JP2017179616A - Manufacturing method of active charcoal containing at least one of metal element and metal compound - Google Patents
Manufacturing method of active charcoal containing at least one of metal element and metal compound Download PDFInfo
- Publication number
- JP2017179616A JP2017179616A JP2016063690A JP2016063690A JP2017179616A JP 2017179616 A JP2017179616 A JP 2017179616A JP 2016063690 A JP2016063690 A JP 2016063690A JP 2016063690 A JP2016063690 A JP 2016063690A JP 2017179616 A JP2017179616 A JP 2017179616A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- metal
- activated carbon
- metal compound
- granular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000002736 metal compounds Chemical class 0.000 title claims abstract description 105
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 99
- 239000002184 metal Substances 0.000 title claims abstract description 96
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 239000003610 charcoal Substances 0.000 title abstract 3
- 239000000203 mixture Substances 0.000 claims abstract description 46
- 238000002156 mixing Methods 0.000 claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 160
- 239000007790 solid phase Substances 0.000 claims description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 18
- 238000009987 spinning Methods 0.000 claims description 16
- 230000003213 activating effect Effects 0.000 claims description 2
- 238000002844 melting Methods 0.000 abstract description 44
- 230000008018 melting Effects 0.000 abstract description 44
- 238000000034 method Methods 0.000 abstract description 41
- 230000008569 process Effects 0.000 abstract description 12
- 239000007787 solid Substances 0.000 abstract description 4
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 abstract description 3
- 239000011295 pitch Substances 0.000 description 153
- 239000000835 fiber Substances 0.000 description 52
- 239000000126 substance Substances 0.000 description 28
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 26
- 239000002245 particle Substances 0.000 description 21
- 230000004913 activation Effects 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000011148 porous material Substances 0.000 description 16
- 229930195733 hydrocarbon Natural products 0.000 description 15
- 150000002430 hydrocarbons Chemical class 0.000 description 15
- 230000000704 physical effect Effects 0.000 description 15
- 239000004215 Carbon black (E152) Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000155 melt Substances 0.000 description 12
- 229920000049 Carbon (fiber) Polymers 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 239000011280 coal tar Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 7
- 230000002411 adverse Effects 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 6
- 150000002902 organometallic compounds Chemical class 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000007664 blowing Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000007561 laser diffraction method Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 238000000790 scattering method Methods 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 4
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052776 Thorium Inorganic materials 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 150000001257 actinium Chemical class 0.000 description 3
- 229910052767 actinium Inorganic materials 0.000 description 3
- QQINRWTZWGJFDB-UHFFFAOYSA-N actinium atom Chemical compound [Ac] QQINRWTZWGJFDB-UHFFFAOYSA-N 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002603 lanthanum Chemical class 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 239000011133 lead Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- QIJRBQDGQLSRLG-UHFFFAOYSA-N magnesium;pentane-2,4-dione Chemical compound [Mg].CC(=O)CC(C)=O QIJRBQDGQLSRLG-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- -1 lanthanoids) Chemical class 0.000 description 2
- SQZZGEUJERGRIN-UHFFFAOYSA-N manganese;pentane-2,4-dione Chemical compound [Mn].CC(=O)CC(C)=O SQZZGEUJERGRIN-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000004045 organic chlorine compounds Chemical class 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
本発明は、金属単体及び金属化合物の少なくとも一方を含有する活性炭の製造方法に関する。 The present invention relates to a method for producing activated carbon containing at least one of a simple metal and a metal compound.
従来、金属単体または金属化合物を含有する活性炭が知られている。金属単体または金属化合物を含有する活性炭の製造方法として、例えば、低軟化点ピッチと有機金属化合物の炭化水素溶液とを混合し、次いで混合物を減圧蒸留して炭化水素を除去した後、得られた蒸留ピッチに酸素含有気体を吹き込み、活性炭繊維製造用金属含有ピッチを得て、該活性炭繊維製造用金属含有ピッチを紡糸した後、得られたピッチファイバーを不融化処理し、炭素化処理し、賦活処理することを特徴とする活性炭繊維の製造方法が知られている(例えば、特許文献1参照。)。 Conventionally, activated carbon containing a simple metal or a metal compound is known. As a method for producing activated carbon containing a single metal or a metal compound, for example, a low softening point pitch and a hydrocarbon solution of an organometallic compound were mixed, and then the mixture was distilled under reduced pressure to remove hydrocarbons. Oxygen-containing gas is blown into the distillation pitch to obtain a metal-containing pitch for producing activated carbon fiber, and after spinning the metal-containing pitch for producing activated carbon fiber, the obtained pitch fiber is infusibilized, carbonized, and activated. A method for producing activated carbon fibers characterized by processing is known (for example, see Patent Document 1).
特許文献1の製造方法によれば、高い賦活収率で活性炭素繊維を製造することができ、得られた活性炭素繊維は、細孔半径が大きく、特定の比表面積範囲での細孔容積が著しく大きいという極めて特異な性状を備えるとされている。特許文献1には、具体的に、キノリン中に有機金属化合物を溶解する溶液を、80℃に加温したコールタールに滴下して、軟化点90.9℃の低軟化点ピッチを得て、該低軟化点ピッチを反応温度330℃、常圧で空気を吹き込みつつ180分間反応を行って、イットリウム含有紡糸用ピッチ(軟化点264.1℃)を得て、該紡糸用ピッチを用いて紡糸をおこなったことが開示されている。 According to the production method of Patent Document 1, activated carbon fibers can be produced with a high activation yield, and the obtained activated carbon fibers have a large pore radius and a pore volume in a specific specific surface area range. It is said to have a very unique property of being extremely large. In Patent Document 1, specifically, a solution in which an organometallic compound is dissolved in quinoline is dropped onto coal tar heated to 80 ° C. to obtain a low softening point pitch with a softening point of 90.9 ° C., The low softening point pitch is reacted for 180 minutes while blowing air at a reaction temperature of 330 ° C. and normal pressure to obtain an yttrium-containing spinning pitch (softening point of 264.1 ° C.), and spinning using the spinning pitch. Has been disclosed.
しかしながら、特許文献1のような従来技術の製造方法で得られた、金属単体または金属化合物を含有する活性炭は、金属単体または金属化合物を含有しない通常の活性炭と比較して、機械的強度が劣るという問題がある。また、金属単体または金属化合物の含有量が大きくなるほど、活性炭の機械的強度がより劣る傾向がある。そこで、本発明は、上記問題を解決し、金属単体または金属化合物を含有することによる機械的強度の低下を抑制することができる、金属単体及び金属化合物の少なくとも一方を含有する活性炭の製造方法の提供を主な課題とする。 However, the activated carbon containing a metal simple substance or a metal compound obtained by a conventional manufacturing method such as Patent Document 1 is inferior in mechanical strength as compared with a normal activated carbon not containing a metal simple substance or a metal compound. There is a problem. Moreover, there exists a tendency for the mechanical strength of activated carbon to be inferior, so that content of a metal simple substance or a metal compound becomes large. Accordingly, the present invention provides a method for producing activated carbon containing at least one of a metal simple substance and a metal compound, which can solve the above problems and suppress a decrease in mechanical strength due to containing the metal simple substance or the metal compound. The main issue is provision.
特許文献1に開示された方法においては、得られる活性炭中に金属単体または金属化合物を均一に含有させるために、予め有機金属化合物をキノリン等の炭化水素溶液に分散させた状態とし、混合し易い低融点ピッチと混合している。そして、紡糸等の成形が可能なように高温で低融点ピッチの反応を進めて高融点ピッチとする操作をおこなうところ、該操作の前に、予め上記金属単体または金属化合物と混合した低融点ピッチを減圧蒸留してキノリン等の炭化水素成分を除去する。また、上記のように高温で低融点ピッチから高融点ピッチとする際、金属化合物に由来する有機成分等が揮発すると考えられる。従って、紡糸等の成形時やその後の不融化工程、賦括化工程において、キノリン等の炭化水素成分や金属化合物に由来する有機成分の揮発が生じがたくなると考えられる。 In the method disclosed in Patent Document 1, in order to uniformly contain a single metal or a metal compound in the obtained activated carbon, the organometallic compound is previously dispersed in a hydrocarbon solution such as quinoline and is easy to mix. Mixed with low melting pitch. Then, the operation of making the high melting point pitch by proceeding the reaction of the low melting point pitch at a high temperature so as to enable forming such as spinning is carried out. Before the operation, the low melting point pitch previously mixed with the above metal simple substance or metal compound. Is distilled under reduced pressure to remove hydrocarbon components such as quinoline. In addition, when the low melting point pitch is changed to the high melting point pitch at a high temperature as described above, it is considered that organic components derived from the metal compound are volatilized. Therefore, it is considered that volatilization of organic components derived from hydrocarbon components such as quinoline and metal compounds is unlikely to occur during molding such as spinning, and in the subsequent infusibilization and consolidating steps.
このような従来技術から、本発明者等は、金属化合物などを、キノリン等の炭化水素溶液に分散させず固相状態で混合した場合は、金属化合物がピッチ中に均一に分散されずにムラが生じ、これに起因して、機械的強度などの観点で、得られる活性炭の物性に悪影響が生じるのではないかと考えた。加えて、高温で低融点ピッチから高融点ピッチとする工程を経ることなく、金属化合物などを高融点ピッチにそのまま混合し、紡糸等の成形加工をおこなった場合は、金属化合物に由来する有機成分等が成形加工時において揮発して、機械的強度などの観点で、得られる活性炭の物性に悪影響が生じるのではないかと考えた。 From these prior arts, the present inventors have found that when a metal compound or the like is mixed in a solid phase without being dispersed in a hydrocarbon solution such as quinoline, the metal compound is not uniformly dispersed in the pitch and is uneven. As a result, it was considered that the physical properties of the obtained activated carbon may be adversely affected in terms of mechanical strength and the like. In addition, if the metal compound is mixed with the high melting point pitch as it is without going through the process of changing from the low melting point pitch to the high melting point pitch at high temperature, the organic component derived from the metal compound when forming processing such as spinning is performed. And the like volatilized during the molding process, and the physical properties of the resulting activated carbon were adversely affected in terms of mechanical strength.
しかしながら、前述した問題を解決すべく、本発明者等が鋭意検討した結果、予想外にも、金属化合物を、キノリン等の炭化水素溶液に分散させず、固相状態で高融点ピッチと混合し、そのまま紡糸の成形加工等をおこなった場合、得られる活性炭の機械的強度に優れることを見出した。本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。 However, as a result of intensive studies by the present inventors in order to solve the above-described problems, unexpectedly, the metal compound is not dispersed in a hydrocarbon solution such as quinoline but mixed with a high melting point pitch in the solid phase. The inventors have found that the activated carbon obtained is excellent in mechanical strength when subjected to spinning forming processing as it is. The present invention has been completed by further studies based on these findings.
すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. 金属単体及び金属化合物の少なくとも一方を含有する活性炭の製造方法であって、
金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得る工程1、及び
前記工程1で得られた前記混合物を、溶融した後、固化して固化体を得る工程2
を備える、金属単体及び金属化合物の少なくとも一方を含有する活性炭の製造方法。
項2. 前記工程2が、紡糸工程であり、前記混合物を、溶融した後、固化して繊維状の固化体を得る工程であって、
前記活性炭が、活性炭素繊維である、項1に記載の活性炭の製造方法。
項3. 前記工程2で得られた固化した固化体を、不融化する工程3、及び
前記工程3で不融化された固化体を賦活する工程4
をさらに備える、項1または2に記載の活性炭の製造方法。
That is, this invention provides the invention of the aspect hung up below.
Item 1. A method for producing activated carbon containing at least one of a simple metal and a metal compound,
Step 1 for obtaining a mixture by mixing at least one of a simple metal and a metal compound and a granular pitch having a softening point of 250 ° C. to 300 ° C. in a solid phase, and the mixture obtained in Step 1 above, Step 2 after solidifying to obtain a solidified body
A method for producing activated carbon containing at least one of a simple metal and a metal compound.
Item 2. The step 2 is a spinning step, and the mixture is melted and then solidified to obtain a fibrous solidified body,
Item 2. The method for producing activated carbon according to Item 1, wherein the activated carbon is activated carbon fiber.
Item 3. Step 3 for insolubilizing the solidified solidified body obtained in Step 2 and Step 4 for activating the solidified body infusible at Step 3
Item 3. The method for producing activated carbon according to Item 1 or 2, further comprising:
本発明の製造方法によれば、金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得る工程1、及び前記工程1で得られた前記混合物を、溶融した後、固化して固化体を得る工程2を備えることから、得られる活性炭は、金属単体及び金属化合物の少なくとも一方を含有することによる機械的強度の低下が効果的に抑制されている。 According to the production method of the present invention, at least one of a simple metal and a metal compound and a granular pitch having a softening point of 250 ° C. to 300 ° C. are mixed in a solid phase to obtain a mixture, and the above step The mixture obtained in 1 is melted and then solidified to obtain a solidified body. Therefore, the activated carbon obtained has a decrease in mechanical strength due to containing at least one of a single metal and a metal compound. Is effectively suppressed.
本発明は、金属単体及び金属化合物の少なくとも一方を含有する活性炭の製造方法である。本発明の製造方法は、金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチ(以下、高融点ピッチと記載することがある。)とを、固相状態で混合して混合物を得る工程1、及び工程1で得られた前記混合物を、溶融した後、固化して固化体を得る工程2を備えていることを特徴とする。以下、本発明の製造方法について詳細に説明する。 The present invention is a method for producing activated carbon containing at least one of a simple metal and a metal compound. In the production method of the present invention, at least one of a simple metal and a metal compound and a granular pitch (hereinafter, may be referred to as a high melting point pitch) having a softening point of 250 ° C. to 300 ° C. in a solid state. It is characterized by comprising Step 1 for obtaining a mixture by mixing, and Step 2 for obtaining a solidified body by solidifying the mixture obtained in Step 1 after melting. Hereinafter, the production method of the present invention will be described in detail.
本発明において、工程1は、金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得る、混合工程である。 In the present invention, Step 1 is a mixing step in which at least one of a single metal and a metal compound and a granular pitch having a softening point of 250 ° C. to 300 ° C. are mixed in a solid phase to obtain a mixture.
前述のように、本発明者等は、金属化合物を、キノリン等の炭化水素溶液に分散させず固相状態で混合した場合は、金属化合物がピッチ中に均一に分散されずにムラが生じ、これに起因して、機械的強度などの観点で、得られる活性炭の物性に悪影響が生じるのではないかと考えた。加えて、高温で低融点ピッチから高融点ピッチとする工程を経ることなく、金属化合物を高融点ピッチにそのまま混合し、紡糸等の成形加工などをおこなった場合は、金属化合物に由来する有機成分等が成形加工などにおいて揮発し、機械的強度などの観点で、得られる活性炭の物性に悪影響が生じるとも考えた。 As described above, the present inventors, when the metal compound is mixed in a solid phase state without being dispersed in a hydrocarbon solution such as quinoline, the metal compound is not uniformly dispersed in the pitch, resulting in unevenness, Due to this, it was considered that the physical properties of the obtained activated carbon might be adversely affected in terms of mechanical strength. In addition, if the metal compound is mixed into the high melting point pitch as it is without passing through the process of changing from the low melting point pitch to the high melting point pitch at high temperature, the organic component derived from the metal compound is used for forming processing such as spinning. And the like volatilizes during molding and the like, and from the viewpoint of mechanical strength, the physical properties of the obtained activated carbon are considered to be adversely affected.
ところが、本発明者等の予想に反し、金属単体または金属化合物を、炭化水素溶液に分散させず固相状態で高融点ピッチと混合し、そのまま成形加工をおこなった場合、得られる活性炭は、機械的強度に優れていることを見出した。この機序としては、必ずしも明らかではないが、次のように推測することができる。すなわち、例えば特許文献1で開示されているような従来技術では、予め有機金属化合物をキノリン等の炭化水素溶液に分散させた状態で、混合し易い低融点ピッチと混合する。そして、得られた低融点ピッチを減圧蒸留して炭化水素成分を除去し、紡糸等の成形加工が可能なように、高温で低融点ピッチの反応を進めて高融点ピッチとしてから、成形加工を行っている。したがって、確かに、従来技術では、金属化合物の分散性が良好であり、炭化水素溶液、金属化合物などに由来する有機成分等の揮発が生じ難いと考えられる。よって、金属化合物の分散性や上記揮発による、活性炭の物性(機械的強度など)への悪影響は生じ難いと考えられる。しかしながら、その一方で、キノリン等の炭化水素溶液は、完全には揮発されず、わずかに低融点ピッチ中に残留していると考えられる。さらに、金属化合物を含んだ状態の低融点ピッチを高温で反応させて高融点ピッチとする際、該金属化合物が触媒作用を起こし、該金属化合物を含まない状態と比して低融点ピッチ成分のガス化を促進し、得られる高融点ピッチの構造に何らかの悪影響を与えていると考えられる。そして、わずかに低融点ピッチ中に残留する炭化水素溶液と、金属化合物を含んだ状態で低融点ピッチを高温で反応させて、高融点ピッチとすることによる悪影響が大きく、機械的強度などの活性炭の物性の劣化が生じていると考えられる。 However, contrary to the expectation of the present inventors, when the metal simple substance or metal compound is mixed with the high melting point pitch in the solid phase without being dispersed in the hydrocarbon solution, and the molding process is performed as it is, the obtained activated carbon is a machine It was found that the mechanical strength is excellent. Although this mechanism is not necessarily clear, it can be estimated as follows. That is, in the prior art disclosed in Patent Document 1, for example, an organometallic compound is mixed in advance with a low melting point pitch that is easy to mix in a state of being dispersed in a hydrocarbon solution such as quinoline. Then, the obtained low melting point pitch is distilled under reduced pressure to remove hydrocarbon components, and the reaction of the low melting point pitch is advanced at a high temperature so that the forming process such as spinning can be performed. Is going. Therefore, it is true that the conventional technology has good dispersibility of the metal compound, and volatilization of organic components and the like derived from the hydrocarbon solution, the metal compound, and the like is unlikely to occur. Therefore, it is considered that the dispersibility of the metal compound and the above volatilization hardly cause an adverse effect on the physical properties (such as mechanical strength) of the activated carbon. However, on the other hand, hydrocarbon solutions such as quinoline are not completely volatilized and are considered to remain slightly in the low melting point pitch. Further, when the low melting point pitch containing the metal compound is reacted at a high temperature to obtain a high melting point pitch, the metal compound causes a catalytic action, and the low melting point pitch component is less than the state containing no metal compound. It is considered that gasification is promoted and some adverse effect is exerted on the structure of the resulting high melting point pitch. And the hydrocarbon solution slightly remaining in the low melting point pitch and the low melting point pitch are reacted at a high temperature in a state containing the metal compound, and the high adverse effect due to the high melting point pitch is large, activated carbon such as mechanical strength It is considered that the physical properties of the material have deteriorated.
これに対して、本発明の製造方法によれば、工程1の混合工程において、金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得る(すなわち、金属化合物等と高融点ピッチとを固相状態で混合する)ことから、従来技術の低融点ピッチ中に残留するキノリン等炭化水素溶液と、金属化合物を含んだ状態の低融点ピッチを高温で反応することによる悪影響を受けず、金属化合物の分散性の影響や、金属化合物に由来する有機成分等の揮発の影響を差し引いても、活性炭の機械的強度などの物性の劣化が効果的に抑制されているものと考えられる。 On the other hand, according to the production method of the present invention, in the mixing step of Step 1, at least one of a single metal and a metal compound and a granular pitch having a softening point of 250 ° C. to 300 ° C. in a solid state. Mixing to obtain a mixture (that is, mixing a metal compound or the like and a high melting point pitch in a solid phase), so that a hydrocarbon solution such as quinoline remaining in the low melting point pitch of the prior art and the metal compound were included. Even if the influence of the dispersibility of the metal compound and the volatilization of organic components derived from the metal compound is subtracted, the mechanical strength of the activated carbon is not affected. It is considered that the deterioration of physical properties is effectively suppressed.
工程1で使用される金属単体及び金属化合物の少なくとも一方を構成する金属元素としては、特に限定されない。金属元素としては、例えば、活性炭の用途などに応じて、アルカリ金属、アルカリ土類金属、遷移金属、希土類金属(ランタノイドを含む)、アルミニウム、ガリウム、インジウム、スズ、鉛、タリウムおよびビスマスなどが挙げられる。金属単体及び金属化合物は、それぞれ、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 It does not specifically limit as a metal element which comprises at least one of the metal simple substance and metal compound which are used at the process 1. Examples of metal elements include alkali metals, alkaline earth metals, transition metals, rare earth metals (including lanthanoids), aluminum, gallium, indium, tin, lead, thallium and bismuth, depending on the application of activated carbon. It is done. Each of the simple metal and the metal compound may be used alone or in combination of two or more.
例えば、活性炭にNOx、SOx等の酸性ガスに対する吸着性能等を付与する観点からは、金属元素としては、アルカリ金属又はアルカリ土類金属が好ましい。また、例えば、金属単体及び金属化合物の少なくとも一方の触媒能により、活性炭にメソ孔に属する比較的大きな細孔径の細孔を数多く形成する観点からは、金属元素としては、マグネシウム、カルシウムなどのアルカリ土類金属、アルミニウムなどのIIIA族の元素、亜鉛、リン、ゲルマニウム、スズ、セレンなどの典型金属、スカンジウム、イットリウム及びランタン系列元素(イッテルビウム、ランタン、セリウム等)などの希土類金属、又はアクチニウム、トリウムなどのアクチニウム系列元素などが挙げられる。また、例えば、活性炭に抗菌性を付与する観点からは、金属元素としては、銀、銅、スズ、鉛などが挙げられる。 For example, from the viewpoint of imparting adsorption performance to an activated gas such as NOx and SOx to activated carbon, the metal element is preferably an alkali metal or an alkaline earth metal. Further, for example, from the viewpoint of forming a large number of pores having a relatively large pore size belonging to mesopores in activated carbon by the catalytic ability of at least one of a single metal and a metal compound, the metal element may be an alkali such as magnesium or calcium. Group IIIA elements such as earth metals, aluminum, typical metals such as zinc, phosphorus, germanium, tin, selenium, rare earth metals such as scandium, yttrium and lanthanum series elements (ytterbium, lanthanum, cerium, etc.), or actinium, thorium And actinium series elements. For example, from the viewpoint of imparting antibacterial properties to activated carbon, examples of the metal element include silver, copper, tin, and lead.
また、金属化合物としては、上記金属元素を構成金属元素とする、金属酸化物、金属水酸化物、金属ハロゲン化物、金属硫酸塩等の無機金属化合物、酢酸等の有機酸と金属との塩、有機金属化合物などが挙げられる。有機金属化合物としては、金属アセチルアセトナート、メタロセン等が挙げられる。 In addition, as the metal compound, an inorganic metal compound such as a metal oxide, a metal hydroxide, a metal halide, and a metal sulfate, the salt of an organic acid such as acetic acid and a metal, the metal element being a constituent metal element, And organometallic compounds. Examples of the organometallic compound include metal acetylacetonate and metallocene.
また、本発明の製造方法において、金属単体及び金属化合物の粒径は、それぞれ、粒状ピッチに付着し得るものであれば特に限定されない。該粒径として、例えば、レーザー回折/散乱式法で測定した積算体積百分率D50が、10〜50μmが好ましく挙げられる。なお、本発明において、積算体積百分率D50とは、レーザー回折/散乱式粒度分布測定装置(堀場製作所社製の商品名LA−920)を用いて測定された、金属単体及び金属化合物の粒度分布における積算値が50%となる粒度をいう。 Moreover, in the manufacturing method of this invention, the particle size of a metal simple substance and a metal compound will not be specifically limited if it can respectively adhere to a granular pitch. As the particle diameter, for example, the cumulative volume percentage D 50 measured by a laser diffraction / scattering method is preferably 10 to 50 μm. In the present invention, the cumulative volume percentage D 50 is the particle size distribution of a single metal and a metal compound measured using a laser diffraction / scattering particle size distribution measuring device (trade name LA-920 manufactured by Horiba, Ltd.). The particle size at which the integrated value is 50%.
本発明の製造方法において、軟化点が250℃〜300℃である粒状ピッチを用いる。本発明において、軟化点は、メトラー法(ASTM−D3461に準じて測定をおこなう。)により測定されるものである。該軟化点としては、270℃〜290℃がより好ましく、275℃〜285℃が特に好ましい。 In the production method of the present invention, a granular pitch having a softening point of 250 ° C to 300 ° C is used. In the present invention, the softening point is measured by the Mettler method (measurement is performed according to ASTM-D3461). The softening point is more preferably 270 ° C to 290 ° C, particularly preferably 275 ° C to 285 ° C.
工程1において、金属単体及び金属化合物の少なくとも一方と混合される粒状ピッチは、金属単体及び金属化合物を実質的に含有しないものが好ましい。なお、金属単体及び金属化合物を実質的に含有しないとは、金属単体及び金属化合物の含有率が活性炭の機械的強度に影響を与える濃度未満であることを意味する。 In step 1, the granular pitch mixed with at least one of the metal simple substance and the metal compound is preferably substantially free of the metal simple substance and the metal compound. In addition, that a metal simple substance and a metal compound do not contain substantially means that the content rate of a metal simple substance and a metal compound is less than the density | concentration which affects the mechanical strength of activated carbon.
本発明の製造方法において、粒状ピッチとしては、活性炭製造に用いられる公知のものを使用することができる。従って、例えば、石油系、石炭系、ナフタレン重合物等のいずれの材料に由来するピッチも使用することができる。例えば、コールタール等を原料として用い、公知の方法に従って減圧蒸留及び酸素含有気体吹き込み処理して得られるピッチ等を使用することができる。なお、本発明では、ピッチの光学的性質が等方性及び異方性のいずれであってもよい。また、粒状ピッチの粒径分布としては、1mm以下の粒径の割合が40質量%以下であることが好ましく、1mm以下の粒径の割合が40質量%以下であり、かつ、最大粒径が11.2mm以下であることがより好ましく、1mm以下の粒径の割合が40質量%以下であり、最大粒径が11.2mm以下であり、さらにモード径が4.75mm〜6.7mmの範囲内であることが特に好ましい。ここで、本発明において、粒径分布は、JIS K 0069:1992に準じて測定されるものであり、ふるいとして、目開きが1.0mm、2.0mm、4.75mm、6.7mm、9.5mm、11.2mmを使用し、測定された値である。 In the production method of the present invention, a known pitch used for activated carbon production can be used as the granular pitch. Therefore, for example, a pitch derived from any material such as petroleum-based, coal-based, and naphthalene polymer can be used. For example, the pitch etc. which are obtained by using a coal tar etc. as a raw material and carrying out a vacuum distillation and oxygen-containing gas blowing process according to a well-known method can be used. In the present invention, the optical property of the pitch may be either isotropic or anisotropic. Further, as the particle size distribution of the granular pitch, the proportion of the particle size of 1 mm or less is preferably 40% by mass or less, the proportion of the particle size of 1 mm or less is 40% by mass or less, and the maximum particle size is More preferably, it is 11.2 mm or less, the ratio of the particle diameter of 1 mm or less is 40 mass% or less, the maximum particle diameter is 11.2 mm or less, and the mode diameter is in the range of 4.75 mm to 6.7 mm. It is particularly preferred that Here, in the present invention, the particle size distribution is measured according to JIS K 0069: 1992, and the sieve has an opening of 1.0 mm, 2.0 mm, 4.75 mm, 6.7 mm, 9 It is a value measured using 0.5 mm and 11.2 mm.
工程1における、固相状態とは、実質的に液相が存在しない状態、すなわち金属単体及び金属化合物の少なくとも一方と、軟化点が250〜300℃である粒状ピッチとが、いずれも溶解及び溶融状態にないことを意味し、水等の液体が全く存在しないことを意味するものではない。水等の液体が存在する場合、その含有割合としては、金属単体及び金属化合物と粒状ピッチの全質量に対する水等の液体の質量の割合が、好ましくは1.0質量%以下、より好ましくは0.5質量%以下が挙げられる。また、工程1における、「固相状態で混合して混合物を得る」とは、金属単体及び金属化合物の少なくとも一方と、軟化点が250〜300℃である粒状ピッチとを、積極的に混合することを示す。従って、例えば、金属単体及び金属化合物の少なくとも一方が練りこまれた活性炭(活性炭X)と、金属単体及び金属化合物を含有しない活性炭(活性炭Y)とを混合して溶融、固化する際、該混合において活性炭Xの表面に露出する金属単体及び金属化合物の少なくとも一方が、活性炭Yと接触する場合もあるが、これは本発明における「固相状態で混合して混合物を得る」には含まれない。 The solid phase state in step 1 is a state where substantially no liquid phase exists, that is, at least one of a simple metal and a metal compound and a granular pitch having a softening point of 250 to 300 ° C. are both dissolved and melted. It means not in a state and does not mean that there is no liquid such as water. When a liquid such as water is present, the ratio of the mass of the liquid such as water with respect to the total mass of the metal simple substance and the metal compound and the granular pitch is preferably 1.0% by mass or less, more preferably 0. 0.5 mass% or less is mentioned. In Step 1, “mixture in a solid phase to obtain a mixture” means that at least one of a metal simple substance and a metal compound is actively mixed with a granular pitch having a softening point of 250 to 300 ° C. It shows that. Therefore, for example, when activated carbon (activated carbon X) in which at least one of a metal simple substance and a metal compound is kneaded and activated carbon not containing the metal simple substance and the metal compound (activated carbon Y) is mixed and melted and solidified, In this case, at least one of the metal simple substance and the metal compound exposed on the surface of the activated carbon X may come into contact with the activated carbon Y, but this is not included in the “mixing in a solid phase state to obtain a mixture” in the present invention. .
工程1において、固相状態で混合する雰囲気としては、特に限定されず、空気雰囲気、窒素等の不活性ガス雰囲気等が挙げられる。また、上記雰囲気の温度としては、特に限定されず、例えば5℃〜40℃、好ましくは10℃〜30℃が挙げられる。 In Step 1, the atmosphere mixed in the solid phase is not particularly limited, and examples thereof include an air atmosphere and an inert gas atmosphere such as nitrogen. Moreover, it does not specifically limit as temperature of the said atmosphere, For example, 5 to 40 degreeC, Preferably 10 to 30 degreeC is mentioned.
固相状態で混合する方法としては、特に限定されず、公知の混合方法でよい。例えば、攪拌機を使用して混合する方法等が挙げられる。 The method for mixing in the solid phase is not particularly limited, and may be a known mixing method. For example, the method of mixing using a stirrer etc. are mentioned.
本発明の製造方法において、金属単体及び金属化合物と、軟化点が250〜300℃である粒状ピッチとの混合比率としては、特に限定されず、得られる活性炭に付与する機能等に応じて、適宜設定することができる。例えば、活性炭に抗菌性等を付与する観点からは、軟化点が250〜300℃である粒状ピッチ100質量部に対して、金属化合物(好ましくは、銀、銅、スズ、鉛などを構成金属元素とする金属化合物)を0.01〜5.0質量部混合することが好ましく、0.05〜3.0質量部混合することがより好ましい。また、例えば、得られる活性炭に対し、水道水中に含まれる有機塩素化合物(遊離残留塩素、トリハロメタン等)の優れた除去性能を付与する観点からは、軟化点が250〜300℃である粒状ピッチ100質量部に対して、上記金属化合物(好ましくは、マグネシウム、カルシウムなどのアルカリ土類金属、アルミニウムなどのIIIA族の元素、その他亜鉛、リン、ゲルマニウム、スズ、セレンなどの典型金属、スカンジウム、イットリウム及びランタン系列元素(イッテルビウム、ランタン、セリウム等)などの希土類金属、又はアクチニウム、トリウムなどのアクチニウム系列元素を構成金属元素とする金属化合物)を0.05〜5.0質量部混合することが好ましく、0.1〜3.0質量部混合することがより好ましい。 In the production method of the present invention, the mixing ratio of the metal simple substance and the metal compound and the granular pitch having a softening point of 250 to 300 ° C. is not particularly limited, and is appropriately determined depending on the function imparted to the obtained activated carbon. Can be set. For example, from the viewpoint of imparting antibacterial properties to activated carbon, a metal compound (preferably silver, copper, tin, lead, etc.) is used as a constituent metal element with respect to 100 parts by mass of the granular pitch having a softening point of 250 to 300 ° C. It is preferable to mix 0.01 to 5.0 parts by mass, and more preferably 0.05 to 3.0 parts by mass. In addition, for example, from the viewpoint of imparting excellent removal performance of organic chlorine compounds (free residual chlorine, trihalomethane, etc.) contained in tap water to the activated carbon obtained, a granular pitch 100 having a softening point of 250 to 300 ° C. The metal compound (preferably alkaline earth metals such as magnesium and calcium, Group IIIA elements such as aluminum, other typical metals such as zinc, phosphorus, germanium, tin and selenium, scandium, yttrium and It is preferable to mix 0.05 to 5.0 parts by mass of a rare earth metal such as a lanthanum series element (ytterbium, lanthanum, cerium, etc.) or a metal compound having an actinium series element such as actinium or thorium as a constituent metal element, More preferably, 0.1 to 3.0 parts by mass are mixed.
本発明において、工程2は、工程1で得られた前記混合物を、溶融した後、固化して固化体を得る工程である。 In the present invention, Step 2 is a step in which the mixture obtained in Step 1 is melted and then solidified to obtain a solidified body.
工程2において、工程1で得られた前記混合物の溶融は、粒状ピッチの軟化点以上の温度に加熱して行えばよい。溶融は、例えば、粒状ピッチの軟化点(℃)の30℃以上80℃以下の温度で行うことが挙げられる。溶融の際、例えば、融液を撹拌してもよく、撹拌しながら溶融する溶融押出機等を用いることが好ましい。 In step 2, the mixture obtained in step 1 may be melted by heating to a temperature equal to or higher than the softening point of the granular pitch. For example, the melting may be performed at a temperature of 30 ° C. or higher and 80 ° C. or lower of the softening point (° C.) of the granular pitch. At the time of melting, for example, the melt may be stirred, and it is preferable to use a melt extruder that melts while stirring.
次に、工程2において、溶融した後に固化する方法としては、公知の方法であればよく、例えば、溶融して得られた融液を空気中で自然冷却したり、冷却手段を用いて積極的に冷却を早めてもよい。工程2においては、活性炭の使用形態に合わせて、得られる固化体を所望の形状に成形することができ、例えば、成形によって球状等とすることができる。 Next, as a method of solidifying after melting in Step 2, any known method may be used. For example, the melt obtained by melting is naturally cooled in the air or actively using a cooling means. Cooling may be accelerated. In step 2, the obtained solidified body can be formed into a desired shape in accordance with the use form of activated carbon, and for example, it can be formed into a spherical shape by molding.
また、本発明の製造方法においては、工程2を紡糸工程とすることができる。この場合、得られる固化体は、繊維状(活性炭素繊維)とすることができる。すなわち、工程1で得られた前記混合物の溶融、固化の際に、混合物を繊維状となるよう紡糸することにより、得られる固化体を繊維状に成形できる。繊維の形態としては、長繊維、短繊維とすることができる。紡糸方法としては、公知の方法が採用できる。 In the production method of the present invention, step 2 can be a spinning step. In this case, the solidified body obtained can be made into a fibrous form (activated carbon fiber). That is, when the mixture obtained in Step 1 is melted and solidified, the resulting solidified body can be formed into a fiber by spinning the mixture into a fiber. The form of the fiber can be a long fiber or a short fiber. A known method can be adopted as the spinning method.
また、本発明においては、前述の工程1で得られた混合物をマスターバッチとし、該混合物と、金属単体及び金属化合物を実質的に含有しない、軟化点が250〜300である粒状ピッチとを、溶融混合し、固化して固化体を得ることもできる。 Further, in the present invention, the mixture obtained in the above-mentioned step 1 is used as a master batch, and the mixture and a granular pitch that has substantially no soft metal and a metal compound and has a softening point of 250 to 300, It can also be melt-mixed and solidified to obtain a solidified product.
本発明においては、前述の工程2で得られた固化体を、不融化する工程3、及び当該工程3で不融化された混合物を賦活する工程4をさらに備えていてもよい。 In this invention, you may further provide the process 3 which activates the process 3 which insolubilizes the solidified body obtained at the above-mentioned process 2, and the mixture infusible at the said process 3.
工程3における不融化とは、活性炭の賦活処理等の炭素化処理において、活性炭の原料となる有機質材料の形状が、活性炭となった後にも維持できるように施す熱処理である。例えば、酸化的な脱水素環化や縮合により、有機質材料を熱硬化性とする処理が挙げられる。不融化する方法としては、公知の方法が採用でき、例えば、雰囲気として空気雰囲気下、粒状ピッチの軟化点(℃)より80℃以上低い温度から、該軟化点より70℃以上高い温度まで昇温させる方法が挙げられる。 The infusibilization in the step 3 is a heat treatment applied so that the shape of the organic material used as a raw material of the activated carbon can be maintained even after the activated carbon is formed in the carbonization treatment such as the activation treatment of the activated carbon. For example, the process which makes an organic material thermosetting by oxidative dehydrocyclization or condensation is mentioned. As a method for infusibilization, a known method can be employed. For example, in an air atmosphere, the temperature is raised from a temperature 80 ° C. or more lower than the softening point (° C.) of the granular pitch to a temperature 70 ° C. or higher higher than the softening point. The method of letting it be mentioned.
また、工程4における賦括とは、工程3で不融化したピッチに、細孔構造を発達させ、細孔を付加することをいう。賦活の方法としては、薬品賦活法、ガス賦活法などが挙げられる。得られる活性炭の機械的強度を一層向上させる観点から、賦活の方法としては、特にガス賦活法が好ましい。ガス賦活法としては、賦活ガスを用いて、600℃〜1200℃、好ましくは800℃〜1000℃の雰囲気温度で熱処理して賦活する方法が挙げられる。賦活ガスの組成としては、公知のものでよく、例えば、水蒸気、二酸化炭素、酸素、これらのうち少なくとも2種の混合物、これらのうち少なくとも1種を不活性ガス(窒素ガス等)で希釈したガス等が挙げられる。 Further, the summarization in step 4 refers to the development of a pore structure and the addition of pores to the pitch infusible in step 3. Examples of the activation method include a chemical activation method and a gas activation method. From the viewpoint of further improving the mechanical strength of the obtained activated carbon, the gas activation method is particularly preferable as the activation method. Examples of the gas activation method include a method of activation by heat treatment using an activation gas at an ambient temperature of 600 ° C. to 1200 ° C., preferably 800 ° C. to 1000 ° C. The composition of the activation gas may be a known one, for example, water vapor, carbon dioxide, oxygen, a mixture of at least two of these, a gas obtained by diluting at least one of these with an inert gas (nitrogen gas, etc.) Etc.
本発明の製造方法で得られる活性炭は、金属単体及び金属化合物の少なくとも一方を含有する。得られる活性炭中に含まれる金属単体または金属化合物を構成する金属元素としては、前述した固相状態で混合する金属単体または金属化合物を構成する金属元素である。また、得られる活性炭中に含まれる金属単体または金属化合物としても、前述のものである。 The activated carbon obtained by the production method of the present invention contains at least one of a simple metal and a metal compound. The metal element constituting the metal simple substance or metal compound contained in the obtained activated carbon is the metal element constituting the metal simple substance or metal compound mixed in the above-described solid phase state. Further, the metal simple substance or metal compound contained in the obtained activated carbon is the same as described above.
本発明の製造方法で得られる活性炭の総質量における、該活性炭に含有される金属単体及び金属化合物の質量の割合(合計)としては、例えば、0.01〜5.0質量%が挙げられ、0.05〜3.0質量%が好ましく挙げられる。例えば、活性炭に抗菌性等を付与する観点からは、活性炭に含有される金属単体及び金属化合物(好ましくは、銀、銅、スズ、鉛などを構成金属元素とする金属化合物)の割合(合計)としては、例えば、0.01〜5.0質量%が挙げられ、0.05〜3.0質量%が好ましく挙げられる。また、例えば、活性炭にメソ孔に属する比較的大きな細孔径の細孔を数多く形成し、得られる活性炭に対して、水道水中に含まれる有機塩素化合物(遊離残留塩素、トリハロメタン等)の優れた除去性能を付与する観点から、金属単体及び金属化合物(好ましくは、マグネシウム、カルシウムなどのアルカリ土類金属、アルミニウムなどのIIIA族の元素、その他亜鉛、リン、ゲルマニウム、スズ、セレンなどの典型金属、スカンジウム、イットリウム及びランタン系列元素(イッテルビウム、ランタン、セリウム等)などの希土類金属、又はアクチニウム、トリウムなどのアクチニウム系列元素などを構成金属元素とする金属化合物)の割合(合計)としては、例えば、0.05〜5.0質量%が挙げられ、0.1〜3.0質量%が好ましく挙げられる。上記割合は、ICP発光分光分析装置(Varian社製型式715−ES)により測定される値である。 As a ratio (total) of the mass of the metal simple substance and the metal compound contained in the activated carbon in the total mass of the activated carbon obtained by the production method of the present invention, for example, 0.01 to 5.0 mass% can be mentioned, 0.05-3.0 mass% is mentioned preferably. For example, from the viewpoint of imparting antibacterial properties to activated carbon, the ratio (total) of simple metals and metal compounds (preferably metal compounds having silver, copper, tin, lead, etc. as constituent metal elements) contained in activated carbon As, for example, 0.01-5.0 mass% is mentioned, 0.05-3.0 mass% is mentioned preferably. In addition, for example, a large number of pores with relatively large pore sizes belonging to mesopores are formed in activated carbon, and the resulting activated carbon has excellent removal of organic chlorine compounds (free residual chlorine, trihalomethane, etc.) contained in tap water. From the viewpoint of imparting performance, simple metals and metal compounds (preferably alkaline earth metals such as magnesium and calcium, Group IIIA elements such as aluminum, other typical metals such as zinc, phosphorus, germanium, tin and selenium, scandium The ratio (total) of rare earth metals such as yttrium and lanthanum series elements (ytterbium, lanthanum, cerium, etc., or metal compounds containing actinium series elements such as actinium and thorium) as constituent metal elements is, for example, 0. 05-5.0 mass% is mentioned, 0.1-3.0 mass% is preferable And the like Ku. The said ratio is a value measured by ICP emission-spectral-analysis apparatus (Varian model 715-ES).
本発明の製造方法において、得られる活性炭の比表面積としては、特に限定されないが、例えば、500〜3500m2/g、好ましくは700〜2700m2/gが挙げられる。本発明において、上記比表面積は、測定器としてQUANTCHROME製商品名AUTOSORB−6を用い、JISK1477.7.1.に基づいてBET法一点法として測定されるものである。また、本発明の製造方法において、得られる活性炭の全細孔容積としては、特に限定されないが、例えば、0.3〜1.5ml/g、好ましくは0.3〜1.2ml/gが挙げられる。本発明において、全細孔容積は、JIS K 1477.7.2に基づいて「AUTOSORB−6」(QUANTCHROME製)を用いて得られる窒素吸着等温線に基づき相対圧0.995の時の吸着容量を計算する。 In the production method of the present invention, the specific surface area of the resulting activated carbon is not particularly limited, for example, 500~3500m 2 / g, preferably include 700~2700m 2 / g. In the present invention, the specific surface area is measured using QUANTCHROME trade name AUTOSORB-6 as a measuring instrument, and JISK1477.7.1. Based on the above, it is measured as a BET method one-point method. In the production method of the present invention, the total pore volume of the obtained activated carbon is not particularly limited, but is, for example, 0.3 to 1.5 ml / g, preferably 0.3 to 1.2 ml / g. It is done. In the present invention, the total pore volume is an adsorption capacity at a relative pressure of 0.995 based on a nitrogen adsorption isotherm obtained using “AUTOSORB-6” (manufactured by QUANTCHROME) based on JIS K 1477.7.2. Calculate
また、本発明の製造方法において、得られる活性炭を繊維状とする場合の繊維径としては、特に限定されないが、例えば、10〜20μmが挙げられ、12〜18μmが好ましく挙げられる。 Moreover, in the manufacturing method of this invention, although it does not specifically limit as a fiber diameter when making the activated carbon obtained into a fiber form, For example, 10-20 micrometers is mentioned, Preferably 12-18 micrometers is mentioned.
また、本発明の製造方法において、得られる活性炭を繊維状とする場合、活性炭素繊維の機械的強度としては、0.10GPa以上が好ましく、0.10〜0.40GPaがより好ましく、0.12〜0.36GPaが特に好ましい。なお、本発明において、活性炭素繊維の機械的強度は、JIS K 1477:2007 7.3.1のa法に準じ、測定器としてアンリツ株式会社製(商品名レーザ外径測定器M550A)を用い、繊維径を測定し、引張強力をJIS K 1477:2007 7.3.2に準じ、測定器として株式会社島津製作所社製の引張試験機(商品名SIMADZU EZ−EX)を用いて測定し、前記繊維径及び前記引張強力から、機械的強度を算出する。 Moreover, in the manufacturing method of this invention, when making the activated carbon obtained into a fiber form, as mechanical strength of activated carbon fiber, 0.10 GPa or more is preferable, 0.10-0.40 GPa is more preferable, 0.12 -0.36 GPa is particularly preferred. In the present invention, the mechanical strength of the activated carbon fiber is compliant with the method a of JIS K 1477: 2007 7.3.1, and an Anritsu Co., Ltd. product (trade name: Laser outer diameter measuring device M550A) is used as a measuring device. The fiber diameter is measured, and the tensile strength is measured using a tensile tester (trade name: SIMADZU EZ-EX) manufactured by Shimadzu Corporation as a measuring instrument according to JIS K 1477: 2007 7.3.2. A mechanical strength is calculated from the fiber diameter and the tensile strength.
以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
1.測定方法
実施例、比較例における評価は、以下の方法によりおこなった。
(1)粒状ピッチ軟化点(℃)
メトラー法(ASTM−D3461に準ずる。)により測定した。
1. Measurement Methods Evaluations in Examples and Comparative Examples were performed by the following methods.
(1) Granular pitch softening point (° C)
It was measured by the Mettler method (according to ASTM-D3461).
(2)粒状ピッチ及び金属化合物の粒径分布
前述した方法により測定した。
(2) Granular pitch and particle size distribution of metal compound It was measured by the method described above.
(3)金属含有量(重量%)
前述した方法により測定した。
(3) Metal content (wt%)
Measurement was performed by the method described above.
(4)得られた活性炭の全細孔容積(cc/g)、比表面積(m2/g)
前述した方法により測定した。
(4) Total pore volume (cc / g) and specific surface area (m 2 / g) of the obtained activated carbon
Measurement was performed by the method described above.
(5)繊維強度(GPa)
前述した方法により測定、算出した。
(5) Fiber strength (GPa)
It was measured and calculated by the method described above.
(6)金属単体及び金属化合物と粒状ピッチの全質量に対する水の質量の割合(質量%)
JIS K 0068.6.5水分気化法(定量滴定法)に準じて測定した。
(6) Ratio of mass of water with respect to total mass of simple metal and metal compound and granular pitch (mass%)
Measured according to JIS K 0068.6.5 moisture vaporization method (quantitative titration method).
2.使用原材料
(1)粒状ピッチ:
(i)粒状ピッチA:石炭を原料とし、軟化点280.0℃、ピッチ全体の質量に対する金属単体及び金属化合物の質量の割合が0重量%の粒状ピッチA(1mm以下の粒径の割合5質量%、最大粒径9.5mm、モード径4〜6.7mm)を準備した。
(ii)粒状ピッチB:キノリン中にトリスアセチルアセトナトイットリウムを溶解する溶液を、80℃に加温したコールタールに滴下して、反応温度330℃、常圧で空気を吹き込みつつ180分間反応を行って、金属含有量が2.1重量%の粒状ピッチB(軟化点281℃、1mm以下の粒径の割合10質量%、最大粒径9.5mm、モード径4.0〜6.7mm)を得た。
(iii)粒状ピッチC:キノリン中にアセチルアセトナトマグネシウムを溶解する溶液を、80℃に加温したコールタールに滴下して、反応温度330℃、常圧で空気を吹き込みつつ180分間反応を行って、金属含有量が0.14重量%の粒状ピッチC(軟化点281℃、1mm以下の粒径の割合10質量%、最大粒径9.5mm、モード径4.0〜6.7mm)を得た。
(iv)粒状ピッチD:キノリン中にアセチルアセトナトマンガンを溶解する溶液を、80℃に加温したコールタールに滴下して、反応温度330℃、常圧で空気を吹き込みつつ180分間反応を行って、金属含有量が0.27重量%の粒状ピッチD(軟化点281℃、1mm以下の粒径の割合10質量%、最大粒径9.5mm、モード径4.0〜6.7mm)を得た。
2. Raw materials used (1) Granular pitch:
(I) Granular pitch A: Coal as a raw material, granular pitch A (the ratio of the particle size of 1 mm or less of 5 mm) with a softening point of 280.0 ° C. Mass%, maximum particle size 9.5 mm, mode diameter 4 to 6.7 mm).
(Ii) Granular pitch B: A solution in which trisacetylacetonatoyttrium is dissolved in quinoline is dropped onto coal tar heated to 80 ° C., and the reaction is performed for 180 minutes while blowing air at a reaction temperature of 330 ° C. and normal pressure. And granular pitch B with a metal content of 2.1% by weight (softening point 281 ° C., proportion of particle size of 1 mm or less 10% by mass, maximum particle size 9.5 mm, mode diameter 4.0 to 6.7 mm) Got.
(Iii) Granular pitch C: A solution in which acetylacetonatomagnesium is dissolved in quinoline is dropped onto coal tar heated to 80 ° C., and reaction is performed for 180 minutes while blowing air at a reaction temperature of 330 ° C. and normal pressure. The granular pitch C having a metal content of 0.14% by weight (softening point 281 ° C., ratio of particle size of 1 mm or less 10% by mass, maximum particle size 9.5 mm, mode diameter 4.0 to 6.7 mm) Obtained.
(Iv) Granular pitch D: A solution in which acetylacetonatomanganese is dissolved in quinoline is dropped onto coal tar heated to 80 ° C., and the reaction is performed for 180 minutes while blowing air at a reaction temperature of 330 ° C. and normal pressure. The granular pitch D having a metal content of 0.27% by weight (softening point 281 ° C., proportion of particle size of 1 mm or less, 10% by mass, maximum particle size 9.5 mm, mode diameter 4.0 to 6.7 mm) Obtained.
(2)粒状ピッチと混合する金属化合物:
(i)トリスアセチルアセトナトイットリウム:レーザー回折/散乱式法で測定した積算体積百分率D50が20μmのものを使用した。
(ii)アセチルアセトンマグネシウム:レーザー回折/散乱式法で測定した積算体積百分率D50が20μmのものを使用した。
(iii)アセチルアセトンマンガン:レーザー回折/散乱式法で測定した積算体積百分率D50が20μmのものを使用した。
(iv)トリスアセチルアセトナトセリウム:レーザー回折/散乱式法で測定した積算体積百分率D50が20μmのものを使用した。
(2) Metal compound mixed with granular pitch:
(I) Trisacetylacetonatoyttrium: The one having an integrated volume percentage D 50 measured by a laser diffraction / scattering method of 20 μm was used.
(Ii) Magnesium acetylacetone: A cumulative volume percentage D 50 measured by a laser diffraction / scattering method was 20 μm.
(Iii) Acetylacetone manganese: The one having an integrated volume percentage D 50 measured by a laser diffraction / scattering method of 20 μm was used.
(Iv) Trisacetylacetonatocerium: An accumulative volume percentage D 50 measured by a laser diffraction / scattering method was 20 μm.
[実施例1]
粒状ピッチA100重量部に対して前述のトリスアセチルアセトナトイットリウム4重量部を混合し、金属化合物と粒状ピッチの混合物を得た。なお、金属化合物及び軟化点が250〜300℃である粒状ピッチの全質量に対する水等液体の質量の割合は、0.0質量%であった。
[Example 1]
The above-mentioned 4 parts by weight of trisacetylacetonatotrium was mixed with 100 parts by weight of the granular pitch A to obtain a mixture of the metal compound and the granular pitch. In addition, the ratio of the mass of liquids, such as water with respect to the total mass of the granular pitch whose metal compound and softening point are 250-300 degreeC, was 0.0 mass%.
得られた混合物と、粒状ピッチAとを、フィーダーを用いてそれぞれ1対2の質量比で溶融押出機に供給し、溶融温度320℃で溶融混合し、紡糸することによりピッチ繊維を得た。該ピッチ繊維中の金属含有量は、0.25質量%であった。 The obtained mixture and the granular pitch A were respectively supplied to a melt extruder at a mass ratio of 1: 2 using a feeder, melt mixed at a melting temperature of 320 ° C., and spun to obtain pitch fibers. The metal content in the pitch fiber was 0.25% by mass.
得られたピッチ繊維を、不融化した。具体的には、得られたピッチ繊維を空気中常温から354℃まで1〜24℃/分の割合で54分間昇温することにより不融化処理をおこなった。 The obtained pitch fiber was infusible. Specifically, the resulting pitch fiber was infusibilized by raising the temperature from normal temperature in air to 354 ° C. at a rate of 1 to 24 ° C./min for 54 minutes.
不融化したピッチ繊維を、860℃で46分間飽和水蒸気に曝露して賦活処理を行い、活性炭素繊維を得た。得られた活性炭素繊維の物性を表1に示す。 The infusibilized pitch fiber was exposed to saturated water vapor at 860 ° C. for 46 minutes for activation treatment to obtain activated carbon fiber. Table 1 shows the physical properties of the obtained activated carbon fibers.
[実施例2]
粒状ピッチA100重量部に対して前述のトリスアセチルアセトナトイットリウム1.3重量部を混合し、金属化合物と粒状ピッチの混合物を得た。なお、金属化合物及び軟化点が250〜300℃である粒状ピッチの全質量に対する水等液体の質量の割合は、0.0質量%であった。
[Example 2]
The above-described trisacetylacetonatotrium 1.3 parts by weight was mixed with 100 parts by weight of the granular pitch A to obtain a mixture of the metal compound and the granular pitch. In addition, the ratio of the mass of liquids, such as water with respect to the total mass of the granular pitch whose metal compound and softening point are 250-300 degreeC, was 0.0 mass%.
得られた混合物を、溶融押出機に供給し、溶融温度320℃で溶融混合し、紡糸することによりピッチ繊維を得た。該ピッチ繊維中の金属含有量は、0.25質量%であった。 The obtained mixture was supplied to a melt extruder, melt mixed at a melting temperature of 320 ° C., and spun to obtain pitch fibers. The metal content in the pitch fiber was 0.25% by mass.
得られたピッチ繊維を、不融化した。具体的には、得られたピッチ繊維を空気中常温から354℃まで1〜24℃/分の割合で54分間昇温することにより不融化処理をおこなった。 The obtained pitch fiber was infusible. Specifically, the resulting pitch fiber was infusibilized by raising the temperature from normal temperature in air to 354 ° C. at a rate of 1 to 24 ° C./min for 54 minutes.
不融化したピッチ繊維を、875℃で45分間飽和水蒸気に曝露して賦活処理を行い、活性炭素繊維を得た。得られた活性炭素繊維の物性を表1に示す。 The infusibilized pitch fiber was exposed to saturated water vapor at 875 ° C. for 45 minutes for activation treatment to obtain activated carbon fiber. Table 1 shows the physical properties of the obtained activated carbon fibers.
[実施例3]
粒状ピッチA100重量部に対して前述のアセチルアセトンマグネシウム5.0重量部を混合し、金属化合物と粒状ピッチの混合物を得た。なお、金属化合物及び軟化点が250〜300℃である粒状ピッチの全質量に対する水等液体の質量の割合は、0.0質量%であった。
[Example 3]
The above-mentioned 5.0 parts by weight of acetylacetone magnesium was mixed with 100 parts by weight of the granular pitch A to obtain a mixture of the metal compound and the granular pitch. In addition, the ratio of the mass of liquids, such as water with respect to the total mass of the granular pitch whose metal compound and softening point are 250-300 degreeC, was 0.0 mass%.
得られた混合物を、溶融押出機に供給し、溶融温度320℃で溶融混合し、紡糸することによりピッチ繊維を得た。該ピッチ繊維中の金属含有量は、0.33質量%であった。 The obtained mixture was supplied to a melt extruder, melt mixed at a melting temperature of 320 ° C., and spun to obtain pitch fibers. The metal content in the pitch fiber was 0.33% by mass.
得られたピッチ繊維を、不融化した。具体的には、得られたピッチ繊維を空気中常温から354℃まで1〜24℃/分の割合で54分間昇温することにより不融化処理をおこなった。 The obtained pitch fiber was infusible. Specifically, the resulting pitch fiber was infusibilized by raising the temperature from normal temperature in air to 354 ° C. at a rate of 1 to 24 ° C./min for 54 minutes.
不融化したピッチ繊維を、850℃で45分間飽和水蒸気に曝露して賦活処理を行い、活性炭素繊維を得た。得られた活性炭素繊維の物性を表1に示す。 The infusibilized pitch fiber was exposed to saturated water vapor at 850 ° C. for 45 minutes for activation treatment to obtain activated carbon fiber. Table 1 shows the physical properties of the obtained activated carbon fibers.
[実施例4]
粒状ピッチA100重量部に対して前述のアセチルアセトンマンガン5.0重量部を混合し、金属化合物と粒状ピッチの混合物を得た。なお、金属化合物及び軟化点が250〜300℃である粒状ピッチの全質量に対する水等液体の質量の割合は、0.0質量%であった。
[Example 4]
5.0 parts by weight of the aforementioned acetylacetone manganese was mixed with 100 parts by weight of the granular pitch A to obtain a mixture of the metal compound and the granular pitch. In addition, the ratio of the mass of liquids, such as water with respect to the total mass of the granular pitch whose metal compound and softening point are 250-300 degreeC, was 0.0 mass%.
得られた混合物を、溶融押出機に供給し、溶融温度320℃で溶融混合し紡糸することによりピッチ繊維を得た。該ピッチ繊維中の金属含有量は、0.39質量%であった。 The obtained mixture was supplied to a melt extruder, melt mixed at a melting temperature of 320 ° C., and spun to obtain pitch fibers. The metal content in the pitch fiber was 0.39% by mass.
得られたピッチ繊維を、不融化した。具体的には、得られたピッチ繊維を空気中常温から354℃まで1〜24℃/分の割合で54分間昇温することにより不融化処理をおこなった。 The obtained pitch fiber was infusible. Specifically, the resulting pitch fiber was infusibilized by raising the temperature from normal temperature in air to 354 ° C. at a rate of 1 to 24 ° C./min for 54 minutes.
不融化したピッチ繊維を、850℃で45分間飽和水蒸気に曝露して賦活処理を行い、活性炭素繊維を得た。得られた活性炭素繊維の物性を表1に示す。 The infusibilized pitch fiber was exposed to saturated water vapor at 850 ° C. for 45 minutes for activation treatment to obtain activated carbon fiber. Table 1 shows the physical properties of the obtained activated carbon fibers.
[実施例5]
粒状ピッチA100重量部に対して前述のトリスアセチルアセトナトセリウム1.3重量部を混合し、金属化合物と粒状ピッチの混合物を得た。なお、金属化合物及び軟化点が250〜300℃である粒状ピッチの全質量に対する水等液体の質量の割合は、0.0質量%であった。
[Example 5]
The above-mentioned 1.3 parts by weight of trisacetylacetonatocerium was mixed with 100 parts by weight of the granular pitch A to obtain a mixture of the metal compound and the granular pitch. In addition, the ratio of the mass of liquids, such as water with respect to the total mass of the granular pitch whose metal compound and softening point are 250-300 degreeC, was 0.0 mass%.
得られた混合物を、溶融押出機に供給し、溶融温度320℃で溶融混合し、紡糸することによりピッチ繊維を得た。該ピッチ繊維中の金属含有量は、0.23質量%であった。 The obtained mixture was supplied to a melt extruder, melt mixed at a melting temperature of 320 ° C., and spun to obtain pitch fibers. The metal content in the pitch fiber was 0.23% by mass.
得られたピッチ繊維を、不融化した。具体的には、得られたピッチ繊維を空気中常温から354℃まで1〜24℃/分の割合で54分間昇温することにより不融化処理をおこなった。 The obtained pitch fiber was infusible. Specifically, the resulting pitch fiber was infusibilized by raising the temperature from normal temperature in air to 354 ° C. at a rate of 1 to 24 ° C./min for 54 minutes.
不融化したピッチ繊維を、900℃で18分間飽和水蒸気に曝露して賦活処理を行い、活性炭素繊維を得た。得られた活性炭素繊維の物性を表1に示す。 The infusibilized pitch fiber was exposed to saturated water vapor at 900 ° C. for 18 minutes for activation treatment to obtain activated carbon fiber. Table 1 shows the physical properties of the obtained activated carbon fibers.
[比較例1]
粒状ピッチとして前述の粒状ピッチAと、粒状ピッチBとを準備し、粒状ピッチA及び粒状ピッチBを、フィーダーを用いてそれぞれ7対1の質量比で溶融押出機に供給し、溶融温度320℃で溶融混合し、紡糸することによりピッチ繊維を得た。該ピッチ繊維中の金属含有量は、0.28質量%であった。
[Comparative Example 1]
The granular pitch A and the granular pitch B described above are prepared as the granular pitch, and the granular pitch A and the granular pitch B are respectively supplied to the melt extruder at a mass ratio of 7: 1 using a feeder, and the melting temperature is 320 ° C. The pitch fiber was obtained by melt-mixing and spinning. The metal content in the pitch fiber was 0.28% by mass.
得られたピッチ繊維を、不融化した。具体的には、得られたピッチ繊維を空気中常温から354℃まで1〜24℃/分の割合で54分間昇温することにより不融化処理をおこなった。 The obtained pitch fiber was infusible. Specifically, the resulting pitch fiber was infusibilized by raising the temperature from normal temperature in air to 354 ° C. at a rate of 1 to 24 ° C./min for 54 minutes.
不融化したピッチ繊維を、860℃で40分間飽和水蒸気に曝露して賦活処理を行い、活性炭素繊維を得た。得られた活性炭素繊維の物性を表1に示す。 The infusibilized pitch fiber was exposed to saturated water vapor at 860 ° C. for 40 minutes for activation treatment to obtain activated carbon fiber. Table 1 shows the physical properties of the obtained activated carbon fibers.
[比較例2]
粒状ピッチとして前述の粒状ピッチCを準備し、粒状ピッチCを、溶融押出機に供給し、溶融温度320℃で溶融し、紡糸することによりピッチ繊維を得た。該ピッチ繊維中の金属含有量は、0.14質量%であった。
[Comparative Example 2]
The aforementioned granular pitch C was prepared as a granular pitch, and the granular pitch C was supplied to a melt extruder, melted at a melting temperature of 320 ° C., and spun to obtain pitch fibers. The metal content in the pitch fiber was 0.14% by mass.
得られたピッチ繊維を、不融化した。具体的には、得られたピッチ繊維を空気中常温から354℃まで1〜24℃/分の割合で54分間昇温することにより不融化処理をおこなった。 The obtained pitch fiber was infusible. Specifically, the resulting pitch fiber was infusibilized by raising the temperature from normal temperature in air to 354 ° C. at a rate of 1 to 24 ° C./min for 54 minutes.
不融化したピッチ繊維を、850℃で45分間飽和水蒸気に曝露して賦活処理を行い、活性炭素繊維を得た。得られた活性炭素繊維の物性を表1に示す。 The infusibilized pitch fiber was exposed to saturated water vapor at 850 ° C. for 45 minutes for activation treatment to obtain activated carbon fiber. Table 1 shows the physical properties of the obtained activated carbon fibers.
[比較例3]
粒状ピッチとして前述の粒状ピッチDを準備し、粒状ピッチDを、溶融押出機に供給し、溶融温度320℃で溶融し、紡糸することによりピッチ繊維を得た。該ピッチ繊維中の金属含有量は、0.27質量%であった。
[Comparative Example 3]
The aforementioned granular pitch D was prepared as a granular pitch, and the granular pitch D was supplied to a melt extruder, melted at a melting temperature of 320 ° C., and spun to obtain pitch fibers. The metal content in the pitch fiber was 0.27% by mass.
得られたピッチ繊維を、不融化した。具体的には、得られたピッチ繊維を空気中常温から354℃まで1〜24℃/分の割合で54分間昇温することにより不融化処理をおこなった。 The obtained pitch fiber was infusible. Specifically, the resulting pitch fiber was infusibilized by raising the temperature from normal temperature in air to 354 ° C. at a rate of 1 to 24 ° C./min for 54 minutes.
不融化したピッチ繊維を、850℃で45分間飽和水蒸気に曝露して賦活処理を行い、活性炭素繊維を得た。得られた活性炭素繊維の物性を表1に示す。 The infusibilized pitch fiber was exposed to saturated water vapor at 850 ° C. for 45 minutes for activation treatment to obtain activated carbon fiber. Table 1 shows the physical properties of the obtained activated carbon fibers.
金属化合物としてトリスアセチルアセトナトイットリウムを使用した、実施例1及び2と、比較例1とを比較すると、実施例1及び2は、金属単体を含有する活性炭の製造方法であって、金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得る工程1、及び工程1で得られた前記混合物を、溶融した後、固化して固化体を得る工程2を備える製造方法により活性炭を製造したため、得られた活性炭素繊維は、比較例1に比して、金属含有量、全細孔容積及び比表面積が同等でありながら、金属化合物を含有することによる機械的強度の低下が抑制されていた。一方、比較例1は、金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得たのではなく、金属化合物とコールタールとを、液相中で、混合し反応を行って粒状ピッチBとしたことから、実施例1及び2と比較して機械的強度の低下が大きいものであった。 When Examples 1 and 2 using trisacetylacetonatoyttrium as a metal compound are compared with Comparative Example 1, Examples 1 and 2 are methods for producing activated carbon containing a simple metal, After melting at least one of the metal compound and granular pitch having a softening point of 250 ° C. to 300 ° C. in a solid phase to obtain a mixture, and the mixture obtained in step 1, Since the activated carbon was produced by the production method comprising the step 2 of solidifying to obtain a solidified body, the obtained activated carbon fiber has the same metal content, total pore volume and specific surface area as compared with the comparative example 1. However, a decrease in mechanical strength due to the inclusion of the metal compound was suppressed. On the other hand, in Comparative Example 1, at least one of a simple metal and a metal compound and a granular pitch having a softening point of 250 ° C. to 300 ° C. were mixed in a solid phase to obtain a mixture. Since coal tar was mixed and reacted in the liquid phase to form granular pitch B, the mechanical strength was greatly reduced as compared with Examples 1 and 2.
金属化合物としてアセチルアセトンマグネシウムを使用した、実施例3と比較例2とを比較すると、実施例3は、金属単体を含有する活性炭の製造方法であって、金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得る工程1、及び工程1で得られた前記混合物を、溶融した後、固化して固化体を得る工程2を備える製造方法により活性炭を製造したため、得られた活性炭素繊維は、比較例2に比して、全細孔容積及び比表面積がやや大きく、金属含有量が約2.8倍と遥かに大きいものでありながら、金属化合物を含有することによる機械的強度の低下が抑制されていた。一方、比較例2は、金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得たのではなく、金属化合物とコールタールとを、液相中で、混合し反応を行って粒状ピッチCとしたことから、実施例3と比較して全細孔容積及び比表面積がやや小さく、金属含有量が遥かに小さいものであるにも関わらず機械的強度の低下が大きいものであった。 When Example 3 and Comparative Example 2 using acetylacetone magnesium as a metal compound are compared, Example 3 is a method for producing activated carbon containing a metal simple substance, and at least one of the metal simple substance and the metal compound is softened. Step 1 for obtaining a mixture by mixing granular pitches having a point of 250 ° C. to 300 ° C. in a solid phase state, and a step for obtaining a solidified body by melting and solidifying the mixture obtained in Step 1 Since the activated carbon was produced by the production method comprising 2, the obtained activated carbon fiber had a slightly larger total pore volume and specific surface area and a metal content of about 2.8 times compared to Comparative Example 2. Although it was large, a decrease in mechanical strength due to containing a metal compound was suppressed. On the other hand, in Comparative Example 2, at least one of a simple metal and a metal compound and a granular pitch having a softening point of 250 ° C. to 300 ° C. were mixed in a solid phase to obtain a mixture, Coal tar was mixed in the liquid phase and reacted to form granular pitch C. Therefore, the total pore volume and specific surface area were slightly smaller than in Example 3, and the metal content was much smaller. Nevertheless, the mechanical strength was greatly reduced.
金属化合物としてアセチルアセトナトマンガンを使用した、実施例4と比較例3とを比較すると、実施例4は、金属単体を含有する活性炭の製造方法であって、金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得る工程1、及び工程1で得られた前記混合物を、溶融した後、固化して固化体を得る工程2を備える製造方法により活性炭を製造したため、得られた活性炭素繊維は、比較例3に比して、比表面積が同等、全細孔容積がやや大きく、金属含有量が約1.7倍と大きいものでありながら、金属化合物を含有することによる機械的強度の低下が抑制されていた。一方、比較例3は、金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得たのではなく、金属化合物とコールタールとを、液相中で、混合し反応を行って粒状ピッチDとしたことから、実施例4と比較して比表面積が同等、全細孔容積がやや小さく、金属含有量が小さいものであるにも関わらず機械的強度の低下が大きいものであった。 Comparing Example 4 and Comparative Example 3 using acetylacetonatomanganese as a metal compound, Example 4 is a method for producing activated carbon containing a metal simple substance, and includes at least one of the metal simple substance and the metal compound. Step 1 for obtaining a mixture by mixing granular pitches having a softening point of 250 ° C. to 300 ° C. in a solid phase, and the mixture obtained in Step 1 are melted and then solidified to obtain a solidified body. Since the activated carbon was produced by the production method comprising the obtaining step 2, the obtained activated carbon fiber had the same specific surface area, a slightly larger total pore volume, and a metal content of about 1.7 as compared with Comparative Example 3. Although it was twice as large, a decrease in mechanical strength due to containing a metal compound was suppressed. On the other hand, in Comparative Example 3, at least one of a simple metal and a metal compound and a granular pitch having a softening point of 250 ° C. to 300 ° C. were mixed in a solid state to obtain a mixture, Coal tar was mixed and reacted in the liquid phase to obtain a granular pitch D. Therefore, the specific surface area was the same as in Example 4, the total pore volume was slightly smaller, and the metal content was smaller. Nevertheless, the mechanical strength was greatly reduced.
Claims (3)
金属単体及び金属化合物の少なくとも一方と、軟化点が250℃〜300℃である粒状ピッチとを、固相状態で混合して混合物を得る工程1、及び
前記工程1で得られた前記混合物を、溶融した後、固化して固化体を得る工程2
を備える、金属単体及び金属化合物の少なくとも一方を含有する活性炭の製造方法。 A method for producing activated carbon containing at least one of a simple metal and a metal compound,
Step 1 for obtaining a mixture by mixing at least one of a simple metal and a metal compound and a granular pitch having a softening point of 250 ° C. to 300 ° C. in a solid phase, and the mixture obtained in Step 1 above, Step 2 after solidifying to obtain a solidified body
A method for producing activated carbon containing at least one of a simple metal and a metal compound.
前記活性炭が、活性炭素繊維である、請求項1に記載の活性炭の製造方法。 The step 2 is a spinning step, and the mixture is melted and then solidified to obtain a fibrous solidified body,
The method for producing activated carbon according to claim 1, wherein the activated carbon is activated carbon fiber.
前記工程3で不融化された固化体を賦活する工程4
をさらに備える、請求項1または2に記載の活性炭の製造方法。 Step 3 for insolubilizing the solidified solidified body obtained in Step 2 and Step 4 for activating the solidified body infusible at Step 3
The method for producing activated carbon according to claim 1, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016063690A JP6749117B2 (en) | 2016-03-28 | 2016-03-28 | Method for producing activated carbon containing at least one of a simple metal and a metal compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016063690A JP6749117B2 (en) | 2016-03-28 | 2016-03-28 | Method for producing activated carbon containing at least one of a simple metal and a metal compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017179616A true JP2017179616A (en) | 2017-10-05 |
JP6749117B2 JP6749117B2 (en) | 2020-09-02 |
Family
ID=60005119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016063690A Active JP6749117B2 (en) | 2016-03-28 | 2016-03-28 | Method for producing activated carbon containing at least one of a simple metal and a metal compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6749117B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019244905A1 (en) * | 2018-06-19 | 2019-12-26 | 株式会社アドール | Activated carbon |
WO2019244904A1 (en) * | 2018-06-19 | 2019-12-26 | 株式会社アドール | Activated carbon |
WO2019244903A1 (en) * | 2018-06-19 | 2019-12-26 | 株式会社アドール | Activated carbon |
KR20200065252A (en) * | 2018-11-30 | 2020-06-09 | 충남대학교산학협력단 | Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49133292A (en) * | 1973-04-26 | 1974-12-20 | ||
JPS62149917A (en) * | 1985-12-23 | 1987-07-03 | Gunei Kagaku Kogyo Kk | Method for manufacturing activated carbon fiber |
JPH02175607A (en) * | 1988-12-27 | 1990-07-06 | Cataler Kogyo Kk | Production of active carbon |
JPH08259957A (en) * | 1995-03-27 | 1996-10-08 | Osaka Gas Co Ltd | Production of metal-containing pitch for production of activated carbon fiber, production of activated carbon fiber and activated carbon fiber |
JP2000026867A (en) * | 1999-04-07 | 2000-01-25 | Osaka Gas Co Ltd | Production of silver-dispersed carbon material |
JP2002138324A (en) * | 2000-08-21 | 2002-05-14 | Ad'all Co Ltd | Method for producing metal-containing activated carbon fiber |
JP2004175660A (en) * | 2002-11-13 | 2004-06-24 | Showa Denko Kk | Activated carbon, method of manufacturing the same and polarizable electrode |
JP2006111604A (en) * | 2003-10-22 | 2006-04-27 | Kureha Corp | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease |
JP2007186403A (en) * | 2005-10-27 | 2007-07-26 | Showa Denko Kk | Activated carbon, process of making the same and use of the same |
-
2016
- 2016-03-28 JP JP2016063690A patent/JP6749117B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49133292A (en) * | 1973-04-26 | 1974-12-20 | ||
JPS62149917A (en) * | 1985-12-23 | 1987-07-03 | Gunei Kagaku Kogyo Kk | Method for manufacturing activated carbon fiber |
JPH02175607A (en) * | 1988-12-27 | 1990-07-06 | Cataler Kogyo Kk | Production of active carbon |
JPH08259957A (en) * | 1995-03-27 | 1996-10-08 | Osaka Gas Co Ltd | Production of metal-containing pitch for production of activated carbon fiber, production of activated carbon fiber and activated carbon fiber |
JP2000026867A (en) * | 1999-04-07 | 2000-01-25 | Osaka Gas Co Ltd | Production of silver-dispersed carbon material |
JP2002138324A (en) * | 2000-08-21 | 2002-05-14 | Ad'all Co Ltd | Method for producing metal-containing activated carbon fiber |
JP2004175660A (en) * | 2002-11-13 | 2004-06-24 | Showa Denko Kk | Activated carbon, method of manufacturing the same and polarizable electrode |
JP2006111604A (en) * | 2003-10-22 | 2006-04-27 | Kureha Corp | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease |
JP2007186403A (en) * | 2005-10-27 | 2007-07-26 | Showa Denko Kk | Activated carbon, process of making the same and use of the same |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020111505A (en) * | 2018-06-19 | 2020-07-27 | 株式会社アドール | Activated carbon |
JP2020110801A (en) * | 2018-06-19 | 2020-07-27 | 株式会社アドール | Activated carbon |
WO2019244903A1 (en) * | 2018-06-19 | 2019-12-26 | 株式会社アドール | Activated carbon |
JP6683968B1 (en) * | 2018-06-19 | 2020-04-22 | 株式会社アドール | Activated carbon |
JP6683969B1 (en) * | 2018-06-19 | 2020-04-22 | 株式会社アドール | Activated carbon |
WO2019244905A1 (en) * | 2018-06-19 | 2019-12-26 | 株式会社アドール | Activated carbon |
JPWO2019244905A1 (en) * | 2018-06-19 | 2020-06-25 | 株式会社アドール | Activated carbon |
JP7491506B2 (en) | 2018-06-19 | 2024-05-28 | 株式会社アドール | Activated charcoal |
WO2019244904A1 (en) * | 2018-06-19 | 2019-12-26 | 株式会社アドール | Activated carbon |
KR20210021451A (en) * | 2018-06-19 | 2021-02-26 | 가부시키가이샤애드올 | Activated carbon |
CN112135794A (en) * | 2018-06-19 | 2020-12-25 | 株式会社安德如 | Activated carbon |
KR102545878B1 (en) | 2018-06-19 | 2023-06-22 | 가부시키가이샤애드올 | activated carbon |
CN112135794B (en) * | 2018-06-19 | 2023-09-05 | 株式会社安德如 | activated carbon |
US12258284B2 (en) | 2018-06-19 | 2025-03-25 | Ad'all Co., Ltd. | Activated carbon |
US11873235B2 (en) | 2018-06-19 | 2024-01-16 | Ad'all Co., Ltd. | Activated carbon |
JP7428347B2 (en) | 2018-06-19 | 2024-02-06 | 株式会社アドール | activated carbon |
KR20200065252A (en) * | 2018-11-30 | 2020-06-09 | 충남대학교산학협력단 | Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same |
KR102596646B1 (en) * | 2018-11-30 | 2023-11-02 | 충남대학교산학협력단 | Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same |
Also Published As
Publication number | Publication date |
---|---|
JP6749117B2 (en) | 2020-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7153452B2 (en) | Mesophase pitch-based carbon fibers with carbon nanotube reinforcements | |
JP2017179616A (en) | Manufacturing method of active charcoal containing at least one of metal element and metal compound | |
Pirzada et al. | Hybrid carbon silica nanofibers through sol–gel electrospinning | |
KR101031207B1 (en) | Methods and Compositions for the Production of Carbon Fibers and Mats | |
CA2434509C (en) | Silicon carbide fibers essentially devoid of whiskers and method for preparation thereof | |
JP7441296B2 (en) | Activated carbon manufacturing method | |
JPWO2018116858A1 (en) | Activated carbon and manufacturing method thereof | |
KR20100010971A (en) | Porous carbon fiber using mgo and the fuel cell catalyst support using the same | |
JP2010189798A (en) | Shot-free inorganic fiber and method for producing the same | |
Dintcheva et al. | Effect of the nanotube aspect ratio and surface functionalization on the morphology and properties of multiwalled carbon nanotube polyamide‐based fibers | |
JP2004176236A (en) | Method for producing carbon fiber | |
CN102774822A (en) | Preparation method of mesoporous carbon material | |
JP4342871B2 (en) | Extra fine carbon fiber and method for producing the same | |
CN1853012A (en) | Composite of vapor grown carbon fiber and inorganic fine particle and use thereof | |
JPH11240707A (en) | Activated carbon | |
JP2010013742A (en) | Method for producing ultrafine carbon fiber | |
JP2006063487A (en) | Method for producing carbon fiber | |
JP2006307358A (en) | Nanofiber-containing pitch-based carbon fiber and method for producing the same | |
JP4339727B2 (en) | Carbon fiber manufacturing method | |
JP4263122B2 (en) | Carbon fiber and method for producing the same | |
JP4155936B2 (en) | Method for producing ultrafine carbon fiber | |
TWI850536B (en) | Asphalt-based ultrafine carbon fiber, and asphalt-based ultrafine carbon fiber dispersion | |
JP2005113363A (en) | Composite of vapor grown carbon fiber and inorganic fine particle and use thereof | |
KR101243846B1 (en) | Preparation method of superfine pitch fiber | |
EP4480912A1 (en) | Composition for producing activated carbon, method for producing same, molded body for producing activated carbon, method for producing same, fibers for producing activated carbon fibers, method for producing same, activated carbon precursor, activated carbon fiber precursor, carbide, carbon fibers, activated carbon, method for producing same, activated carbon fibers, and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200811 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6749117 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |