[go: up one dir, main page]

JP2017179467A - Electrical protection structure for reinforced concrete structure and method for measuring effect of the same - Google Patents

Electrical protection structure for reinforced concrete structure and method for measuring effect of the same Download PDF

Info

Publication number
JP2017179467A
JP2017179467A JP2016068020A JP2016068020A JP2017179467A JP 2017179467 A JP2017179467 A JP 2017179467A JP 2016068020 A JP2016068020 A JP 2016068020A JP 2016068020 A JP2016068020 A JP 2016068020A JP 2017179467 A JP2017179467 A JP 2017179467A
Authority
JP
Japan
Prior art keywords
reinforced concrete
concrete structure
anode
conductive material
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016068020A
Other languages
Japanese (ja)
Inventor
知繁 鴨谷
Tomoshige Kamoya
知繁 鴨谷
浩司 石井
Koji Ishii
浩司 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2016068020A priority Critical patent/JP2017179467A/en
Publication of JP2017179467A publication Critical patent/JP2017179467A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method that can measure, without an operator's high-place hazardous work even if the current measurement site locates in a high place, in order to easily specify the location of a corrosion generating place and to check corrosion protection or corrosion inhibition effect in an electrical protection structure for a reinforced concrete structure.SOLUTION: At least a part of a conductive material for conducting a plurality of anode materials 3 and an internal rebar 2 is exposed on an outer surface of a concrete structure 1 to measure a current value of the exposed part in the electrical protection structure for the reinforced concrete structure. The electrical protection structure for the reinforced concrete structure suppresses corrosion of the internal rebar by the potential difference generated between the anode materials 3 and the internal rebar 2 with the anode materials 3 buried in the reinforced concrete structure 1 and the internal rebar 2 connected by a conductive material.SELECTED DRAWING: Figure 1

Description

本発明は、高架道路や橋梁の鉄筋コンクリート床版等の鉄筋コンクリート構造体における電気的防食構造及び該電気的防食構造の効果計測方法に関する。   The present invention relates to an electrical corrosion protection structure in a reinforced concrete structure such as an elevated road or a reinforced concrete floor slab of a bridge, and a method for measuring the effect of the electrical corrosion protection structure.

高架道路や橋梁を構成する鉄筋コンクリート床版等の鉄筋コンクリート構造体においては、コンクリートの中性化、コンクリートの材料に含まれる塩分、外部からの飛来塩分や凍結防止材等の影響(塩害)によって内部鉄筋が腐食し、鉄筋コンクリート構造体の劣化を招く場合がある。   In reinforced concrete structures such as reinforced concrete slabs that form elevated roads and bridges, internal reinforcement due to the neutralization of concrete, the salt content of concrete, the effects of salt from the outside and antifreezing materials (salt damage) May corrode and lead to deterioration of the reinforced concrete structure.

従来、このような鉄筋の腐食対策には、鉄筋に電流を供給することにより鉄筋の腐食を防止する電気的防食方法あるいは鉄筋の腐食を抑制する電気的腐食抑制方法が知られており、電流の供給方式によって外部電源方式と流電陽極方式とに大別されている。(以下、本明細書では前記「電気的腐食抑制」を含めて「電気的防食」と記す)   Conventionally, as a countermeasure for the corrosion of reinforcing bars, there are known an electric corrosion prevention method for preventing corrosion of reinforcing bars by supplying electric current to the reinforcing bars or an electric corrosion inhibiting method for suppressing corrosion of reinforcing bars. Depending on the supply method, it is roughly divided into an external power supply method and a galvanic anode method. (Hereinafter, in this specification, it is referred to as “electric corrosion prevention” including the above “electric corrosion inhibition”)

外部電源方式は、コンクリート面又はコンクリート内部にチタン等からなる不溶性陽極を設置し、この不溶性陽極と陰極を成す鉄筋との間に直流電源装置を接続し、鉄筋に不溶性陽極から電流を供給するものであって、電流量を調節でき、長期の防食性にも優れていることから、電気的防食と位置づけされ、従来、鉄筋コンクリート床版の防食構造に多く用いられている。   In the external power supply system, an insoluble anode made of titanium or the like is installed on the concrete surface or inside the concrete, and a direct current power supply device is connected between the insoluble anode and the reinforcing bar forming the cathode, and current is supplied to the reinforcing bar from the insoluble anode. However, since the amount of current can be adjusted and the long-term anticorrosion property is excellent, it is positioned as an electric anticorrosion and has been conventionally used in many anticorrosion structures for reinforced concrete slabs.

流電陽極方式は、鉄筋に比べて酸化還元電位の低い亜鉛、アルミニウム等からなる流電陽極をコンクリート面又はコンクリート内部に設置し、この流電陽極と鉄筋との電位差を利用して鉄筋に電流を供給するものであって、発生する電流量が外部電源方式に比べて小さいため電気的腐食抑制と位置づけされている。しかし、十分な腐食抑制効果が期待でき、且つ、外部電源等が不要で導入費用や維持管理費用が安価であることから、この方式による腐食抑制構造の鉄筋コンクリート床版への適用が注目されている。   In the galvanic anode method, a galvanic anode made of zinc, aluminum, etc., which has a lower oxidation-reduction potential than that of a reinforcing bar, is installed on the concrete surface or inside the concrete, and a current is supplied to the reinforcing bar using the potential difference between this galvanic anode and the reinforcing bar. Since the amount of current generated is smaller than that of the external power supply system, it is positioned as an electrical corrosion inhibitor. However, because it can be expected to have a sufficient corrosion-inhibiting effect, and no external power supply is required, and the introduction and maintenance costs are low, the application of this type of corrosion-inhibiting structure to reinforced concrete slabs is drawing attention. .

また、この種の電気防食構造では、鉄筋コンクリート構造体に対する陽極の配置によって、面状陽極方式、線状陽極方式及び点状陽極方式に分類されている。   In addition, this type of cathodic protection structure is classified into a planar anode method, a linear anode method, and a dotted anode method depending on the arrangement of the anode with respect to the reinforced concrete structure.

面状陽極方式は、シート状又は網状に形成された陽極材を鉄筋コンクリート構造体の表面に敷設するものであり、線状陽極方式では、コンクリート表面に複数の溝を形成し、その溝に線状の陽極材が埋め込まれている。   In the planar anode method, a sheet-like or net-like anode material is laid on the surface of a reinforced concrete structure. In the linear anode method, a plurality of grooves are formed on the concrete surface, and the grooves are linear. The anode material is embedded.

また、点状陽極方式は、鉄筋量に応じてコンクリートに複数の穴を設け、そこに陽極材を挿入した後、当該穴をセメント系のモルタル等によって埋め戻し、陽極をコンクリート内に設置するようになっている(例えば、特許文献1を参照)。   In addition, in the point anode method, a plurality of holes are provided in concrete according to the amount of reinforcing bars, and after inserting the anode material there, the holes are backfilled with cement-based mortar and the anode is installed in the concrete. (For example, refer to Patent Document 1).

このような電気的防食方法では、その効果を確認するために、従来は電気防食工事の際に、陽極とは別に照合電極を鉄筋コンクリート構造体内に埋設しておき、これと該鉄筋コンクリート構造体内の鉄筋とを導通させた効果確認用の電気回路を形成しておき、この電気回路に電流計をおいて、照合電極と鉄筋との間の電位差を計測する方法が知られている(例えば特許文献2,3)。   In order to confirm the effect of such an anticorrosion method, conventionally, a reference electrode is embedded in the reinforced concrete structure separately from the anode during the anticorrosion work, and this and the reinforced concrete structure are reinforced. A method is known in which an electrical circuit for confirming the effect of electrical connection is formed, an ammeter is provided in the electrical circuit, and a potential difference between the reference electrode and the reinforcing bar is measured (for example, Patent Document 2). , 3).

特表平8−511581号公報Japanese translation of PCT publication No. 8-511581 特公平4−35032号公報Japanese Examined Patent Publication No. 4-35032 特開2013−224456号公報JP2013-224456A

上述した従来の鉄筋コンクリート構造体における電気的防食構造及び該電気的防食構造の効果計測方法には、鉄筋−計測端子−照合電極が構成する回路(以下、効果確認回路という)に電圧計を組み込み、電気防食の電気を供給している場合と供給していない場合における、照合電極近傍の鉄筋の自然電位を電圧計にて計測し、電気を供給している場合と供給していない場合との差(復極量)により、防食(腐食抑制)効果を把握する方法がある。この場合、回路の一部を開いて電圧計を設置し、常時ないしは一定時間毎に電圧を計測し記録するものであるためコスト高となる。   In the electric corrosion prevention structure in the conventional reinforced concrete structure described above and the effect measurement method of the electric corrosion prevention structure, a voltmeter is incorporated in a circuit (hereinafter referred to as an effect confirmation circuit) constituted by a reinforcing bar, a measurement terminal, and a verification electrode, Measure the natural potential of the reinforcing bar near the reference electrode with a voltmeter when supplying electricity for anticorrosion and when not supplying it, and the difference between when electricity is supplied and when it is not supplied There is a method of grasping the anticorrosion (corrosion suppression) effect by (recovery amount). In this case, since a part of the circuit is opened and a voltmeter is installed, and the voltage is measured and recorded at all times or at regular intervals, the cost increases.

この場合、照合電極近傍の状況しか把握できない問題があり、そのため、多数点の状況を把握するためには、照合電極を多数設置する必要があり、効果確認回路が多数必要であり、照合電極や配線材が多数必要となって更にコストアップとなる。   In this case, there is a problem that only the situation in the vicinity of the verification electrode can be grasped.Therefore, in order to grasp the situation of many points, it is necessary to install a large number of verification electrodes, and a large number of effect confirmation circuits are required. Many wiring materials are required, which further increases the cost.

更に、これらの照合電極を使用する効果確認回路では、照合電極又は鉄筋から電圧計に至る導線が鉄筋コンクリート構造体の表層部分内に埋設されているため、計測者が電圧計設置位置近傍まで近づく必要があり、これらの位置は通常高所であるため、作業に危険を伴う場合もあるという問題があった。この危険を避けるためには効果確認回路の計測を安全な地上で行えば良いが、そのためには配線配管の延長が長くなり、これもコストアップに繋がる。   Furthermore, in the effect confirmation circuit using these verification electrodes, the conductor from the verification electrode or the reinforcing bar to the voltmeter is embedded in the surface layer part of the reinforced concrete structure, so the measurer needs to approach the voltmeter installation position. Since these positions are usually high places, there is a problem that the work may be dangerous. In order to avoid this danger, the effect confirmation circuit may be measured on a safe ground, but for that purpose, the length of the wiring piping becomes longer, which also leads to an increase in cost.

他の従来の鉄筋コンクリート構造体における電気的防食構造及び該電気的防食構造の効果計測方法には、流電陽極方式の場合には犠牲陽極全体から鉄筋全体への電流を、外部電源方式の場合には直流電源装置から鉄筋全体への電流を、効果確認回路に組み込んだ電流計にて計測し、これを対象面積で割ることで各部位に流れる電流量を推定し、効果を推定する方法がある。   In other conventional reinforced concrete structures, the electrical corrosion prevention structure and the method of measuring the effect of the electrical corrosion prevention structure include a current from the entire sacrificial anode to the entire rebar in the case of the galvanic anode method, and an external power supply method. Has a method to estimate the effect by measuring the current from the DC power supply to the entire rebar with an ammeter built into the effect confirmation circuit and dividing this by the target area to estimate the amount of current flowing through each part. .

この場合には、推定値は対象部に流れる平均的な値しか得られないため、場所により劣化状況が異なる場合や、局所的な劣化が進行している場合、陽極の消耗状況等は把握することができない。   In this case, since the estimated value can only be obtained as an average value that flows to the target part, if the deterioration state varies depending on the location, or if local deterioration is progressing, the consumption state of the anode is grasped. I can't.

さらに、一般的なコンクリート埋設型の流電陽極材においては、流電陽極材−配線−鉄筋が全てコンクリート中に埋設されており、防食(腐食抑制)効果の測定自体が行われていないという問題がある。   Furthermore, in a general concrete buried type galvanic anode material, the galvanic anode material-wiring-reinforcing bars are all buried in the concrete, and the corrosion prevention (corrosion suppression) effect itself is not measured. There is.

本発明はこのような従来の問題に鑑み、鉄筋コンクリート構造体の電気的防食において、各陽極材とこれに接近している鉄筋との間に電気的防食のための電位差を的確に持たせることができ、しかも、各陽極材と鉄筋との間の電気的防食効果確認のための電位測定または電流測定が、個別の陽極材とこれに予め対応させた鉄筋との間毎に安価に実施することができて、腐食発生個所の特定が容易に可能となり、更に、電流測定部位が高所であっても、作業者の高所危険作業を伴わずに計測できる鉄筋コンクリート構造体における電気的防食構造及び該電気的防食構造の効果計測方法の提供を目的としてなされたものである。   In view of such a conventional problem, the present invention can accurately provide a potential difference for electrical protection between each anode material and a reinforcing bar approaching it in electrical protection of a reinforced concrete structure. In addition, potential measurement or current measurement for confirming the electrical anticorrosive effect between each anode material and the reinforcing bar should be carried out at a low cost between each individual anode material and the reinforcing bar corresponding to this. In addition, it is possible to easily identify the location where corrosion occurs, and even when the current measurement site is high, the electrical corrosion protection structure in the reinforced concrete structure can be measured without dangerous work at the operator's height The object is to provide a method for measuring the effect of the electrically anticorrosive structure.

上述の如き従来の問題を解決するための本発明の第1の特徴は、鉄筋コンクリート構造体内に埋設した複数の陽極材と、該陽極材と内部鉄筋とを接続した導電材料を備え、前記陽極材と前記内部鉄筋との間に生じた電位差によって前記内部鉄筋の腐食が抑制されるようにした鉄筋コンクリート構造体における電気的防食構造において、前記陽極材と内部鉄筋とを導通させる導電材料の少なくとも一部を前記コンクリート構造体の外面に露出させたことを特徴としてなる鉄筋コンクリート構造体における電気的防食構造にある。   A first feature of the present invention for solving the conventional problems as described above includes a plurality of anode materials embedded in a reinforced concrete structure, and a conductive material connecting the anode materials and internal reinforcing bars, and the anode material At least a part of the conductive material for electrically connecting the anode material and the internal rebar in the electrically anticorrosive structure in the reinforced concrete structure in which corrosion of the internal rebar is suppressed by a potential difference generated between the internal rebar and the internal rebar Is an electrically anticorrosive structure in a reinforced concrete structure, characterized in that is exposed to the outer surface of the concrete structure.

本発明の第2の特徴は前記第1の特徴に加え、前記鉄筋コンクリート構造体の外面の露出させた導電材料が非腐食性導電材料であることにある。   The second feature of the present invention is that, in addition to the first feature, the exposed conductive material on the outer surface of the reinforced concrete structure is a non-corrosive conductive material.

本発明の第3の特徴は前記第1又は第2の特徴に加え、前記陽極材毎に個別の前記導電材料が電気接続され、その各個別の導電材料の少なくとも一部が前記鉄筋コンクリート構造体の表面に露出されていることにある。   According to a third feature of the present invention, in addition to the first or second feature, the individual conductive materials are electrically connected to each anode material, and at least a part of each of the individual conductive materials is the reinforced concrete structure. Being exposed to the surface.

本発明の第4の特徴は、鉄筋コンクリート構造体内に埋設した複数の陽極材を備え、該陽極材と内部鉄筋とを接続した導電材料を備え、前記陽極材と前記内部鉄筋との間に生じた電位差によって前記内部鉄筋の腐食を抑制させるようにした電気的防食構造における効果計測方法であって、前記陽極材と内部鉄筋とを導通させる導電材料の少なくとも一部を前記鉄筋コンクリート構造体の表面に露出させておき、該導電材料の鉄筋コンクリート構造体からの露出部分の電流を、架線電流測定器を使用して測定することにある。   A fourth feature of the present invention includes a plurality of anode materials embedded in a reinforced concrete structure, a conductive material connecting the anode materials and internal reinforcing bars, and is generated between the anode material and the internal reinforcing bars. A method for measuring the effect of an electrical protection structure in which corrosion of the internal rebar is suppressed by a potential difference, wherein at least a part of a conductive material that conducts the anode material and the internal rebar is exposed to the surface of the reinforced concrete structure. In other words, the current of the exposed portion of the conductive material from the reinforced concrete structure is measured using an overhead wire current measuring device.

本発明の第5の特徴は前記第4の特徴に加え、前記鉄筋コンクリート構造体の表面に露出されている導電材料には、非腐食性導電材料を使用することにある。   A fifth feature of the present invention is that, in addition to the fourth feature, a non-corrosive conductive material is used as the conductive material exposed on the surface of the reinforced concrete structure.

本発明の第6の特徴は前記第4又は第5の特徴に加え、前記陽極材毎に個別の前記導電材料を電気接続させ、その各個別の導電材料の少なくとも一部を前記鉄筋コンクリート構造体の表面に露出させることにある。   According to a sixth aspect of the present invention, in addition to the fourth or fifth aspect, the individual conductive materials are electrically connected for each anode material, and at least a part of each individual conductive material is connected to the reinforced concrete structure. It is to be exposed on the surface.

本発明は、前記第1の特徴のように、鉄筋コンクリート構造体内に埋設した複数の陽極材と、該陽極材と内部鉄筋とを接続した導電材料を備え、前記陽極材と前記内部鉄筋との間に生じた電位差によって前記内部鉄筋の腐食が抑制されるようにした鉄筋コンクリート構造体における電気的防食構造において、前記陽極材と内部鉄筋とを導通させる導電材料の少なくとも一部を前記コンクリート構造体の外面に露出させたことにより、導電材料の鉄筋コンクリート構造体から露出している部分に流れている電流値を、架線電流測定器を使用して計測することができる。   As described in the first feature, the present invention includes a plurality of anode materials embedded in a reinforced concrete structure, and a conductive material connecting the anode materials and internal reinforcing bars, and the anode material and the internal reinforcing bars In the electrically anticorrosive structure in the reinforced concrete structure in which the corrosion of the internal rebar is suppressed by the potential difference generated in the outer surface of the concrete structure, at least part of the conductive material that conducts the anode material and the internal rebar Thus, the value of the current flowing in the portion exposed from the reinforced concrete structure of the conductive material can be measured using the overhead wire current measuring instrument.

従って照合電極の設置や、照合電極と鉄筋間の回路に電圧計を常設しておく必要がなく、高架道路のコンクリート床版下面などの高所であっても、作業員が地上から架線電流測定器を計測位置に近づけることによって計測が可能であるため、高所作業が不要となって作業の安全性が高いものとなる。   Therefore, there is no need to install a reference electrode or install a voltmeter permanently in the circuit between the reference electrode and the reinforcing bar, and workers can measure overhead current from the ground even at high places such as under the concrete floor slab of an elevated road. Since the measurement can be performed by bringing the instrument close to the measurement position, the work at a high place is unnecessary and the safety of the work is high.

本発明は、上記第2及び第5の特徴のように、鉄筋コンクリート構造体の外面の露出させた導電材料を非腐食性導電材料としたことにより、防食ないしは腐食抑制効果を確認のための回路を構成する導電材料を鉄筋コンクリート構造体の表面内に埋設しなくても耐久性が保たれ、長期間の効果確認に適応できる。   As described in the second and fifth features, the present invention provides a circuit for confirming the anticorrosion or corrosion inhibition effect by using the conductive material exposed on the outer surface of the reinforced concrete structure as a non-corrosive conductive material. Durability is maintained even if the conductive material to be constructed is not embedded in the surface of the reinforced concrete structure, and it can be adapted for long-term effect confirmation.

本発明は前記第3及び第6の特徴のように、陽極材毎に個別の前記導電材料が電気接続され、その各個別の導電材料の少なくとも一部が前記鉄筋コンクリート構造体の表面に露出されていることにより、内部鉄筋の陽極材近くの位置における防食ないしは腐食抑制効果の確認ができるため、効果が認められないか程度が低い位置の検出が可能となる。そのため、各陽極の消耗具合が判別でき寿命推定が可能となる。   In the present invention, as in the third and sixth features, the individual conductive materials are electrically connected to each anode material, and at least a part of each individual conductive material is exposed on the surface of the reinforced concrete structure. As a result, the anticorrosion or corrosion inhibition effect at a position near the anode material of the internal rebar can be confirmed, so that it is possible to detect a position where the effect is not recognized or low. Therefore, it is possible to determine the degree of consumption of each anode and to estimate the life.

本発明は前記第4の特徴のように、鉄筋コンクリート構造体内に埋設した複数の陽極材を備え、該陽極材と内部鉄筋とを接続した導電材料を備え、前記陽極材と前記内部鉄筋との間に生じた電位差によって前記内部鉄筋の腐食を抑制させるようにした電気的防食構造における効果計測方法であって、前記陽極材と内部鉄筋とを導通させる導電材料の少なくとも一部を前記鉄筋コンクリート構造体の表面に露出させておき、該導電材料の鉄筋コンクリート構造体からの露出部分の電流を、架線電流測定器を使用して測定するようにしたことにより、従来のように照合電極の設置や、照合電極と鉄筋間の回路に電流計を常設しておく必要がなく、高架道路のコンクリート床版下面などの高所であっても、作業員が地上から架線電流測定器を計測位置に近づけることによって計測が可能であるため、高所作業が不要となって作業の安全性が高いものとなる。   As in the fourth feature, the present invention includes a plurality of anode materials embedded in a reinforced concrete structure, a conductive material connecting the anode materials and the internal reinforcing bars, and the anode material and the internal reinforcing bars. A method for measuring the effect of the corrosion prevention structure in which corrosion of the internal rebar is suppressed by a potential difference generated in the reinforced concrete structure, wherein at least a part of the conductive material for electrically connecting the anode material and the internal rebar is provided in the reinforced concrete structure. It is exposed to the surface, and the current of the exposed portion from the reinforced concrete structure of the conductive material is measured using an overhead wire current measuring device, so that the collation electrode can be installed and the collation electrode as in the past. There is no need to install an ammeter permanently in the circuit between the steel bar and the reinforcing bar. Since it is possible to measure by approaching to, it becomes aerial is high work safety becomes unnecessary.

本発明に係る鉄筋コンクリート床版の電気防食構造を、点状陽極を使用した流電陽極方式に実施した一例を示す断面図である。It is sectional drawing which shows an example which implemented the cathodic protection structure of the reinforced concrete floor slab which concerns on this invention to the galvanostatic anode system which uses a point-like anode. 同上の部分底面図である。It is a partial bottom view same as the above. 同上の電気防食構造における効果確認のための流電測定状態を示す斜視図である。It is a perspective view which shows the electric current measurement state for the effect confirmation in an electric corrosion prevention structure same as the above. 同上の電気防食構造における効果確認のための流電測定状態の他の例を示す説明図である。It is explanatory drawing which shows the other example of the electric current measurement state for the effect confirmation in an electric corrosion prevention structure same as the above. 同上の変形例を示す説明図である。It is explanatory drawing which shows the modification same as the above. 本発明に係る鉄筋コンクリート床版の電気防食構造を、線状陽極を使用した流電陽極方式に実施した一例を示す説明図である。It is explanatory drawing which shows an example which implemented the cathodic protection structure of the reinforced concrete floor slab which concerns on this invention to the galvanic anode system which uses a linear anode. 本発明に係る鉄筋コンクリート床版の電気防食構造を、点状陽極を使用した外部電源方式に実施した一例を示す断面図である。It is sectional drawing which shows an example which implemented the cathodic protection structure of the reinforced concrete floor slab which concerns on this invention to the external power supply system which uses a point-like anode.

次に、本発明に係る鉄筋コンクリート構造体における電気的防食構造及び該電気的防食構造の効果計測方法の実施態様を図に示した実施例に基づいて説明する。   Next, an embodiment of the electric corrosion prevention structure and the effect measurement method of the electric corrosion prevention structure in the reinforced concrete structure according to the present invention will be described based on the embodiments shown in the drawings.

図1、図2は、粒電陽極方式の電気的防食構造の一例を示している。図において符号1は鉄筋コンクリート床版等の鉄筋コンクリート構造体であり、2は鉄筋コンクリート構造体1の内部鉄筋、3は陽極材である。   FIG. 1 and FIG. 2 show an example of a grain electrode anode-type electric corrosion prevention structure. In the figure, reference numeral 1 denotes a reinforced concrete structure such as a reinforced concrete floor slab, 2 denotes an internal reinforcing bar of the reinforced concrete structure 1, and 3 denotes an anode material.

陽極材3は、鉄筋コンクリート構造体1の表面に、内部鉄筋2に沿って一定間隔毎にあけた陽極設置孔4内に収容され、該陽極設置孔4内に電解質からなる充填材5によって埋め込まれている。   The anode material 3 is accommodated in the anode installation holes 4 formed at regular intervals along the internal rebar 2 on the surface of the reinforced concrete structure 1, and is embedded in the anode installation holes 4 by a filler 5 made of an electrolyte. ing.

各陽極材3には個別の導電材であるリード線6の一端側が電気接続されている。リード線6は、鉄筋コンクリート構造体1の表面にその一部が露出されており、他端側が内部鉄筋2に導通させた陽極−鉄筋間導電材7に電気接続されている。この陽極−鉄筋間導電材7は、鉄筋コンクリート構造体1表面に形成した溝8内に挿入し、モルタル等の充填材9によって埋設されている。   Each anode material 3 is electrically connected to one end side of a lead wire 6 which is an individual conductive material. A part of the lead wire 6 is exposed on the surface of the reinforced concrete structure 1, and the other end is electrically connected to an anode-rebar conductive material 7 that is electrically connected to the internal rebar 2. The anode-reinforcing bar conductive material 7 is inserted into a groove 8 formed on the surface of the reinforced concrete structure 1, and is buried with a filler 9 such as mortar.

リード線6は鉄筋コンクリート構造体1からの露出部分の少なくとも一部を図 に示すように鉄筋コンクリート構造体1の表面から稍浮き上がらせて配置し、後述するクランプメータの開閉式リング状のセンサー部分内に入り込ませることができるように配置する。尚、リード線6は、防錆被覆電線を使用してもよく、導電性金属材料の外周面を炭素などの耐食導電性材料で被覆したもの又はチタン等の非腐食性導電材料の裸線を使用してもよい。   The lead wire 6 is arranged so that at least a part of the exposed portion from the reinforced concrete structure 1 is raised from the surface of the reinforced concrete structure 1 as shown in the figure, and is placed in an opening-and-closing ring-shaped sensor portion of a clamp meter described later. Arrange it so that it can enter. The lead wire 6 may be a rust-proof coated electric wire, and is made of a conductive metal material whose outer peripheral surface is coated with a corrosion-resistant conductive material such as carbon or a bare wire made of a non-corrosive conductive material such as titanium. May be used.

このように構成される電気的防食構造では、陽極材3と鉄筋1との電位差によってコンクリート内に電流が流れて鉄筋周囲の腐食電流の流れを防止し、これによって鉄筋の腐食が防止或いは抑制される。   In the electrical protection structure constructed in this way, a current flows in the concrete due to the potential difference between the anode material 3 and the reinforcing bar 1 to prevent the flow of corrosion current around the reinforcing bar, thereby preventing or suppressing the corrosion of the reinforcing bar. The

上記した電気的防食構造の防食効果確認は、鉄筋コンクリート構造体1内の内部鉄筋2と陽極材3との間のコンクリート内に電流が流れているか否かを知ることによってなされるが、これは各陽極材3のリード線6に流れている電流の値を測定することによって計測できる。   The above-mentioned anticorrosion effect of the electric anticorrosion structure is confirmed by knowing whether or not an electric current is flowing in the concrete between the internal rebar 2 and the anode material 3 in the reinforced concrete structure 1. It can be measured by measuring the value of the current flowing through the lead wire 6 of the anode material 3.

リード線6内に電流が流れているか否か、或いはどの程度の電流が流れているかは、クランプメータと称されている架線電流測定器10によって測定できる。架線電流測定器10は、図3に示すようにリング状のセンサー部11内に架線を貫通させ半導体のホール効果を利用して架線に流れている電流値を計測するものであり、センサー部11はそのリング状がリバー操作によって開閉できる構造となっており、これを使用してリード線6に流れている電流値を測定することによって、該リード線6に対応した陽極材3と内部鉄筋2との間のコンクリート内の電流値を知ることができる。   Whether or not a current is flowing in the lead wire 6 or how much current is flowing can be measured by an overhead wire current measuring instrument 10 called a clamp meter. The overhead wire current measuring device 10 measures the current value flowing through the overhead wire by using the semiconductor Hall effect by penetrating the overhead wire into the ring-shaped sensor portion 11 as shown in FIG. The ring shape has a structure that can be opened and closed by a river operation, and by using this, the current value flowing through the lead wire 6 is measured, whereby the anode material 3 and the internal rebar 2 corresponding to the lead wire 6 are measured. You can know the current value in the concrete between.

また、上記架線電流測定器10を使用する他、リード線としてチタン等の非腐食性導電材料の裸線を使用する場合、使用に先立って同材の電気抵抗R(Ω/m)を測定しておき、コンクリート表面に露出している同材の適宜間隔にかかる電圧V(V)を直流電圧計にて測定し、防食電流IをI=V/(R×L)より求めることができる。   In addition to using the above-mentioned overhead wire current measuring device 10, when using a bare wire of a non-corrosive conductive material such as titanium as a lead wire, the electrical resistance R (Ω / m) of the same material is measured prior to use. In addition, the voltage V (V) applied to an appropriate interval of the same material exposed on the concrete surface is measured with a DC voltmeter, and the anticorrosion current I can be obtained from I = V / (R × L).

即ち、図4に示すように先端間に適宜間隔を持たせた二本の導電性棒材からなる電流測定用電極12,12を使用し、その電極間に電圧計13を組み込んだ測定装置を用い、電極12,12を間にリード線6に接触させ、その時の電極間の電圧を計測することによってもリード線6に流れている電流値を容易に測定できる。   That is, as shown in FIG. 4, a measuring apparatus using current measuring electrodes 12 and 12 made of two conductive rods with an appropriate distance between the tips and incorporating a voltmeter 13 between the electrodes. The current value flowing through the lead wire 6 can also be easily measured by using the electrodes 12 and 12 in contact with the lead wire 6 and measuring the voltage between the electrodes at that time.

更に、図5に示すように上記測定装置の二本の電流測定用電極12,12を、伸縮可能な支持棒14の先端に取り付け、この支持棒14の手元部分に二本の電流測定用電極12,12間の電圧を計測できる電圧計13を設置すると、ある程度の高所や近接不可能な箇所の遠隔での測定が可能となる。   Further, as shown in FIG. 5, the two current measuring electrodes 12 and 12 of the measuring device are attached to the tip of a support rod 14 which can be expanded and contracted, and two current measuring electrodes are provided at the proximal portion of the support rod 14. If a voltmeter 13 that can measure the voltage between 12 and 12 is installed, it is possible to remotely measure a certain high place or a place where proximity is impossible.

このように各陽極材3毎に電流値を計測することにより、鉄筋のどの部分に腐食が発生しているかをも判別することができ、緻密に防食効果を確認できる。また、各陽極毎の消耗具合を判別でき寿命推定が可能となる。   By measuring the current value for each anode material 3 in this way, it is possible to determine which part of the reinforcing bar is corroded and to confirm the anticorrosion effect precisely. In addition, it is possible to determine the degree of wear for each anode and to estimate the lifetime.

上述した点状陽極方式の他に、線状陽極方式の流電陽極方式においても使用することができる。この場合は、図6に示すように複数本を適宜の配置に設置した線状陽極15に電気接続させたリード線16の一部を鉄筋コンクリート構造体1の表面に露出させておき、そのリード線16の露出部分の電流を前述した架線電流測定器10を使用して計測することによって前述と同様に防食効果が確認できる。   In addition to the above-described point anode method, it can also be used in a galvanic anode method of a linear anode method. In this case, as shown in FIG. 6, a part of the lead wire 16 electrically connected to the linear anode 15 provided in an appropriate arrangement as shown in FIG. 6 is exposed on the surface of the reinforced concrete structure 1, and the lead wire The anticorrosion effect can be confirmed in the same manner as described above by measuring the current of the 16 exposed portions using the overhead wire current measuring device 10 described above.

上述した例は多数の陽極材3を点状に設置した点状陽極方式を利用した流電陽極方式の場合について説明したが、図7に示すように点状陽極方式を利用した外部電源方式においても同様に実施することができる。   In the above-described example, the case of the galvanic anode method using the pointed anode method in which a large number of anode materials 3 are installed in the form of dots has been described. However, in the external power supply method using the pointed anode method as shown in FIG. Can be similarly implemented.

この場合には、直流電源17の一方の電極に鉄筋に電気接続させた鉄筋側導電材18を導通させ、該電源13の他方の電極に各陽極材3のリード線6を分岐させた配置に電気接続した陽極側導電材19を導通させる。そして各リード線6を前述と同様に鉄筋コンクリート構造体1外に露出させておくことにより、その露出部分の電流を図3に示すように架線電流測定器10を使用して計測することによって前述と同様に防食効果が確認できる。   In this case, the rebar-side conductive material 18 electrically connected to the rebar is connected to one electrode of the DC power source 17 and the lead wire 6 of each anode material 3 is branched to the other electrode of the power source 13. The electrically connected anode-side conductive material 19 is conducted. Then, by exposing each lead wire 6 to the outside of the reinforced concrete structure 1 in the same manner as described above, the current of the exposed portion is measured using the overhead wire current measuring device 10 as shown in FIG. Similarly, the anticorrosive effect can be confirmed.

1 鉄筋コンクリート構造体
2 内部鉄筋
3 陽極材
4 陽極設置孔
5 充填材
6 リード線
7 陽極−鉄筋間導電材
8 溝
9 充填材
10 架線電流測定器
11 センサー部
15 線状陽極
16 リード線
17 直流電源
18 鉄筋側導電材
19 陽極側導電材
DESCRIPTION OF SYMBOLS 1 Reinforced concrete structure 2 Internal reinforcing bar 3 Anode material 4 Anode installation hole 5 Filler 6 Lead wire 7 Anode-rebar conductive material 8 Groove 9 Filler 10 Overhead current measuring instrument 11 Sensor unit 15 Linear anode 16 Lead wire 17 DC power supply 18 Reinforcing bar side conductive material 19 Anode side conductive material

Claims (6)

鉄筋コンクリート構造体内に埋設した複数の陽極材と、該陽極材と内部鉄筋とを接続した導電材料を備え、前記陽極材と前記内部鉄筋との間に生じた電位差によって前記内部鉄筋の腐食が抑制されるようにした鉄筋コンクリート構造体における電気的防食構造において、
前記陽極材と内部鉄筋とを導通させる導電材料の少なくとも一部を前記コンクリート構造体の外面に露出させたことを特徴としてなる鉄筋コンクリート構造体における電気的防食構造。
A plurality of anode materials embedded in a reinforced concrete structure, and a conductive material connecting the anode material and the internal reinforcing bars, and corrosion of the internal reinforcing bars is suppressed by a potential difference generated between the anode material and the internal reinforcing bars. In the electric corrosion protection structure in the reinforced concrete structure
An electrically anticorrosive structure in a reinforced concrete structure, characterized in that at least a part of a conductive material for conducting the anode material and the internal rebar is exposed on an outer surface of the concrete structure.
前記鉄筋コンクリート構造体の外面の露出させた導電材料が非腐食性導電材料である請求項1に記載の鉄筋コンクリート構造体における電気的防食構造。   2. The electrically anticorrosive structure in a reinforced concrete structure according to claim 1, wherein the exposed conductive material on the outer surface of the reinforced concrete structure is a non-corrosive conductive material. 前記陽極材毎に個別の前記導電材料が電気接続され、その各個別の導電材料の少なくとも一部が前記鉄筋コンクリート構造体の表面に露出されている請求項1又は2に記載の鉄筋コンクリート構造体における電気的防食構造。   The individual conductive material is electrically connected to each anode material, and at least a part of each individual conductive material is exposed on the surface of the reinforced concrete structure. Anti-corrosion structure. 鉄筋コンクリート構造体内に埋設した複数の陽極材を備え、該陽極材と内部鉄筋とを接続した導電材料を備え、前記陽極材と前記内部鉄筋との間に生じた電位差によって前記内部鉄筋の腐食を抑制させるようにした電気的防食構造における効果計測方法であって、
前記陽極材と内部鉄筋とを導通させる導電材料の少なくとも一部を前記鉄筋コンクリート構造体の表面に露出させておき、該導電材料の鉄筋コンクリート構造体からの露出部分の電流を、架線電流測定器を使用して測定することを特徴とする鉄筋コンクリート構造体における電気的防食構造の効果計測方法。
Provided with a plurality of anode materials embedded in a reinforced concrete structure, and provided with a conductive material connecting the anode material and the internal rebar, and the corrosion of the internal rebar is suppressed by the potential difference generated between the anode material and the internal rebar. It is an effect measurement method in the electrical anticorrosion structure made to do,
At least a part of the conductive material that conducts the anode material and the internal rebar is exposed on the surface of the reinforced concrete structure, and the current of the exposed portion of the conductive material from the reinforced concrete structure is measured using an overhead wire current measuring device. A method for measuring the effect of an electrically anticorrosive structure in a reinforced concrete structure.
前記鉄筋コンクリート構造体の表面に露出されている導電材料には、非腐食性導電材料を使用する請求項4に記載の鉄筋コンクリート構造体における電気的防食構造の効果計測方法。   The method for measuring the effect of an electrically anticorrosive structure in a reinforced concrete structure according to claim 4, wherein a non-corrosive conductive material is used as the conductive material exposed on the surface of the reinforced concrete structure. 前記陽極材毎に個別の前記導電材料を電気接続させ、その各個別の導電材料の少なくとも一部を前記鉄筋コンクリート構造体の表面に露出させる請求項4に記載の鉄筋コンクリート構造体における電気的防食構造の効果計測方法。   The electrically conductive anticorrosive structure in a reinforced concrete structure according to claim 4, wherein the individual conductive materials are electrically connected to each anode material, and at least a part of each individual conductive material is exposed on the surface of the reinforced concrete structure. Effect measurement method.
JP2016068020A 2016-03-30 2016-03-30 Electrical protection structure for reinforced concrete structure and method for measuring effect of the same Pending JP2017179467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016068020A JP2017179467A (en) 2016-03-30 2016-03-30 Electrical protection structure for reinforced concrete structure and method for measuring effect of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016068020A JP2017179467A (en) 2016-03-30 2016-03-30 Electrical protection structure for reinforced concrete structure and method for measuring effect of the same

Publications (1)

Publication Number Publication Date
JP2017179467A true JP2017179467A (en) 2017-10-05

Family

ID=60003755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068020A Pending JP2017179467A (en) 2016-03-30 2016-03-30 Electrical protection structure for reinforced concrete structure and method for measuring effect of the same

Country Status (1)

Country Link
JP (1) JP2017179467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186964A (en) * 2019-04-26 2019-08-30 浙江大学 A kind of device and method for testing the macro electric current of inside concrete reinforcement corrosion
JP2021011614A (en) * 2019-07-08 2021-02-04 学校法人東京理科大学 Electromotive force assist system in galvanic anode type electrocorrosion protection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107088A (en) * 2006-10-23 2008-05-08 Chugoku Electric Power Co Inc:The Test plug
JP2015514872A (en) * 2012-04-17 2015-05-21 ソレタンシュ フレシネSoletanche Freyssinet Galvanic anticorrosion method for reinforced concrete structures
JP2015525832A (en) * 2012-07-19 2015-09-07 ベクター コロージョン テクノロジーズ エルティーディー. Corrosion prevention using sacrificial anode
JP2015219945A (en) * 2014-05-13 2015-12-07 大和電器株式会社 Outlet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107088A (en) * 2006-10-23 2008-05-08 Chugoku Electric Power Co Inc:The Test plug
JP2015514872A (en) * 2012-04-17 2015-05-21 ソレタンシュ フレシネSoletanche Freyssinet Galvanic anticorrosion method for reinforced concrete structures
JP2015525832A (en) * 2012-07-19 2015-09-07 ベクター コロージョン テクノロジーズ エルティーディー. Corrosion prevention using sacrificial anode
JP2015219945A (en) * 2014-05-13 2015-12-07 大和電器株式会社 Outlet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
志水克成, 他2名: "「陽極取付時の海洋鋼構造物の電位変化から考察する電気防食の最適設計」", 土木学会論文集B3(海洋開発), vol. 70, no. 2, JPN6020017480, 2014, pages 540 - 545, ISSN: 0004430476 *
諸橋由治, 他6名: "「各種犠牲陽極材の防食効果の検討」", 土木学会第69回年次学術講演会(平成26年9月)要旨集, vol. V277, JPN6021001904, 2014, pages 453 - 454, ISSN: 0004430477 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186964A (en) * 2019-04-26 2019-08-30 浙江大学 A kind of device and method for testing the macro electric current of inside concrete reinforcement corrosion
CN110186964B (en) * 2019-04-26 2021-05-07 浙江大学 Device and method for testing corrosion macro current of steel bar in concrete
JP2021011614A (en) * 2019-07-08 2021-02-04 学校法人東京理科大学 Electromotive force assist system in galvanic anode type electrocorrosion protection method
JP7083113B2 (en) 2019-07-08 2022-06-10 学校法人東京理科大学 Electromotive force assist system in galvanic anode type electrocorrosion protection method

Similar Documents

Publication Publication Date Title
JP6770046B2 (en) Cathode anticorrosion monitoring probe
JP4767145B2 (en) Cathodic protection system and cathodic protection method by galvanic anode method, pipeline soundness evaluation system and soundness evaluation method
JP5159464B2 (en) Cathodic protection system and cathodic protection method for buried pipeline
JP2020012189A (en) Sacrificial anode structure, apparatus for determining consumed state of sacrificial anode, and determination method
JP4847307B2 (en) Cathodic protection system and cathode protection method
EP2641454B1 (en) Method for protecting electrical poles and galvanized anchors from galvanic corrosion
JP2017179467A (en) Electrical protection structure for reinforced concrete structure and method for measuring effect of the same
EP4089396A1 (en) Monitoring steel support structures for offshore wind turbines
KR101518182B1 (en) A electrode unit for measuring anticorrosion potential of underground metal structure
JP5231899B2 (en) Cathodic protection method for pipelines
JP4601155B2 (en) Anticorrosion monitoring method
KR100717597B1 (en) Method detection system
JP5345795B2 (en) Cathodic protection system, cathodic protection method, and galvanic anode generation current stabilizer
JP4978861B2 (en) Electrocorrosion protection method for existing PC girder ends
Leeds et al. Cathodic protection
JP4747084B2 (en) Cathodic protection management method and cathode protection management system
RU2609121C2 (en) Method of underground structure steel section protection against electrochemical corrosion in aggressive environment
Zakowski et al. Protection of bridges against stray current corrosion
Dube Effectiveness of impressed current cathodic protection system on underground steel Engen refinery transfer lines system
Bolen et al. Corrosion Protection of Ductile Iron Pipe for a Large Diameter Transmission Main Project
CN103210700B (en) For the method protecting electric pole and zinc-plated anchoring piece to avoid galvanic corrosion
JP2009287107A (en) Electrolytic corrosion protection device
JP5014247B2 (en) Potential measuring electrode and potential measuring method
Zamanzadeh et al. Galvanized steel pole and lattice tower corrosion assessment and corrosion mitigation
KR200270471Y1 (en) Device for detecting current through anti-corroded object in an electric anti-corrosion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210127