が既知のガス分子を試料に吸着させ、その吸着量(V)と相対圧力(P/Po)との関係を測定する。測定したVとP/Poより、式(2)の左辺とP/Poをプロットする。ここで、勾配がsであるとすると、式(2)より下記式(3)が導かれる。切片がiであるとすると、切片i及び勾配sは、それぞれ下記式(4)及び下記式(5)のとおりとなる。 By transforming equation (1) (dividing the numerator denominator on the left side by P), the following equation (2) is obtained. In the specific surface area meter used for the measurement, gas molecules whose adsorption occupation area is known are adsorbed on the sample, and the relationship between the adsorption amount (V) and the relative pressure (P / P o ) is measured. From the measured V and P / Po , the left side of Equation (2) and P / Po are plotted. Here, assuming that the gradient is s, the following formula (3) is derived from the formula (2). Assuming that the intercept is i, the intercept i and the gradient s are as shown in the following formulas (4) and (5), respectively.
式(4)及び式(5)を変形すると、それぞれ下記式(6)及び式(7)が得られ、単分子層吸着量Vmを求める下記式(8)が得られる。すなわち、ある相対圧力P/Poにおける吸着量Vを数点測定し、プロットの勾配及び切片を求めると、単分子層吸着量Vmが求まる。 When the equations (4) and (5) are modified, the following equations (6) and (7) are obtained, respectively, and the following equation (8) for obtaining the monomolecular layer adsorption amount V m is obtained. That is, when the adsorption amount V at a certain relative pressure P / Po is measured at several points and the slope and intercept of the plot are obtained, the monomolecular layer adsorption amount V m is obtained.
試料の全表面積Stotal(m2)は、下記式(9)で求められ、比表面積S(m2/g)は、全表面積Stotalより下記式(10)で求められる。なお、式(9)中、Nは、アボガドロ数を示し、ACSは、吸着断面積(m2)を示し、Mは、分子量を示す。また、式(10)中、wは、サンプル量(g)を示す。 The total surface area S total (m 2 ) of the sample is determined by the following formula (9), and the specific surface area S (m 2 / g) is determined by the following formula (10) from the total surface area S total . In the formula (9), N represents the Avogadro number, A CS represents the adsorption cross section (m 2 ), and M represents the molecular weight. Moreover, in Formula (10), w shows a sample amount (g).
正極の製造工程では、例えば、正極材ペーストを集電体(例えば集電体格子)に充填した後に、熟成及び乾燥を行うことにより、未化成の正極活物質を有する正極を得る。未化成の正極活物質は、主成分として三塩基性硫酸鉛を含む未化成正極活物質を含むことが好ましい。前記正極材ペーストは、例えば、正極活物質の原料を含んでおり、その他の所定の添加剤等を更に含んでいてもよい。 In the positive electrode manufacturing process, for example, a positive electrode material paste is filled in a current collector (for example, a current collector grid) and then aged and dried to obtain a positive electrode having an unformed positive electrode active material. The unformed positive electrode active material preferably includes an unformed positive electrode active material containing tribasic lead sulfate as a main component. The positive electrode material paste includes, for example, a raw material for the positive electrode active material, and may further include other predetermined additives.
錫酸化物を正極材に含ませる方法としては、例えば、正極材ペーストを作製する際に錫酸化物の粉末または錫酸化物の原料の分散剤として混合させる方法が挙げられる。 Examples of the method of including the tin oxide in the positive electrode material include a method of mixing as a tin oxide powder or a tin oxide raw material dispersant when preparing a positive electrode material paste.
錫酸化物の原料としては、例えばジブチル錫ジアセテートやトリブトキシ錫などの有機錫化合物、又は四塩化錫などの無機錫化合物を用い、溶媒としては、エタノールやブタノール等の有機溶媒を用いることが挙げられる。 As a raw material of tin oxide, for example, an organic tin compound such as dibutyltin diacetate or tributoxytin, or an inorganic tin compound such as tin tetrachloride is used, and as a solvent, an organic solvent such as ethanol or butanol is used. It is done.
正極材ペーストが含む添加剤としては、例えば、硫酸バリウム、炭素活物質料及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。炭素活物質料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of the additive contained in the positive electrode material paste include barium sulfate, a carbon active material, and reinforcing short fibers (acrylic fiber, polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, carbon fiber, and the like). Examples of the carbon active material material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
正極材ペーストを作製するに際しては、正極活物質の原料として、鉛粉を用いることができる。また、化成時間を短縮できる観点から、正極活物質の原料として鉛丹(Pb3O4)を加えてもよい。この正極活物質ペーストを集電体(例えば集電体格子)に充填した後に熟成及び乾燥を行うことにより、未化成の正極活物質を有する正極が得られる。正極活物質ペーストにおいて、補強用短繊維の配合量は、正極活物質の原料の全質量を基準として0.005〜0.3質量%が好ましい。
正極材は、正極活物質の原料を含む正極材ペーストを熟成及び乾燥することにより未化成の正極活物質を得た後に化成することで得ることができる。化成後の正極材は、例えばα−PbO2及びβ−PbO2を含む。
In producing the positive electrode material paste, lead powder can be used as a raw material for the positive electrode active material. From the viewpoint of shortening the chemical conversion time, lead (Pb 3 O 4 ) may be added as a raw material for the positive electrode active material. A positive electrode having an unformed positive electrode active material is obtained by filling the positive electrode active material paste into a current collector (eg, current collector grid) and then aging and drying. In the positive electrode active material paste, the blending amount of the reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the raw material of the positive electrode active material.
The positive electrode material can be obtained by chemical conversion after obtaining an unformed positive electrode active material by aging and drying a positive electrode material paste containing a raw material for the positive electrode active material. The positive electrode material after the formation includes, for example, α-PbO 2 and β-PbO 2 .
集電体の組成としては、例えば、鉛−カルシウム−錫系合金、鉛−アンチモン−ヒ素系合金等の鉛合金が挙げられる。用途に応じて適宜セレン、銀、ビスマス等を集電体に添加してもよい。これらの鉛合金を重力鋳造法、エキスパンド法、打ち抜き法等で格子状に形成することにより集電体を得ることができる。 Examples of the composition of the current collector include lead alloys such as a lead-calcium-tin alloy and a lead-antimony-arsenic alloy. Depending on the application, selenium, silver, bismuth or the like may be added to the current collector. A current collector can be obtained by forming these lead alloys in a lattice shape by a gravity casting method, an expanding method, a punching method, or the like.
(負極材)
負極材は、負極活物質の原料を含む負極材ペーストを熟成及び乾燥することにより未化成活物質を得た後に化成することで得ることができる。化成後の負極活物質としては、海綿状鉛(Spongylead)等が挙げられる。前記海綿状鉛は、電解液中の硫酸と反応して、次第に硫酸鉛(PbSO4)に変わる傾向がある。負極活物質の原料としては、鉛粉等が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの紛体と鱗片状金属鉛の混合物)が挙げられる。未化成の負極材は、例えば、塩基性硫酸鉛及び金属鉛、並びに、低級酸化物から構成される。
(Negative electrode material)
The negative electrode material can be obtained by chemical conversion after obtaining an unformed active material by aging and drying a negative electrode material paste containing a raw material of the negative electrode active material. Examples of the negative electrode active material after chemical conversion include spongy lead. The spongy lead tends to react with sulfuric acid in the electrolyte and gradually change to lead sulfate (PbSO 4 ). Examples of the raw material for the negative electrode active material include lead powder. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a Burton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of the main component PbO and scale-like metal lead) Is mentioned. The unformed negative electrode material is composed of, for example, basic lead sulfate, metallic lead, and a lower oxide.
負極材の比表面積は、電解液と負極活物質との反応性を高める観点から、0.4m2/g以上が好ましく、0.5m2/g以上がより好ましく、0.6m2/g以上が更に好ましい。負極材の比表面積は、サイクル時の負極の収縮を更に抑制する観点から、2m2/g以下が好ましく、1.8m2/g以下がより好ましく、1.5m2/g以下が更に好ましい。負極材の比表面積は、例えば、未化成の段階で活物質を微細化させる方法により調整することができる。負極材の比表面積は、正極材と同様に例えばBET法で測定することができる。 The specific surface area of the negative electrode material is preferably 0.4 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 0.6 m 2 / g or more from the viewpoint of increasing the reactivity between the electrolytic solution and the negative electrode active material. Is more preferable. The specific surface area of the negative electrode material, from the further suppression of the contraction of the negative electrode at the time of the cycle is preferably not more than 2m 2 / g, more preferably not more than 1.8 m 2 / g, more preferably not more than 1.5 m 2 / g. The specific surface area of the negative electrode material can be adjusted by, for example, a method of refining the active material in an unformed stage. The specific surface area of the negative electrode material can be measured by, for example, the BET method in the same manner as the positive electrode material.
負極の製造工程では、例えば、負極材ペーストを集電体(例えば集電体格子)に充填した後に、熟成及び乾燥を行うことにより、未化成の負極活物質を有する負極を得る。負極の集電体としては、正極と同様の集電体を用いることができる。未化成の負極活物質は、主成分として三塩基性硫酸鉛を含む未化成負極活物質を含むことが好ましい。前記負極活物質ペーストは、例えば、負極活物質の原料を含んでおり、その他の所定の添加剤等を更に含んでいてもよい。 In the negative electrode manufacturing process, for example, a negative electrode material paste is filled in a current collector (for example, a current collector grid) and then aged and dried to obtain a negative electrode having an unformed negative electrode active material. As the current collector for the negative electrode, the same current collector as that for the positive electrode can be used. The unformed negative electrode active material preferably contains an unformed negative electrode active material containing tribasic lead sulfate as a main component. The negative electrode active material paste includes, for example, a raw material for the negative electrode active material, and may further include other predetermined additives.
負極材ペーストは、溶媒及び硫酸を更に含んでいてもよい。溶媒としては、例えば、水(例えばイオン交換水)及び有機溶媒が挙げられる。 The negative electrode material paste may further contain a solvent and sulfuric acid. As a solvent, water (for example, ion-exchange water) and an organic solvent are mentioned, for example.
負極材ペーストが含む添加剤としては、例えば、硫酸バリウム、炭素活物質料及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。炭素活物質料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of the additive contained in the negative electrode material paste include barium sulfate, a carbon active material, and reinforcing short fibers (acrylic fiber, polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, carbon fiber, and the like). Examples of the carbon active material material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
負極材ペーストは、例えば、以下の方法により得ることができる。まず、鉛粉に、スルホ基を有する樹脂と、必要に応じて添加される添加剤とを混合することにより混合物を得る。次に、この混合物に、硫酸(希硫酸等)及び溶媒(水等)を加えて混練することにより負極材ペーストが得られる。 The negative electrode material paste can be obtained, for example, by the following method. First, a mixture is obtained by mixing a resin having a sulfo group and an additive that is added as necessary to lead powder. Next, a negative electrode material paste is obtained by adding sulfuric acid (such as dilute sulfuric acid) and a solvent (such as water) to this mixture and kneading.
<鉛蓄電池の製造方法>
本実施形態に係る鉛蓄電池としては、例えば、液式鉛蓄電池及び密閉式鉛蓄電池が挙げられ、液式鉛蓄電池が好ましい。本実施形態に係る鉛蓄電池の製造方法は、例えば、電極(正極及び負極)を得る電極製造工程と、前記電極を含む構成部活物質を組み立てて鉛蓄電池を得る組み立て工程とを備えている。電極が未化成である場合、電極は、例えば、電極活物質の原料等を含む電極活物質と、当該電極活物質を保持する集電体とを有している。化成後の電極は、例えば、電極活物質等を含む電極活物質と、当該電極活物質からの電流の導電路となり且つ電極活物質を保持する集電体とを有している。
<Method for producing lead-acid battery>
As a lead acid battery concerning this embodiment, a liquid lead acid battery and a sealed lead acid battery are mentioned, for example, and a liquid lead acid battery is preferred. The lead acid battery manufacturing method according to the present embodiment includes, for example, an electrode manufacturing process for obtaining electrodes (positive electrode and negative electrode), and an assembling process for assembling a component active material including the electrodes to obtain a lead acid battery. When the electrode is not formed, the electrode includes, for example, an electrode active material containing a raw material for the electrode active material and a current collector that holds the electrode active material. The electrode after the formation includes, for example, an electrode active material containing an electrode active material and the like, and a current collector that serves as a current conduction path from the electrode active material and holds the electrode active material.
鉛蓄電池の製造方法は、例えば、上記のように作製した負極及び正極を、セパレータを介して積層し、同極性の極板の集電部をストラップで溶接させて極板群を得る。この極板群を電槽内に配置して未化成電池を作製する。次に、未化成電池に希硫酸を入れて直流電流を通電して電槽化成する。化成後の硫酸の比重(20℃換算)を適切な電解液比重に調整して鉛蓄電池が得られる。化成に用いる硫酸比重(20℃換算)は1.20〜1.25が好ましい。化成後の硫酸比重(20℃換算)は1.26〜1.30が好ましい。 In the method for producing a lead-acid battery, for example, the negative electrode and the positive electrode produced as described above are laminated via a separator, and the current collector of the same polarity electrode plate is welded with a strap to obtain an electrode plate group. This electrode group is arranged in a battery case to produce an unformed battery. Next, dilute sulfuric acid is put into an unformed battery, and a direct current is applied to form a battery case. The lead acid battery can be obtained by adjusting the specific gravity (converted to 20 ° C.) of the sulfuric acid after the formation to an appropriate specific gravity of the electrolyte. Sulfuric acid specific gravity (20 degreeC conversion) used for chemical conversion has preferable 1.20-1.25. The sulfuric acid specific gravity after conversion (20 ° C. conversion) is preferably 1.26 to 1.30.
なお、化成条件、及び、硫酸の比重は、電極のサイズに応じて調整することができる。また、化成処理は、組み立て工程後に実施されることに限られず、電極製造工程において実施されてもよい(タンク化成)。 The chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode. Further, the chemical conversion treatment is not limited to being performed after the assembly process, and may be performed in the electrode manufacturing process (tank chemical conversion).
前記電槽は、その内部に極板を収納するものであり、極板の収納し易さから、上面が開放された箱体と、この箱体の上面を覆う蓋体とを有するものを好適に使用することができる。なお、箱体と蓋体との接着は、接着剤、熱溶着、レーザ溶着、超音波溶着等を適宜用いることができる。 The battery case accommodates an electrode plate therein, and preferably has a box body whose upper surface is opened and a lid body that covers the upper surface of the box body from the viewpoint of ease of accommodating the electrode plate. Can be used for Note that an adhesive, heat welding, laser welding, ultrasonic welding, or the like can be appropriately used for bonding the box and the lid.
電槽の形状は、特に限定されるものではないが、通常極板が板状体であることから、極板収納時に無効空間が少なくなるように、方形のものを用いることが好ましい。 The shape of the battery case is not particularly limited, but since the electrode plate is usually a plate-like body, it is preferable to use a rectangular one so that the ineffective space is reduced when the electrode plate is stored.
電槽の材質は、特に制限されるものではないが、電解液(希硫酸等)に対し耐性を有するものである必要があり、具体的には、PP、PE、ABS等を用いることができ、PPであると、耐酸性、加工性(ABSでは電槽と蓋の熱溶着が困難)、コストの面で有利である。 The material of the battery case is not particularly limited, but it needs to be resistant to an electrolytic solution (dilute sulfuric acid, etc.). Specifically, PP, PE, ABS, etc. can be used. , PP is advantageous in terms of acid resistance, processability (difficult to heat weld the battery case and lid with ABS), and cost.
なお、電槽は、前述した箱体及び蓋体より形成される場合に、箱体と蓋体とを、別々の活物質質により形成してもよく、同一活物質質により形成してもよいが、熱膨張係数の等しいものを使用することが、無理な応力が発生せず、好ましい。 In addition, when the battery case is formed of the box body and the lid body described above, the box body and the lid body may be formed of different active material materials, or may be formed of the same active material material. However, it is preferable to use ones having the same thermal expansion coefficient because no excessive stress is generated.
負極材に対する正極材の質量比(正極材/負極材)は、充分な電池容量が得られやすいと共に高い充電受け入れ性が得られやすい観点から、0.9以上が好ましく、1以上がより好ましく、1.05以上が更に好ましい。負極材に対する正極材の質量比は、充分な電池容量が得られやすい観点から、1.3以下が好ましく、1.2以下がより好ましく、1.15以下が更に好ましい。負極材に対する正極材の質量比は、充分な電池容量が得られやすいと共に高い充電受け入れ性が得られやすい観点から、0.9〜1.3が好ましく、1〜1.2がより好ましく、1.05〜1.15が更に好ましい。負極材に対する正極材の前記質量比は、化成後の負極材及び正極材の質量比である。化成後の正極材及び負極材の質量は、化成後の極板を水洗して硫酸等の水溶性成分を洗い流した後、乾燥させ、極板から格子と正極材及び負極材とを分離して測定できる。 The mass ratio of the positive electrode material to the negative electrode material (positive electrode material / negative electrode material) is preferably 0.9 or more, more preferably 1 or more, from the viewpoint that sufficient battery capacity is easily obtained and high charge acceptability is easily obtained. 1.05 or more is still more preferable. The mass ratio of the positive electrode material to the negative electrode material is preferably 1.3 or less, more preferably 1.2 or less, and even more preferably 1.15 or less, from the viewpoint that a sufficient battery capacity can be easily obtained. The mass ratio of the positive electrode material to the negative electrode material is preferably 0.9 to 1.3, more preferably 1 to 1.2, from the viewpoint that sufficient battery capacity is easily obtained and high charge acceptability is easily obtained. 0.05 to 1.15 is more preferable. The said mass ratio of the positive electrode material with respect to a negative electrode material is a mass ratio of the negative electrode material and positive electrode material after chemical conversion. The mass of the positive electrode material and the negative electrode material after conversion is determined by separating the grid, the positive electrode material, and the negative electrode material from the electrode plate by washing the formed electrode plate with water and washing away water-soluble components such as sulfuric acid. It can be measured.
以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例のみに限定されるものではない。
<実施例1>
(正極板の作製)
鉛粉に対して、補強用短繊維としてアクリル繊維0.23質量%、硫酸ナトリウム0.02質量%を加えて乾式混合した。次に、鉛粉に対して、1.7%のアンチモン及び15.3%の二酸化錫の水分散液(三菱マテリアル電子化成製;アンチモンドープ水分散剤TDL-1)を固形分として0.5質量%および水を8質量%加えて混練してペーストAを作製した。
Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the following examples.
<Example 1>
(Preparation of positive electrode plate)
0.23% by mass of acrylic fiber and 0.02% by mass of sodium sulfate were added to the lead powder as a reinforcing short fiber and dry mixed. Next, with respect to the lead powder, 0.5% by mass and water of 1.7% antimony and 15.3% tin dioxide in water (Mitsubishi Materials Electronics Chemicals Co., Ltd .; antimony doped water dispersant TDL-1) as a solid content 8% by mass was added and kneaded to prepare paste A.
次に、鉛丹(Pb3O4)に対して、希硫酸(比重1.28)14.6質量%を加えて混練してペーストBを作製した。 Next, 14.6% by mass of dilute sulfuric acid (specific gravity 1.28) was added to kneaded lead (Pb 3 O 4 ) and kneaded to prepare paste B.
そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極活物質ペーストを作製した。この正極活物質ペーストにおいてペーストBの添加量は、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合が、鉛粉/鉛丹=85/15になるように調整した。また、水の全量は、鉛粉及び鉛丹の総量に対して、8質量%とした。正極活物質ペーストの作製に際しては、急激な温度上昇を避けるため、希硫酸の添加は段階的に行った。 The paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode active material paste. In this positive electrode active material paste, the amount of paste B added is adjusted so that the ratio of the lead powder contained in paste A and the lead powder contained in paste B is lead powder / lead powder = 85/15. did. Further, the total amount of water was 8% by mass with respect to the total amount of lead powder and red lead. In preparing the positive electrode active material paste, dilute sulfuric acid was added step by step to avoid a rapid temperature rise.
鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、前記正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極活物質を有する正極板を作製した。 An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to expansion processing was filled with the positive electrode active material paste, and then aged for 24 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode active material.
(負極板の作製)
負極活物質の原料として鉛粉を用いた。ビスパーズP215(ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドの縮合物、商品名、日本製紙株式会社製)0.2質量%(樹脂固形分)、補強用短繊維(アクリル繊維)0.1質量%、硫酸バリウム1.0質量%、及び、炭素質導電活物質(ファーネスブラック)0.2質量%の混合物を前記鉛粉に添加した後に乾式混合した(前記配合量は、負極活物質の原料の全質量を基準とした配合量である)。次に、水を加えた後に混練した。続いて、比重1.280の希硫酸を少量ずつ添加しながら混練して、負極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体にこの負極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後乾燥して、未化成の負極活物質を有する負極板を作製した。
(Preparation of negative electrode plate)
Lead powder was used as a raw material for the negative electrode active material. Bispazu P215 (condensate of bisphenol, aminobenzenesulfonic acid and formaldehyde, trade name, manufactured by Nippon Paper Industries Co., Ltd.) 0.2% by mass (resin solid content), reinforcing short fiber (acrylic fiber) 0.1% by mass, sulfuric acid A mixture of 1.0% by mass of barium and 0.2% by mass of carbonaceous conductive active material (furnace black) was added to the lead powder and then dry-mixed (the compounding amount is the total mass of the raw material of the negative electrode active material) The blending amount is based on Next, the mixture was kneaded after adding water. Subsequently, the mixture was kneaded while dilute sulfuric acid having a specific gravity of 1.280 was added little by little to prepare a negative electrode active material paste. The negative electrode active material paste was filled in an expandable current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and then aged for 24 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 98%. Thereafter, drying was performed to prepare a negative electrode plate having an unformed negative electrode active material.
(電池の組み立て)
袋状に加工したポリエチレン製のセパレータに未化成負極板を挿入した。次に、未化成正極板5枚と、前記袋状セパレータに挿入された未化成負極板6枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の極板の耳部同士を溶接して極板群を作製した。前記極板群を電槽に挿入して2V単セル電池(JIS D 5301規定のK42サイズの単セルに相当)を組み立てた。その後、比重1.230の硫酸溶液を注入し、10.4Aにて20時間の定電流で化成を行った。
(Battery assembly)
An unformed negative electrode plate was inserted into a polyethylene separator processed into a bag shape. Next, five unformed positive electrode plates and six unformed negative electrode plates inserted in the bag-like separator were alternately laminated. Then, the electrode plate group was prepared by welding the ears of the same polarity electrode plates by a cast on strap (COS) method. The electrode plate group was inserted into a battery case to assemble a 2V single cell battery (corresponding to a K42 size single cell defined in JIS D 5301). Thereafter, a sulfuric acid solution having a specific gravity of 1.230 was injected, and chemical conversion was performed at a constant current of 10.4 A for 20 hours.
(比表面積の測定)
化成後の正極活物質及び負極活物質の比表面積を、試料を液体窒素で冷却しながら液体窒素温度で窒素ガス吸着量を多点法で測定し、BET法に従って算出した。測定条件を下記する。このようにして測定した結果、正極活物質の比表面積は、10.0m2/gであった。また、負極活物質の比表面積は、0.6m2/gであった。
[比表面積測定条件]
装置:Macsorb1201(マウンテック社製)
脱気時間:130℃で10分
冷却:液体窒素で5分間
吸着ガス流量:25mL/分
(X線回折パターンのピーク強度に基づくα−PbO2/β−PbO2比率の測定)
測定試料は、下記の手順により作製した。まず、上記化成した電池を解体して正極板を取り出して水洗をした後、50℃で24時間乾燥した。次に、前記正極板の中央部から正極材を3g採取してすり潰した。続いて、正極材の厚みが試料ホルダーの深さと同等になるように正極材を試料ホルダーに充填して平滑な試料面を作製した後、測定を行った。α−PbO2/β−PbO2比率の測定装置、測定条件、算出方法等を下記する。
(Measurement of specific surface area)
The specific surface areas of the positive electrode active material and the negative electrode active material after chemical conversion were measured according to the BET method by measuring the nitrogen gas adsorption amount at the liquid nitrogen temperature while cooling the sample with liquid nitrogen and by the multipoint method. The measurement conditions are as follows. As a result of the measurement, the specific surface area of the positive electrode active material was 10.0 m 2 / g. Further, the specific surface area of the negative electrode active material was 0.6 m 2 / g.
[Specific surface area measurement conditions]
Apparatus: Macsorb 1201 (Moontech Co., Ltd.)
Degassing time: 10 minutes at 130 ° C. Cooling: 5 minutes with liquid nitrogen Adsorbed gas flow rate: 25 mL / min (measurement of α-PbO 2 / β-PbO 2 ratio based on peak intensity of X-ray diffraction pattern)
The measurement sample was produced by the following procedure. First, the formed battery was disassembled, the positive electrode plate was taken out, washed with water, and then dried at 50 ° C. for 24 hours. Next, 3 g of the positive electrode material was collected from the center of the positive electrode plate and ground. Subsequently, the positive electrode material was filled in the sample holder so that the thickness of the positive electrode material was equal to the depth of the sample holder to produce a smooth sample surface, and then measurement was performed. An apparatus for measuring the α-PbO 2 / β-PbO 2 ratio, measurement conditions, calculation method, and the like are described below.
・測定装置:全自動多目的水平型X線回折装置 SmartLab(株式会社リガク製)
・X線源:Cu−Kα / 1.541862Å
・フィルター:Cu−Kβ
・出力:40kV、30mA
・スキャンモード:CONTINUOUS
・スキャン範囲:20.0000度〜60.0000度
・ステップ幅:0.0200度
・スキャン軸:2θ/θ
・スキャンスピード:10.0000度/分
・試料ホルダー:ガラス製、深さ0.2mm
・算出方法:作製した試料(正極の既化成正極材)3gを用いて広角X線回折を測定した結果、得られた回折角(2θ)と回折ピーク強度のX線回折チャートから、回折角度28.6度に位置するα−PbO2、及び、回折角度25.3度に位置するβ−PbO2が検出された。α−PbO2(110面)及びβ−PbO2(111面)それぞれの化合物として特定される波形のピーク強度(cps)を用いて、「α−PbO2のピーク強度」/「β−PbO2のピーク強度」の比率を比率α−PbO2/β−PbO2として算出した。このようにして測定した結果、α−PbO2/β−PbO2比率は0.38であった。
-Measuring device: Fully automatic multipurpose horizontal X-ray diffractometer SmartLab (manufactured by Rigaku Corporation)
・ X-ray source: Cu-Kα / 1.541862Å
・ Filter: Cu-Kβ
・ Output: 40kV, 30mA
・ Scan mode: CONTINUOUS
Scan range: 20.0000 degrees to 60.000 degrees Step width: 0.0200 degrees Scan axis: 2θ / θ
・ Scanning speed: 10.0000 degrees / min ・ Sample holder: Glass, depth 0.2mm
Calculation method: As a result of measuring wide-angle X-ray diffraction using 3 g of the prepared sample (positively formed positive electrode material of the positive electrode), a diffraction angle of 28 was determined from an X-ray diffraction chart of the obtained diffraction angle (2θ) and diffraction peak intensity. Α-PbO 2 positioned at .6 degrees and β-PbO 2 positioned at a diffraction angle of 25.3 degrees were detected. Using the peak intensity (cps) of the waveform specified as each compound of α-PbO 2 (110 face) and β-PbO 2 (111 face), “peak intensity of α-PbO 2 ” / “β-PbO 2 The ratio of “peak intensity” was calculated as the ratio α-PbO 2 / β-PbO 2 . As a result of the measurement, the α-PbO 2 / β-PbO 2 ratio was 0.38.
負極材に対する正極材の質量比(正極材/負極材)は、1.10であった。
<実施例2>
下記のように未化成の正極活物質を作製したことを除き実施例1と同様にして鉛蓄電池を作製すると共に測定を行った。
The mass ratio of the positive electrode material to the negative electrode material (positive electrode material / negative electrode material) was 1.10.
<Example 2>
A lead storage battery was produced and measured in the same manner as in Example 1 except that an unformed positive electrode active material was produced as described below.
まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.23質量%を加えて乾式混合した。次に、鉛粉に対して、1.7%のアンチモン及び15.3%の二酸化錫の水分散液(三菱マテリアル電子化成製;アンチモンドープ水分散剤TDL−1)を固形分として0.5質量%、水を7.0質量%、希硫酸(比重1.35)18質量%を加えて混練してペーストを作製した。 First, 0.23% by mass of acrylic fiber as a reinforcing short fiber was added to the lead powder and dry-mixed. Next, an aqueous dispersion of 1.7% antimony and 15.3% tin dioxide (Mitsubishi Materials Electronics Chemicals; antimony-doped water dispersant TDL-1) as a solid content is 0.5 mass based on the lead powder. %, 7.0% by mass of water and 18% by mass of dilute sulfuric acid (specific gravity 1.35) were added and kneaded to prepare a paste.
鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、前記正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極活物質を有する正極板を作製した。 An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to expansion processing was filled with the positive electrode active material paste, and then aged for 24 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode active material.
実施例1と同様に評価を行った結果を表1に記載した。 The results of evaluation in the same manner as in Example 1 are shown in Table 1.
<実施例3>
下記のように未化成の正極活物質を作製したことを除き実施例1と同様にして鉛蓄電池を作製すると共に測定を行った。
<Example 3>
A lead storage battery was produced and measured in the same manner as in Example 1 except that an unformed positive electrode active material was produced as described below.
まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.23質量%を加えて乾式混合した。次に、鉛粉に対して、1.7%のアンチモン及び15.3%の二酸化錫の水分散液(三菱マテリアル電子化成製;アンチモンドープ水分散剤TDL-1)を固形分として0.5質量%、水4.6質量%、希硫酸(比重1.35)21.5質量%を加えて混練してペーストを作製した。 First, 0.23% by mass of acrylic fiber as a reinforcing short fiber was added to the lead powder and dry-mixed. Next, an aqueous dispersion of 1.7% antimony and 15.3% tin dioxide (made by Mitsubishi Materials Electronic Chemicals; antimony-doped water dispersant TDL-1) as a solid content with respect to the lead powder is 0.5 mass. %, Water 4.6 mass% and dilute sulfuric acid (specific gravity 1.35) 21.5 mass% were added and kneaded to prepare a paste.
鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、前記正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極活物質を有する正極板を作製した。 An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to expansion processing was filled with the positive electrode active material paste, and then aged for 24 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode active material.
実施例1と同様に評価を行った結果を表1に記載した。 The results of evaluation in the same manner as in Example 1 are shown in Table 1.
<比較例1>
下記のように未化成の正極材を作製したことを除き実施例1と同様にして鉛蓄電池を作製すると共に測定を行った。
<Comparative Example 1>
A lead storage battery was produced and measured in the same manner as in Example 1 except that an unchemically formed positive electrode material was produced as described below.
まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.07質量%、硫酸ナトリウム0.01質量%を加えて乾式混合した。次に、鉛粉に対して、1.7%のアンチモン及び15.3%の二酸化錫の水分散液(三菱マテリアル電子化成製;アンチモンドープ水分散剤TDL−1)を固形分として0.5質量%、水10質量%、希硫酸(比重1.28)9質量%を加えて混練して正極活物質ペーストを作製した。正極活物質ペーストの作製に際しては、急激な温度上昇を避けるため、希硫酸の添加は段階的に行った。 First, 0.07% by mass of acrylic fiber and 0.01% by mass of sodium sulfate were added to the lead powder as reinforcing short fibers and dry mixed. Next, an aqueous dispersion of 1.7% antimony and 15.3% tin dioxide (Mitsubishi Materials Electronics Chemicals; antimony-doped water dispersant TDL-1) as a solid content is 0.5 mass based on the lead powder. %, 10% by mass of water and 9% by mass of dilute sulfuric acid (specific gravity 1.28) were added and kneaded to prepare a positive electrode active material paste. In preparing the positive electrode active material paste, dilute sulfuric acid was added step by step to avoid a rapid temperature rise.
鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、前記正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極活物質を有する正極板を作製した。 An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to expansion processing was filled with the positive electrode active material paste, and then aged for 24 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode active material.
実施例1と同様に評価を行った結果を表1に記載した。 The results of evaluation in the same manner as in Example 1 are shown in Table 1.
<比較例2>
下記のように未化成の正極材を作製したことを除き実施例1と同様にして鉛蓄電池を作製すると共に測定を行った。
<Comparative example 2>
A lead storage battery was produced and measured in the same manner as in Example 1 except that an unchemically formed positive electrode material was produced as described below.
まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.07質量%、硫酸ナトリウム0.01質量%を加えて乾式混合した。次に、鉛粉に対して、水10質量%、希硫酸(比重1.28)9質量%を加えて混練して正極活物質ペーストを作製した。正極活物質ペーストの作製に際しては、急激な温度上昇を避けるため、希硫酸の添加は段階的に行った。 First, 0.07% by mass of acrylic fiber and 0.01% by mass of sodium sulfate were added to the lead powder as reinforcing short fibers and dry mixed. Next, 10% by mass of water and 9% by mass of dilute sulfuric acid (specific gravity 1.28) were added to the lead powder and kneaded to prepare a positive electrode active material paste. In preparing the positive electrode active material paste, dilute sulfuric acid was added step by step to avoid a rapid temperature rise.
鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、前記正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極を有する正極板を作製した。 An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to expansion processing was filled with the positive electrode active material paste, and then aged for 24 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode.
実施例1と同様に評価を行った結果を表1に記載した。 The results of evaluation in the same manner as in Example 1 are shown in Table 1.
<特性評価>
(充電受入性)
作製した鉛蓄電池について、化成後、約12時間放置した後、25℃で5.6Aの電流値で30分間定電流放電を行い、さらに、6時間放置した後、2.33Vで100Aの制限電流として60秒間の定電圧充電を行い、その開始から5秒目までの電流値を測定した。比較例1の測定結果を100とした相対比率を評価した。結果を表1に示す。測定結果が100以上であるときを充電受入性に優れると判断した。
<Characteristic evaluation>
(Charge acceptance)
About the produced lead acid battery, after chemical conversion, it was left for about 12 hours, then was discharged at a constant current of 5.6 A at 25 ° C. for 30 minutes, further left for 6 hours, and then limited to 100 A at 2.33 V. As described above, constant voltage charging was performed for 60 seconds, and the current value from the start to the 5th second was measured. The relative ratio with the measurement result of Comparative Example 1 as 100 was evaluated. The results are shown in Table 1. When the measurement result was 100 or more, it was judged that the charge acceptability was excellent.
(5時間率容量)
作製した鉛蓄電池について、25℃で5.6Aの電流値で放電し、1.75Vを下回った時点での持続時間から5時間率容量を算出した。比較例1の測定結果を96とした相対比率を評価した。結果を表1に示す。測定結果が100以上であるときを5時間率容量に優れると判断した。
(5 hour rate capacity)
About the produced lead acid battery, it discharged with the electric current value of 5.6 A at 25 degreeC, and computed the 5-hour rate capacity | capacitance from the duration when it fell below 1.75V. The relative ratio with the measurement result of Comparative Example 1 as 96 was evaluated. The results are shown in Table 1. When the measurement result was 100 or more, it was judged that the 5-hour rate capacity was excellent.
(低温高率放電特性)
作製した鉛蓄電池について、−15℃で150Aの電流値で放電し、1.0Vを下回った時点での持続時間から持続容量を算出した。比較例1の測定結果を95とした相対比率を評価した。結果を表1に示した。測定結果が100以上であるときを低温高率放電特性に優れると判断した。
(Low temperature high rate discharge characteristics)
About the produced lead acid battery, it discharged at -15 degreeC with the electric current value of 150 A, and the continuous capacity was computed from the duration when it fell below 1.0V. The relative ratio with the measurement result of Comparative Example 1 as 95 was evaluated. The results are shown in Table 1. When the measurement result was 100 or more, it was judged that the low-temperature high-rate discharge characteristics were excellent.
(ISSサイクル特性)
ISSサイクル特性の測定を次のように行った。電池温度が25℃になるように雰囲気温度を調整し、45A−59秒間、300A−1秒間の定電流放電を行った後、100A−2.33V−60秒間の定電流・定電圧充電を1サイクルとする試験を7200サイクル行った。この試験はISS車での鉛蓄電池の使われ方を模擬したサイクル試験である。このサイクル試験では、放電量に対して充電量が少ないため、充電が完全に行われないと徐々に充電不足になり、その結果、放電電流を300Aとして1秒間放電した時の1秒目電圧が徐々に低下する。すなわち、定電流・定電圧充電時に負極が分極して早期に定電圧充電に切り替わると、充電電流が減衰して充電不足になる。比較例1の測定結果を100とした相対比率を評価した。結果を表1に示した。測定結果が100以上であるときをISSサイクル特性に優れると判断した。
(ISS cycle characteristics)
Measurement of ISS cycle characteristics was performed as follows. Adjust the ambient temperature so that the battery temperature is 25 ° C., perform constant current discharge for 45A-59 seconds and 300A-1 seconds, then charge constant current / constant voltage for 100A-2.33V-60 seconds. The cycle test was conducted for 7200 cycles. This test is a cycle test that simulates the use of lead-acid batteries in ISS cars. In this cycle test, the amount of charge is small relative to the amount of discharge, so if charging is not performed completely, the battery gradually becomes insufficiently charged. As a result, the voltage at the first second when discharging at 300 A for 1 second is obtained. Decrease gradually. That is, if the negative electrode is polarized during constant current / constant voltage charging and switched to constant voltage charging at an early stage, the charging current is attenuated, resulting in insufficient charging. The relative ratio with the measurement result of Comparative Example 1 as 100 was evaluated. The results are shown in Table 1. When the measurement result was 100 or more, it was judged that the ISS cycle characteristics were excellent.
Claims (4)
前記正極板は正極材を含み、前記負極板は負極材を含み、前記正極材の比表面積が10m2/g以上であり、前記正極材が錫酸化物を含む、鉛蓄電池。 A lead-acid battery comprising a positive electrode plate and a negative electrode plate facing each other via a separator, and an electrolyte solution,
The lead acid battery, wherein the positive electrode plate includes a positive electrode material, the negative electrode plate includes a negative electrode material, the positive electrode material has a specific surface area of 10 m 2 / g or more, and the positive electrode material includes tin oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016070935A JP2017183160A (en) | 2016-03-31 | 2016-03-31 | Lead storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016070935A JP2017183160A (en) | 2016-03-31 | 2016-03-31 | Lead storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017183160A true JP2017183160A (en) | 2017-10-05 |
Family
ID=60007598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016070935A Pending JP2017183160A (en) | 2016-03-31 | 2016-03-31 | Lead storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017183160A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110364770A (en) * | 2019-06-21 | 2019-10-22 | 天能电池集团股份有限公司 | A kind of lead storage battery and preparation method thereof overcoming premature capacity loss |
JP2022088044A (en) * | 2020-12-02 | 2022-06-14 | 古河電池株式会社 | Lead-acid battery |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01304663A (en) * | 1988-05-31 | 1989-12-08 | Shin Kobe Electric Mach Co Ltd | Lead storage battery and manufacture thereof |
JPH0414758A (en) * | 1990-05-02 | 1992-01-20 | Matsushita Electric Ind Co Ltd | Lead-acid accumulator |
US5302476A (en) * | 1990-12-03 | 1994-04-12 | Globe-Union Inc. | High performance positive electrode for a lead-acid battery |
JPH08180876A (en) * | 1994-07-26 | 1996-07-12 | Shin Kobe Electric Mach Co Ltd | Lead acid battery and its manufacturing method |
JP2001028263A (en) * | 1999-07-14 | 2001-01-30 | Japan Storage Battery Co Ltd | Lead-acid battery formation method |
JP2004281197A (en) * | 2003-03-14 | 2004-10-07 | Matsushita Electric Ind Co Ltd | Lead storage battery |
JP2005025955A (en) * | 2003-06-30 | 2005-01-27 | Furukawa Battery Co Ltd:The | Lead acid battery and its manufacturing method |
JP2005044759A (en) * | 2003-07-25 | 2005-02-17 | Furukawa Battery Co Ltd:The | Lead-acid storage battery and manufacturing method of the same |
JP2007294124A (en) * | 2006-04-21 | 2007-11-08 | Furukawa Battery Co Ltd:The | Manufacturing method of lead-acid battery |
WO2011108056A1 (en) * | 2010-03-01 | 2011-09-09 | 新神戸電機株式会社 | Lead storage battery |
WO2012042917A1 (en) * | 2010-09-30 | 2012-04-05 | 新神戸電機株式会社 | Lead storage battery |
JP2014123510A (en) * | 2012-12-21 | 2014-07-03 | Panasonic Corp | Lead storage battery |
WO2017022202A1 (en) * | 2015-08-04 | 2017-02-09 | 株式会社Gsユアサ | Lead storage battery |
-
2016
- 2016-03-31 JP JP2016070935A patent/JP2017183160A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01304663A (en) * | 1988-05-31 | 1989-12-08 | Shin Kobe Electric Mach Co Ltd | Lead storage battery and manufacture thereof |
JPH0414758A (en) * | 1990-05-02 | 1992-01-20 | Matsushita Electric Ind Co Ltd | Lead-acid accumulator |
US5302476A (en) * | 1990-12-03 | 1994-04-12 | Globe-Union Inc. | High performance positive electrode for a lead-acid battery |
JPH08180876A (en) * | 1994-07-26 | 1996-07-12 | Shin Kobe Electric Mach Co Ltd | Lead acid battery and its manufacturing method |
JP2001028263A (en) * | 1999-07-14 | 2001-01-30 | Japan Storage Battery Co Ltd | Lead-acid battery formation method |
JP2004281197A (en) * | 2003-03-14 | 2004-10-07 | Matsushita Electric Ind Co Ltd | Lead storage battery |
JP2005025955A (en) * | 2003-06-30 | 2005-01-27 | Furukawa Battery Co Ltd:The | Lead acid battery and its manufacturing method |
JP2005044759A (en) * | 2003-07-25 | 2005-02-17 | Furukawa Battery Co Ltd:The | Lead-acid storage battery and manufacturing method of the same |
JP2007294124A (en) * | 2006-04-21 | 2007-11-08 | Furukawa Battery Co Ltd:The | Manufacturing method of lead-acid battery |
WO2011108056A1 (en) * | 2010-03-01 | 2011-09-09 | 新神戸電機株式会社 | Lead storage battery |
WO2012042917A1 (en) * | 2010-09-30 | 2012-04-05 | 新神戸電機株式会社 | Lead storage battery |
JP2014123510A (en) * | 2012-12-21 | 2014-07-03 | Panasonic Corp | Lead storage battery |
WO2017022202A1 (en) * | 2015-08-04 | 2017-02-09 | 株式会社Gsユアサ | Lead storage battery |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110364770A (en) * | 2019-06-21 | 2019-10-22 | 天能电池集团股份有限公司 | A kind of lead storage battery and preparation method thereof overcoming premature capacity loss |
JP2022088044A (en) * | 2020-12-02 | 2022-06-14 | 古河電池株式会社 | Lead-acid battery |
JP7589031B2 (en) | 2020-12-02 | 2024-11-25 | 古河電池株式会社 | Lead-acid battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6597842B2 (en) | Lead acid battery | |
JP5500315B2 (en) | Lead acid battery | |
JP5621841B2 (en) | Lead acid battery | |
CN102893445B (en) | Lead accumulator | |
JP6311799B2 (en) | Lead acid battery | |
WO2017099141A1 (en) | Lead storage battery | |
EP2544292A1 (en) | Lead storage battery | |
JP6977770B2 (en) | Liquid lead-acid battery | |
JP2013065443A (en) | Lead storage battery | |
JP2003123760A (en) | Negative electrode for lead-acid battery | |
JP2008243493A (en) | Lead acid storage battery | |
JP2017183160A (en) | Lead storage battery | |
JP2003051334A (en) | Sealed lead-acid battery | |
JP7010556B2 (en) | Positive electrode plate and lead acid battery | |
JP6582636B2 (en) | Lead acid battery | |
JP6996274B2 (en) | Lead-acid battery | |
JP6866896B2 (en) | Lead-acid battery and its manufacturing method | |
JP7049739B2 (en) | Manufacturing method of lead-acid battery and positive electrode plate of lead-acid battery | |
JP2018116842A (en) | Evaluation method of lead storage battery | |
WO2019234862A1 (en) | Lead storage battery | |
WO2019235216A1 (en) | Lead storage battery | |
WO2018100635A1 (en) | Lead storage battery and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191017 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200618 |