[go: up one dir, main page]

JP2017181204A - Ozone measurement device - Google Patents

Ozone measurement device Download PDF

Info

Publication number
JP2017181204A
JP2017181204A JP2016066580A JP2016066580A JP2017181204A JP 2017181204 A JP2017181204 A JP 2017181204A JP 2016066580 A JP2016066580 A JP 2016066580A JP 2016066580 A JP2016066580 A JP 2016066580A JP 2017181204 A JP2017181204 A JP 2017181204A
Authority
JP
Japan
Prior art keywords
concentration
measurement
sample gas
gas
reference gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016066580A
Other languages
Japanese (ja)
Other versions
JP6643715B2 (en
Inventor
吉康 浦田
Yoshiyasu Urata
吉康 浦田
慶一 木下
Keiichi Kinoshita
慶一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2016066580A priority Critical patent/JP6643715B2/en
Publication of JP2017181204A publication Critical patent/JP2017181204A/en
Application granted granted Critical
Publication of JP6643715B2 publication Critical patent/JP6643715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ozone measurement device that can reduce an indication skip of ozone concentration in sample gas in a configuration of alternately measuring an amount of UV transmission light of the sample gas and an amount of UV transmission light of reference gas to obtain the ozone concentration in the sample gas.SOLUTION: An ozone concentration device 100, which alternately measures an amount of UV transmission light of sample gas and an amount of UV transmission light of reference gas, and sequentially computes a concentration after measuring the sample gas and a concentration after measuring the reference gas, is configured to have a control unit 4 that conducts performing of: every time the concentration after measuring the sample gas and the concentration after measuring the reference gas are computed respectively, obtaining a first index value indicative of a degree of change from previous concentrations after measuring the sample gas of an up to date concentration after measuring the sample gas, and a second index value indicative of a change of degree from previous concentrations after measuring the reference gas of an up to date concentration after measuring the reference gas; when a difference between the first and second index values is equal to or greater than a prescribed threshold, replacing a current-time computed concentration after measuring the sample gas or a current-time computed concentration after measuring the reference gas with a different value based on at least one of a previously computed concentration after measuring the sample gas or a previously computed concentration after measuring the reference gas.SELECTED DRAWING: Figure 1

Description

本発明は、大気中などのオゾン濃度を測定するオゾン測定装置に関するものである。   The present invention relates to an ozone measuring device for measuring ozone concentration in the atmosphere or the like.

従来、オゾンが紫外線を吸収することを利用して、試料ガス中のオゾン濃度を紫外線の吸収によって測定するオゾン測定装置がある。オゾン測定装置では、試料ガスの紫外線吸光度(紫外線透過光量)、及び試料ガス中のオゾンが除去された参照ガスの紫外線吸光度(紫外線透過光量)がそれぞれ測定され、これらの比率から試料ガス中のオゾン濃度が求められる。このようなオゾン測定装置において、紫外線光源としては、一般に水銀ランプが用いられている。   2. Description of the Related Art Conventionally, there is an ozone measuring device that measures the ozone concentration in a sample gas by absorbing ultraviolet rays by utilizing the fact that ozone absorbs ultraviolet rays. The ozone measuring device measures the ultraviolet absorbance (ultraviolet transmitted light amount) of the sample gas and the ultraviolet absorbance (ultraviolet transmitted light amount) of the reference gas from which the ozone in the sample gas has been removed, and the ozone in the sample gas is determined from these ratios. The concentration is required. In such an ozone measuring apparatus, a mercury lamp is generally used as the ultraviolet light source.

しかし、水銀ランプは、光量の安定性が比較的低く、点灯中に突然光量が大きくなったり小さくなったりすることがある。そして、このように水銀ランプの光量が変化した際の測定データを用いてオゾン濃度を求めると、オゾン濃度の指示値が現実的でない値となることがある。ここでは、この現象を「指示飛び」という。   However, the mercury lamp has a relatively low light amount stability, and the light amount may suddenly increase or decrease during lighting. Then, when the ozone concentration is obtained using the measurement data when the light quantity of the mercury lamp changes in this way, the indication value of the ozone concentration may become an unrealistic value. Here, this phenomenon is called “instruction skip”.

この問題に対し、参照ガスの紫外線吸光度の変化率が所定の閾値を超えた場合は、その参照ガスの紫外線吸光度を用いた試料ガス中のオゾン濃度の演算を行わないようにする方法がある(特許文献1)。   To solve this problem, there is a method in which the calculation of the ozone concentration in the sample gas using the ultraviolet absorbance of the reference gas is not performed when the change rate of the ultraviolet absorbance of the reference gas exceeds a predetermined threshold ( Patent Document 1).

特開2008−175626号公報JP 2008-175626 A

しかしながら、上記従来の方法では、一定の効果は得られるものの、指示飛びを十分に低減できない場合がある。   However, although the above-described conventional method can achieve a certain effect, there are cases where the skipping of instructions cannot be sufficiently reduced.

つまり、上記従来の方法では、参照ガスの紫外線透過光量を測定している時の水銀ランプの光量変化のみに注目し、その変化の大きさから指示飛びを判別している。そのため、試料ガスの紫外線透過光量を測定している時に水銀ランプの光量変化があった場合には、指示飛びを判別することができない。そのため、試料ガス中のオゾン濃度の測定結果は、依然として低減すべき指示飛びが見られるものとなってしまうことがある。   That is, in the above conventional method, attention is paid only to the change in the light amount of the mercury lamp when the amount of ultraviolet light transmitted through the reference gas is measured, and the instruction skip is determined from the magnitude of the change. For this reason, if there is a change in the light amount of the mercury lamp when measuring the amount of ultraviolet light transmitted through the sample gas, it is not possible to determine the skipping. Therefore, the measurement result of the ozone concentration in the sample gas may still show an instruction skip to be reduced.

したがって、本発明の目的は、試料ガスの紫外線透過光量と参照ガスの紫外線透過光量とを交互に測定して試料ガス中のオゾン濃度を求める構成において、測定結果に生じる指示飛びを低減することのできるオゾン測定装置を提供することである。   Accordingly, an object of the present invention is to reduce the skipping of instructions that occur in the measurement result in a configuration in which the ozone concentration in the sample gas is obtained by alternately measuring the ultraviolet light transmission amount of the sample gas and the ultraviolet light transmission amount of the reference gas. It is to provide an ozone measuring device that can be used.

上記目的は本発明に係るオゾン測定装置にて達成される。要約すれば、本発明は、試料ガスと試料ガス中のオゾンが除去された参照ガスとが交互に導入される測定部と、前記測定部に紫外線を照射する光源と、前記測定部を透過した光を受光して受光量に応じた電気信号を発生する検出器と、前記測定部に試料ガスが導入された際に前記検出器が発生した電気信号に応じた試料ガス測定データと、前記測定部に参照ガスが導入された際に前記検出器が発生した電気信号に応じた参照ガス測定データと、に基づいて試料ガス中のオゾン濃度を演算する制御部と、を有し、前記制御部は、前記試料ガス測定データを取得した場合に今回の前記試料ガス測定データと直近の前記参照ガス測定データとに基づいて試料ガス中のオゾン濃度を示す試料ガス測定後濃度を演算し、前記参照ガス測定データを取得した場合に今回の前記参照ガス測定データと直近の前記試料ガス測定データとに基づいて試料ガス中のオゾン濃度を示す参照ガス測定後濃度を演算し、前記試料ガス測定後濃度又は前記参照ガス測定後濃度をそれぞれ演算する毎に、直近の前記試料ガス測定後濃度のそれ以前の前記試料ガス測定後濃度からの変化の程度を示す第1の指標値と、直近の前記参照ガス測定後濃度のそれ以前の前記参照ガス測定後濃度からの変化の程度を示す第2の指標値と、を求め、前記第1、第2の指標値間の差分が所定の閾値より大きい場合に、今回演算した前記試料ガス測定後濃度又は前記参照ガス測定後濃度をそれぞれ、以前に演算した前記試料ガス測定後濃度又は前記参照ガス測定後濃度の少なくとも一方に基づく別の値に置き換える処理を行うことを特徴とするオゾン測定装置である。   The above object is achieved by the ozone measuring apparatus according to the present invention. In summary, the present invention permeates through a measurement unit in which a sample gas and a reference gas from which ozone in the sample gas is removed are alternately introduced, a light source that irradiates the measurement unit with ultraviolet light, and the measurement unit. A detector that receives light and generates an electrical signal according to the amount of light received, sample gas measurement data according to an electrical signal generated by the detector when a sample gas is introduced into the measurement unit, and the measurement A control unit that calculates ozone concentration in the sample gas based on reference gas measurement data corresponding to an electrical signal generated by the detector when a reference gas is introduced into the unit, and the control unit Calculates the concentration after measurement of the sample gas indicating the ozone concentration in the sample gas based on the current sample gas measurement data and the latest reference gas measurement data when the sample gas measurement data is acquired, and the reference Get gas measurement data In this case, after calculating the reference gas measurement concentration indicating the ozone concentration in the sample gas based on the current reference gas measurement data and the latest sample gas measurement data, the concentration after the sample gas measurement or after the reference gas measurement is calculated. Each time the concentration is calculated, a first index value indicating the degree of change of the latest concentration after measurement of the sample gas from the previous concentration after measurement of the sample gas, and that of the concentration after the measurement of the latest reference gas are calculated. A second index value indicating the degree of change from the previous concentration after measurement of the reference gas, and when the difference between the first and second index values is greater than a predetermined threshold, A process of replacing the concentration after measurement of the sample gas or the concentration after measurement of the reference gas with another value based on at least one of the concentration after measurement of the sample gas or the concentration after measurement of the reference gas previously calculated, respectively. An ozone measuring device according to symptoms.

本発明によれば、試料ガスの紫外線透過光量と参照ガスの紫外線透過光量とを交互に測定して試料ガス中のオゾン濃度を求める構成において、測定結果に生じる指示飛びを低減することができる。   According to the present invention, in the configuration in which the ultraviolet light transmission amount of the sample gas and the ultraviolet light transmission amount of the reference gas are alternately measured to obtain the ozone concentration in the sample gas, it is possible to reduce the instruction skip occurring in the measurement result.

一実施例に係るオゾン測定装置のブロック図である。It is a block diagram of the ozone measuring device which concerns on one Example. 一実施例におけるオゾン濃度の演算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of the ozone concentration in one Example. 指示飛びの問題を説明するためのグラフである。It is a graph for demonstrating the problem of instruction skip. 指示飛びの典型例を説明するためのグラフである。It is a graph for demonstrating the typical example of instruction skip. 一実施例における指示飛び補正処理を説明するためのグラフである。It is a graph for demonstrating the instruction skip correction process in one Example. 一実施例における測定データの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the measurement data in one Example. 一実施例における指示飛び補正処理の効果を示すグラフ図である。It is a graph which shows the effect of the instruction skip correction process in one Example. 指示飛びの他の典型例を説明するためのグラフである。It is a graph for demonstrating the other typical example of instruction skip.

以下、本発明に係るオゾン測定装置を図面に則して更に詳しく説明する。   Hereinafter, the ozone measuring apparatus according to the present invention will be described in more detail with reference to the drawings.

[実施例1]
1.オゾン測定装置の全体構成
図1は、本実施例のオゾン測定装置100の全体構成を示すブロック図である。本実施例では、オゾン測定装置100は、大気中のオゾン濃度を測定するのに用いられるものである。
[Example 1]
1. Overall Configuration of Ozone Measuring Device FIG. 1 is a block diagram showing the overall configuration of an ozone measuring device 100 of the present embodiment. In this embodiment, the ozone measuring device 100 is used to measure the ozone concentration in the atmosphere.

測定装置100は、試料ガス(空気)を導入するための試料ガス導入口11と、試料ガス導入口11から導入された試料ガスが流通する導入管12と、を有する。導入管12は、後述する検出部2の測定セル21に接続されており、測定セル21に試料ガスを供給する。導入管12には、その一部をショートカットするようにバイパス管13が接続されており、このバイパス管13の途中にオゾン分解器14が接続されている。また、導入管12、バイパス管13のそれぞれの途中に、試料ガスの流通経路を切り替えるための弁15及び16が設けられている。また、試料ガス導入口11から導入管12に導入された試料ガスから粉体や粒状体の不純物を除去するための清浄フィルタ17が導入管12の途中に設けられている。本実施例では、試料ガス導入口11、導入管12、バイパス管13、オゾン分解器14、弁15及び16、清浄フィルタ17などによって、測定セル21に試料ガスと試料ガス中のオゾンが除去された参照ガスとを交互に導入するガス供給部1が構成される。   The measuring apparatus 100 includes a sample gas introduction port 11 for introducing a sample gas (air) and an introduction tube 12 through which the sample gas introduced from the sample gas introduction port 11 flows. The introduction tube 12 is connected to a measurement cell 21 of the detection unit 2 described later, and supplies a sample gas to the measurement cell 21. A bypass pipe 13 is connected to the introduction pipe 12 so that a part thereof is shortcut, and an ozonolysis device 14 is connected in the middle of the bypass pipe 13. Valves 15 and 16 for switching the flow path of the sample gas are provided in the middle of each of the introduction pipe 12 and the bypass pipe 13. Further, a clean filter 17 is provided in the middle of the introduction pipe 12 for removing impurities of powder and granular materials from the sample gas introduced into the introduction pipe 12 from the sample gas introduction port 11. In the present embodiment, the sample gas and ozone in the sample gas are removed from the measurement cell 21 by the sample gas introduction port 11, the introduction pipe 12, the bypass pipe 13, the ozonolysis device 14, the valves 15 and 16, the clean filter 17, and the like. The gas supply unit 1 is configured to alternately introduce the reference gas.

また、測定装置100は、測定後のガスを排出するための排出管31と、排出口32と、を有する。排出管31は、測定セル21に接続されており、測定セル21を通過した後のガスが導入される。排出管31の途中に、ガスを流動させるポンプ33と、排出管31内を流通するガスの流量を検知する流量計34と、が設けられている。また、排出管31内を流通するガスの温度を検知する温度センサ35、排出管31内を流通するガスの圧力を検知する圧力センサ36が設けられている。本実施例では、排出管31、排出口32、ポンプ33、流量計34、温度センサ35、圧力センサ36などによって、測定セル21を通過したガスを排出するガス排出部3が構成される。   In addition, the measuring device 100 includes a discharge pipe 31 for discharging the gas after measurement, and a discharge port 32. The discharge pipe 31 is connected to the measurement cell 21 and the gas after passing through the measurement cell 21 is introduced. A pump 33 for flowing gas and a flow meter 34 for detecting the flow rate of the gas flowing through the discharge pipe 31 are provided in the middle of the discharge pipe 31. Further, a temperature sensor 35 for detecting the temperature of the gas flowing through the discharge pipe 31 and a pressure sensor 36 for detecting the pressure of the gas flowing through the discharge pipe 31 are provided. In the present embodiment, the discharge pipe 31, the discharge port 32, the pump 33, the flow meter 34, the temperature sensor 35, the pressure sensor 36, and the like constitute the gas discharge unit 3 that discharges the gas that has passed through the measurement cell 21.

また、測定装置100は、試料ガスに含まれるオゾンを検出する検出部2を有する。検出部2は、試料ガスなどが導入される測定部としての測定セル21、紫外線光源としての水銀ランプ22、水銀ランプ22から出射され測定セル21を透過した光を受光して受光量に応じた電気信号を発生する検出器(光電変換部)23を有する。検出器23は、光電変換素子(本実施例ではフォトダイオード)、増幅器、ADコンバータなどを有して構成される。   Moreover, the measuring apparatus 100 has the detection part 2 which detects the ozone contained in sample gas. The detection unit 2 receives a measurement cell 21 as a measurement unit into which a sample gas or the like is introduced, a mercury lamp 22 as an ultraviolet light source, and light emitted from the mercury lamp 22 and transmitted through the measurement cell 21 according to the amount of light received. It has a detector (photoelectric converter) 23 that generates an electrical signal. The detector 23 includes a photoelectric conversion element (a photodiode in this embodiment), an amplifier, an AD converter, and the like.

さらに、オゾン測定装置100は、ポンプ33、弁15及び16、検出部2などの測定装置100の動作を統括的に制御すると共に、試料ガス中のオゾン濃度を求める制御部4を有する。制御部4は、演算制御手段としてのCPU、記憶手段としての記憶部(メモリ)などを有して構成されており、記憶部に格納されたプログラムに従ってオゾン測定装置100の各部の動作の制御、測定データの処理を実行する。なお、オゾン測定装置100には更に、測定結果を表示する表示部、測定装置100と通信可能に接続された外部機器に測定結果を送信する送信部などが設けられていてよい。   Furthermore, the ozone measuring device 100 has a control unit 4 that comprehensively controls the operation of the measuring device 100 such as the pump 33, valves 15 and 16, and the detecting unit 2, and that determines the ozone concentration in the sample gas. The control unit 4 includes a CPU as a calculation control unit, a storage unit (memory) as a storage unit, and the like, and controls the operation of each unit of the ozone measuring apparatus 100 according to a program stored in the storage unit. Perform measurement data processing. The ozone measurement apparatus 100 may further include a display unit that displays the measurement result, a transmission unit that transmits the measurement result to an external device that is connected to the measurement apparatus 100 in a communicable manner, and the like.

オゾン測定装置100による試料ガス中のオゾン濃度の測定は次のようにして行われる。   Measurement of the ozone concentration in the sample gas by the ozone measuring device 100 is performed as follows.

(1)ポンプ33によって試料ガス導入口11から導入管12に試料ガス(空気)が一定流量で吸引され、この試料ガスが弁15及び16によってバイパス管13を通さずに測定セル21に導入される。   (1) The sample gas (air) is sucked into the introduction pipe 12 from the sample gas introduction port 11 by the pump 33 at a constant flow rate, and this sample gas is introduced into the measurement cell 21 by the valves 15 and 16 without passing through the bypass pipe 13. The

(2)水銀ランプ22から紫外領域の光である特定波長(本実施例では254nm)の紫外線が測定セル21に照射される。これにより、試料ガス中のオゾン及びその他の紫外線を吸収する共存成分の濃度に応じた紫外線が、試料ガスにより吸収される。試料ガスが導入された測定セル21を透過することで減衰した紫外線が、検出器23によって受光される。そして、検出器23は、受光した紫外線の強度(紫外線透過光量)に応じた電気信号を発生し、これをAD変換した測定データ(ここでは、「試料ガス測定データ」ともいう。)を制御部4に入力する。制御部4は、入力された試料ガス測定データを記憶部に記憶する。   (2) The measurement cell 21 is irradiated with ultraviolet rays having a specific wavelength (254 nm in this embodiment), which is light in the ultraviolet region, from the mercury lamp 22. Thereby, ultraviolet rays according to the concentration of coexisting components that absorb ozone and other ultraviolet rays in the sample gas are absorbed by the sample gas. Ultraviolet light attenuated by passing through the measurement cell 21 into which the sample gas has been introduced is received by the detector 23. The detector 23 generates an electrical signal corresponding to the intensity of the received ultraviolet light (ultraviolet transmitted light amount), and AD-converted measurement data (herein, also referred to as “sample gas measurement data”) is a control unit. 4 The control unit 4 stores the input sample gas measurement data in the storage unit.

(3)弁15及び16によってガスの流通経路が切り替えられて、試料ガスがバイパス管13に導入されることで、オゾン分解器14によって試料ガス中のオゾンが分解(除去)されて、オゾンを含まない参照ガスが調整される。この参照ガスは、測定セル21に導入され、上記(2)の試料ガスの場合と同様の測定が行われる。参照ガスは、試料ガス中のオゾンのみが除去されて調整されたものであるため、参照ガスの測定の場合は、試料ガス中のオゾン以外の共存成分の濃度に応じた紫外線が吸収される。参照ガスが導入された測定セル21を透過することで減衰した紫外線が検出器23によって受光される。そして、検出器23は、受光した紫外線の強度(紫外線透過光量)に応じた電気信号を発生し、これをAD変換した測定データ(ここでは、「参照ガス測定データ」ともいう。)を制御部4に入力する。制御部4は、入力された参照ガス測定データを記憶部に記憶する。   (3) When the gas flow path is switched by the valves 15 and 16 and the sample gas is introduced into the bypass pipe 13, ozone in the sample gas is decomposed (removed) by the ozone decomposer 14, and ozone is removed. Reference gas not included is adjusted. This reference gas is introduced into the measurement cell 21, and the same measurement as in the case of the sample gas (2) is performed. Since the reference gas is adjusted by removing only ozone in the sample gas, in the case of measuring the reference gas, ultraviolet rays corresponding to the concentration of coexisting components other than ozone in the sample gas are absorbed. Ultraviolet light attenuated by passing through the measurement cell 21 introduced with the reference gas is received by the detector 23. The detector 23 generates an electrical signal corresponding to the intensity of the received ultraviolet light (ultraviolet transmitted light amount), and AD-converted measurement data (herein also referred to as “reference gas measurement data”) is a control unit. 4 The control unit 4 stores the input reference gas measurement data in the storage unit.

(4)制御部4が、詳しくは後述するようにして、試料ガス測定データと参照ガス測定データとを用いて、試料ガスの紫外線透過光量と参照ガスの紫外線透過光量との比率に応じた試料ガス中のオゾン濃度を演算により求める。そして、制御部4は、試料ガス中のオゾン濃度の測定結果を記憶部に記憶する。制御部4は、更に記憶部に記憶した測定結果を表示部に表示させたり、外部機器に送信したりしてよい。   (4) The control unit 4 uses the sample gas measurement data and the reference gas measurement data as will be described in detail later, and the sample according to the ratio of the ultraviolet transmitted light amount of the sample gas to the ultraviolet transmitted light amount of the reference gas Obtain the ozone concentration in the gas by calculation. And the control part 4 memorize | stores the measurement result of the ozone concentration in sample gas in a memory | storage part. The control unit 4 may further display the measurement result stored in the storage unit on the display unit or transmit it to an external device.

以上の操作が繰り返されることによって、試料ガス中のオゾン濃度が間欠的に測定される。試料ガスの紫外線透過光量の測定と参照ガスの紫外線透過光量の測定とは、詳しくは後述するように、例えば数秒ごとに切り替えられるようになっており、長期スパンで見た場合は十分な測定点数で試料ガス中のオゾン濃度を連続測定できることになる。   By repeating the above operation, the ozone concentration in the sample gas is intermittently measured. As will be described in detail later, the measurement of the UV light transmission amount of the sample gas and the measurement of the UV light transmission amount of the reference gas can be switched, for example, every few seconds. Thus, the ozone concentration in the sample gas can be continuously measured.

2.オゾン濃度の演算
次に、本実施例のオゾン測定装置100におけるオゾン濃度の演算について更に詳しく説明する。本実施例では、制御部4は、試料ガス中のオゾン濃度を、ランバートベールの法則に基づく下記式(1)により演算する。
2. Calculation of ozone concentration Next, the calculation of the ozone concentration in the ozone measuring apparatus 100 of the present embodiment will be described in more detail. In the present embodiment, the control unit 4 calculates the ozone concentration in the sample gas by the following equation (1) based on Lambert-Beer's law.

Figure 2017181204
Figure 2017181204

上記式(1)において、Isは試料ガスの紫外線透過光量に対応する試料ガス測定データ、Izは参照ガスの紫外線透過光量に対応する参照ガス測定データ、Kgはオゾンガスの吸光係数、Lは測定セル21の光路長(セル長)、TMsは補正用試料ガス温度、Psは補正用試料ガスの圧力である。   In the above formula (1), Is is sample gas measurement data corresponding to the ultraviolet light transmission amount of the sample gas, Iz is reference gas measurement data corresponding to the ultraviolet light transmission amount of the reference gas, Kg is an absorption coefficient of ozone gas, and L is a measurement cell. 21 is the optical path length (cell length), TMs is the sample gas temperature for correction, and Ps is the pressure of the sample gas for correction.

このオゾン濃度の演算は、試料ガスと参照ガスとを交互に切り替えて測定セル21に導入しながら、試料ガスの紫外線透過光量の測定後、参照ガスの紫外線透過光量の測定後に行われる。測定セル21に導入されるガスが試料ガスから参照ガスへ、又は参照ガスから試料ガスへと切り替えられると、3秒間のパージ期間(測定セル21内のガスを置き換えるための期間)の後、3秒間の測定期間の間に制御部4が所定の時間間隔(例えば150ms毎)でサンプリングした測定データの平均値を取得する。したがって、オゾン濃度は6秒ごとに更新される。図2に示すように、参照ガスの測定終了後には、今回取得された参照ガス測定データと、直近の(すなわち、1回前(6秒前)に取得された)試料ガス測定データと、を用いて、上記式(1)によりオゾン濃度が演算される(ここでは、このタイミングで演算されるオゾン濃度を「参照ガス測定後濃度」ともいう。)。また、試料ガスの測定終了後には、今回取得された試料ガス測定データと、直近の(すなわち、1回前(6秒前)に取得された)参照ガス測定データと、を用いて、上記式(1)によりオゾン濃度が演算される(ここでは、このタイミングで演算されるオゾン濃度を「試料ガス測定後濃度」ともいう。)。   The calculation of the ozone concentration is performed after the measurement of the UV light transmission amount of the sample gas and the measurement of the UV light transmission amount of the reference gas while alternately introducing the sample gas and the reference gas into the measurement cell 21. When the gas introduced into the measurement cell 21 is switched from the sample gas to the reference gas or from the reference gas to the sample gas, after a purge period of 3 seconds (a period for replacing the gas in the measurement cell 21), 3 The control unit 4 acquires an average value of measurement data sampled at a predetermined time interval (for example, every 150 ms) during a measurement period of seconds. Therefore, the ozone concentration is updated every 6 seconds. As shown in FIG. 2, after the measurement of the reference gas is completed, the reference gas measurement data acquired this time and the latest sample gas measurement data (that is, acquired one time before (6 seconds before)) Using the above equation (1), the ozone concentration is calculated (here, the ozone concentration calculated at this timing is also referred to as “reference gas post-measurement concentration”). Further, after the measurement of the sample gas is completed, the above-described formula is used by using the sample gas measurement data acquired this time and the latest reference gas measurement data (that is, acquired one time before (6 seconds before)). The ozone concentration is calculated by (1) (here, the ozone concentration calculated at this timing is also referred to as “post-measurement gas concentration”).

3.指示飛び
水銀ランプ22の光量が安定していれば、例えば測定セル21に一定のオゾン濃度の試料ガス(例えばオゾンを含まない空気(ゼロガス))を導入した場合、今回の試料ガス測定後濃度と1回前の参照ガス測定後濃度、あるいは今回の参照ガス測定後濃度と1回前の試料ガス測定後濃度は、ほとんど変わらないはずである。
3. If the light intensity of the mercury lamp 22 is stable, for example, when a sample gas with a constant ozone concentration (for example, air that does not contain ozone (zero gas)) is introduced into the measurement cell 21, The concentration after the measurement of the reference gas one time before, or the concentration after the measurement of the reference gas this time and the concentration after the measurement of the sample gas one time before should be almost the same.

しかし、水銀ランプ22は、点灯中に突然光量の状態が急変することがある。図3(a)は、測定セル21にゼロガスを導入した場合の測定データ、すなわち、水銀ランプ22の光量の変化を測定した結果を示す。同図において縦軸は測定データ(検出器23の出力のADカウント値)、横軸は時間である。図3(a)中矢印で示すように、水銀ランプ22の光量の状態は急変することがあり、このように水銀ランプ22の光量が急変した際の紫外線透過光量の変化を濃度変換してしまうと、試料ガス中のオゾン濃度の指示値が現実的でない値となる。図3(b)は、後述する本実施例の指示飛び補正処理を行わない場合のゼロガスのオゾン濃度の測定結果(試料ガス測定後濃度と参照ガス測定後濃度とを交互にプロットしていったオゾン濃度)を示す。同図において縦軸は時間、横軸はオゾン濃度である。図3(b)に示すように、この場合ほぼ一定値を示すはずのオゾン濃度の指示値に、突然大きくなったり小さくなったりする指示飛びが見られる。   However, the light quantity of the mercury lamp 22 may suddenly change during lighting. FIG. 3A shows the measurement data when zero gas is introduced into the measurement cell 21, that is, the result of measuring the change in the light quantity of the mercury lamp 22. In the figure, the vertical axis represents measurement data (AD count value output from the detector 23), and the horizontal axis represents time. As indicated by an arrow in FIG. 3A, the light quantity state of the mercury lamp 22 may change suddenly, and thus the change in the amount of transmitted ultraviolet light when the light quantity of the mercury lamp 22 changes suddenly undergoes density conversion. Then, the indicated value of the ozone concentration in the sample gas becomes an unrealistic value. FIG. 3B shows the measurement result of the ozone concentration of zero gas when the skipping correction process of the present embodiment described later is not performed (the sample gas measurement concentration and the reference gas measurement concentration are plotted alternately. Ozone concentration). In the figure, the vertical axis represents time, and the horizontal axis represents ozone concentration. As shown in FIG. 3B, there is an instruction skip that suddenly increases or decreases in the instruction value of the ozone concentration that should be almost constant in this case.

図4は、指示飛びのいくつかの典型例を示すグラフである。同図において、縦軸はオゾン濃度、横軸は時間である。また、同図中の「◆」は試料ガス測定後濃度のプロット、「■」は参照ガス測定後濃度のプロットである。   FIG. 4 is a graph showing some typical examples of instruction skipping. In the figure, the vertical axis represents ozone concentration and the horizontal axis represents time. In the figure, “♦” is a plot of the concentration after measurement of the sample gas, and “■” is a plot of the concentration after measurement of the reference gas.

図4中の(1)は、参照ガスの測定期間に水銀ランプ22の光量がプラス側に変化した場合の指示飛びの例を示している。この場合、直後に演算される参照ガス測定後濃度は高くなる方向に指示飛びする(1回前の試料ガスの紫外線吸光度と今回の参照ガスの紫外線吸光度との差分が疑似的に大きくなったことに相当する。)。また、この場合、次の試料ガスの測定期間は、水銀ランプ22が安定状態に戻るまでの過渡期となるため、次回に演算される試料ガス測定後濃度は逆に低くなる方向に指示飛びする。   (1) in FIG. 4 shows an example of instruction skipping when the light quantity of the mercury lamp 22 changes to the plus side during the reference gas measurement period. In this case, the instruction gas jumps in the direction that the concentration after measurement of the reference gas calculated immediately increases (the difference between the UV absorbance of the previous sample gas and the UV absorbance of the current reference gas has increased in a pseudo manner) Equivalent to.) Further, in this case, the measurement period of the next sample gas is a transition period until the mercury lamp 22 returns to a stable state. .

図4中の(2)は、試料ガスのパージ期間に水銀ランプ22の光量がマイナス側に変化した場合の指示飛びの例を示している。この場合、直後の試料ガスの測定期間は、水銀ランプ22が安定状態に戻るまでの過渡期となるため、その直後に演算される試料ガス測定後濃度は高くなる方向に指示飛びする(今回の試料ガスの紫外線吸光度と1回前の参照ガスの紫外線吸光度との差分が疑似的に大きくなったことに相当する。)。   (2) in FIG. 4 shows an example of skipping when the light quantity of the mercury lamp 22 changes to the minus side during the purge period of the sample gas. In this case, the measurement period of the sample gas immediately after is a transitional period until the mercury lamp 22 returns to a stable state, so that the instruction jumps in a direction in which the concentration after measurement of the sample gas calculated immediately after that increases (this time) This corresponds to the fact that the difference between the ultraviolet absorbance of the sample gas and the ultraviolet absorbance of the reference gas one time before has been increased pseudo).

図4中の(3)は、試料ガスの測定期間に水銀ランプ22の光量がプラス側に変化した場合の指示飛びの例を示している。この場合、直後に演算される試料ガス測定後濃度は低くなる方向に指示飛びする(今回の試料ガスの紫外線吸光度と1回前の参照ガスの紫外線吸光度との差分が疑似的に小さくなったことに相当する。)。また、この場合、次の参照ガスの測定期間は、水銀ランプ22が安定状態に戻るまでの過渡期となるため、次回に演算される参照ガス測定後濃度は逆に高くなる方向に指示飛びする。   (3) in FIG. 4 shows an example of skipping when the light quantity of the mercury lamp 22 changes to the plus side during the sample gas measurement period. In this case, the concentration immediately after the measurement of the sample gas calculated immediately jumps in the direction of decreasing (the difference between the UV absorbance of the current sample gas and the UV absorbance of the previous reference gas has been reduced in a pseudo manner) Equivalent to.) In this case, the next reference gas measurement period is a transitional period until the mercury lamp 22 returns to a stable state, and therefore, the next calculated reference gas concentration after the reference gas measurement is skipped. .

また、図4中の(4)は、参照ガスのパージ期間に水銀ランプ22の光量がマイナス側に変化した場合の指示飛びの例を示している。この場合、直後の参照ガスの測定期間は、水銀ランプ22が安定状態に戻るまでの過渡期となるため、その直後に演算される参照ガス測定後濃度は低くなる方向に指示飛びする(1回前の試料ガスの紫外線吸光度と今回の参照ガスの紫外線吸光度との差分が疑似的に小さくなったことに相当する。)。   Also, (4) in FIG. 4 shows an example of instruction skipping when the light quantity of the mercury lamp 22 changes to the minus side during the reference gas purge period. In this case, the measurement period of the reference gas immediately after is a transitional period until the mercury lamp 22 returns to a stable state, and thus the instruction skips in a direction in which the concentration after measurement of the reference gas calculated immediately after that decreases (once). This is equivalent to the fact that the difference between the UV absorbance of the previous sample gas and the UV absorbance of the current reference gas has become smaller.)

このように、水銀ランプ22の光量の状態が急変するタイミング、光量変化がプラス方向かマイナス方向かに応じて、試料ガス測定後濃度、参照ガス測定後濃度に異なる態様の指示飛びが発生する。したがって、参照ガスの紫外線透過光量を測定している時の水銀ランプ22の光量変化のみに注目し、その変化の大きさから指示飛びを判別する特許文献1の方法では、指示飛びを十分に低減できないことがある。   In this way, depending on the timing at which the light amount state of the mercury lamp 22 suddenly changes and whether the light amount change is in the positive direction or the negative direction, different indication skips occur in the concentration after the sample gas measurement and the concentration after the reference gas measurement. Therefore, in the method of Patent Document 1 in which only the light quantity change of the mercury lamp 22 when measuring the ultraviolet light transmission quantity of the reference gas is measured and the instruction skip is discriminated from the magnitude of the change, the instruction skip is sufficiently reduced. There are things that cannot be done.

4.指示飛び補正処理
本実施例では、制御部4は、概略、次のような指示飛び補正処理を実行する。つまり、上記式(1)によれば、オゾン濃度は試料ガスの紫外線透過光量と参照ガスの紫外線透過光量との比率から求められるため、水銀ランプ22の光量が安定していれば、直近の試料ガス測定後濃度の前回の試料ガス測定後濃度からの変化率と、直近の参照ガス測定後濃度の前回の参照ガス測定後濃度からの変化率と、はほぼ同じである。より詳細に言えば、測定対象(大気中のオゾン濃度であるか、オゾン発生器の発生するオゾン濃度であるかなど)に応じて、上記両者の変化率は所定の範囲内になると推定できる。しかし、水銀ランプ22の光量が大きく変化した場合には、上記両者の変化率が大きく異なることになる。したがって、本実施例では、上記両者の変化率の差を所定の閾値と比較して、その差が所定の閾値を超えた場合に指示飛びが発生したと判断する。そして、指示飛びのため正確な値として扱えない試料ガス測定後濃度あるいは参照ガス測定後濃度を、より実際のオゾン濃度に近くなるように代替値に置き換える。
4). Instruction skip correction process In this embodiment, the control unit 4 executes the following instruction skip correction process. That is, according to the above formula (1), the ozone concentration is obtained from the ratio between the ultraviolet light transmission amount of the sample gas and the ultraviolet light transmission light amount of the reference gas, so if the light amount of the mercury lamp 22 is stable, the nearest sample The rate of change of the concentration after gas measurement from the concentration after the previous sample gas measurement is substantially the same as the rate of change from the concentration after the last reference gas measurement of the concentration after the last reference gas measurement. More specifically, it can be estimated that the rate of change between the two is within a predetermined range depending on the measurement target (such as the ozone concentration in the atmosphere or the ozone concentration generated by the ozone generator). However, when the light quantity of the mercury lamp 22 changes greatly, the change rate of the both is greatly different. Therefore, in this embodiment, the difference between the above two change rates is compared with a predetermined threshold, and it is determined that an instruction skip has occurred when the difference exceeds the predetermined threshold. Then, the concentration after measurement of the sample gas or the concentration after measurement of the reference gas that cannot be handled as an accurate value due to skipping of instructions is replaced with an alternative value so as to be closer to the actual ozone concentration.

図5を参照して具体的に説明する。同図において、縦軸はオゾン濃度、横軸は時間である。また、同図中の「◆」は試料ガス測定後濃度のプロット、「■」は参照ガス測定後濃度のプロットである。また、同図において、Csは試料ガス測定後濃度、Czは参照ガス測定後濃度、θsは後述する試料ガス測定後濃度の変化率を示す角度(ここでは「試料ガス測定後角度」ともいう。)、θzは後述する参照ガス測定後濃度の変化率を示す角度(ここでは、「参照ガス測定後角度」ともいう。)である。また、Cs、Cz、θs、θzの添え字「n」などは、何回目の濃度演算タイミングかを示すものである。そして、ここでは、図5中の濃度演算タイミング(1)〜(7)に注目し、タイミング(4)の試料ガス測定後濃度及びタイミング(5)の参照ガス測定後濃度に指示飛びが発生しているものとする。   This will be specifically described with reference to FIG. In the figure, the vertical axis represents ozone concentration and the horizontal axis represents time. In the figure, “♦” is a plot of the concentration after measurement of the sample gas, and “■” is a plot of the concentration after measurement of the reference gas. In the figure, Cs is the concentration after measurement of the sample gas, Cz is the concentration after measurement of the reference gas, and θs is an angle indicating the rate of change of the concentration after measurement of the sample gas described later (here, also referred to as “angle after measurement of the sample gas”). ), Θz is an angle indicating a rate of change in concentration after reference gas measurement (to be described later) (also referred to as “angle after reference gas measurement”). The subscript “n” of Cs, Cz, θs, θz, etc. indicates the number of density calculation timings. In this case, attention is paid to the concentration calculation timings (1) to (7) in FIG. 5, and an instruction skip occurs in the concentration after the sample gas measurement at the timing (4) and the concentration after the reference gas measurement at the timing (5). It shall be.

タイミング(1)では、参照ガス測定後濃度Czn−2が演算される。次に、タイミング(2)では、試料ガス測定後濃度Csn−1が演算される。次に、タイミング(3)では、参照ガス測定後濃度Czn−1が演算されると共に、今回の参照ガス測定後濃度Czn−1の前回の参照ガス測定後濃度Czn−2からの変化率を示す参照ガス測定後角度θzn−2が求められる。次に、タイミング(4)では、試料ガス測定後濃度Csが演算されると共に、今回の試料ガス測定後濃度Csの前回の試料ガス測定後濃度Csn−1からの変化率を示す試料ガス測定後角度θsn−1が求められる。 At timing (1), the concentration Cz n-2 after reference gas measurement is calculated. Next, at the timing (2), the concentration Cs n-1 after the sample gas measurement is calculated. Next, at the timing (3), the concentration Cz n-1 after the reference gas measurement is calculated, and the current concentration Cz n-1 after the reference gas measurement is changed from the concentration Cz n-2 after the previous reference gas measurement. The angle θz n-2 after the reference gas measurement indicating the rate is obtained. Next, at the timing (4), the sample gas measurement concentration Cs n is calculated, and the sample showing the change rate of the current sample gas measurement concentration Cs n from the previous sample gas measurement concentration Cs n−1. An angle θs n−1 after gas measurement is obtained.

以後同様に、順次、オゾン濃度が演算されると共に、今回のオゾン濃度の前回のオゾン濃度からの変化率を示す角度θが求められる。つまり、タイミング(5)では、参照ガス測定後濃度Czが演算されると共に、参照ガス測定後角度θzn−1が求められる。タイミング(6)では、試料ガス測定後濃度Csn+1が演算されると共に、試料ガス測定後角度θsが求められる。タイミング(7)では、参照ガス測定後濃度Czn+1が演算されると共に、参照ガス測定後角度θzが求められる。 Thereafter, similarly, the ozone concentration is sequentially calculated, and an angle θ indicating the rate of change of the current ozone concentration from the previous ozone concentration is obtained. That is, at the timing (5), the reference gas measurement concentration Cz n is calculated, and the reference gas measurement angle θz n−1 is obtained. At timing (6), the sample gas measurement concentration Cs n + 1 is calculated, and the sample gas measurement angle θs n is obtained. At timing (7), the concentration Cz n + 1 after the reference gas measurement is calculated, and the angle θz n after the reference gas measurement is obtained.

ここで、本実施例では、角度θ(θs、θz)は、図5のように縦軸をオゾン濃度、横軸を時間としてatan(アークタンジェント)で求められる。より詳細には、本実施例では、角度θは、横軸の時間は一定周期(6秒)となるため単位時間「1」と換算し、下記式(2)で求められる。
θ=|atan(今回の濃度−前回の濃度)| ・・・(2)
Here, in the present embodiment, the angle θ (θs, θz) is obtained in atan (arc tangent) with the vertical axis representing ozone concentration and the horizontal axis representing time, as shown in FIG. More specifically, in the present embodiment, the angle θ is calculated by the following equation (2) by converting it to unit time “1” because the time on the horizontal axis is a constant period (6 seconds).
θ = | atan (current concentration−previous concentration) | (2)

そして、本実施例では、毎回の濃度演算タイミングにおいて、オゾン濃度及び角度θを求めた後に、直近の試料ガス測定後角度θsと参照ガス測定後角度θzとが比較される。特に、本実施例では、直近の試料ガス測定後角度θsと参照ガス測定後角度θzとの差分(絶対値)(ここでは、単に「角度差」ともいう。)が、所定の閾値θerrより大きいか否かが判断される。つまり、下記式(3)を満たすか否かが判断される。
θerr<|θz−θs| ・・・(3)
In this embodiment, the ozone concentration and the angle θ are obtained at each concentration calculation timing, and then the latest sample gas measurement angle θs and the reference gas measurement angle θz are compared. In particular, in the present embodiment, the difference (absolute value) between the most recent sample gas measurement angle θs and the reference gas measurement angle θz (herein, also simply referred to as “angle difference”) is larger than a predetermined threshold θerr. It is determined whether or not. That is, it is determined whether or not the following formula (3) is satisfied.
θerr <| θz−θs | (3)

角度差が閾値θerr以下の場合は、今回の濃度演算タイミングで演算されたオゾン濃度には指示飛びは発生しないと判断される。そして、今回演算されたオゾン濃度はそのまま試料ガス中のオゾン濃度の測定結果(表示、記録などされるもの)に反映される。一方、角度差が閾値θerrより大きい場合は、今回の濃度演算タイミングで演算されたオゾン濃度に指示飛びが発生していると判断される。そして、今回演算されたオゾン濃度は、前回の濃度演算タイミングで演算されたオゾン濃度に基づいて置き換えられて(補間処理)、試料ガス中のオゾン濃度の測定結果に反映される。特に、本実施例では、上記補間処理では、今回演算されたオゾン濃度は、前回演算されたオゾン濃度で置き換えられる。   When the angle difference is equal to or smaller than the threshold θerr, it is determined that no instruction skip occurs in the ozone concentration calculated at the current concentration calculation timing. The ozone concentration calculated this time is directly reflected in the measurement result (displayed, recorded, etc.) of the ozone concentration in the sample gas. On the other hand, if the angle difference is larger than the threshold value θerr, it is determined that an instruction skip has occurred in the ozone concentration calculated at the current concentration calculation timing. Then, the ozone concentration calculated this time is replaced based on the ozone concentration calculated at the previous concentration calculation timing (interpolation process), and is reflected in the measurement result of the ozone concentration in the sample gas. In particular, in the present embodiment, in the interpolation process, the ozone concentration calculated this time is replaced with the ozone concentration calculated last time.

図5の例では、タイミング(4)において、今回求められた試料ガス測定後角度θsn−1と、1回前に求められた参照ガス測定後角度θzn−2とが比較され、
θerr<|θzn−2−θsn−1
を満たす、すなわち、角度差が閾値θerrより大きいと判断される。そして、今回演算された試料ガス測定後濃度Csは、前回演算された試料ガス測定後濃度Csn−1で置き換えられて、試料ガス中のオゾン濃度の測定結果に反映される。なお、前回のオゾン濃度が既にそれより前のオゾン濃度で置き換えられている場合は、その既に置き換えられた後のオゾン濃度で今回演算されたオゾン濃度を置き換えればよい。
In the example of FIG. 5, at the timing (4), the sample gas post-measurement angle θs n−1 obtained this time is compared with the reference gas post-measurement angle θz n−2 obtained one time before,
θerr <| θz n−2 −θs n−1 |
In other words, it is determined that the angle difference is larger than the threshold value θerr. Then, the concentration Cs n after measurement of the sample gas calculated this time is replaced with the concentration Cs n−1 after measurement of the sample gas calculated last time, and is reflected in the measurement result of the ozone concentration in the sample gas. When the previous ozone concentration has already been replaced with the previous ozone concentration, the ozone concentration calculated this time may be replaced with the ozone concentration after the previous replacement.

同様に、図5の例では、タイミング(5)において、今回求められた参照ガス測定後角度θzn−1と、1回前に求められた試料ガス測定後角度θsn−1とが比較され、
θerr<|θzn−1−θsn−1
を満たす、すなわち、角度差が閾値θerrより大きいと判断される。そして、今回演算された試料ガス測定後濃度Czは、前回演算された試料ガス測定後濃度Czn−1で置き換えられて、試料ガス中のオゾン濃度の測定結果に反映される。
Similarly, in the example of FIG. 5, at timing (5), the reference gas measurement angle θz n−1 obtained this time is compared with the sample gas measurement angle θs n−1 obtained one time before. ,
θerr <| θz n−1 −θs n−1 |
In other words, it is determined that the angle difference is larger than the threshold value θerr. Then, the post-sample gas measurement concentration Cz n calculated this time is replaced with the previously calculated post-sample gas measurement concentration Cz n−1 and reflected in the measurement result of the ozone concentration in the sample gas.

一方、タイミング(1)、(2)、(3)、(6)及び(7)では、角度差は閾値θerr以下であると判断され、これら各タイミングで演算された試料ガス測定後濃度Cs、参照ガス測定後濃度Czは、そのまま試料ガス中のオゾン濃度の測定結果に反映される。   On the other hand, at timings (1), (2), (3), (6), and (7), the angular difference is determined to be equal to or less than the threshold θerr, and the sample gas measured concentration Cs calculated at each of these timings, The concentration Cz after the reference gas measurement is directly reflected in the measurement result of the ozone concentration in the sample gas.

なお、閾値θerrは、測定対象(大気中のオゾン濃度であるか、オゾン発生器の発生するオゾン濃度であるかなど)、測定データの取得間隔などに応じて、指示飛びを十分に低減できるように任意に決定することができる。一例として、本実施例では、θerrは3.5度である。   Note that the threshold θerr can sufficiently reduce the skipping in accordance with the measurement target (eg, the ozone concentration in the atmosphere or the ozone concentration generated by the ozone generator), the measurement data acquisition interval, and the like. Can be arbitrarily determined. As an example, in this embodiment, θerr is 3.5 degrees.

このように、本実施例では、制御部4は、試料ガス測定後濃度又は参照ガス測定後濃度をそれぞれ演算する毎に、直近の試料ガス測定後濃度のそれ以前の試料ガス測定後濃度からの変化の程度を示す第1の指標値と、直近の参照ガス測定後濃度のそれ以前の参照ガス測定後濃度からの変化の程度を示す第2の指標値と、を求める。そして、制御部4は、第1、第2の指標値間の差分が所定の閾値より大きい場合に、今回演算した試料ガス測定後濃度又は参照ガス測定後濃度をそれぞれ、以前に演算した試料ガス測定後濃度又は参照ガス測定後濃度の少なくとも一方に基づく別の値に置き換える補間処理を行う。特に、本実施例では、補間処理では、今回演算した試料ガス測定後濃度は以前に演算した試料ガス測定後濃度に基づく別の値に置き換えられ、今回演算した参照ガス測定後濃度は以前に演算した参照ガス測定後濃度に基づく別の値に置き換えられる。また、本実施例では、上記第1の指標値は、直近の試料ガス測定後濃度の前回の試料ガス測定後濃度からの変化率を示すものであり、上記第2の指標値は、直近の参照ガス測定後濃度の前回の参照ガス測定後濃度からの変化率を示すものである。より詳細には、本実施例では、この変化率は、縦軸が試料ガス中のオゾン濃度、横軸が時間である座標に試料ガス測定後濃度又は参照ガス測定後濃度をそれぞれプロットした場合における、隣接する試料ガス測定後濃度のプロット間を結ぶ直線が横軸方向となす角度、又は隣接する参照ガス測定後濃度のプロット間を結ぶ直線が横軸方向となす角度として求められる。   Thus, in this embodiment, every time the control unit 4 calculates the concentration after measurement of the sample gas or the concentration after measurement of the reference gas, the control unit 4 calculates the concentration after the measurement of the latest sample gas from the concentration after the measurement of the previous sample gas. A first index value indicating the degree of change and a second index value indicating the degree of change of the latest reference gas measurement concentration from the previous reference gas measurement concentration are obtained. Then, when the difference between the first and second index values is greater than a predetermined threshold, the control unit 4 calculates the sample gas concentration calculated this time or the reference gas measured concentration previously calculated respectively. Interpolation processing is performed to replace with another value based on at least one of the post-measurement concentration or the reference gas post-measurement concentration. In particular, in the present embodiment, in the interpolation process, the concentration after the measurement of the sample gas calculated this time is replaced with another value based on the concentration after the measurement of the sample gas calculated previously, and the concentration after the measurement of the reference gas calculated this time is calculated previously. Is replaced with another value based on the measured concentration of the reference gas. In this embodiment, the first index value indicates the rate of change of the latest post-sample gas concentration from the previous post-sample gas concentration, and the second index value is the latest It shows the rate of change of the concentration after the reference gas measurement from the concentration after the previous reference gas measurement. More specifically, in this embodiment, this rate of change is obtained when the concentration after measurement of the sample gas or the concentration after measurement of the reference gas is plotted on the coordinates where the vertical axis indicates the ozone concentration in the sample gas and the horizontal axis indicates the time. The angle between the straight lines connecting adjacent concentration plots after measurement of the sample gas and the horizontal axis, or the angle connecting the straight lines connecting adjacent plots of concentration after measurement of the reference gas to the horizontal axis.

図6は、本実施例における制御部4における測定データの処理の流れを示すフローチャートである。   FIG. 6 is a flowchart showing the flow of measurement data processing in the control unit 4 in this embodiment.

制御部4は、検出器23から入力される測定データを所定の時間間隔(例えば150ms毎)でサンプリングする(S1)。また、制御部4は、6秒毎に到来する試料ガスの紫外線透過光量又は参照ガスの紫外線透過光量の測定期間の開始タイミングを監視し(S2)、試料ガスの紫外線透過光量又は参照ガスの紫外線透過光量の測定期間の開始タイミングが到来した場合には、それぞれ3秒間にわたりサンプリングした測定データの平均値を求め、試料ガス測定後濃度又は参照ガス測定後濃度を演算する(S3、S4)。また、制御部4は、図5を参照して説明したように、濃度演算タイミング毎に今回演算したオゾン濃度に指示飛びが発生しているか否かを判別する(S5)。   The control unit 4 samples the measurement data input from the detector 23 at a predetermined time interval (for example, every 150 ms) (S1). Further, the control unit 4 monitors the start timing of the measurement period of the ultraviolet light transmission amount of the sample gas or the reference gas ultraviolet light that arrives every 6 seconds (S2), and the ultraviolet transmission light amount of the sample gas or the ultraviolet light of the reference gas. When the start timing of the transmitted light amount measurement period arrives, the average value of the measurement data sampled for 3 seconds is obtained, and the concentration after measurement of the sample gas or the concentration after measurement of the reference gas is calculated (S3, S4). Further, as described with reference to FIG. 5, the control unit 4 determines whether or not an instruction skip has occurred in the ozone concentration calculated this time at every concentration calculation timing (S5).

そして、制御部4は、S5において指示飛びが発生していると判断した場合は、今回演算したオゾン濃度を、2回前に演算したオゾン濃度(すなわち、今回演算したオゾン濃度が試料ガス測定後濃度の場合は前回の試料ガス測定後濃度、今回演算したオゾン濃度が参照ガス測定後濃度の場合は前回の参照ガス測定後濃度)に置き換えてその後の処理に供する(S6)。一方、制御部4は、S5において指示飛びが発生していないと判断した場合は、今回演算したオゾン濃度をその後の処理に供する。   When the control unit 4 determines that the instruction skip has occurred in S5, the ozone concentration calculated this time is the ozone concentration calculated twice before (that is, the ozone concentration calculated this time is after the sample gas measurement). In the case of the concentration, the concentration after the previous sample gas measurement is used, and when the ozone concentration calculated this time is the concentration after the reference gas measurement, the concentration is replaced with the concentration after the previous reference gas measurement) for subsequent processing (S6). On the other hand, if the control unit 4 determines in S5 that no instruction skip has occurred, the control unit 4 uses the ozone concentration calculated this time for subsequent processing.

その後、制御部4は、上述のようにして求められたオゾン濃度(置き換えられたものを含む。)、及び上記同様にしてそれまでに求められて制御部4の記憶部に記憶されているオゾン濃度を用いてスムージング処理を行う(S7)。そして、制御部4は、スムージング処理によって得られたオゾン濃度を最終的な試料ガス中のオゾン濃度の測定結果として記憶部に記憶する。制御部4は、更に記憶部に記憶した測定結果を表示部に表示させたり、外部機器に送信したりしてよい。   Thereafter, the control unit 4 determines the ozone concentration (including the replaced one) obtained as described above, and the ozone obtained so far and stored in the storage unit of the control unit 4 in the same manner as described above. Smoothing processing is performed using the density (S7). And the control part 4 memorize | stores the ozone concentration obtained by the smoothing process in a memory | storage part as a measurement result of the ozone concentration in final sample gas. The control unit 4 may further display the measurement result stored in the storage unit on the display unit or transmit it to an external device.

なお、本実施例では、補間処理として、今回の試料ガス測定後濃度を前回の試料ガス測定後濃度で置き換える、又は今回の参照ガス測定後濃度を前回の参照ガス測定後濃度で置き換える処理を行うが、補間処理自体はこれに限定されるものではなく、利用可能な任意の補間方法を採用することができる。例えば、前回と今回の試料ガス測定後濃度同士又は参照ガス測定後濃度同士の中間の値で置き換えたり、前回とそれ以前(例えば前々回)の試料ガス測定後濃度同士又は参照ガス測定後濃度同士を用いて外挿することで得られた値に置き換えたりすることができる。また、補間処理で今回演算されたオゾン濃度を置き換えるオゾン濃度は、それ以前に演算されたオゾン濃度に基づく、より実際のオゾン濃度に近くなる値であればよい。そのため、今回演算された試料ガス測定後濃度を以前に演算された参照ガス測定後濃度(あるいは試料ガス測定後濃度及び参照ガス測定後濃度の両方)に基づく別の値に置き換えたり、今回演算された参照ガス測定後濃度を以前に演算された試料ガス測定後濃度(あるいは試料ガス測定後濃度及び参照ガス測定後濃度の両方)に基づく別の値に置き換えたりすることも企図し得る。ただし、本発明者らの検討によれば、より実際のオゾン濃度に近い測定結果を得るためには、本実施例のように試料ガス測定後濃度同士又は参照ガス測定後濃度同士で補間処理を行うことが好ましい。   In the present embodiment, as the interpolation processing, the concentration after the current sample gas measurement is replaced with the concentration after the previous sample gas measurement, or the concentration after the current reference gas measurement is replaced with the concentration after the previous reference gas measurement. However, the interpolation process itself is not limited to this, and any available interpolation method can be adopted. For example, replace the concentration after the previous sample gas measurement or the concentration after the reference gas measurement with an intermediate value between the previous and current sample gas concentrations, or replace the previous and previous (for example, the previous) sample gas measurement concentrations or the concentration after the reference gas measurement. Or can be replaced with the value obtained by extrapolation. In addition, the ozone concentration that replaces the ozone concentration calculated this time in the interpolation process may be a value that is closer to the actual ozone concentration based on the ozone concentration calculated earlier. Therefore, the calculated sample gas concentration can be replaced with another value based on the previously calculated reference gas measured concentration (or both the sample gas measured concentration and the reference gas measured concentration). It may also be contemplated to replace the reference gas post-measurement concentration with another value based on the previously calculated sample gas post-measurement concentration (or both the sample gas post-measurement concentration and the reference gas post-measurement concentration). However, according to the study by the present inventors, in order to obtain a measurement result closer to the actual ozone concentration, interpolation processing is performed between the concentrations after the sample gas measurement or between the concentrations after the reference gas measurement as in this embodiment. Preferably it is done.

また、本実施例では、測定結果を平滑化するスムージング処理を行うが、これを行わずに各濃度演算タイミングで演算されたオゾン濃度(置き換えられたものを含む。)をそのまま最終的な試料ガス中のオゾン濃度の測定結果としてもよい。   In this embodiment, a smoothing process for smoothing the measurement result is performed, but the ozone concentration (including the replaced one) calculated at each concentration calculation timing without performing this is used as the final sample gas. It is good also as a measurement result of ozone concentration in the inside.

5.効果確認
次に、本実施例の指示飛び補正処理の効果を調べた結果について説明する。
5. Effect Confirmation Next, the results of examining the effect of the instruction skip correction processing of this embodiment will be described.

図7(a)の左図は本実施例の指示飛び補正処理を行わない場合(図3(b)と同様)、右図は本実施例の指示飛び補正処理を行った場合の、ゼロガスのオゾン濃度の測定結果を示す。同図において縦軸は時間、横軸はオゾン濃度である。図7(a)の右図に示すように、本実施例の指示飛び補正処理を行った場合、図7(a)の左図でみられる指示飛びが低減されることが分かる。   The left figure of FIG. 7A shows the case of not performing the instruction skip correction process of this embodiment (similar to FIG. 3B), and the right figure of the zero gas when the instruction jump correction process of this embodiment is performed. The measurement result of ozone concentration is shown. In the figure, the vertical axis represents time, and the horizontal axis represents ozone concentration. As shown to the right figure of Fig.7 (a), when the instruction skip correction process of a present Example is performed, it turns out that the instruction skip seen by the left figure of Fig.7 (a) is reduced.

図7(b)は、水銀ランプ22が比較的安定しており本実施例の指示飛び補正処理を行わない基準器と、任意の水銀ランプ22を用い本実施例の指示飛び補正処理を行った検証器とで、大気中のオゾン濃度を長期にわたり測定した結果を比較したものである。同図において、縦軸はオゾン濃度、横軸は時間であり、オゾン濃度は1時間平均値をプロットしている。図7(b)に示すように、基準器と検証器とで実質的に同じオゾン濃度の測定結果が得られており、実際の大気中のオゾン濃度の長期にわたる測定において正確な測定が行えることがわかる。   In FIG. 7B, the mercury lamp 22 is relatively stable and the skipping correction process of the present embodiment is performed using a reference unit that does not perform the skipping correction process of the present embodiment and the arbitrary mercury lamp 22. This is a comparison of the results of long-term measurements of atmospheric ozone concentrations with a verifier. In the figure, the vertical axis represents the ozone concentration, the horizontal axis represents the time, and the ozone concentration plots an average value for one hour. As shown in FIG. 7 (b), substantially the same ozone concentration measurement result is obtained by the reference device and the verification device, and accurate measurement can be performed in the long-term measurement of the actual ozone concentration in the atmosphere. I understand.

以上のように、本実施例によれば、参照ガスの紫外線透過光量を測定している時だけでなく試料ガスの紫外線透過光量を測定している時に水銀ランプ22の光量が急変した場合でも、指示飛びを判別することができる。したがって、本実施例によれば、試料ガス中のオゾン濃度の測定結果に生じる指示飛びを低減して、より正確な測定結果を得ることができる。   As described above, according to the present embodiment, not only when the amount of ultraviolet light transmitted through the reference gas is measured, but also when the amount of light of the mercury lamp 22 changes suddenly when the amount of ultraviolet light transmitted through the sample gas is measured, Instruction skipping can be determined. Therefore, according to the present embodiment, it is possible to reduce the instruction skip occurring in the measurement result of the ozone concentration in the sample gas and obtain a more accurate measurement result.

[実施例2]
次に、本発明の他の実施例について説明する。本実施例のオゾン測定装置の基本的な構成及び動作は実施例1のものと同じである。したがって、本実施例のオゾン測定装置において実施例1のものと同一又は対応する機能あるいは構成を有する要素については、同一符号を付して詳しい説明は省略する。
[Example 2]
Next, another embodiment of the present invention will be described. The basic configuration and operation of the ozone measuring apparatus of the present embodiment are the same as those of the first embodiment. Accordingly, elements having the same or corresponding functions or configurations as those of the first embodiment in the ozone measuring apparatus of the present embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施例1では、指示飛びの判別のために、毎回の濃度演算タイミングにおいて、直近の試料ガス測定後角度θsと参照ガス測定後角度θzとを比較した。多くの場合、指示飛びを発生させるような水銀ランプ22の光量の変化が発生した後、10秒以内で水銀ランプ22は安定状態に戻る。このような多くの場合に、実施例1の方法によって指示飛びを十分に低減することができる。   In Example 1, in order to discriminate instruction skip, the most recent sample gas measurement angle θs and the reference gas measurement angle θz were compared at each concentration calculation timing. In many cases, the mercury lamp 22 returns to a stable state within 10 seconds after a change in the light amount of the mercury lamp 22 that causes an instruction skip occurs. In many cases, the skipping of instructions can be sufficiently reduced by the method of the first embodiment.

しかし、水銀ランプ22の光量変化が比較的大きく、指示飛びの変化が比較的大きい場合、水銀ランプ22が安定状態に戻るまでに数十秒かかる場合がある。このような場合、直近の試料ガス測定後角度θsと参照ガス測定後角度θzとを比較する実施例1の方法では、指示飛びが生じた際に水銀ランプ22の光量が安定するまでの間のオゾン濃度の変化を抑えきれなくなる場合がある。   However, when the change in the light amount of the mercury lamp 22 is relatively large and the change in the indication skip is relatively large, it may take several tens of seconds for the mercury lamp 22 to return to a stable state. In such a case, in the method of the first embodiment that compares the most recent sample gas measurement angle θs and the reference gas measurement angle θz, the time until the light quantity of the mercury lamp 22 stabilizes when the instruction skip occurs. It may not be possible to suppress the change in ozone concentration.

図8は、指示飛びの他の典型例を説明するためのグラフである。同図において、縦軸はオゾン濃度、横軸は時間である。また、同図中の「◆」は試料ガス測定後濃度のプロット、「■」は参照ガス測定後濃度のプロットである。図8に示す例では、図4や図5に示す例よりも指示飛びが発生した際にオゾン濃度の演算値が安定するまでに比較的長時間を要していることがわかる。   FIG. 8 is a graph for explaining another typical example of instruction skipping. In the figure, the vertical axis represents ozone concentration and the horizontal axis represents time. In the figure, “♦” is a plot of the concentration after measurement of the sample gas, and “■” is a plot of the concentration after measurement of the reference gas. In the example shown in FIG. 8, it can be seen that it takes a relatively long time for the calculated value of the ozone concentration to be stabilized when an instruction skip occurs compared to the examples shown in FIGS. 4 and 5.

図8の例では、濃度演算タイミング(3)〜(8)で演算されたオゾン濃度に指示飛びが発生している。ここで、タイミング(3)の試料ガス測定後濃度については、直近の角度θsn−1とθzn−1との差分が大きくなっているので、実施例1の方法によっても指示飛びが発生していると判断することができる。同様に、タイミング(4)の試料ガス測定後濃度については、直近の角度θzとθsn−1との差分が大きくなっているので、実施例1の方法によっても指示飛びが発生していると判断することができる。 In the example of FIG. 8, there is an instruction skip in the ozone concentration calculated at the concentration calculation timings (3) to (8). Here, with regard to the concentration after the measurement of the sample gas at the timing (3), the difference between the latest angles θs n−1 and θz n−1 is large, so that the instruction skip occurs even by the method of the first embodiment. Can be determined. Similarly, with respect to the concentration after the measurement of the sample gas at the timing (4), the difference between the latest angles θz n and θs n−1 is large, so that the skipping of instructions is also generated by the method of the first embodiment. It can be judged.

しかし、例えばタイミング(5)の試料ガス測定後濃度については、直近の角度θsとθzとの差分が小さくなっているので、実施例1の方法では指示飛びが発生していると判断することは難しい。同様に、例えばタイミング(6)の参照ガス測定後濃度については、直近の角度θzn+1とθsとの差分が小さくなっているので、実施例1の方法では指示飛びが発生していると判断することは難しい。 However, for the concentration after the sample gas measurement at timing (5), for example, since the difference between the latest angles θs n and θz n is small, it is determined that an instruction skip has occurred in the method of the first embodiment. It ’s difficult. Similarly, for the concentration after measurement of the reference gas at timing (6), for example, since the difference between the latest angles θz n + 1 and θs n is small, it is determined that an instruction skip has occurred in the method of the first embodiment. Difficult to do.

そこで、本実施例では、直近と前回の角度θs間の差分(絶対値)と、直近と前回の角度θz間の差分(絶対値)とが比較される。特に、本実施例では、上記角度θs間の差分と上記角度θz間の差分との差分(絶対値)が、所定の閾値θerrより大きいか否かが判断される。そして、閾値θerrより大きい場合は、今回演算したオゾン濃度に指示飛びが発生していると判断され、閾値θerr以下の場合は今回演算したオゾン濃度には指示飛びは発生していないと判断される。   Therefore, in this embodiment, the difference (absolute value) between the latest and previous angles θs is compared with the difference (absolute value) between the latest and previous angles θz. In particular, in the present embodiment, it is determined whether or not the difference (absolute value) between the difference between the angles θs and the difference between the angles θz is larger than a predetermined threshold θerr. If it is greater than the threshold value θerr, it is determined that an instruction skip has occurred in the ozone concentration calculated this time, and if it is less than the threshold value θerr, it is determined that no instruction skip has occurred in the ozone concentration calculated this time. .

このように、本実施例では、直近の試料ガス測定後濃度の以前の試料ガス測定後濃度からの変化の程度を示す第1の指標値は、直近の試料ガス測定後濃度の前回の試料ガス測定後濃度からの変化率と、前回の試料ガス測定後濃度の前々回の試料ガス測定後濃度からの変化率と、の差分を示すものである。また、本実施例では、直近の参照ガス測定後濃度の以前の参照ガス測定後濃度からの変化の程度を示す第2の指標値は、直近の参照ガス測定後濃度の前回の参照ガス測定後濃度からの変化率と、前回の参照ガス測定後濃度の前々回の参照ガス測定後濃度からの変化率と、の差分を示すものである。本実施例でも、この変化率は実施例1と同様に角度θとして求められる。   As described above, in this embodiment, the first index value indicating the degree of change in the concentration after the latest sample gas measurement from the concentration after the previous sample gas measurement is the previous sample gas of the concentration after the latest sample gas measurement. It shows the difference between the rate of change from the concentration after measurement and the rate of change from the concentration after the last sample gas measurement of the concentration after the previous sample gas measurement. Further, in the present embodiment, the second index value indicating the degree of change in the latest reference gas measurement concentration from the previous reference gas measurement concentration is the value after the previous reference gas measurement of the latest reference gas measurement concentration. It shows the difference between the change rate from the concentration and the change rate from the concentration after the last reference gas measurement of the concentration after the previous reference gas measurement. Also in the present embodiment, this rate of change is obtained as the angle θ as in the first embodiment.

図8の例では、例えばタイミング(5)において、下記式、
θerr<||θz−θzn−1|−|θs−θsn−1||
を満たすか否かが判断され、満たしているのでタイミング(5)の試料ガス測定後濃度に指示飛びが発生していると判断さる。タイミング(3)、(4)、(6)、(7)、(8)の指示飛びについても、上記同様にして判別することができる。
In the example of FIG. 8, for example, at the timing (5), the following equation:
θerr <|| θz n −θz n−1 | − | θs n −θs n−1 ||
It is determined whether or not it is satisfied, and it is determined that there is an instruction skip in the concentration after the sample gas measurement at the timing (5). The instruction skip at timings (3), (4), (6), (7), and (8) can also be determined in the same manner as described above.

なお、本実施例における閾値θerrも、実施例1の場合と同様に、測定対象(大気中のオゾン濃度であるか、オゾン発生器の発生するオゾン濃度であるかなど)、測定データの取得間隔などに応じて、指示飛びを十分に低減できるように任意に決定することができる。   Note that the threshold value θerr in this embodiment is also the measurement target (whether it is the ozone concentration in the atmosphere or the ozone concentration generated by the ozone generator), the measurement data acquisition interval, as in the case of the first embodiment. Depending on the above, it is possible to arbitrarily determine so that the skipping of instructions can be sufficiently reduced.

また、指示飛びが発生していると判断した場合の補間処理は、実施例1と同様にして行うことができる。   The interpolation process when it is determined that the instruction skip has occurred can be performed in the same manner as in the first embodiment.

このように、本実施例では、水銀ランプ22の光量変化が比較的大きく、指示飛びの変化が比較的大きい場合でも、指示飛びが発生した際に安定するまでのオゾン濃度の演算値を排除して、より正確な測定結果を得ることができる。   As described above, in this embodiment, even when the change in the amount of light of the mercury lamp 22 is relatively large and the change in the instruction skip is relatively large, the calculated value of the ozone concentration until it becomes stable when the instruction skip occurs is eliminated. Thus, a more accurate measurement result can be obtained.

1 ガス供給部
2 検出部
3 ガス排出部
4 制御部
DESCRIPTION OF SYMBOLS 1 Gas supply part 2 Detection part 3 Gas discharge part 4 Control part

Claims (5)

試料ガスと試料ガス中のオゾンが除去された参照ガスとが交互に導入される測定部と、
前記測定部に紫外線を照射する光源と、
前記測定部を透過した光を受光して受光量に応じた電気信号を発生する検出器と、
前記測定部に試料ガスが導入された際に前記検出器が発生した電気信号に応じた試料ガス測定データと、前記測定部に参照ガスが導入された際に前記検出器が発生した電気信号に応じた参照ガス測定データと、に基づいて試料ガス中のオゾン濃度を演算する制御部と、
を有し、前記制御部は、
前記試料ガス測定データを取得した場合に今回の前記試料ガス測定データと直近の前記参照ガス測定データとに基づいて試料ガス中のオゾン濃度を示す試料ガス測定後濃度を演算し、前記参照ガス測定データを取得した場合に今回の前記参照ガス測定データと直近の前記試料ガス測定データとに基づいて試料ガス中のオゾン濃度を示す参照ガス測定後濃度を演算し、
前記試料ガス測定後濃度又は前記参照ガス測定後濃度をそれぞれ演算する毎に、直近の前記試料ガス測定後濃度のそれ以前の前記試料ガス測定後濃度からの変化の程度を示す第1の指標値と、直近の前記参照ガス測定後濃度のそれ以前の前記参照ガス測定後濃度からの変化の程度を示す第2の指標値と、を求め、前記第1、第2の指標値間の差分が所定の閾値より大きい場合に、今回演算した前記試料ガス測定後濃度又は前記参照ガス測定後濃度をそれぞれ、以前に演算した前記試料ガス測定後濃度又は前記参照ガス測定後濃度の少なくとも一方に基づく別の値に置き換える処理を行うことを特徴とするオゾン測定装置。
A measurement unit in which a sample gas and a reference gas from which ozone in the sample gas has been removed are alternately introduced;
A light source for irradiating the measurement unit with ultraviolet rays;
A detector that receives light transmitted through the measurement unit and generates an electrical signal corresponding to the amount of light received;
The sample gas measurement data corresponding to the electrical signal generated by the detector when the sample gas is introduced into the measurement unit, and the electrical signal generated by the detector when the reference gas is introduced into the measurement unit A control unit that calculates the ozone concentration in the sample gas based on the reference gas measurement data according to
And the control unit includes:
When the sample gas measurement data is acquired, the post-measurement gas concentration indicating the ozone concentration in the sample gas is calculated based on the current sample gas measurement data and the most recent reference gas measurement data, and the reference gas measurement When data is acquired, based on the current reference gas measurement data and the latest sample gas measurement data, the concentration after measurement of the reference gas indicating the ozone concentration in the sample gas is calculated,
Each time the concentration after measurement of the sample gas or the concentration after measurement of the reference gas is calculated, a first index value indicating the degree of change from the concentration after measurement of the sample gas immediately before the concentration after measurement of the sample gas. And a second index value indicating a degree of change of the latest measured concentration of the reference gas from the previous measured concentration of the reference gas, and a difference between the first and second index values is obtained. If the concentration after measurement of the sample gas or the concentration after measurement of the reference gas calculated this time is larger than a predetermined threshold, the concentration after the measurement of the sample gas or the concentration after measurement of the reference gas previously calculated The ozone measuring device characterized by performing the process which substitutes to the value of.
前記制御部は、前記第1、第2の指標値間の差分が前記閾値より大きい場合に、今回演算した前記試料ガス測定後濃度を以前に演算した前記試料ガス測定後濃度に基づく別の値に置き換える、又は今回演算した前記参照ガス測定後濃度を以前に演算した前記参照ガス測定後濃度に基づく別の値に置き換える処理を行うことを特徴とする請求項1に記載のオゾン測定装置。   When the difference between the first and second index values is larger than the threshold value, the control unit determines another value based on the concentration after measurement of the sample gas previously calculated as the concentration after measurement of the sample gas previously calculated. The ozone measuring device according to claim 1, wherein the ozone measuring device is replaced with or replaced with another value based on the previously calculated concentration of the reference gas previously calculated. 前記第1の指標値は、直近の前記試料ガス測定後濃度の前回の前記試料ガス測定後濃度からの変化率を示し、
前記第2の指標値は、直近の前記参照ガス測定後濃度の前回の前記参照ガス測定後濃度からの変化率を示すことを特徴とする請求項1又は2に記載のオゾン測定装置。
The first index value indicates a rate of change of the latest concentration after measurement of the sample gas from the previous concentration after measurement of the sample gas,
3. The ozone measuring apparatus according to claim 1, wherein the second index value indicates a rate of change of the latest post-reference gas measurement concentration from the previous post-reference gas measurement concentration.
前記第1の指標値は、直近の前記試料ガス測定後濃度の前回の前記試料ガス測定後濃度からの変化率と、前回の前記試料ガス測定後濃度の前々回の前記試料ガス測定後濃度からの変化率と、の差分を示し、
前記第2の指標値は、直近の前記参照ガス測定後濃度の前回の前記参照ガス測定後濃度からの変化率と、前回の前記参照ガス測定後濃度の前々回の前記参照ガス測定後濃度からの変化率と、の差分を示すことを特徴とする請求項1又は2に記載のオゾン測定装置。
The first index value is calculated based on the rate of change of the latest concentration after measurement of the sample gas from the previous concentration after measurement of the sample gas and the concentration after the previous measurement of the sample gas before the concentration after the previous measurement of the sample gas. Shows the difference between the rate of change and
The second index value includes a rate of change of the latest concentration after the reference gas measurement from the previous concentration after the reference gas measurement, and a concentration after the previous reference gas measurement after the previous concentration after the reference gas measurement. The ozone measuring device according to claim 1, wherein a difference between the change rate and the rate of change is indicated.
前記制御部は、前記変化率を、縦軸が試料ガス中のオゾン濃度、横軸が時間である座標に前記試料ガス測定後濃度又は前記参照ガス測定後濃度をそれぞれプロットした場合における、隣接する前記試料ガス測定後濃度のプロット間を結ぶ直線が横軸方向となす角度、又は隣接する前記参照ガス測定後濃度のプロット間を結ぶ直線が横軸方向となす角度として求めることを特徴とする請求項3又は4に記載のオゾン測定装置。
The control unit is adjacent to each other when the change rate is plotted with the concentration after measurement of the sample gas or the concentration after measurement of the reference gas on the coordinates where the vertical axis indicates the ozone concentration in the sample gas and the horizontal axis indicates time. The straight line connecting the plots of the concentration after the sample gas measurement is obtained as an angle formed with the horizontal axis direction, or an angle formed between the adjacent plots of the concentration after the reference gas measurement with the horizontal axis direction. Item 5. The ozone measuring device according to item 3 or 4.
JP2016066580A 2016-03-29 2016-03-29 Ozone measurement device Active JP6643715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016066580A JP6643715B2 (en) 2016-03-29 2016-03-29 Ozone measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016066580A JP6643715B2 (en) 2016-03-29 2016-03-29 Ozone measurement device

Publications (2)

Publication Number Publication Date
JP2017181204A true JP2017181204A (en) 2017-10-05
JP6643715B2 JP6643715B2 (en) 2020-02-12

Family

ID=60005419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016066580A Active JP6643715B2 (en) 2016-03-29 2016-03-29 Ozone measurement device

Country Status (1)

Country Link
JP (1) JP6643715B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941730A (en) * 2017-11-16 2018-04-20 广东上风环保科技有限公司 A kind of method and apparatus for measuring Ozone in Atmosphere concentration
WO2021182279A1 (en) * 2020-03-13 2021-09-16 国立大学法人徳島大学 Concentration measuring method, and concentration measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941730A (en) * 2017-11-16 2018-04-20 广东上风环保科技有限公司 A kind of method and apparatus for measuring Ozone in Atmosphere concentration
WO2021182279A1 (en) * 2020-03-13 2021-09-16 国立大学法人徳島大学 Concentration measuring method, and concentration measuring device

Also Published As

Publication number Publication date
JP6643715B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP5729285B2 (en) Combustion exhaust gas analyzer
JP4009523B2 (en) Ozone gas concentration measuring method and ozone gas concentration measuring device
JP2013130509A (en) Calibration method and calibration device for moisture concentration measurement device
JP5596480B2 (en) Gas concentration detection method, gas concentration sensor
JPWO2016125338A1 (en) Gas analysis method and gas analyzer
JP2017181204A (en) Ozone measurement device
JP6035628B2 (en) Gas sensor
CN104458630B (en) A kind of data processing method and system of ultraviolet difference gas analyzer
JPWO2020066769A5 (en)
JP2011128078A (en) Measuring method of dust concentration in gas, and operation method of combustion facility
CN109239010A (en) Gas monitoring method based on multiline spectral technique
JP2011099803A (en) Light absorption type gas detector
JP2009042184A (en) Gas meter
JP5573340B2 (en) Gas detection device and gas detection method
CN102656440B (en) Method for measuring the concentration of at least one gas component in a measuring gas
CN109211816B (en) Anti-interference detection method and detection device for Hg concentration in flue gas
KR101571859B1 (en) Apparatus and method of analying element concentration using atomic absorption spectrophotometry
CN111721736B (en) Correction method for gas concentration measuring device
KR101395637B1 (en) Measuring method for total residual oxidant of ballast water
JP2011013073A (en) Light emitting element luminous intensity compensation device in opacimeter
JP2009019886A (en) Mercury atomic fluorescence analyzer
JP7498545B2 (en) Absorption analysis system, program for absorption analysis system, absorption analysis device, and absorbance measurement method
CN104266986A (en) Method for detecting sulphur content in iron and steel sample
JP5817750B2 (en) Energy dispersive X-ray fluorescence analyzer
JP5061393B2 (en) Fluorine gas concentration measuring method and concentration measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6643715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250