JP2017155969A - Evaporator with cold storage function - Google Patents
Evaporator with cold storage function Download PDFInfo
- Publication number
- JP2017155969A JP2017155969A JP2016037429A JP2016037429A JP2017155969A JP 2017155969 A JP2017155969 A JP 2017155969A JP 2016037429 A JP2016037429 A JP 2016037429A JP 2016037429 A JP2016037429 A JP 2016037429A JP 2017155969 A JP2017155969 A JP 2017155969A
- Authority
- JP
- Japan
- Prior art keywords
- storage material
- refrigerant flow
- flow pipe
- cool storage
- drainage groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 32
- 239000011232 storage material Substances 0.000 claims abstract description 116
- 239000003507 refrigerant Substances 0.000 claims abstract description 108
- 238000009423 ventilation Methods 0.000 claims abstract description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 230000002093 peripheral effect Effects 0.000 claims abstract description 18
- 238000005192 partition Methods 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 23
- 238000005338 heat storage Methods 0.000 abstract 8
- 238000007599 discharging Methods 0.000 abstract 4
- 229910052782 aluminium Inorganic materials 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 238000005219 brazing Methods 0.000 description 7
- 239000002826 coolant Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3227—Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/022—Evaporators with plate-like or laminated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/06—Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F17/00—Removing ice or water from heat-exchange apparatus
- F28F17/005—Means for draining condensates from heat exchangers, e.g. from evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/24—Storage receiver heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
Description
この発明は蓄冷機能付きエバポレータに関する。 The present invention relates to an evaporator with a cold storage function.
この明細書および特許請求の範囲において、図1〜図3に矢印Xで示す通風方向の下流側から見た上下、左右(図1の上下、左右)を上下、左右というものとする。 In this specification and claims, the top and bottom, left and right (up and down, left and right in FIG. 1) viewed from the downstream side in the ventilation direction indicated by arrow X in FIGS.
たとえば、環境保護や自動車の燃費向上などを目的として、信号待ちなどの停車時にエンジンを自動的に停止させる自動車が提案されている。 For example, for the purpose of protecting the environment and improving the fuel consumption of an automobile, an automobile that automatically stops the engine when the vehicle stops, such as waiting for a signal, has been proposed.
当該自動車のカーエアコンにおいては、エバポレータに蓄冷機能を付与し、エンジンが停止して圧縮機が停止した際に、エバポレータに蓄えられた冷熱を放冷して車室内を冷却することが考えられている。 In the car air conditioner of the automobile, it is considered that the evaporator is provided with a cold storage function, and when the engine stops and the compressor stops, the cold stored in the evaporator is discharged to cool the passenger compartment. Yes.
この種の蓄冷機能付きエバポレータとして、本出願人は、先に、長手方向を上下方向に向けるとともに幅方向を通風方向に向けた複数の扁平状冷媒流通管、および蓄冷材封入部が設けられるとともに蓄冷材封入部内に蓄冷材が封入された蓄冷材容器を有する熱交換コア部を備えており、熱交換コア部において、通風方向に並んだ2つの冷媒流通管からなる管組が左右方向に間隔をおいて複数配置されることにより、隣り合う管組どうしの間に間隙が形成され、当該全間隙のうちの一部でかつ複数の間隙に蓄冷材容器が冷媒流通管と接するように配置され、前記全間隙のうちの残りの間隙にアウターフィンが冷媒流通管と接するように配置されるとともに、アウターフィンが配置された間隙が通風間隙となされ、蓄冷材容器の蓄冷材封入部における熱交換コア部の通風方向の範囲内に位置する部分の内部に、左右方向に延びる垂直面上に位置する壁状部を有するインナーフィンが配置され、蓄冷材容器の蓄冷材封入部における熱交換コア部の通風方向の範囲内に位置する部分の左右両側壁外面に、上下方向に一定の流路長さを有する複数の凝縮水排水溝が通風方向に間隔をおいて形成され、各凝縮水排水溝が、蓄冷材容器の蓄冷材封入部の左右両側壁に通風方向に間隔をおいて設けられて外方に膨出し、かつ膨出端の少なくとも一部が冷媒流通管に接合されている2つの排水溝用凸部間に形成され、各凝縮水排水溝における冷媒流通管側を向いた開口の全長のうち少なくとも一部が冷媒流通管により塞がれている蓄冷機能付きエバポレータを提案した(特許文献1参照)。 As an evaporator with this kind of cold storage function, the applicant is first provided with a plurality of flat refrigerant flow pipes having a longitudinal direction in the vertical direction and a width direction in the ventilation direction, and a cold storage material enclosing portion. It has a heat exchange core part having a cold storage material container in which the cold storage material is enclosed in the cold storage material enclosure part, and in the heat exchange core part, a pipe assembly composed of two refrigerant flow pipes arranged in the ventilation direction is spaced in the left-right direction. Are arranged so that a gap is formed between adjacent tube sets, and the regenerator container is arranged so as to be in contact with the refrigerant circulation pipe in a part of the whole gap and in the plurality of gaps. The outer fin is disposed in the remaining gap of the entire gap so as to contact the refrigerant flow pipe, and the gap in which the outer fin is disposed serves as a ventilation gap, and is provided in the cool storage material enclosure portion of the cool storage material container. An inner fin having a wall-like portion located on a vertical plane extending in the left-right direction is arranged inside a portion located within the range of the ventilation direction of the heat exchange core portion, and heat in the cool storage material enclosure portion of the cool storage material container A plurality of condensate drainage grooves having a constant flow path length in the vertical direction are formed at intervals in the ventilation direction on the outer surfaces of the left and right side walls of the portion located within the range of the exchange core in the ventilation direction. Water drainage grooves are provided on the left and right side walls of the cool storage material enclosure of the cool storage material container at intervals in the ventilation direction to bulge outward, and at least a part of the bulging end is joined to the refrigerant flow pipe Proposes an evaporator with a cold storage function that is formed between two drain groove convex parts and at least a part of the total length of the opening facing the refrigerant flow pipe in each condensed water drain groove is closed by the refrigerant flow pipe (See Patent Document 1).
特許文献1記載の蓄冷機能付きエバポレータによれば、圧縮機が作動している通常の冷房時には、冷媒流通管内を流れる冷媒の有する冷熱が、排水溝用凸部を介して蓄冷材容器内の蓄冷材に伝わって蓄冷材に蓄えられ、圧縮機が停止した際には、蓄冷材容器内の蓄冷材に蓄えられた冷熱が、排水溝用凸部および冷媒流通管を介して通風間隙に配置されたアウターフィンに伝えられ、アウターフィンから当該通風間隙を流れる空気に放冷されるようになっており、エンジンが停止して圧縮機が停止した際に、エバポレータに蓄えられた冷熱を利用して車室内を冷却することが可能になり、エンジンが停止した際の冷房能力の急激な低下が抑制されている。
According to the evaporator with the cold storage function described in
ところで、特許文献1記載の蓄冷機能付きエバポレータにおいては、特許文献1の図4を参照すると、冷媒流通管の周壁の肉厚をt1mm、蓄冷材容器の蓄冷材封入部の側壁における凝縮水排水溝の底壁となる部分の肉厚をt2mm、凝縮水排水溝の深さをHmmとした場合、t1<t2、2・t1=t2、H=t2という関係を満たしている。この場合、条件によっては、圧縮機の作動時に蓄冷材容器外面に発生して凝縮水排水溝内に入った凝縮水が凍結して体積が膨張すると、各凝縮水排水溝における冷媒流通管側を向いた開口が冷媒流通管により塞がれている閉塞部分において、冷媒流通管の周壁や、蓄冷材容器の蓄冷材封入部の側壁における凝縮水排水溝の底壁となる部分に比較的大きな力が作用してこれらの部分が変形するおそれがある。
By the way, in the evaporator with a cool storage function described in
この発明は、上記実情に鑑み、凝縮水排水溝内での凝縮水の凍結に起因する冷媒流通管の周壁や蓄冷材容器の蓄冷材封入部の側壁の変形を抑制しうる蓄冷機能付きエバポレータを提供することにある。 In view of the above circumstances, the present invention provides an evaporator with a cold storage function capable of suppressing deformation of a peripheral wall of a refrigerant flow pipe and a side wall of a cold storage material enclosure portion of a cold storage material container caused by freezing of condensed water in a condensed water drain. It is to provide.
本発明は、上記目的を達成するために以下の態様からなる。 In order to achieve the above object, the present invention comprises the following aspects.
1)長手方向を上下方向に向けるとともに幅方向を通風方向に向けた複数の扁平状冷媒流通管、および蓄冷材封入部が設けられるとともに蓄冷材封入部内に蓄冷材が封入された蓄冷材容器を有する熱交換コア部を備えており、熱交換コア部において、複数の冷媒流通管が左右方向に間隔をおいて配置されることにより、隣り合う冷媒流通管どうしの間に間隙が形成され、当該全間隙のうちの一部でかつ複数の間隙に蓄冷材容器が冷媒流通管と接するように配置されており、冷媒流通管に、通風方向に並んだ複数の流路が仕切壁を介して形成され、蓄冷材容器の蓄冷材封入部における熱交換コア部の通風方向の範囲内に位置する部分の内部に、蓄冷材封入部の側壁と蓄冷材封入部内の蓄冷材との間で伝熱を行う伝熱部を有するインナーフィンが配置され、蓄冷材容器の蓄冷材封入部における熱交換コア部の通風方向の範囲内に位置する部分の左右両側壁外面に、上下方向に一定の流路長さを有する複数の凝縮水排水溝が通風方向に間隔をおいて形成され、各凝縮水排水溝が、蓄冷材容器の蓄冷材封入部の左右両側壁に通風方向に間隔をおいて設けられて外方に膨出し、かつ膨出端の少なくとも一部が冷媒流通管に接合されている2つの排水溝用凸部間に形成され、各凝縮水排水溝における冷媒流通管側を向いた開口の全長のうち少なくとも一部が冷媒流通管により塞がれている蓄冷機能付きエバポレータであって、
凝縮水排水溝における冷媒流通管側を向いた開口が冷媒流通管により塞がれている閉塞部分において、当該閉塞部分の通風方向の範囲内に冷媒流通管の2以上の仕切壁が存在し、さらに前記閉塞部分において、インナーフィンの前記伝熱部が、蓄冷材容器の蓄冷材封入部の左右両側壁のうちのいずれか一方の側壁における前記凝縮水排水溝の閉塞部分の底壁となる部分のみに接合されるとともに同他方の側壁とは離隔しており、
冷媒流通管の周壁の肉厚をt1mm、蓄冷材容器の蓄冷材封入部の側壁における凝縮水排水溝の底壁となる部分の肉厚をt2mm、凝縮水排水溝の深さをHmmとした場合、t1<t2、2・t1>t2、H>t1+t2という関係を満たしている蓄冷機能付きエバポレータ。
1) A regenerator container in which a plurality of flat refrigerant flow pipes whose longitudinal direction is directed in the vertical direction and the width direction is directed in the ventilation direction, and a regenerator material enclosing part are provided and the regenerator material is enclosed in the regenerator material enclosing part A plurality of refrigerant flow pipes are arranged at intervals in the left-right direction in the heat exchange core part to form a gap between adjacent refrigerant flow pipes, The regenerator container is arranged in a part of the entire gap and in a plurality of gaps so as to be in contact with the refrigerant flow pipe, and a plurality of flow paths arranged in the ventilation direction are formed in the refrigerant flow pipe through the partition wall. Heat transfer between the side wall of the regenerator material enclosure and the regenerator material in the regenerator material enclosure within the portion of the regenerator material enclosure of the regenerator material container located within the range of the ventilation direction of the heat exchange core part. Inner fin with heat transfer section A plurality of condensate drainage grooves having a fixed channel length in the vertical direction are formed on the outer surfaces of the left and right side walls of the heat exchange core portion of the cool storage material enclosure of the cool storage material container. Each condensate drainage groove is formed at intervals in the ventilation direction, and the left and right side walls of the cool storage material enclosure of the cool storage material container are spaced apart in the ventilation direction to bulge outward, and the bulge end Is formed between two drain groove convex portions joined to the refrigerant flow pipe, and at least a portion of the total length of the opening facing the refrigerant flow pipe side in each condensed water drain groove is the refrigerant flow pipe. An evaporator with a cold storage function blocked by
In the closed part where the opening facing the refrigerant flow pipe side in the condensed water drainage groove is closed by the refrigerant flow pipe, there are two or more partition walls of the refrigerant flow pipe in the range of the ventilation direction of the closed part, Further, in the closed portion, the heat transfer portion of the inner fin is a bottom wall of the closed portion of the condensed water drainage groove on either one of the left and right side walls of the cool storage material enclosure of the cool storage material container And is separated from the other side wall,
When the wall thickness of the peripheral wall of the refrigerant flow pipe is t1 mm, the thickness of the bottom wall of the condensate drainage groove on the side wall of the cool storage material enclosure of the cool storage material container is t2 mm, and the depth of the condensate drainage groove is Hmm , T1 <t2, 2 · t1> t2, H> t1 + t2, an evaporator with a cold storage function.
2)蓄冷材容器の蓄冷材封入部の一方の側壁の凝縮水排水溝および排水溝用凸部と、同他方の側壁の凝縮水排水溝および排水溝用凸部とが、一部分が重複するが全体に重複しないように、同一水平面内において通風方向にずれて設けられている上記1)記載の蓄冷機能付きエバポレータ。 2) Although the condensate drainage groove and drainage groove convex part on one side wall of the cool storage material enclosure of the cool storage material container partially overlap with the condensate drainage groove and drainage groove convex part on the other side wall. The evaporator with a cold storage function as described in 1) above, which is shifted in the ventilation direction in the same horizontal plane so as not to overlap all over.
上記1)および2)の蓄冷機能付きエバポレータによれば、凝縮水排水溝における冷媒流通管側を向いた開口が冷媒流通管により塞がれている閉塞部分において、当該閉塞部分の通風方向の範囲内に冷媒流通管の2以上の仕切壁が存在し、さらに前記閉塞部分において、インナーフィンの前記伝熱部が、蓄冷材容器の蓄冷材封入部の左右両側壁のうちのいずれか一方の側壁における前記凝縮水排水溝の閉塞部分の底壁となる部分のみに接合されるとともに同他方の側壁とは離隔しており、冷媒流通管の周壁の肉厚をt1mm、蓄冷材容器の蓄冷材封入部の側壁における凝縮水排水溝の底壁となる部分の肉厚をt2mm、凝縮水排水溝の深さをHmmとした場合、t1<t2、2・t1>t2、H>t1+t2という関係を満たしているので、蓄冷材容器の外表面に、特許文献1記載の蓄冷機能付きエバポレータと同様な量の凝縮水が発生し、当該凝縮水が凝縮水排水溝内に入って前記閉塞部分で凍結して体積が膨張したとしても、冷媒流通管の周壁や、蓄冷材容器の蓄冷材封入部の側壁における凝縮水排水溝の底壁となる部分に作用する力は、特許文献1記載の蓄冷機能付きエバポレータに比べて小さくなる。したがって、冷媒流通管の周壁や、蓄冷材容器の蓄冷材封入部の側壁における凝縮水排水溝の底壁となる部分の変形が抑制される。しかも、凝縮水排水溝における冷媒流通管側を向いた開口が冷媒流通管により塞がれている閉塞部分において、当該閉塞部分の通風方向の範囲内に冷媒流通管の2以上の仕切壁が存在し、さらに前記閉塞部分において、インナーフィンの前記伝熱部が、蓄冷材容器の蓄冷材封入部の左右両側壁のうちのいずれか一方の側壁における前記凝縮水排水溝の閉塞部分の底壁となる部分のみに接合されるとともに同他方の側壁とは離隔しているので、蓄冷材容器の蓄冷材封入部の側壁における凝縮水排水溝の底壁となる部分に作用する力により前記底壁となる部分が変形しやすくなり、その結果冷媒流通管の周壁に作用する力が低減されて、冷媒流通管の周壁の変形が効果的に抑制される。
According to the evaporator with the cold storage function of 1) and 2) above, in the closed portion where the opening facing the refrigerant flow pipe side in the condensed water drain groove is closed by the refrigerant flow pipe, the range of the ventilation direction of the closed portion There are two or more partition walls of the refrigerant flow pipe inside, and in the closed portion, the heat transfer part of the inner fin is either one of the left and right side walls of the cool storage material enclosure part of the cool storage material container Is connected to only the bottom wall of the closed portion of the condensate drainage groove and is separated from the other side wall, the wall thickness of the peripheral wall of the refrigerant flow pipe is t1 mm, and the regenerator material is enclosed in the regenerator container When the thickness of the bottom wall of the condensate drainage groove on the side wall of the part is t2 mm and the depth of the condensate drainage groove is Hmm, the relationship of t1 <t2, 2 · t1> t2, and H> t1 + t2 is satisfied. Because it is cold storage material On the outer surface of the container, the same amount of condensed water as in the evaporator with a cold storage function described in
以下、この発明の実施形態を、図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。 In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.
図1はこの発明による蓄冷機能付きエバポレータの全体構成を示し、図2〜図4はその要部の構成を示す。 FIG. 1 shows the overall configuration of an evaporator with a cold storage function according to the present invention, and FIGS.
図1において、蓄冷機能付きエバポレータ(1)は、長手方向を左右方向に向けるとともに幅方向を通風方向に向けた状態で上下方向に間隔をおいて配置されたアルミニウム製上ヘッダタンク(2)およびアルミニウム製下ヘッダタンク(3)と、両ヘッダタンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。 In FIG. 1, an evaporator with a cold storage function (1) is composed of an aluminum upper header tank (2) and an aluminum upper header tank (2) arranged in the vertical direction with the longitudinal direction facing the left and right direction and the width direction facing the ventilation direction. An aluminum lower header tank (3) and a heat exchange core portion (4) provided between the header tanks (2) and (3) are provided.
上ヘッダタンク(2)は、風下側に位置する風下側上ヘッダ部(5)と、風上側に位置しかつ風下側上ヘッダ部(5)に一体化された風上側上ヘッダ部(6)とを備えている。風下側上ヘッダ部(5)の左端部に冷媒入口(7)が設けられ、風上側上ヘッダ部(6)の左端部に冷媒出口(8)が設けられている。下ヘッダタンク(3)は、風下側に位置する風下側下ヘッダ部(9)と、風上側に位置しかつ風下側下ヘッダ部(9)に一体化された風上側下ヘッダ部(11)とを備えている。下ヘッダタンク(3)の両下ヘッダ部(9)(11)間には上方に開口しかつ左右方向にのびる溝状の排水部(12)が設けられている(図2参照)。図示は省略したが、下ヘッダタンク(3)における両下ヘッダ部(9)(11)間の排水部(12)の底壁となる部分には、左右方向に間隔をおいて複数の排水穴が形成されている。 The upper header tank (2) includes a leeward upper header portion (5) located on the leeward side and an upwind header portion (6) located on the leeward side and integrated with the leeward upper header portion (5). And. A refrigerant inlet (7) is provided at the left end of the leeward upper header portion (5), and a refrigerant outlet (8) is provided at the left end of the leeward upper header portion (6). The lower header tank (3) includes a leeward lower header portion (9) located on the leeward side and an upwind lower header portion (11) located on the leeward side and integrated with the leeward lower header portion (9). And. Between the lower header portions (9) and (11) of the lower header tank (3), a groove-shaped drainage portion (12) that opens upward and extends in the left-right direction is provided (see FIG. 2). Although not shown in the drawing, the bottom header tank (3) has a plurality of drainage holes spaced in the left-right direction in the bottom wall of the drainage section (12) between the lower header sections (9) and (11). Is formed.
熱交換コア部(4)には、長手方向を上下方向に向けるとともに幅方向を通風方向に向けた状態で通風方向に間隔をおいて配置された複数、ここでは2つのアルミニウム製扁平状冷媒流通管(13)からなる複数の管組(14)が左右方向に間隔をおいて配置されており、これにより通風方向に並んだ2つの冷媒流通管(13)よりなる管組(14)の隣り合うものどうしの間に間隙(17A)(17B)が形成されている。風下側に並んだ冷媒流通管(13)の上端部は風下側上ヘッダ部(5)に接続されるとともに、同下端部は風下側下ヘッダ部(9)に接続されている。また、風上側に並んだ冷媒流通管(13)の上端部は風上側上ヘッダ部(6)に接続されるとともに、同下端部は風上側下ヘッダ部(11)に接続されている。冷媒流通管(13)には、通風方向に並んだ複数の流路(15)が仕切壁(16)を介して形成されている(図3および図4参照)。 In the heat exchanging core part (4), a plurality of, in this case, two aluminum flat refrigerants arranged at intervals in the ventilation direction with the longitudinal direction oriented vertically and the width direction oriented in the ventilation direction A plurality of pipe sets (14) made up of pipes (13) are arranged at intervals in the left-right direction, so that adjacent to the pipe set (14) made up of two refrigerant flow pipes (13) arranged in the ventilation direction. A gap (17A) (17B) is formed between the mating objects. The upper end portion of the refrigerant flow pipe (13) arranged on the leeward side is connected to the leeward upper header portion (5), and the lower end portion is connected to the leeward lower header portion (9). Further, the upper end portion of the refrigerant flow pipe (13) arranged on the windward side is connected to the windward upper header portion (6), and the lower end portion thereof is connected to the windward lower header portion (11). In the refrigerant flow pipe (13), a plurality of flow paths (15) arranged in the ventilation direction are formed via a partition wall (16) (see FIGS. 3 and 4).
熱交換コア部(4)における全間隙(17A)(17B)のうち一部でかつ複数の第1間隙(17A)に、蓄冷材が封入されたアルミニウム製蓄冷材容器(18)が、各管組(14)を構成する2つの冷媒流通管(13)に跨るように配置されて両冷媒流通管(13)にろう材により接合されている。以下、ろう材による接合をろう付と称する。熱交換コア部(4)における全間隙(17A)(17B)のうち残りの複数の第2間隙(17B)に、両面にろう材層を有するアルミニウムブレージングシートからなり、かつ通風方向にのびる波頂部、通風方向にのびる波底部、および波頂部と波底部とを連結する連結部よりなるコルゲート状のアウターフィン(19)が、各管組(14)を構成する2つの冷媒流通管(13)に跨るように配置されて両冷媒流通管(13)にろう付されている。左右方向に隣り合う2つの第1間隙(17A)どうしの間には複数、ここでは3つの第2間隙(17B)が存在している。なお、左右方向に隣り合う2つの第1間隙(17A)どうしの間の第2間隙(17B)の数は、2以上であることが好ましく、その上限は7であることが好ましい。また、左右両端の管組(14)の外側にも、アウターフィン(19)が、管組(14)を構成する2つの冷媒流通管(13)に跨るように配置されて両冷媒流通管(13)にろう付され、さらに左右両端のアウターフィン(19)の外側にアルミニウム製サイドプレート(21)が配置されてアウターフィン(19)にろう付されている。 An aluminum regenerator container (18) in which a regenerator material is sealed in a part of the total gaps (17A) and (17B) in the heat exchange core part (4) and a plurality of first gaps (17A) is provided for each pipe. It arrange | positions so that two refrigerant | coolant flow pipes (13) which comprise a group (14) may be straddled, and it joins with both refrigerant | coolant flow pipes (13) with the brazing material. Hereinafter, joining with a brazing material is referred to as brazing. Of the total gaps (17A) and (17B) in the heat exchange core part (4), the remaining plurality of second gaps (17B) are made of an aluminum brazing sheet having a brazing filler metal layer on both sides and extend in the ventilation direction. Corrugated outer fins (19) comprising a wave bottom portion extending in the ventilation direction and a connecting portion connecting the wave top portion and the wave bottom portion are provided in two refrigerant flow pipes (13) constituting each pipe assembly (14). It arrange | positions so that it may straddle, and is brazed to both refrigerant | coolant distribution pipes (13). There are a plurality of (here, three) second gaps (17B) between two first gaps (17A) adjacent in the left-right direction. The number of second gaps (17B) between two first gaps (17A) adjacent in the left-right direction is preferably 2 or more, and the upper limit is preferably 7. In addition, outer fins (19) are also arranged outside the pipe assemblies (14) at both the left and right ends so as to straddle the two refrigerant circulation pipes (13) constituting the pipe assembly (14). 13), and further, aluminum side plates (21) are arranged on the outer sides of the outer fins (19) at the left and right ends, and are brazed to the outer fins (19).
アウターフィン(19)の風上側端部は風上側冷媒流通管(13)の風上側端部と通風方向の同一位置にあり、アウターフィン(19)の風下側端部は風下側冷媒流通管(13)の風下側端部に対して若干、たとえば1mm程度風下側に突出した位置にある(図3参照)。アウターフィン(19)の通風方向の幅を、熱交換コア部(4)の通風方向の全幅というものとする。 The windward end of the outer fin (19) is at the same position in the ventilation direction as the windward end of the windward refrigerant flow pipe (13), and the windward end of the outer fin (19) is the leeward refrigerant flow pipe ( It is in a position slightly protruding from the leeward side end of 13), for example, about 1 mm toward the leeward side (see FIG. 3). The width of the outer fin (19) in the ventilation direction is referred to as the full width of the heat exchange core (4) in the ventilation direction.
この実施形態のエバポレータ(1)の場合、冷媒は、冷媒入口(7)を通ってエバポレータ(1)の風下側上ヘッダ部(5)内に入り、全冷媒流通管(13)を通って風上側上ヘッダ部(6)の冷媒出口(8)から流出する。 In the case of the evaporator (1) of this embodiment, the refrigerant passes through the refrigerant inlet (7) and enters the leeward upper header portion (5) of the evaporator (1) and passes through the entire refrigerant circulation pipe (13). It flows out from the refrigerant outlet (8) of the upper upper header section (6).
図2および図3に示すように、蓄冷材容器(18)は、長手方向を上下方向に向けるとともに幅方向を通風方向に向けた略縦長方形の扁平中空状であり、熱交換コア部(4)の通風方向の全幅の範囲内に位置し、かつ各管組(14)の2つの冷媒流通管(13)にろう付された容器本体部(22)と、容器本体部(22)の風下側縁部の一部分、ここでは上部のみに連なるとともにアウターフィン(19)の風下側端部よりも風下側に張り出すように設けられた外方張り出し部(23)とよりなる。外方張り出し部(23)は蓄冷材容器(18)の上端から若干下がった部分から一定の長さにわたって設けられている。 As shown in FIGS. 2 and 3, the regenerator material container (18) is a flat, hollow shape having a substantially vertical rectangular shape with the longitudinal direction directed in the vertical direction and the width direction directed in the ventilation direction, and the heat exchange core part (4 ) Of the container body portion (22) brazed to the two refrigerant flow pipes (13) of each pipe assembly (14) and the leeward of the container body section (22). It consists of a part of the side edge part, here, only an upper part, and an outward projecting part (23) provided so as to project further to the leeward side than the leeward side end part of the outer fin (19). The outward projecting portion (23) is provided over a certain length from a portion slightly lowered from the upper end of the cold storage material container (18).
蓄冷材容器(18)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工が施されることにより形成され、かつ一定幅を有する周縁の帯状部(24a)(25a)どうしが互いにろう付された2枚の略縦長方形状のアルミニウム製容器構成板(24)(25)よりなる。蓄冷材容器(18)には、両容器構成板(24)(25)の帯状部(24a)(25a)を除いた部分を外方に膨出させることによって、中空状の蓄冷材封入部(26)が、容器本体部(22)から外方張り出し部(23)にかけて形成され、蓄冷材封入部(26)内に蓄冷材が入れられている。 The cool storage material container (18) is formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides, and the peripheral belt-like portions (24a) (25a) having a certain width are brazed to each other. The aluminum container constituting plates (24) and (25) having two substantially vertical rectangular shapes. In the cold storage material container (18), a hollow cold storage material enclosing part (excluding the belt-like parts (24a) (25a) of both container component plates (24) and (25)) is bulged outward ( 26) is formed from the container body part (22) to the outwardly projecting part (23), and the regenerator material is put in the regenerator material enclosing part (26).
蓄冷材容器(18)の蓄冷材封入部(26)の容器本体部(22)に存在する部分の左右両側壁(27)外面に、それぞれ上下方向に一定の流路長さを有するとともに上下両端が開口し、かつ凝縮水を上方から下方に流して下端開口から排水する複数の凝縮水排水溝(28)が通風方向に間隔をおいて形成されている。各凝縮水排水溝(28)は、蓄冷材容器(18)の蓄冷材封入部(26)の左右両側壁(27)における容器本体部(22)に存在する部分に設けられて外方に膨出した2つの排水溝用凸部(29)の間に形成されている。隣り合う2つの凝縮水排水溝(28)は、両凝縮水排水溝(28)間に位置する排水溝用凸部(29)を共有している。各蓄冷材容器(18)の左右両側壁(27)のすべての排水溝用凸部(29)の膨出高さは等しくなっているとともに、後述する膨張部用凸部(34)の膨出高さ以下となっており、すべての排水溝用凸部(29)の膨出端の少なくとも一部が、第1間隙(17A)を形成する左右両側の管組(14)を構成する2つの冷媒流通管(13)にろう付されている。したがって、凝縮水排水溝(28)における冷媒流通管(13)側を向いた開口の全長のうち少なくとも一部が冷媒流通管(13)により塞がれていることになる。凝縮水排水溝(28)における冷媒流通管(13)により塞がれた閉塞部分を(31)で示す。左側壁(27)の凝縮水排水溝(28)および排水溝用凸部(29)と、右側壁(27)の凝縮水排水溝(28)および排水溝用凸部(29)とは、全体に重複しないように、同一水平面内において通風方向にずれて設けられている。なお、凝縮水排水溝(28)内を微量の空気も流れる。 On the outer surface of the left and right side walls (27) of the portion of the cool storage material enclosure (26) of the cool storage material container (18) on the left and right side walls (27), the upper and lower ends have a constant channel length in the vertical direction And a plurality of condensed water drainage grooves (28) for draining the condensed water from above to drain from the lower end opening are formed at intervals in the ventilation direction. Each condensate drainage groove (28) is provided at a portion of the cooler material enclosure (26) of the cool storage material container (18) on the left and right side walls (27) of the container body (22) and bulges outward. It is formed between the two raised drain groove projections (29). Two adjacent condensate drainage grooves (28) share a drainage groove convex portion (29) positioned between the two condensate drainage grooves (28). The bulge heights of all the drain groove convex portions (29) of the left and right side walls (27) of each cold storage material container (18) are equal and the bulge of the convex portion for the expansion portion (34) described later It is below the height, and at least a part of the bulging ends of all the drain groove convex portions (29) constitutes two pipe assemblies (14) on both the left and right sides forming the first gap (17A). It is brazed to the refrigerant flow pipe (13). Therefore, at least a part of the total length of the opening of the condensed water drain groove (28) facing the refrigerant flow pipe (13) side is blocked by the refrigerant flow pipe (13). A closed portion blocked by the refrigerant flow pipe (13) in the condensed water drainage groove (28) is indicated by (31). The condensate drainage groove (28) and drainage groove projection (29) on the left side wall (27) and the condensate drainage groove (28) and drainage groove projection (29) on the right side wall (27) So as not to overlap with each other in the same horizontal plane. A very small amount of air also flows through the condensate drain (28).
蓄冷材容器(18)の容器本体部(22)内には、オフセット状のアルミニウム製インナーフィン(32)が、上下方向のほぼ全体にわたって配置されている。インナーフィン(32)は、上下方向にのびる波頂部(33a)、上下方向にのびる波底部(33b)、および波頂部(33a)と波底部(33b)とを連結する連結部(33c)からなる波状帯板(33)が、上下方向に複数並べられるとともに相互に一体に連結されることにより形成され、上下方向に隣り合う2つの波状帯板(33)の波頂部(33a)どうしおよび波底部(33b)どうしが通風方向に位置ずれしているものである。波状帯板(33)の連結部(33)は、蓄冷材封入部(26)の側壁(27)と蓄冷材封入部(26)内の蓄冷材との間で伝熱を行う伝熱部となっており、連結部(33c)の左右いずれか一端(ここでは右端)に設けられた波頂部(33a)、および同他端(ここでは左端)に設けられた波底部(33b)の少なくとも一部は、蓄冷材容器(18)の蓄冷材封入部(26)の容器本体部(22)に存在する部分の左右両側壁(27)にろう付されている。この実施形態においては、波状帯板(33)の波頂部(33a)および波底部(33b)は、通風方向に延びる垂直面上に位置する壁状部であり、連結部(33c)は左右方向に延びる垂直面上に位置する壁状部である。 In the container main body portion (22) of the cool storage material container (18), an offset aluminum inner fin (32) is disposed over substantially the entire vertical direction. The inner fin (32) includes a wave crest portion (33a) extending in the vertical direction, a wave bottom portion (33b) extending in the vertical direction, and a connecting portion (33c) connecting the wave crest portion (33a) and the wave bottom portion (33b). A plurality of corrugated strips (33) are arranged in the vertical direction and are integrally connected to each other, and are formed by connecting the corrugated strips (33) adjacent to each other in the vertical direction. (33b) The two are displaced in the ventilation direction. The connecting portion (33) of the corrugated strip (33) includes a heat transfer portion that transfers heat between the side wall (27) of the cold storage material enclosure (26) and the cold storage material in the cold storage material enclosure (26). At least one of a wave crest (33a) provided at one of the left and right ends (here, the right end) of the connecting portion (33c) and a wave bottom (33b) provided at the other end (here, the left end). The part is brazed to the left and right side walls (27) of the portion of the cool storage material enclosure (26) of the cool storage material container (18) that exists in the container main body (22). In this embodiment, the wave crest portion (33a) and the wave bottom portion (33b) of the corrugated strip (33) are wall-like portions located on a vertical plane extending in the ventilation direction, and the connecting portion (33c) is the left-right direction. It is a wall-shaped part located on the vertical surface extended in.
図3および図4に示すように、凝縮水排水溝(28)における冷媒流通管(13)側を向いた開口が冷媒流通管(13)により塞がれている閉塞部分(31)において、閉塞部分の通風方向の範囲内に冷媒流通管(13)の2以上の仕切壁(16)が存在している。また、閉塞部分(31)において、インナーフィン(31)の波状帯板(33)の伝熱部である連結部(33c)は、波頂部(33a)および波底部(33b)のうちのいずれか一方を介して蓄冷材容器(18)の蓄冷材封入部(26)の左右両側壁(27)のうちのいずれか一方の側壁(27)における凝縮水排水溝(28)の閉塞部分(31)の底壁となる部分のみに接合されるとともに、同他方の側壁(27)とは離隔している。さらに、冷媒流通管(13)の周壁の肉厚をt1mm、蓄冷材容器(18)の蓄冷材封入部(26)の側壁(27)における凝縮水排水溝(28)の底壁となる部分の肉厚をt2mm、凝縮水排水溝(28)の深さをHmmとした場合、t1<t2、2・t1>t2、H>t1+t2という関係を満たしている。 As shown in FIGS. 3 and 4, the condensate drainage groove (28) is closed at the closed portion (31) where the opening facing the refrigerant flow pipe (13) is closed by the refrigerant flow pipe (13). Two or more partition walls (16) of the refrigerant flow pipe (13) exist within the range of the ventilation direction of the portion. Further, in the closed part (31), the connecting part (33c) which is the heat transfer part of the corrugated strip (33) of the inner fin (31) is one of the wave peak part (33a) and the wave bottom part (33b). The closed portion (31) of the condensate drainage groove (28) on one of the left and right side walls (27) of the cold storage material enclosure (26) of the cold storage material container (18) through one side It is joined only to the part which becomes the bottom wall, and is separated from the other side wall (27). Further, the wall thickness of the peripheral wall of the refrigerant flow pipe (13) is t1 mm, and the bottom wall of the condensate drainage groove (28) in the side wall (27) of the cool storage material enclosure (26) of the cool storage material container (18) is formed. When the thickness is t2 mm and the depth of the condensate drainage groove (28) is Hmm, the relationship of t1 <t2, 2.t1> t2, and H> t1 + t2 is satisfied.
蓄冷材容器(18)の外方張り出し部(23)は、容器本体部(22)の風下側縁部の上端よりも若干下方の部分から一定の長さにわたって設けられており、外方張り出し部(23)の上下方向の長さは容器本体部(22)の上下方向の長さよりも短くなっている。外方張り出し部(23)の上下方向の長さは、蓄冷材容器(18)の上下方向の長さの30%以下であることが好ましい。蓄冷材容器(18)の蓄冷材封入部(26)の左右両側壁(27)における外方張り出し部(23)に存在する部分に、左右両方向に膨らみ、かつ左右方向の寸法が蓄冷材封入部(26)の左右方向の寸法以上となっている膨張部(23a)が設けられており、膨張部(23a)がアウターフィン(19)の通風方向下流側端部よりも通風方向外側(通風方向下流側)に位置している。膨張部(23a)は、蓄冷材封入部(26)の左右両側壁(27)に設けられて外方に膨出した膨張部用凸部(34)からなる。 The outwardly projecting portion (23) of the cool storage material container (18) is provided over a certain length from a portion slightly below the upper end of the leeward side edge of the container body (22), and the outwardly projecting portion The vertical length of (23) is shorter than the vertical length of the container body (22). The vertical length of the outwardly projecting portion (23) is preferably 30% or less of the vertical length of the cool storage material container (18). The portion of the cool storage material enclosure (18) of the cool storage material enclosure (26) that swells in the left and right side walls (27) on the outwardly projecting portion (23) and bulges in both the left and right directions, and the lateral dimension is the regenerator enclosure portion An inflatable portion (23a) having a dimension equal to or larger than the horizontal dimension of (26) is provided, and the inflatable portion (23a) is outside in the ventilation direction from the downstream end of the outer fin (19) in the ventilation direction (ventilation direction). It is located on the downstream side. The expansion part (23a) includes an expansion part convex part (34) provided on the left and right side walls (27) of the regenerator material enclosing part (26) and bulging outward.
蓄冷材容器(18)の外方張り出し部(23)の上端部には蓄冷材注入部材(35)が固定されており、蓄冷材は、蓄冷材注入部材(35)を通して蓄冷材封入部(26)内に注入され、蓄冷材注入部材(35)は、蓄冷材封入部(26)内への蓄冷材の注入後に封止されている。 A cool storage material injection member (35) is fixed to the upper end of the outwardly projecting portion (23) of the cool storage material container (18), and the cool storage material is passed through the cool storage material injection member (35) and the cool storage material enclosing portion (26 The cool storage material injection member (35) is sealed after the cool storage material is injected into the cool storage material enclosure (26).
上述した蓄冷機能付きエバポレータ(1)は、車両のエンジンを駆動源とする圧縮機、圧縮機から吐出された冷媒を冷却するコンデンサ(冷媒冷却器)、コンデンサを通過した冷媒を減圧する膨張弁(減圧器)とともに冷凍サイクルを構成し、カーエアコンとして、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両、たとえば自動車に搭載される。圧縮機が作動している場合には、圧縮機で圧縮されてコンデンサおよび膨張弁を通過した低圧の気液混相の2相冷媒が、冷媒入口(7)を通って蓄冷機能付きエバポレータ(1)の風下側上ヘッダ部(5)内に入り、全冷媒流通管(13)を通って風上側上ヘッダ部(6)の冷媒出口(8)から流出する。そして、冷媒が冷媒流通管(13)内を流れる間に第2間隙(17B)を通過する空気と熱交換をし、冷媒は気相となって流出する。 The evaporator with a cold storage function (1) described above includes a compressor that uses a vehicle engine as a drive source, a condenser that cools the refrigerant discharged from the compressor (refrigerant cooler), and an expansion valve that depressurizes the refrigerant that has passed through the condenser ( A refrigeration cycle is configured together with a decompressor, and is mounted as a car air conditioner on a vehicle, such as an automobile, that temporarily stops an engine that is a drive source of a compressor when the vehicle stops. When the compressor is operating, the low-pressure gas-liquid mixed-phase two-phase refrigerant compressed by the compressor and passed through the condenser and the expansion valve passes through the refrigerant inlet (7) and the evaporator with the cold storage function (1) Enters the leeward upper header portion (5) and flows out from the refrigerant outlet (8) of the leeward upper header portion (6) through the entire refrigerant flow pipe (13). And while a refrigerant | coolant flows through the inside of a refrigerant | coolant distribution pipe | tube (13), it heat-exchanges with the air which passes 2nd clearance gap (17B), and a refrigerant | coolant flows out into a gaseous phase.
圧縮機の作動時には、冷媒流通管(13)内を流れる冷媒の有する冷熱が、蓄冷材容器(18)の蓄冷材封入部(26)の左右両側壁(27)における容器本体部(22)に存在する部分に設けられた排水溝用凸部(29)の膨出頂壁を経て直接蓄冷材容器(18)内の蓄冷材に伝わるとともに、排水溝用凸部(29)の膨出頂壁から左右両側壁(27)における冷媒流通管(13)にろう付されていない部分およびインナーフィン(32)を経て蓄冷材容器(18)内の蓄冷材の全体に伝わって蓄冷材に冷熱が蓄えられる。 During the operation of the compressor, the cold heat of the refrigerant flowing in the refrigerant flow pipe (13) is transferred to the container body (22) on the left and right side walls (27) of the cool storage material enclosure (26) of the cool storage material container (18). It is transmitted directly to the cold storage material in the cool storage material container (18) through the bulging top wall of the drain groove convex portion (29) provided in the existing portion, and the bulging top wall of the drain groove convex portion (29). From the left and right side walls (27) through the parts that are not brazed to the refrigerant flow pipe (13) and the inner fin (32), it is transmitted to the whole of the cold storage material in the cold storage material container (18) and cold heat is stored in the cold storage material. It is done.
また、圧縮機の作動時には、蓄冷材容器(18)表面に凝縮水が発生し、当該凝縮水は凝縮水排水溝(28)内に入り、表面張力により凝縮水排水溝(28)の両側の排水溝用凸部(29)に沿うようにして凝縮水排水溝(28)内に溜まる。溜まった凝縮水が多くなると、溜まった凝縮水に作用する重力が表面張力よりも大きくなって、凝縮水排水溝(28)内を流下し、下方に排水される。 In addition, during the operation of the compressor, condensed water is generated on the surface of the cool storage material container (18), the condensed water enters the condensed water drainage groove (28), and the surface tension causes both sides of the condensed water drainage groove (28). It collects in the condensed water drainage groove (28) along the drainage groove convex part (29). When the amount of accumulated condensed water increases, the gravity acting on the accumulated condensed water becomes larger than the surface tension, and flows down in the condensed water drain groove (28) and drains downward.
ところで、条件によっては、圧縮機の作動時に蓄冷材容器(18)外面に発生して凝縮水排水溝(28)内に入った凝縮水が凍結することがある。ここで、前記閉塞部分(31)において、閉塞部分(31)の通風方向の範囲内に冷媒流通管(13)の2以上の仕切壁(16)が存在しており、インナーフィン(31)の波状帯板(33)の連結部(33c)が、蓄冷材容器(18)の蓄冷材封入部(26)の左右両側壁(27)のうちのいずれか一方の側壁(27)における凝縮水排水溝(28)の閉塞部分(31)の底壁となる部分のみに接合されるとともに同他方の側壁(27)とは離隔しており、冷媒流通管(13)の周壁の肉厚をt1mm、蓄冷材容器(18)の蓄冷材封入部(26)の側壁(27)における凝縮水排水溝(28)の底壁となる部分の肉厚をt2mm、凝縮水排水溝(28)の深さをHmmとした場合、t1<t2、2・t1>t2、H>t1+t2という関係を満たしているので、蓄冷材容器(18)の外表面に、特許文献1記載の蓄冷機能付きエバポレータと同様な量の凝縮水が発生し、当該凝縮水が凝縮水排水溝(28)内に入って閉塞部分(31)で凍結して体積が膨張したとしても、冷媒流通管(13)の周壁や、蓄冷材容器(18)の蓄冷材封入部(26)の側壁(27)における凝縮水排水溝(28)の底壁となる部分に作用する力は、特許文献1記載の蓄冷機能付きエバポレータに比べて小さくなる。したがって、冷媒流通管(13)の周壁や、蓄冷材容器(18)の蓄冷材封入部(26)の側壁(27)における凝縮水排水溝(28)の底壁となる部分の変形が抑制される。しかも、閉塞部分(31)において、閉塞部分(31)の通風方向の範囲内に冷媒流通管(13)の2以上の仕切壁(16)が存在しており、インナーフィン(31)の波状帯板(33)の伝熱部である連結部(33c)が、波頂部(33a)および波底部(33b)のうちのいずれか一方を介して蓄冷材容器(18)の蓄冷材封入部(26)の左右両側壁(27)のうちのいずれか一方の側壁(27)における凝縮水排水溝(28)の閉塞部分(31)の底壁となる部分のみに接合されるとともに同他方の側壁(27)とは離隔しているので、蓄冷材容器(18)の蓄冷材封入部(26)の側壁(27)における凝縮水排水溝(28)の底壁となる部分に作用する力により前記底壁となる部分が変形しやすくなり、その結果冷媒流通管(13)の周壁に作用する力が低減されて、冷媒流通管(13)の周壁の変形が効果的に抑制される。
By the way, depending on conditions, the condensed water that is generated on the outer surface of the cold storage material container (18) and enters the condensed water drainage groove (28) during operation of the compressor may freeze. Here, in the closed portion (31), there are two or more partition walls (16) of the refrigerant flow pipe (13) within the range of the closed portion (31) in the ventilation direction, and the inner fin (31) The connecting portion (33c) of the corrugated strip (33) is the condensed water drainage on one of the left and right side walls (27) of the cold storage material enclosure (26) of the cold storage material container (18). It is joined only to the bottom wall of the closed part (31) of the groove (28) and is separated from the other side wall (27), and the thickness of the peripheral wall of the refrigerant flow pipe (13) is t1 mm, The wall thickness of the bottom wall of the condensate drainage groove (28) in the side wall (27) of the cool storage material enclosure (26) of the cool storage material container (18) is t2 mm, and the depth of the condensate drainage groove (28) is In the case of Hmm, since the relationship of t1 <t2, 2 · t1> t2, and H> t1 + t2 is satisfied, the same amount as the evaporator with the cool storage function described in
圧縮機の停止時には、蓄冷材容器(18)内の蓄冷材に蓄えられた冷熱が、蓄冷材容器(18)の蓄冷材封入部(26)の左右両側壁(27)における容器本体部(22)に存在する部分に設けられた排水溝用凸部(29)の膨出頂壁を経て直接冷媒流通管(13)に伝わるとともに、インナーフィン(32)から左右両側壁(27)における冷媒流通管(13)にろう付されていない部分および排水溝用凸部(29)の膨出頂壁を経て冷媒流通管(13)に伝わり、さらに冷媒流通管(13)を通過して当該冷媒流通管(13)における蓄冷材容器(18)とは反対側にろう付されているアウターフィン(19)に伝わる。アウターフィン(19)に伝わった冷熱は、蓄冷材容器(18)が配置されている第1間隙(17A)の両隣の第2間隙(17B)を通過する空気に伝えられる。アウターフィン(19)に伝わった冷熱は、蓄冷材容器(18)が配置されている第1間隙(17A)の両隣の第2間隙(17B)を通過する空気に伝えられる。したがって、エバポレータ(1)を通過した風の温度が上昇したとしても、当該風は冷却されるので、冷房能力の急激な低下が防止される。 When the compressor is stopped, the cold stored in the cool storage material in the cool storage material container (18) is transferred to the container main body (22) on the left and right side walls (27) of the cool storage material enclosure (26) of the cool storage material container (18). ) Is transferred directly to the refrigerant flow pipe (13) through the bulging top wall of the drain groove convex portion (29) provided in the portion existing in the inner fin (32), and the refrigerant flows on the left and right side walls (27) from the inner fin (32). The refrigerant is transferred to the refrigerant flow pipe (13) through the portion not brazed to the pipe (13) and the bulging top wall of the drain groove convex portion (29), and further passes through the refrigerant flow pipe (13). It is transmitted to the outer fin (19) brazed to the opposite side of the cold storage material container (18) in the pipe (13). The cold heat transmitted to the outer fin (19) is transmitted to the air passing through the second gap (17B) adjacent to the first gap (17A) where the cool storage material container (18) is disposed. The cold heat transmitted to the outer fin (19) is transmitted to the air passing through the second gap (17B) adjacent to the first gap (17A) where the cool storage material container (18) is disposed. Therefore, even if the temperature of the wind that has passed through the evaporator (1) rises, the wind is cooled, so that a rapid decrease in the cooling capacity is prevented.
上述した実施形態においては、蓄冷材容器(18)の蓄冷材封入部(26)の容器本体部(22)に存在する部分の左右両側壁(27)外面に、凝縮水排水溝(28)および排水溝用凸部(29)が設けられているが、これに限定されるものではなく、いずれか一方の側壁に凝縮水排水溝(28)および排水溝用凸部(29)が設けられていてもよい。 In the above-described embodiment, the condensate drainage groove (28) and the left and right side walls (27) of the portion of the cool storage material enclosure (26) of the cool storage material container (18) existing on the container body (22) The drain groove convex portion (29) is provided, but is not limited to this, and the condensate drain groove (28) and the drain groove convex portion (29) are provided on either side wall. May be.
この発明による蓄冷機能付きエバポレータは、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両のカーエアコンを構成する冷凍サイクルに好適に用いられる。 The evaporator with a cold storage function according to the present invention is suitably used in a refrigeration cycle constituting a car air conditioner for a vehicle that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped.
(1):蓄冷機能付きエバポレータ
(4):熱交換コア部
(13):冷媒流通管
(15):流路
(16):仕切壁
(17A)(17B):間隙
(18):蓄冷材容器
(26):蓄冷材封入部
(27):側壁
(28):凝縮水排水溝
(29):排水溝用凸部
(31):閉塞部分
(32):インナーフィン
(33c):波状帯板の連結部(伝熱部)
(1): Evaporator with cool storage function
(4): Heat exchange core
(13): Refrigerant distribution pipe
(15): Flow path
(16): Partition wall
(17A) (17B): Gap
(18): Cold storage container
(26): Cold storage material enclosure
(27): Side wall
(28): Condensate drain
(29): Convex part for drainage
(31): Blocked part
(32): Inner fin
(33c): Wavy strip connecting part (heat transfer part)
Claims (2)
凝縮水排水溝における冷媒流通管側を向いた開口が冷媒流通管により塞がれている閉塞部分において、当該閉塞部分の通風方向の範囲内に冷媒流通管の2以上の仕切壁が存在し、さらに前記閉塞部分において、インナーフィンの前記伝熱部が、蓄冷材容器の蓄冷材封入部の左右両側壁のうちのいずれか一方の側壁における前記凝縮水排水溝の閉塞部分の底壁となる部分のみに接合されるとともに同他方の側壁とは離隔しており、
冷媒流通管の周壁の肉厚をt1mm、蓄冷材容器の蓄冷材封入部の側壁における凝縮水排水溝の底壁となる部分の肉厚をt2mm、凝縮水排水溝の深さをHmmとした場合、t1<t2、2・t1>t2、H>t1+t2という関係を満たしている蓄冷機能付きエバポレータ。 Heat having a cold storage material container in which a plurality of flat refrigerant flow pipes having a longitudinal direction directed in the vertical direction and a width direction directed in a ventilation direction, and a cold storage material enclosure portion are provided, and the cold storage material enclosure is enclosed in the cold storage material enclosure portion The heat exchanger core portion includes a plurality of refrigerant flow pipes arranged at intervals in the left-right direction, whereby a gap is formed between adjacent refrigerant flow pipes, and the entire gap The regenerator container is disposed in a part of the plurality of gaps so as to be in contact with the refrigerant flow pipe, and the refrigerant flow pipe is formed with a plurality of flow paths arranged in the ventilation direction via the partition wall, Heat transfer is performed between the side wall of the regenerator material enclosure and the regenerator material in the regenerator material enclosure within the portion of the regenerator material enclosure of the regenerator material container located in the range of the ventilation direction of the heat exchange core. Inner fin with a heat section is placed A plurality of condensate drains having a fixed channel length in the vertical direction are formed on the outer surfaces of the left and right side walls of the portion of the cool storage material enclosure of the cool storage material enclosure located within the range of the ventilation direction of the heat exchange core. Each condensate drainage groove is formed at intervals in the ventilation direction, and the left and right side walls of the cool storage material enclosure of the cool storage material container are spaced apart in the ventilation direction to bulge outward, and the bulge end Is formed between two drain groove convex portions joined to the refrigerant flow pipe, and at least a portion of the total length of the opening facing the refrigerant flow pipe side in each condensed water drain groove is the refrigerant flow pipe. An evaporator with a cold storage function blocked by
In the closed part where the opening facing the refrigerant flow pipe side in the condensed water drainage groove is closed by the refrigerant flow pipe, there are two or more partition walls of the refrigerant flow pipe in the range of the ventilation direction of the closed part, Further, in the closed portion, the heat transfer portion of the inner fin is a bottom wall of the closed portion of the condensed water drainage groove on either one of the left and right side walls of the cool storage material enclosure of the cool storage material container And is separated from the other side wall,
When the wall thickness of the peripheral wall of the refrigerant flow pipe is t1 mm, the thickness of the bottom wall of the condensate drainage groove on the side wall of the cool storage material enclosure of the cool storage material container is t2 mm, and the depth of the condensate drainage groove is Hmm , T1 <t2, 2 · t1> t2, H> t1 + t2, an evaporator with a cold storage function.
The condensate drainage groove and drainage groove convex portion on one side wall of the cool storage material enclosure of the cool storage material container and the condensate drainage groove and drainage groove convex portion on the other side wall partially overlap, but overall The evaporator with a cool storage function according to claim 1, wherein the evaporator is provided so as to be deviated in the ventilation direction in the same horizontal plane so as not to overlap.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016037429A JP2017155969A (en) | 2016-02-29 | 2016-02-29 | Evaporator with cold storage function |
CN201710066087.6A CN107131682B (en) | 2016-02-29 | 2017-02-06 | Evaporator with cool storage function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016037429A JP2017155969A (en) | 2016-02-29 | 2016-02-29 | Evaporator with cold storage function |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017155969A true JP2017155969A (en) | 2017-09-07 |
JP2017155969A5 JP2017155969A5 (en) | 2019-01-31 |
Family
ID=59721063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016037429A Pending JP2017155969A (en) | 2016-02-29 | 2016-02-29 | Evaporator with cold storage function |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017155969A (en) |
CN (1) | CN107131682B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119329258A (en) * | 2024-12-18 | 2025-01-21 | 浙江精新汽车零部件有限公司 | A cold storage evaporator for electric vehicle |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111854258B (en) * | 2020-07-15 | 2024-09-20 | 冷链魔方(上海)科技有限公司 | Cold accumulation strip, cold accumulation assembly and refrigerator |
CN111845276B (en) * | 2020-07-15 | 2025-01-03 | 冷链魔方(上海)科技有限公司 | Cooling bar capable of draining condensed water, cooling assembly and refrigerated vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011006058A (en) * | 2009-05-22 | 2011-01-13 | Showa Denko Kk | Evaporator with cold storage function |
JP2011012947A (en) * | 2009-06-05 | 2011-01-20 | Denso Corp | Heat regenerator |
JP2014020761A (en) * | 2012-07-23 | 2014-02-03 | Denso Corp | Evaporator |
US20140182330A1 (en) * | 2012-12-27 | 2014-07-03 | Keihin Thermal Technology Corporation | Evaporator with cool storage function |
US20150198386A1 (en) * | 2014-01-16 | 2015-07-16 | Halla Visteon Climate Control Corp. | Tube-fin thermal storage evaporator |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2988905B2 (en) * | 1998-05-11 | 1999-12-13 | 鹿島建設株式会社 | Soil heat source ice heat storage heat pump device |
CN2559940Y (en) * | 2002-06-28 | 2003-07-09 | 彭柏桦 | Modified cold room evaporator |
JP5525726B2 (en) * | 2008-12-26 | 2014-06-18 | 株式会社ケーヒン・サーマル・テクノロジー | Evaporator with cool storage function |
CN101713617A (en) * | 2009-10-22 | 2010-05-26 | 天津三电汽车空调有限公司 | Flat pipe structure of heat exchanger and heat exchanger thereof |
KR101756213B1 (en) * | 2010-12-16 | 2017-07-10 | 한온시스템 주식회사 | Cold reserving heat exchanger |
-
2016
- 2016-02-29 JP JP2016037429A patent/JP2017155969A/en active Pending
-
2017
- 2017-02-06 CN CN201710066087.6A patent/CN107131682B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011006058A (en) * | 2009-05-22 | 2011-01-13 | Showa Denko Kk | Evaporator with cold storage function |
JP2011012947A (en) * | 2009-06-05 | 2011-01-20 | Denso Corp | Heat regenerator |
JP2014020761A (en) * | 2012-07-23 | 2014-02-03 | Denso Corp | Evaporator |
US20140182330A1 (en) * | 2012-12-27 | 2014-07-03 | Keihin Thermal Technology Corporation | Evaporator with cool storage function |
JP2014126307A (en) * | 2012-12-27 | 2014-07-07 | Keihin Thermal Technology Corp | Evaporator having cold storage function |
US20150198386A1 (en) * | 2014-01-16 | 2015-07-16 | Halla Visteon Climate Control Corp. | Tube-fin thermal storage evaporator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119329258A (en) * | 2024-12-18 | 2025-01-21 | 浙江精新汽车零部件有限公司 | A cold storage evaporator for electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN107131682B (en) | 2019-10-15 |
CN107131682A (en) | 2017-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5923262B2 (en) | Evaporator with cool storage function | |
JP6427636B2 (en) | Evaporator with cold storage function | |
CN203758095U (en) | Evaporator with cold accumulation function | |
JP5868088B2 (en) | Cooling unit for vehicle air conditioner | |
CN103900294B (en) | Evaporator with cool storage function | |
JP2013061136A5 (en) | ||
JP6329806B2 (en) | Evaporator with cool storage function | |
JP2017155969A (en) | Evaporator with cold storage function | |
JP6578169B2 (en) | Evaporator with cool storage function | |
JP6410660B2 (en) | Evaporator with cool storage function | |
JP6596327B2 (en) | Evaporator with cool storage function | |
JP6182442B2 (en) | Evaporator with cool storage function | |
JP6097520B2 (en) | Evaporator with cool storage function | |
JP6410527B2 (en) | Evaporator with cool storage function | |
JP6286184B2 (en) | Evaporator with cool storage function | |
JP6684683B2 (en) | Evaporator with cold storage function | |
CN206648353U (en) | Evaporator with cool storage function | |
JP6605338B2 (en) | Evaporator with cool storage function | |
JP7049555B2 (en) | Evaporator with cold storage function | |
JP6373325B2 (en) | Evaporator with cool storage function | |
CN107606822B (en) | Evaporator with cold accumulation function | |
JP2016020754A (en) | Evaporator with cold storage function and its manufacturing method | |
JP2015014436A (en) | Evaporator with cold storage function | |
JP2017116254A (en) | Evaporator with cold storage function | |
JP2018059652A (en) | Evaporator with cold storage function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181211 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181211 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191126 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200602 |