JP2017165594A - Alumina cement having long term stability, method for producing the same, and unshaped refractory using the same - Google Patents
Alumina cement having long term stability, method for producing the same, and unshaped refractory using the same Download PDFInfo
- Publication number
- JP2017165594A JP2017165594A JP2016049429A JP2016049429A JP2017165594A JP 2017165594 A JP2017165594 A JP 2017165594A JP 2016049429 A JP2016049429 A JP 2016049429A JP 2016049429 A JP2016049429 A JP 2016049429A JP 2017165594 A JP2017165594 A JP 2017165594A
- Authority
- JP
- Japan
- Prior art keywords
- alumina cement
- same
- alumina
- refractory
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 239000004568 cement Substances 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 230000007774 longterm Effects 0.000 title abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000010276 construction Methods 0.000 claims description 15
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims description 8
- CGZZMOTZOONQIA-UHFFFAOYSA-N cycloheptanone Chemical compound O=C1CCCCCC1 CGZZMOTZOONQIA-UHFFFAOYSA-N 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 abstract description 24
- 238000002156 mixing Methods 0.000 abstract description 13
- 238000011049 filling Methods 0.000 abstract description 6
- 230000020169 heat generation Effects 0.000 abstract description 5
- 239000007788 liquid Substances 0.000 abstract description 5
- 230000007547 defect Effects 0.000 abstract 1
- 230000006866 deterioration Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 16
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 15
- 239000000126 substance Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011819 refractory material Substances 0.000 description 8
- 239000000395 magnesium oxide Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- 230000001788 irregular Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid group Chemical group C(CCCCC(=O)O)(=O)O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 229940057995 liquid paraffin Drugs 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- 229910001570 bauxite Inorganic materials 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 235000012255 calcium oxide Nutrition 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 229910021487 silica fume Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229910052849 andalusite Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- -1 rholite Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052851 sillimanite Inorganic materials 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Ceramic Products (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、鉄鋼関連の炉材等の耐火物分野、化学プラントのライニング等の耐食性が要求される分野、及び土木建築分野等への利用が可能なアルミナセメント及びそれを用いた不定形耐火物に関するものであり、特に長期安定性を有するアルミナセメント、その製造方法、それを用いた不定形耐火物に関する。 The present invention relates to an alumina cement that can be used in the field of refractories such as steel-related furnace materials, the field where corrosion resistance is required, such as lining of chemical plants, and the field of civil engineering and construction, and an amorphous refractory using the same. In particular, the present invention relates to an alumina cement having long-term stability, a method for producing the same, and an amorphous refractory using the same.
アルミナセメントの大きな利用分野の一つである耐火物分野において、従来の定形耐火物による築炉工法は、近年の機械化による施工の省力化のため、また、補修の省資源化のため、不定形耐火物を使用した築炉方法へと変換している。不定形耐火物を使用した築炉方法において、圧送ポンプを利用した大量施工の必要性が生じてきている。 In the field of refractories, which is one of the major fields of use of alumina cement, the conventional furnace construction method using regular refractories is indefinite to save labor for construction by mechanization in recent years and to save resources for repairs. It has been converted to a furnace construction method using refractories. In the construction method using an irregular refractory, there is a need for mass construction using a pressure pump.
一方、不定形耐火物の施工方法の一つとして、アルミナセメント、耐火骨材、及び水を混合した不定形耐火物用の材料を型枠へ流し込む施工方法が行なわれている。しかし、不定形耐火物用材料の流し込みの際、流動性を高め充填性を向上させるために、棒状バイブレーター等の加振機を使用して振動を加える加振作業を行っても、充填不良となる場合があった。 On the other hand, as one construction method for the amorphous refractory, a construction method is performed in which a material for an amorphous refractory mixed with alumina cement, refractory aggregate, and water is poured into a mold. However, in order to improve the fluidity and the filling property when casting the material for the irregular refractory material, even if the vibration is applied using a vibrator such as a rod-like vibrator, There was a case.
また、不定形耐火物の流し込み施工後の施工体の強度が低い場合があり、型枠を外した後、施工体が崩壊する危険性を有していた。キャスタブル構成原料の中で、流し込み施工時の流動性、硬化特性、脱枠時の強度発現性に大きく影響を与えるのは、アルミナセメントである。 Moreover, the strength of the construction body after pouring construction of the irregular refractory may be low, and the construction body has a risk of collapsing after removing the formwork. Among the castable constituent materials, alumina cement greatly affects the fluidity at the time of pouring construction, the curing characteristics, and the strength development at the time of deframement.
アルミナセメントは、貯蔵中にも空気中の湿分を吸収し、極軽微な水和反応を起こし、同時に空気中のCO2を吸引する。アルミナセメントの風化現象である。アルミナセメントは風化により、同一練り水量であれば、流動性が低下し、発熱・硬化が遅くなり、且つ、強度も低下する。 Alumina cement absorbs moisture in the air during storage, causes a very slight hydration reaction, and simultaneously sucks CO 2 in the air. This is a weathering phenomenon of alumina cement. Due to weathering, if the amount of kneaded water is the same, the alumina cement is less fluid, heat generation / hardening is slow, and strength is also reduced.
このアルミナセメントの風化を防止する方法として、種々検討されてきた。しかし、包装材の厚みアップ、包装体構成枚数の増加、内袋のビニールの厚みアップ、塩化ビニリデン等の袋にパックすること等、空気との接触を極力遮断する方法では、充分な効果が得られなかった。貯蔵場所の通風を少なくするなど設備的な防止方法が主で、良好な風化防止策が望まれていた。 Various methods have been studied as a method for preventing weathering of this alumina cement. However, methods that cut off contact with air as much as possible, such as increasing the thickness of packaging materials, increasing the number of packages, increasing the thickness of vinyl inside bags, and packing in bags of vinylidene chloride, etc., have sufficient effects. I couldn't. Major preventive measures such as reducing ventilation in the storage area were desirable, and good weathering prevention measures were desired.
特許文献1では、脂肪酸類をアルミナセメントに含有させることにより、風化を防ぎ、長期安定性を有するアルミナセメント及びそれを用いた不定形耐火物を提供している。また、特許文献2では、シリコーン、パラフィン、水溶性ポリマー及び脂肪酸類等の撥水剤の蒸気雰囲気中で、アルミナセメントを処理する方法が提案されている。 Patent Document 1 provides an alumina cement having a long-term stability by containing fatty acids in an alumina cement, and an amorphous refractory using the same. Patent Document 2 proposes a method of treating alumina cement in a steam atmosphere of a water repellent such as silicone, paraffin, water-soluble polymer and fatty acids.
特許文献1に示される脂肪酸類、或いは特許文献2に示される撥水剤をアルミナセメントに処理することで、風化を防ぎ、長期安定性を有するアルミナ組成物を提供することが可能となる。しかし、これらの処理剤はアルミナセメントの表面に物理的に付着しているに過ぎないため、輸送等でアルミナセメント同士による摩擦によって、容易に剥離し、充分な風化防止の効果が得られない場合があった。 By treating the fatty acid shown in Patent Document 1 or the water repellent shown in Patent Document 2 with alumina cement, it becomes possible to provide an alumina composition that prevents weathering and has long-term stability. However, since these treatment agents are only physically attached to the surface of the alumina cement, they can be easily peeled off by friction between the alumina cement during transportation, etc., and sufficient weathering prevention effects cannot be obtained. was there.
一方、特許文献3では、アジピン酸等の少なくとも2個の親水性官能基と1個の疎水性鎖を有する有機化合物をセメントに含有させることにより、親水性官能基がセメント中に存在する金属陽イオンと反応させることで、水の吸収速度を遅延させる効果が得られている。しかし、特許文献3で提案されているアジピン酸等の処理剤の融点がいずれも100℃以上の高温であり、充分な風化防止効果を得るためには、140℃〜170℃に加熱した状態で処理する必要があり、大量に処理するためには設備的に大きなコストアップになるという問題があった。 On the other hand, in Patent Document 3, an organic compound having at least two hydrophilic functional groups such as adipic acid and one hydrophobic chain is contained in the cement, so that the metal cation in which the hydrophilic functional group is present in the cement is contained. By reacting with ions, the effect of delaying the water absorption rate is obtained. However, the melting points of the treatment agents such as adipic acid proposed in Patent Document 3 are all at a high temperature of 100 ° C. or higher, and in order to obtain a sufficient weathering prevention effect, they are heated to 140 ° C. to 170 ° C. There is a problem that it is necessary to process, and in order to process a large amount, the cost increases in terms of equipment.
本発明者は、上記課題を解消すべく、鋭意検討した結果、常温で液体であってアルミナセメント表面に強固な結合を形成する処理剤を選定することにより、長期安定性を有するアルミナセメント及びそれを用いた不定形耐火物、長期安定性を有するアルミナセメントの低コスト製造方法に関する知見を得て、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has selected a treatment agent that is liquid at room temperature and forms a strong bond on the surface of the alumina cement. The present invention has been completed by obtaining knowledge about a low-cost manufacturing method of an amorphous refractory material using alumina and an alumina cement having long-term stability.
即ち、本発明は、長期安定性を有するアルミナセメント及びそれを用いた不定形耐火物であり、シクロアルカノンを表面に被覆したアルミナセメント及びそれを用いた不定形耐火物である。好ましくは、前記シクロアルカノンが、シクロペンタノン、シクロヘキサノン、シクロヘプタノンから選ばれる少なくとも一種以上であることを特徴とするアルミナセメント及びそれを用いた不定形耐火物である。また、本発明は、前記シクロアルカノンをアルミナセメントと混合または混合粉砕することを特徴とするアルミナセメントの製造方法である。 That is, the present invention is an alumina cement having long-term stability and an amorphous refractory using the same, and an alumina cement having a surface coated with cycloalkanone and an amorphous refractory using the same. Preferably, the cycloalkanone is at least one selected from cyclopentanone, cyclohexanone, and cycloheptanone, and an alumina cement and an amorphous refractory using the same. The present invention is also a method for producing an alumina cement, characterized in that the cycloalkanone is mixed or mixed and ground with an alumina cement.
本発明より、常温で液体であってアルミナセメント表面に強固な結合を形成する処理剤としてシクロアルカノンを選定することにより、長期安定性を有し、施工時に充填不良を起こしにくい、アルミナセメント及びそれを用いた不定形耐火物、不定形耐火物の低コスト製造方法を提供することが可能となる。 From the present invention, by selecting cycloalkanone as a treatment agent that is liquid at normal temperature and forms a strong bond on the surface of the alumina cement, it has long-term stability and is unlikely to cause poor filling during construction. It becomes possible to provide a low-cost manufacturing method of an amorphous refractory and an amorphous refractory using the same.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
ここで、アルミナセメントとは、アルミナ原料とカルシア原料等を、混合若しくは混合粉砕し、又は、一部混合後、さらに混合粉砕して、所定の成分割合になるように配合し、1,300〜1,800℃の温度で溶融及び/又は焼成して得られるクリンカーを、粉砕機によって粉砕して製造されるものである。アルミナ原料としては、赤ボーキサイトなどの天然原料をバイヤープロセスなどの精製法により精製して得られた高純度アルミナや、ボーキサイト等が用いられ、カルシア原料としては石灰石や生石灰等が用いられる。 Here, the alumina cement is an alumina raw material and calcia raw material, etc., mixed or mixed and pulverized, or further mixed and pulverized after partial mixing, and blended so as to have a predetermined component ratio, 1,300 to 1,800 ° C. The clinker obtained by melting and / or firing at a temperature of 1 is pulverized by a pulverizer. As the alumina raw material, high-purity alumina obtained by refining a natural raw material such as red bauxite by a purification method such as a buyer process, bauxite, or the like is used, and limestone, quick lime, or the like is used as the calcia raw material.
溶融法で製造する場合は、電気炉、反射炉、縦型炉、及び平炉等の設備で、また、焼成法で製造する場合は、シャトルキルンやロータリーキルンなどの設備が用いられる。前記クリンカーの粉砕においては、通常の粉塊物の微粉砕用に使用される、ローラーミル、ジェットミル、チューブミル、ボールミル、及び振動ミルなどの粉砕機が使用される。 When manufacturing by a melting method, equipment such as an electric furnace, a reflection furnace, a vertical furnace, and a flat furnace, and when manufacturing by a firing method, equipment such as a shuttle kiln or a rotary kiln is used. In the pulverization of the clinker, pulverizers such as a roller mill, a jet mill, a tube mill, a ball mill, and a vibration mill that are used for fine pulverization of a normal powder lump are used.
本発明にかかるシクロアルカノンとは環骨格を構成するケトンである。本発明において、アルミナセメントと処理剤としてのシクロアルカノンを併用するが、好ましくは炭素数5〜7のシクロアルカノンであり、具体例してはシクロペンタノン、シクロヘキサノン、シクロヘプタノンから選ばれる少なくとも一種以上のシクロアルカノンが挙げられる。 The cycloalkanone according to the present invention is a ketone constituting a ring skeleton. In the present invention, alumina cement and a cycloalkanone as a treating agent are used in combination, preferably a cycloalkanone having 5 to 7 carbon atoms, and specific examples are selected from cyclopentanone, cyclohexanone, and cycloheptanone. There may be mentioned at least one or more cycloalkanones.
特にこれら炭素数5〜7のシクロアルカノンは、いずれも融点が0℃以下であり常温で液体であることから、アルミナセメントへの混合・被覆処理において、常温での混合または混合粉砕で十分風化防止の効果が得られ、処理時のコスト低減を図ることが可能となる。また、これら炭素数5〜7のシクロアルカノンは、いずれも沸点が100℃以上であり、比較的揮発しにくく、通常使用されるビニール等の包装材で封止することで、アルミナセメントから揮発することなく、風化防止の効果が維持される。 In particular, since these cycloalkanones having 5 to 7 carbon atoms have a melting point of 0 ° C. or less and are liquid at room temperature, they are sufficiently weathered by mixing or pulverizing at room temperature in the mixing and coating treatment of alumina cement. The effect of prevention can be obtained, and the cost during processing can be reduced. In addition, these cycloalkanones having 5 to 7 carbon atoms have a boiling point of 100 ° C. or higher and are relatively difficult to volatilize, and are volatilized from alumina cement by sealing with a packaging material such as vinyl that is normally used. The effect of preventing weathering is maintained.
また、これらケト型のシクロアルカノンは、ケト−エノール互変異性体を持つが、特にシクロアルカノンのような環状化合物はエノール化しやすく、アルミナセメントと化学吸着しやすいと考えられる。更に、環状構造を持つシクロアルカノンは立体障害が小さく、アルミナセメントへの化学活性が高いことが考えられる。また、同じく親水性官能基を持つフェノールと比較して、炭素数5〜7のシクロアルカノンは人体に対する有害性が低く、取り扱いにおいて健康障害を引き起こす可能性は低い。 In addition, these keto-type cycloalkanones have keto-enol tautomers, but cyclic compounds such as cycloalkanones are likely to enolize easily and chemisorb with alumina cement. Furthermore, it is considered that cycloalkanone having a cyclic structure has small steric hindrance and high chemical activity on alumina cement. Further, compared with phenol having the same hydrophilic functional group, the cycloalkanone having 5 to 7 carbon atoms is less harmful to the human body and is less likely to cause health problems in handling.
本発明に使用する処理剤であるシクロアルカノンの使用量は、アルミナセメント100質量部に対し、0.001〜5質量部の範囲であることが好ましく、0.01〜2質量部がより好ましい。0.001質量部未満では、その効果が乏しい。5質量部を超えると、アルミナセメントの水和反応の遅れが著しくなるため、好ましくない。 The amount of cycloalkanone that is a treatment agent used in the present invention is preferably in the range of 0.001 to 5 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the alumina cement. . If it is less than 0.001 part by mass, the effect is poor. If it exceeds 5 parts by mass, the delay of the hydration reaction of the alumina cement becomes significant, which is not preferable.
本発明にかかるアルミナセメントの製造方法としては、アルミナセメントと処理剤を混合する方法、アルミナセメントと処理剤を混合粉砕する方法がある。 As a method for producing an alumina cement according to the present invention, there are a method of mixing alumina cement and a treating agent, and a method of mixing and grinding alumina cement and a treating agent.
アルミナセメントと処理剤を混合する方法としては、特に限定されるものでは無い。各材料を所定の割合になるように配合し、V型ブレンダー、コーンブレンダー、ナウターミキサー、パン型ミキサー及びオムニミキサー等の混合機を用いて、均一に混合可能である。混合時間は、特に限定されるものでは無く、混合機により最適値はあるが、5分以上が好ましく、15分以上がより好ましい。混合時間の上限の指定は無い。 The method for mixing the alumina cement and the treatment agent is not particularly limited. Each material is blended so as to have a predetermined ratio, and can be uniformly mixed using a mixer such as a V-type blender, a cone blender, a nauter mixer, a pan-type mixer, and an omni mixer. The mixing time is not particularly limited, and has an optimum value depending on the mixer, but is preferably 5 minutes or more, and more preferably 15 minutes or more. There is no upper limit for the mixing time.
アルミナセメントと処理剤を混合粉砕する方法としては、事前に混合または粉砕機に計量した材料を個々に入れ込み、粉砕機内部で混合する方法等がある。使用する粉砕機としては、限定されるものでは無いが、ボールミル、振動ミル、タワーミル、ローラーミル、ジェットミル等の粉砕機により得られる。また、粉砕処理時のフィード量としては、特に限定されるものでは無いが、0.05〜20t/hrが好ましく、0.5〜5t/hrがより好ましい。 As a method of mixing and pulverizing the alumina cement and the treating agent, there is a method in which materials previously mixed or weighed into a pulverizer are individually put and mixed inside the pulverizer. Although it does not limit as a grinder to be used, it can obtain by grinders, such as a ball mill, a vibration mill, a tower mill, a roller mill, a jet mill. Further, the feed amount at the time of pulverization is not particularly limited, but is preferably 0.05 to 20 t / hr, and more preferably 0.5 to 5 t / hr.
本発明の不定形耐火物の耐火骨材としては、通常、不定形耐火物に使用されている耐火骨材が使用可能であって、具体的には、溶融マグネシア、焼結マグネシア、天然マグネシア、及び軽焼マグネシア等のマグネシア、溶融マグネシアスピネルや焼結マグネシアスピネルなどのマグネシアスピネル、溶融アルミナ、焼結アルミナ、軽焼アルミナ、及び易焼結アルミナ等のアルミナ、シリカフューム、コロイダルシリカ、軽焼アルミナ、及び易焼結アルミナ等の超微粉、その他、溶融シリカ、焼成ムライト、酸化クロム、ボーキサイト、アンダルサイト、シリマナイト、シャモット、ケイ石、ロー石、粘土、ジルコン、ジルコニア、ドロマイト、パーライト、バーミキュライト、煉瓦屑、陶器屑、窒化珪素、窒化ホウ素、炭化珪素、及び窒化珪素鉄等の使用が可能である。 As the refractory aggregate of the amorphous refractory of the present invention, the refractory aggregate usually used for the amorphous refractory can be used. Specifically, molten magnesia, sintered magnesia, natural magnesia, And magnesia such as light calcined magnesia, magnesia spinel such as fused magnesia spinel and sintered magnesia spinel, alumina such as fused alumina, sintered alumina, light calcined alumina, and easily sintered alumina, silica fume, colloidal silica, light calcined alumina, Ultra fine powder such as easily sintered alumina, etc., fused silica, calcined mullite, chromium oxide, bauxite, andalusite, sillimanite, chamotte, quartzite, rholite, clay, zircon, zirconia, dolomite, perlite, vermiculite, brick waste , Ceramic scrap, silicon nitride, boron nitride, silicon carbide, and silicon nitride The use of iron, etc. is possible.
耐火骨材の使用量は、アルミナセメントと耐火骨材からなる不定形耐火物100質量部中、耐火骨材80〜99質量部が好ましく、90〜97質量部がより好ましい。耐火骨材が80質量部未満では、充分な耐火性が得られないおそれがあり、耐火骨材が99質量部を超えると耐火骨材の接着が弱くなり、硬化不良や崩落などが発生するおそれがある。 The amount of the refractory aggregate used is preferably 80 to 99 parts by mass and more preferably 90 to 97 parts by mass in 100 parts by mass of the amorphous refractory made of alumina cement and refractory aggregate. If the refractory aggregate is less than 80 parts by mass, sufficient fire resistance may not be obtained. If the refractory aggregate exceeds 99 parts by mass, the adhesion of the refractory aggregate is weakened, and there is a risk of poor curing or collapse. There is.
本発明に使用される不定形耐火物の製造方法は、特に限定されるものでは無いが、通常の不定形耐火物の製造方法に準じ、各構成原料を所定の割合になるように配合し、V型ブレンダー、コーンブレンダー、ナウターミキサー、パン型ミキサー、及びオムニミキサー等の混合機を用いて均一混合する方法が可能である。 The method for producing the amorphous refractory used in the present invention is not particularly limited, but in accordance with the usual method for producing an irregular refractory, each constituent raw material is blended in a predetermined ratio, A uniform mixing method using a mixer such as a V-type blender, a cone blender, a Nauta mixer, a pan-type mixer, and an omni mixer is possible.
以下、実施例に基づき本発明をさらに説明する。
[実施例1〜4]
アルミナセメント100質量部に対して表1に示す処理剤を計量後、オムニミキサーにて20分間混合した。次に一般紙袋(最外装から、クラフト→クラフト→クラフト→ラミコート)に25kg充填、シール後、40℃×80%RHの恒温恒湿室に24時間保管した。保管後のアルミナセメントと、表2に示す所定量の耐火骨材イ、ロ、ハ、ニ、ホ、ヘ、ト、及び添加剤A、Bを計量し、V型ブレンダーで15分間混合しキャスタブルとした。これらキャスタブルのペーストフロー値の結果を表1に示す。
Hereinafter, the present invention will be further described based on examples.
[Examples 1 to 4]
After treating the treatment agent shown in Table 1 with respect to 100 parts by mass of the alumina cement, it was mixed for 20 minutes by an omni mixer. Next, 25 kg of ordinary paper bags (from the outermost package, craft → craft → craft → lamicoat) were filled and sealed, and then stored in a constant temperature and humidity chamber of 40 ° C. × 80% RH for 24 hours. Weigh the alumina cement after storage and the specified amount of refractory aggregates I, B, C, D, E, F, G and Additives A and B shown in Table 2 and mix for 15 minutes in a V-type blender. It was. Table 1 shows the results of paste flow values of these castables.
<使用材料>
アルミナセメント:ハイアルミナセメント(デンカ製)
実施例1で使用した処理剤:シクロペンタノン(和光純薬工業製)
実施例2で使用した処理剤:シクロヘキサノン(和光純薬工業製)
実施例3で使用した処理剤:シクロヘプタノン(和光純薬工業製)
実施例4で使用した処理剤:シクロペンタノン(和光純薬工業製)+流動パラフィン(和光純薬工業製)
耐火骨材イ:焼結アルミナ、粒度6〜14mesh(モラルコ製T−60)
耐火骨材ロ:焼結アルミナ、粒度14〜28mesh(モラルコ製T−60)
耐火骨材ハ:焼結アルミナ、粒度28〜48mesh(モラルコ製T−60)
耐火骨材ニ:焼結アルミナ、粒度〜48mesh(モラルコ製T−60)
耐火骨材ホ:微粉アルミナ(住友化学製AM21)
耐火骨材ヘ:超微粉アルミナ(アルコア製A161SG)
耐火骨材ト:シリカヒューム(エルケム製971U)
添加剤A(分散剤):トリポリりん酸ナトリウム(和光純薬工業製)
添加剤B(硬化遅延剤):ホウ酸(和光純薬工業製)
<Materials used>
Alumina cement: High alumina cement (Denka)
Treatment agent used in Example 1: Cyclopentanone (manufactured by Wako Pure Chemical Industries)
Treatment agent used in Example 2: Cyclohexanone (manufactured by Wako Pure Chemical Industries)
Treatment agent used in Example 3: Cycloheptanone (manufactured by Wako Pure Chemical Industries)
Treatment agent used in Example 4: cyclopentanone (manufactured by Wako Pure Chemical Industries) + liquid paraffin (manufactured by Wako Pure Chemical Industries)
Refractory aggregate a: Sintered alumina, particle size 6-14 mesh (Malco T-60)
Refractory aggregate b: sintered alumina, particle size 14-28 mesh (M-60 Morocco T-60)
Refractory aggregate C: sintered alumina, particle size 28-48 mesh (M-60 Morocco T-60)
Refractory aggregate D: Sintered alumina, particle size ~ 48 mesh (Moralco T-60)
Refractory aggregate E: Fine alumina (Sumitomo Chemical AM21)
Refractory aggregate: Ultra fine alumina (Alcoa A161SG)
Refractory aggregate: Silica fume (971U made by Elchem)
Additive A (dispersant): sodium tripolyphosphate (Wako Pure Chemical Industries)
Additive B (Curing retarder): Boric acid (Wako Pure Chemical Industries)
<ペーストフロー測定方法>
測定は、20℃×80%RHの恒温恒湿室にて実施。質量比で水/キャスタブル比0.058で、JISR2521に準じて測定。フローテーブル中央の所定の位置に置いたフローコーンにペーストを詰め、表面を平滑にする。次にフローコーンを上方に取り去り、ペーストの広がった直径をペーストが広がった最大径とそれに直角の方向とをノギスで測定し、その平均値をmmで表示。
<Paste flow measurement method>
The measurement was carried out in a constant temperature and humidity chamber of 20 ° C x 80% RH. Measured according to JIS R2521, with a water / castable ratio of 0.058 in terms of mass ratio. The paste is filled in a flow cone placed at a predetermined position in the center of the flow table, and the surface is smoothed. Next, the flow cone is removed upward, and the maximum spread diameter of the paste and the direction perpendicular to it are measured with a caliper, and the average value is displayed in mm.
[比較例1〜3]
処理剤による混合処理を行っていないアルミナセメント、及びシクロヘキサン、又は流動パラフィンを処理剤として、実施例1〜4と同様の処理を行ったアルミナセメントについて、実施例1〜4と同様の条件で恒温恒湿室に24時間保管後、実施例1〜4と同様のキャスタブルのペーストフロー値を測定した結果を表1に示す。
[Comparative Examples 1-3]
Alumina cement that has not been subjected to the mixing treatment with the treating agent, and alumina cement that has been treated in the same manner as in Examples 1 to 4 using cyclohexane or liquid paraffin as the treating agent, is maintained at the same temperature as in Examples 1 to 4. Table 1 shows the results of measurement of the castable paste flow values similar to those of Examples 1 to 4 after storage in a constant humidity chamber for 24 hours.
<使用材料>
比較例2で使用した処理剤:シクロヘキサン(和光純薬工業製)
比較例3で使用した処理剤:流動パラフィン(和光純薬工業製)
<Materials used>
Treatment agent used in Comparative Example 2: Cyclohexane (manufactured by Wako Pure Chemical Industries)
Treatment agent used in Comparative Example 3: Liquid paraffin (manufactured by Wako Pure Chemical Industries)
表1の結果より、比較例1〜3と比較して、実施例1〜4のペーストフロー値の低下が少ないことが分かり、シクロアルカノンを処理剤として処理することにより、吸湿抑制の効果が得られ、ペーストフロー値が改善されていることが確認できた。不定形耐火物用材料の流し込みの際の流動性が高く、充填不良防止の効果得られる。 From the results of Table 1, it can be seen that there is little decrease in the paste flow values of Examples 1 to 4 compared to Comparative Examples 1 to 3, and by treating cycloalkanone as a treatment agent, the effect of moisture absorption suppression is achieved. It was confirmed that the paste flow value was improved. High fluidity when pouring the material for the amorphous refractory, and the effect of preventing poor filling can be obtained.
[実施例5〜8]
実施例1〜4と同様の処理をおこなったアルミナセメントを、実施例1〜4と同様の条件で恒温恒湿室に24時間保管後、表2に示す所定量の耐火骨材イ、ロ、ハ、ニ、ホ、ヘ、ト、及び添加剤A、Bを計量し、V型ブレンダーで15分間混合しキャスタブルとした。これらキャスタブルを用いて不定形耐火物を作製したときの硬化時間、発熱時間、24時間養生強度(圧縮強度)の結果を表3に示す。
[Examples 5 to 8]
After the alumina cement subjected to the same treatment as in Examples 1 to 4 is stored in a constant temperature and humidity chamber for 24 hours under the same conditions as in Examples 1 to 4, predetermined amounts of the refractory aggregates i, b, C, D, E, F, G, and Additives A and B were weighed and mixed in a V-type blender for 15 minutes to make a castable. Table 3 shows the results of curing time, heat generation time, and 24-hour curing strength (compressive strength) when an amorphous refractory was produced using these castables.
<硬化時間>
測定は、20℃×80%RHの恒温恒湿室にて実施。質量比で水/キャスタブル比0.058で、実施例1〜4と同様に練り混ぜたペーストを放置した際の、指触し混練物が凹まない状態までの時間を測定。
<Curing time>
The measurement was carried out in a constant temperature and humidity chamber of 20 ° C x 80% RH. When the paste kneaded in the same manner as in Examples 1 to 4 with a water / castable ratio of 0.058 in mass ratio was measured, the time until the kneaded product did not dent when touched with a finger was measured.
<発熱時間>
硬化時間測定と同様に作製したペーストを、ポリビーカーに入れ、更に断熱容器に入れ、測温抵抗体を差し込み、記録計により発熱曲線を測定し、混錬を開始してから発熱曲線がピークに達するまでの時間を測定。
<Fever time>
Put the paste prepared in the same way as the curing time measurement into a poly beaker, put it in a heat insulating container, insert a resistance temperature detector, measure the exothermic curve with a recorder, and start the kneading and then the exothermic curve will peak. Measure the time to reach.
<24時間養生強度>
硬化時間測定と同様に作製したペーストを用いて調製した不定形耐火物を4×4×16cmの型枠に突き棒でスタンピングしながら打設し、表面をセメントナイフで平らに整えた後、24時間養生後(20℃)の圧縮強度を測定。
<24-hour curing strength>
An amorphous refractory prepared using a paste prepared in the same manner as the measurement of the curing time was placed on a 4 × 4 × 16 cm mold with stamping with a stick, and the surface was flattened with a cement knife. Measure the compressive strength after time curing (20 ° C).
[比較例4〜6]
比較例1〜3と同様に処理剤による混合処理を行っていないアルミナセメント、及びシクロヘキサン、又は流動パラフィンを処理剤として、実施例1〜4と同様の処理を行ったアルミナセメントについて、実施例1〜4と同様の条件で恒温恒湿室に24時間保管後、これらキャスタブルを用いて実施例5〜8と同様の不定形耐火物を作製したときの硬化時間、発熱時間、24時間養生強度(圧縮強度)の結果を表3に示す。
[Comparative Examples 4 to 6]
Example 1 for alumina cement not subjected to the mixing treatment with the treating agent as in Comparative Examples 1 to 3, and alumina cement subjected to the same treatment as in Examples 1 to 4 using cyclohexane or liquid paraffin as the treating agent After curing in a constant temperature and humidity room for 24 hours under the same conditions as in ~ 4, using these castables, the curing time, heat generation time, and 24-hour curing strength when producing an amorphous refractory similar to those in Examples 5-8 ( The results of compression strength) are shown in Table 3.
表3の結果より、比較例4〜6と比較して、実施例5〜8の不定形耐火物作製における、硬化時間、及び発熱時間が長く、可使時間として有利であり、充填不良防止の効果得られる。また、実施例5〜8の不定形耐火物の強度についても、比較例4〜6と同等以上であり、アルミナセメントにシクロアルカノンを処理したことによる強度上の問題は発生していない。 From the results in Table 3, compared with Comparative Examples 4 to 6, the curing time and the heat generation time are longer in the preparation of the irregular refractories of Examples 5 to 8, which is advantageous as the pot life, and prevents filling failure. The effect is obtained. Further, the strengths of the amorphous refractories of Examples 5 to 8 are also equal to or higher than those of Comparative Examples 4 to 6, and there is no problem in strength due to the treatment of cycloalkanone with alumina cement.
常温で液体であってアルミナセメント表面に強固な結合を形成するシクロアルカノンを処理剤として選定することにより、長期安定性を有し、施工時に充填不良を起こしにくい、アルミナセメント及びそれを用いた不定形耐火物、不定形耐火物の低コスト製造方法を提供することが可能となる。
By using cycloalkanone that is liquid at normal temperature and forms a strong bond on the surface of the alumina cement as the treating agent, it has alumina cement that has long-term stability and is unlikely to cause poor filling during construction. It becomes possible to provide a low-cost manufacturing method for an amorphous refractory and an amorphous refractory.
Claims (4)
A method for producing an amorphous refractory produced by a construction method in which at least a refractory aggregate and an amorphous refractory constituent material comprising the alumina cement according to claim 1 or 2 is mixed with water and poured into a mold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016049429A JP2017165594A (en) | 2016-03-14 | 2016-03-14 | Alumina cement having long term stability, method for producing the same, and unshaped refractory using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016049429A JP2017165594A (en) | 2016-03-14 | 2016-03-14 | Alumina cement having long term stability, method for producing the same, and unshaped refractory using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017165594A true JP2017165594A (en) | 2017-09-21 |
Family
ID=59912691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016049429A Pending JP2017165594A (en) | 2016-03-14 | 2016-03-14 | Alumina cement having long term stability, method for producing the same, and unshaped refractory using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017165594A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939755A (en) * | 1982-08-26 | 1984-03-05 | リグナイト株式会社 | Refractory composition |
JPS60221361A (en) * | 1984-04-13 | 1985-11-06 | 黒崎窯業株式会社 | Composition for refractories |
JPS60260476A (en) * | 1984-06-05 | 1985-12-23 | 電気化学工業株式会社 | Basic refractory cement composition |
JPH0297443A (en) * | 1988-10-04 | 1990-04-10 | Denki Kagaku Kogyo Kk | Method for preventing weathering of hydraulic calcium aluminate |
JP2005089230A (en) * | 2003-09-17 | 2005-04-07 | Denki Kagaku Kogyo Kk | Alumina cement composition and amorphous refractory using the same |
JP2005314140A (en) * | 2004-04-27 | 2005-11-10 | Taiheiyo Material Kk | Fluid-state setting material |
JP2007099545A (en) * | 2005-10-03 | 2007-04-19 | Denki Kagaku Kogyo Kk | Alumina cement composition and amorphous refractory using the same |
JP2007217514A (en) * | 2006-02-15 | 2007-08-30 | Tohpe Corp | Clear coating composition and coated article composed of the same |
JP2011079923A (en) * | 2009-10-06 | 2011-04-21 | Idemitsu Kosan Co Ltd | Conductive polypyrrole-based polymer composition |
-
2016
- 2016-03-14 JP JP2016049429A patent/JP2017165594A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939755A (en) * | 1982-08-26 | 1984-03-05 | リグナイト株式会社 | Refractory composition |
JPS60221361A (en) * | 1984-04-13 | 1985-11-06 | 黒崎窯業株式会社 | Composition for refractories |
JPS60260476A (en) * | 1984-06-05 | 1985-12-23 | 電気化学工業株式会社 | Basic refractory cement composition |
JPH0297443A (en) * | 1988-10-04 | 1990-04-10 | Denki Kagaku Kogyo Kk | Method for preventing weathering of hydraulic calcium aluminate |
JP2005089230A (en) * | 2003-09-17 | 2005-04-07 | Denki Kagaku Kogyo Kk | Alumina cement composition and amorphous refractory using the same |
JP2005314140A (en) * | 2004-04-27 | 2005-11-10 | Taiheiyo Material Kk | Fluid-state setting material |
JP2007099545A (en) * | 2005-10-03 | 2007-04-19 | Denki Kagaku Kogyo Kk | Alumina cement composition and amorphous refractory using the same |
JP2007217514A (en) * | 2006-02-15 | 2007-08-30 | Tohpe Corp | Clear coating composition and coated article composed of the same |
JP2011079923A (en) * | 2009-10-06 | 2011-04-21 | Idemitsu Kosan Co Ltd | Conductive polypyrrole-based polymer composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2550243B1 (en) | Refractory composition | |
EP3286156B1 (en) | An adjuvant for a cement or a refractory concrete composition, the uses thereof, and cement and refractory concrete compositions | |
JP5073791B2 (en) | Alumina-magnesia refractory brick and method for producing the same | |
JP4234330B2 (en) | Amorphous refractory composition | |
JP2920726B2 (en) | Cast refractories | |
US4476234A (en) | Refractory cement | |
JP4796170B2 (en) | Chromium castable refractories and precast blocks using the same | |
JP2005060203A (en) | Alumina cement composition and amorphous refractory using the same | |
WO2017170840A1 (en) | Refractory aggregate, method for manufacturing same, and refractory employing same | |
JP2005154180A (en) | Alumina cement composition and amorphous refractory | |
JP4220131B2 (en) | Amorphous refractory composition for ladle | |
JP2018016526A (en) | Aggregate for refractory, manufacturing method therefor and refractory using the same | |
JP5031239B2 (en) | Alumina cement, alumina cement composition and amorphous refractory | |
JP4319878B2 (en) | Alumina cement composition and method for producing amorphous refractory | |
JP2017165594A (en) | Alumina cement having long term stability, method for producing the same, and unshaped refractory using the same | |
CN108025985B (en) | Unshaped refractory | |
JPH082975A (en) | Refractory for casting application | |
JP6344621B2 (en) | Magnesia spinel fired brick manufacturing method | |
RU2235701C1 (en) | Periclase-spinel refractory products and a method for manufacture thereof | |
WO2003095391A1 (en) | Monothilic refractory composition | |
JP4101162B2 (en) | Alumina cement, alumina cement composition and amorphous refractory using the same | |
JP2007210805A (en) | Alumina cement, alumina cement composition and amorphous refractory | |
JPH11322380A (en) | Alumina cement and castable refractory by using the same | |
JPH0794343B2 (en) | Magnesia clinker and method for producing the same | |
JP3348815B2 (en) | Alumina cement substance, alumina cement containing the same, and amorphous refractory using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191120 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200526 |