[go: up one dir, main page]

JP2017135196A - Capacitor electrode and method for manufacturing the same - Google Patents

Capacitor electrode and method for manufacturing the same Download PDF

Info

Publication number
JP2017135196A
JP2017135196A JP2016012493A JP2016012493A JP2017135196A JP 2017135196 A JP2017135196 A JP 2017135196A JP 2016012493 A JP2016012493 A JP 2016012493A JP 2016012493 A JP2016012493 A JP 2016012493A JP 2017135196 A JP2017135196 A JP 2017135196A
Authority
JP
Japan
Prior art keywords
capacitor electrode
metal complex
porous metal
sintered body
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016012493A
Other languages
Japanese (ja)
Inventor
一幸 福薗
Kazuyuki Fukuzono
一幸 福薗
幸治 吉川
Koji Yoshikawa
幸治 吉川
剛 堂浦
Go Doura
剛 堂浦
成之 梅澤
Nariyuki Umezawa
成之 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiwa Electric Mfg Co Ltd
Original Assignee
Seiwa Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiwa Electric Mfg Co Ltd filed Critical Seiwa Electric Mfg Co Ltd
Priority to JP2016012493A priority Critical patent/JP2017135196A/en
Publication of JP2017135196A publication Critical patent/JP2017135196A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capacitor electrode which exhibits large amounts of adsorption and desorption of electrolyte ions of an organic electrolytic solution and enables the increase in capacitance.SOLUTION: A capacitor electrode is formed by using a sintered compact 1 of a porous metal complex (MOF). In the sintered compact 1 of the porous metal complex, a skeleton 1b forming outer walls of pores 1a is formed in a three-dimensional network structure, and the structure has pores of 2-6 nm in pore size (pore diameter). More specifically, the percentage of pores of 2-6 nm in pore size to a total pore volume is 5% or more in the structure. By using a sintered compact (MOF sintered compact) of a porous metal complex like this to form a capacitor electrode, the capacitance can be made larger than that achieved by a capacitor electrode arranged by use of an active carbon.SELECTED DRAWING: Figure 1

Description

本発明は、電気二重層キャパシタに用いられるキャパシタ電極及びその製造方法に関する。   The present invention relates to a capacitor electrode used for an electric double layer capacitor and a manufacturing method thereof.

近年、地球環境対策の観点から、自動車分野にあっては、燃料消費量(燃費)の向上や排気ガスの低減を実現することを目的として、ハイブリッド自動車(HV)や電気自動車(EV)の技術開発が進められている。これらハイブリッド自動車や電気自動車の技術開発において、駆動系パワーアシストあるいはエネルギ回生の用途に電気二重層キャパシタの実用化が注目されている。   In recent years, from the viewpoint of global environmental countermeasures, in the automobile field, hybrid vehicle (HV) and electric vehicle (EV) technologies have been developed for the purpose of improving fuel consumption (fuel consumption) and reducing exhaust gas. Development is underway. In the technical development of these hybrid vehicles and electric vehicles, the practical use of electric double layer capacitors has attracted attention for applications such as drive system power assist or energy regeneration.

電気二重層キャパシタは、分極性電極と電解液との界面に形成される電気二重層に電荷を蓄積することを原理としており、鉛蓄電池、ニッケル水素二次電池等の二次電池と比べて大電流による急速充放電が可能である。電気二重層キャパシタの分極性電極(キャパシタ電極)の材料としては、表面積が大きくて導電性に優れる点から活性炭が用いられている(例えば、特許文献1、2参照)。   Electric double layer capacitors are based on the principle that electric charges are stored in the electric double layer formed at the interface between the polarizable electrode and the electrolyte, and are larger than secondary batteries such as lead acid batteries and nickel metal hydride secondary batteries. Rapid charging / discharging by current is possible. As a material of the polarizable electrode (capacitor electrode) of the electric double layer capacitor, activated carbon is used because it has a large surface area and excellent conductivity (see, for example, Patent Documents 1 and 2).

特開2011−176043号公報JP 2011-176043 A 特開2011−233845号公報JP2011-233845A 特開2013−249252号公報JP 2013-249252 A 特開2015−155372号公報JP-A-2015-155372

電気二重層キャパシタのエネルギ密度Eは、式[E=(1/2)×CV2]で定義される(Cは静電容量、Vは耐電圧である)。このため、電気二重層キャパシタのエネルギ密度を高くするためには、耐電圧の大きな有機電解液を用いる必要がある。 The energy density E of the electric double layer capacitor is defined by the formula [E = (1/2) × CV 2 ] (C is a capacitance, and V is a withstand voltage). For this reason, in order to increase the energy density of the electric double layer capacitor, it is necessary to use an organic electrolyte having a large withstand voltage.

電気二重層キャパシタの電解液として有機電解液(例えば、テトラエチルアンモニウムテトラフルオロボレート:TEA+BF4 -)を用いる場合、当該有機電極液の電解質アニオン、カチオンが溶媒分子と溶媒和することによる径([電解質イオン+溶媒分子]の径:以下、略して「電解質イオン径」という)が約2nmになる(図5参照)。一方、キャパシタ電極に用いられる活性炭の細孔径(ポア径)は上記電解質イオン径よりも小さいものが多い。このため、キャパシタ電極に活性炭を用い、電解液として有機電解液を用いた場合、電解質イオンが活性炭の細孔に侵入することが困難となり、容量(放電容量)を有効に発現することができない。 When an organic electrolytic solution (for example, tetraethylammonium tetrafluoroborate: TEA + BF 4 ) is used as the electrolytic solution of the electric double layer capacitor, the diameter (by the electrolyte anion and cation of the organic electrode solution solvates with the solvent molecule ( The diameter of [electrolyte ion + solvent molecule]: hereinafter referred to as “electrolyte ion diameter” for short is about 2 nm (see FIG. 5). On the other hand, the pore diameter (pore diameter) of activated carbon used for the capacitor electrode is often smaller than the electrolyte ion diameter. For this reason, when activated carbon is used for the capacitor electrode and an organic electrolytic solution is used as the electrolytic solution, it becomes difficult for the electrolyte ions to enter the pores of the activated carbon, and the capacity (discharge capacity) cannot be effectively expressed.

具体的には、図5に示すように、活性炭は多孔質であるものの、細孔が複雑に入り組んだ構造であり、外部に開口する細孔は表面層付近に存在するだけである。しかも、外部に開口する細孔の細孔径が1nm程度であるものが多い。このため、活性炭の細孔に電解質イオンが有効に入り込まないため、活性炭(キャパシタ電極)に吸着される電解質イオンの量が少なくなり容量が有効に発現しなくなる。また、高出力領域において電解質イオンのスムーズな出し入れが困難になるため、高出力領域における容量が低下する。   Specifically, as shown in FIG. 5, although activated carbon is porous, it has a structure in which the pores are intricately arranged, and the pores that open to the outside only exist in the vicinity of the surface layer. Moreover, many of the pores open to the outside have a pore diameter of about 1 nm. For this reason, since electrolyte ions do not enter the pores of the activated carbon effectively, the amount of electrolyte ions adsorbed on the activated carbon (capacitor electrode) is reduced, and the capacity is not effectively expressed. In addition, since it is difficult to smoothly take in and out electrolyte ions in the high output region, the capacity in the high output region is reduced.

なお、細孔径が2.0nm以上であるメソポア活性炭を製造する技術として、窒素含有材料と縮合多環化合物とを含有する混合物をアルカリ賦活する方法(上記特許文献3)があるが、このようは賦活方法では、活性炭内部にまで細孔を形成することはできない。   In addition, as a technique for producing mesopore activated carbon having a pore diameter of 2.0 nm or more, there is a method of alkali-activating a mixture containing a nitrogen-containing material and a condensed polycyclic compound (Patent Document 3 above). In the activation method, pores cannot be formed even inside the activated carbon.

また、他の技術として、シリカ前駆体及び界面活性剤等を用いてメソ多孔質炭化ケイ素ナノ複合材料を形成する方法(上記特許文献4)があるが、この方法では、フッ酸を用いる工程が必要であるので危険がともなう。   As another technique, there is a method of forming a mesoporous silicon carbide nanocomposite using a silica precursor and a surfactant (Patent Document 4). In this method, a process using hydrofluoric acid is used. It is dangerous because it is necessary.

本発明は、以上のような実情を考慮してなされたものであり、有機電解液の電解質イオンの吸脱着量が多くて容量の向上を図ることが可能なキャパシタ電極を提供すること、及び、そのような特徴を有するキャパシタ電極の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a capacitor electrode that can increase the capacity of the organic electrolyte by increasing the adsorption and desorption amount of electrolyte ions, and An object of the present invention is to provide a method of manufacturing a capacitor electrode having such characteristics.

本発明のキャパシタ電極は、電気二重層キャパシタに用いられるキャパシタ電極であって、多孔性金属錯体の焼結体を含んで形成されている。そして、その多孔性金属錯体の焼結体は、細孔の外郭を構成する骨格が3次元網目構造に形成されており、細孔径が2nm以上6nm以下の細孔を有することを特徴としている。より具体的には、前記多孔性金属錯体の焼結体の前記細孔径が2nm以上6nm以下の細孔の、全細孔容積に対する細孔割合が5%以上であることを特徴としている。   The capacitor electrode of the present invention is a capacitor electrode used for an electric double layer capacitor, and is formed including a sintered body of a porous metal complex. The sintered body of the porous metal complex is characterized in that the skeleton constituting the outline of the pores is formed in a three-dimensional network structure and the pore diameter is 2 nm or more and 6 nm or less. More specifically, the porous metal complex sintered body is characterized in that the pore ratio of the pores having a pore diameter of 2 nm or more and 6 nm or less is 5% or more with respect to the total pore volume.

本発明のキャパシタ電極にあっては、前駆体である多孔性金属錯体の焼結体が、細孔径(以下、ポア径ともいう)が2〜6nm(2nm以上6nm以下)の細孔を多く含んでいるので、有機電解液の電解質イオン(電解質イオン径:1.7〜1.9nm程度)の細孔への侵入及び細孔からの離脱が容易になる。しかも、細孔の外郭を構成する骨格が3次元網目構造であるので、外部に連通する細孔(ポア径2〜6nm)を粒子内部にも形成することができる。これにより、多孔性金属錯体の焼結体の内部にまで電解質イオンが入り込むことが可能になる。   In the capacitor electrode of the present invention, the sintered body of the porous metal complex as the precursor contains many pores having a pore diameter (hereinafter also referred to as pore diameter) of 2 to 6 nm (2 nm to 6 nm). Therefore, it is easy for the electrolyte ions (electrolyte ion diameter: about 1.7 to 1.9 nm) of the organic electrolyte to enter and leave the pores. In addition, since the skeleton constituting the outline of the pores has a three-dimensional network structure, pores (pore diameter 2 to 6 nm) communicating with the outside can be formed inside the particles. Thereby, electrolyte ions can enter into the sintered body of the porous metal complex.

したがって、このような特徴を有する多孔性金属錯体の焼結体を用いた本発明のキャパシタ電極によれば、活性炭を用いたキャパシタ電極と比べて、電解質イオンの吸脱着量が多くなるので、容量を有効に発現することができる。しかも、高出力領域においても電解質イオンの吸脱着をスムーズに行うことが可能になるので、高出力領域における容量も確保することが可能になる。   Therefore, according to the capacitor electrode of the present invention using the porous metal complex sintered body having such characteristics, the adsorption / desorption amount of the electrolyte ions is increased as compared with the capacitor electrode using activated carbon. Can be expressed effectively. In addition, since it is possible to smoothly absorb and desorb electrolyte ions even in the high output region, it is possible to secure a capacity in the high output region.

ここで、多孔性金属錯体の焼結体の細孔のポア径の範囲を2nm以上としている理由は、ポア径が小さすぎると有機電解液の電解質イオンが侵入しにくくなる、という点を考慮し、電解質イオン径(1.7〜1.9nm)に細孔への侵入用のマージンをもたせた値つまり2nmを下限値としている。一方、細孔のポア径が大きいほど、電解質イオンが細孔内に侵入しやすくなるが、細孔のポア径が大きすぎると細孔表面積が減少してしまう。このような点つまり電解質イオンの吸脱着性と細孔表面積とのトレードオフの関係を考慮して細孔のポア径を6nm以下としている。   Here, the reason why the pore diameter range of the pores of the sintered body of the porous metal complex is 2 nm or more is that the electrolyte ions of the organic electrolyte solution are difficult to enter if the pore diameter is too small. The value of the electrolyte ion diameter (1.7 to 1.9 nm) with a margin for penetration into the pores, that is, 2 nm is the lower limit. On the other hand, the larger the pore diameter of the pores, the easier it is for electrolyte ions to enter the pores. However, if the pore diameter of the pores is too large, the pore surface area decreases. In consideration of this point, that is, the trade-off relationship between the adsorption / desorption property of electrolyte ions and the pore surface area, the pore diameter of the pores is set to 6 nm or less.

本発明の製造方法は、金属イオンを溶媒に溶解させたA液と、有機リガンドを溶媒に溶解させたB液とを混ぜ合わせて合成する合成工程と、前記合成工程により得られた合成物を、その合成に用いた溶媒にて洗浄することにより粒子状の多孔性金属錯体を得る洗浄工程と、前記洗浄後の粒子状の多孔性金属錯体に導電性を持たせるために、当該多孔性金属錯体を不活性雰囲気中において所定温度で焼成することにより、粒子状の多孔性金属錯体の焼結体を得る焼成工程と、前記焼成後の粒子状の多孔性金属錯体の焼結体を活物質として用い、その活物質である多孔性金属錯体の焼結体と導電助剤と結着剤とを所定の重量比で混練し、その混練物をペースト状にしたものを金属箔上に塗布した後に乾燥させることによりキャパシタ電極を得る電極作製工程とを含むことを特徴としている。   The production method of the present invention comprises a synthesis step of synthesizing a solution A in which a metal ion is dissolved in a solvent and a solution B in which an organic ligand is dissolved in a solvent, and a synthesized product obtained by the synthesis step. A washing step of obtaining a particulate porous metal complex by washing with the solvent used for the synthesis, and the porous metal complex in order to impart conductivity to the washed particulate porous metal complex. A firing step for obtaining a sintered body of a particulate porous metal complex by firing the complex at a predetermined temperature in an inert atmosphere, and an active material comprising the sintered body of the particulate porous metal complex after the firing Used as the active material, the sintered body of the porous metal complex as the active material, the conductive auxiliary agent and the binder were kneaded at a predetermined weight ratio, and the kneaded material was pasted onto a metal foil. The capacitor electrode is obtained by drying later. It is characterized in that it comprises a manufacturing process.

本発明の製造方法によれば、上に記した特徴を有するキャパシタ電極、つまり細孔の外郭を構成する骨格が3次元網目構造に形成され、細孔径が2nm以上6nm以下の細孔を有する多孔性金属錯体の焼結体を前駆体とするキャパシタ電極を得ることができる。   According to the manufacturing method of the present invention, the capacitor electrode having the above-described characteristics, that is, the skeleton constituting the outline of the pore is formed in a three-dimensional network structure, and the pore having a pore diameter of 2 nm or more and 6 nm or less is provided. A capacitor electrode having a sintered body of a conductive metal complex as a precursor can be obtained.

ここで、本発明の製造方法において、上記A液に溶かす金属イオンとしては、例えば、亜鉛イオン、コバルトイオン、鉄イオン、アルミニウムイオン、ニッケルイオン、マグネシウムイオンなどを挙げることができる。   Here, in the production method of the present invention, examples of the metal ions dissolved in the liquid A include zinc ions, cobalt ions, iron ions, aluminum ions, nickel ions, and magnesium ions.

また、上記B液に溶かす有機リガンドとしては、ベンゼン環を2つ以上、カルボキシル基を2つ以上有するもの、またはアミノ基を2つ以上有するものを挙げることができる。   Examples of the organic ligand dissolved in the solution B include those having two or more benzene rings, two or more carboxyl groups, or one having two or more amino groups.

さらに、上記A液及びB液に用いる溶媒としては、例えば、NMP(Nメチル2ピロリドン)、メタノール、DMSO(ジメチルスルホキシド:C26SO)、DMF(ジメチルホルムアミド:C37NO)、DMA(ジメチルアセトアミド:C49NO)などを挙げることができる。 Furthermore, examples of the solvent used for the liquid A and liquid B include NMP (N-methyl 2 pyrrolidone), methanol, DMSO (dimethyl sulfoxide: C 2 H 6 SO), DMF (dimethylformamide: C 3 H 7 NO), And DMA (dimethylacetamide: C 4 H 9 NO).

本発明のキャパシタ電極は、細孔の外郭を構成する骨格が3次元網目構造に形成され、細孔径が2nm以上6nm以下の細孔を有する多孔性金属錯体の焼結体を用いて形成されているので、活性炭を用いたキャパシタ電極と比べて、有機電解液の電解質イオンの吸脱着量を多くすることが可能となり、容量を高めることができる。また、本発明の製造方法によれば、そのような特徴を有するキャパシタ電極を製造することができる。   The capacitor electrode of the present invention is formed by using a porous metal complex sintered body having a three-dimensional network structure in which the skeleton constituting the outline of the pore is formed and having a pore diameter of 2 nm or more and 6 nm or less. Therefore, compared to the capacitor electrode using activated carbon, it is possible to increase the adsorption / desorption amount of the electrolyte ions of the organic electrolyte, and the capacity can be increased. Moreover, according to the manufacturing method of the present invention, a capacitor electrode having such characteristics can be manufactured.

本発明のキャパシタ電極に用いる多孔性金属錯体の焼結体の構造を模式的に示す図である。It is a figure which shows typically the structure of the sintered compact of the porous metal complex used for the capacitor electrode of this invention. 本実施形態のキャパシタ電極の作製工程及び評価工程を示すブロック図である。It is a block diagram which shows the preparation process and evaluation process of the capacitor electrode of this embodiment. 金属イオンと有機リガンドとの配位結合状態を模式的に示す図である。It is a figure which shows typically the coordination bond state of a metal ion and an organic ligand. MOF焼結体(実施例)の窒素吸脱着等温線と活性炭の窒素吸脱着等温線とを示すグラフである。It is a graph which shows the nitrogen adsorption-desorption isotherm of a MOF sintered compact (Example) and the nitrogen adsorption-desorption isotherm of activated carbon. キャパシタ電極に用いられる活性炭の構造を模式的に示す図である。It is a figure which shows typically the structure of the activated carbon used for a capacitor electrode.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施形態のキャパシタ電極は、電気二重層キャパシタに用いられる分極性電極であって、多孔性金属錯体(MOF:Metal−Organic Framework)の焼結体(粒子状物質)を含んで形成されている。その多孔性金属錯体の焼結体の実施形態について図1を参照して説明する。   The capacitor electrode of the present embodiment is a polarizable electrode used for an electric double layer capacitor, and is formed to include a sintered body (particulate material) of a porous metal complex (MOF: Metal-Organic Framework). . An embodiment of the sintered body of the porous metal complex will be described with reference to FIG.

本実施形態の多孔性金属錯体の焼結体1は、細孔1aの外郭を構成する骨格1b(金属イオンと有機配位子とを組み合わせたもの)が3次元網目構造に形成されており、ポア径が2nm以上6nm以下の細孔1aを有することを特徴としている。より具体的には、ポア径が2nm以上6nm以下の細孔の全細孔容積に対する細孔割合が5%以上であることを特徴としている。   In the sintered body 1 of the porous metal complex of the present embodiment, a skeleton 1b (a combination of metal ions and organic ligands) constituting the outline of the pore 1a is formed in a three-dimensional network structure, The pore 1a has a pore diameter of 2 nm or more and 6 nm or less. More specifically, the pore ratio is 5% or more with respect to the total pore volume of pores having a pore diameter of 2 nm or more and 6 nm or less.

このように、本実施形態の多孔性金属錯体の焼結体1にあっては、ポア径が2〜6nm(2nm以上6nm以下)の細孔を多く含んでいるので、有機電解液(例えば、TEA+BF4 -)の電解質イオン(電解質イオン径:1.7〜1.9nm)Ionの細孔1aへの侵入及び細孔1aからの離脱が容易になる。しかも、細孔1aの外郭を構成する骨格1bを3次元網目構造としているので、外部に連通する細孔1a(ポア径2〜6nm)を粒子内部にも形成することができる(粒子内部の空間(イオン吸着サイト)を有効に利用することができる)。これにより、多孔性金属錯体の焼結体1の内部にまで電解質イオンIonが入り込むことが可能になる。 Thus, in the sintered body 1 of the porous metal complex of the present embodiment, since the pore diameter includes many pores having a pore diameter of 2 to 6 nm (2 nm to 6 nm), an organic electrolytic solution (for example, TEA + BF 4 ) electrolyte ions (electrolyte ion diameter: 1.7 to 1.9 nm) Ion can easily enter and leave the pores 1a. Moreover, since the skeleton 1b constituting the outline of the pore 1a has a three-dimensional network structure, the pore 1a (pore diameter 2 to 6 nm) communicating with the outside can be formed inside the particle (the space inside the particle). (Ion adsorption site) can be used effectively). As a result, the electrolyte ions Ion can enter the sintered body 1 of the porous metal complex.

したがって、このような特徴を有する多孔性金属錯体の焼結体1を用いたキャパシタ電極(本実施形態のキャパシタ電極)によれば、活性炭を用いたキャパシタ電極と比べて、有機電解液の電解質イオンIonの吸着領域が大きい(電解質イオンIonの吸脱着量が多い)ので、容量を高めることができる。しかも、高出力領域においても電解質イオンIonの吸脱着をスムーズに行うことができるので、高出力領域における容量も確保することが可能になる。   Therefore, according to the capacitor electrode (capacitor electrode of the present embodiment) using the sintered body 1 of the porous metal complex having such characteristics, the electrolyte ions of the organic electrolytic solution are compared with the capacitor electrode using activated carbon. Since the adsorption region of Ion is large (the amount of adsorption / desorption of the electrolyte ion Ion is large), the capacity can be increased. In addition, since the adsorption and desorption of the electrolyte ions Ion can be performed smoothly even in the high output region, it is possible to ensure the capacity in the high output region.

以下、多孔性金属錯体を「MOF」といい、多孔性金属錯体の焼結体を「MOF焼結体」という。   Hereinafter, the porous metal complex is referred to as “MOF”, and the sintered body of the porous metal complex is referred to as “MOF sintered body”.

−キャパシタ電極の作製工程・評価−
次に、本実施形態のキャパシタ電極の作製工程、MOF焼結体の細孔評価、及び、キャパシタ電極の容量評価について説明する。
-Capacitor electrode fabrication process and evaluation-
Next, the manufacturing process of the capacitor electrode of this embodiment, the evaluation of the pores of the MOF sintered body, and the capacity evaluation of the capacitor electrode will be described.

まず、本実施形態にあっては、図2に示すように、MOF合成工程S1、MOF洗浄工程S2、MOF焼成工程S3、及び、電極作製工程S4を、この順で行うことによりMOF焼結体を作製する。また、工程S1〜S3で作製したMOF焼結体の細孔を細孔評価工程S11で評価する。さらに、工程S1〜S4で作製したキャパシタ電極の容量を容量評価工程S12で評価する。   First, in the present embodiment, as shown in FIG. 2, the MOF sintered body is obtained by performing the MOF synthesis step S1, the MOF cleaning step S2, the MOF firing step S3, and the electrode preparation step S4 in this order. Is made. Further, the pores of the MOF sintered body produced in steps S1 to S3 are evaluated in the pore evaluation step S11. Furthermore, the capacity of the capacitor electrode produced in steps S1 to S4 is evaluated in capacity evaluation step S12.

次に、工程S1〜S4の各処理について説明する。   Next, each process of process S1-S4 is demonstrated.

<S1:MOF合成工程>
・A液:酢酸亜鉛・2水和物を溶媒[NMP(Nメチル2ピロリドン)]に溶解させたもの
・B液:4−4スチルベンジルカルボン酸を溶媒[NMP(Nメチル2ピロリドン)]に溶解させたもの
<S1: MOF synthesis process>
・ Liquid A: Zinc acetate dihydrate dissolved in solvent [NMP (N-methyl-2-pyrrolidone)] ・ Liquid B: 4-4 stilbenzylcarboxylic acid in solvent [NMP (N-methyl-2-pyrrolidone)] Dissolved

上記A液とB液とを混ぜ合わせて室温にて合成する。A液とB液とを合成すると、図3に示すように、金属イオン(亜鉛イオン)と有機リガンド(4−4スチルベンジルカルボン酸:架橋性有機配位子)とが配位結合して、骨格(グリッド)1bが形成され、その内部に細孔1aを有する構造を得ることができる。ここで、図3に示すような配位結合は連続的に起こるので、金属イオンと架橋有機配位子とが連結した骨格1bが3次元網目状に形成され、内部に空間(つまり細孔1a)をもつ結晶性の高分子構造(立体格子構造:図1参照)を得ることができる。なお、A液とB液とは加熱した状態で合成してもよい。   The A liquid and B liquid are mixed and synthesized at room temperature. When the liquid A and the liquid B are synthesized, as shown in FIG. 3, a metal ion (zinc ion) and an organic ligand (4-4 stilbenzylcarboxylic acid: crosslinkable organic ligand) are coordinated. A skeleton (grid) 1b is formed, and a structure having pores 1a therein can be obtained. Here, since the coordinate bond as shown in FIG. 3 occurs continuously, the skeleton 1b in which the metal ion and the bridging organic ligand are connected is formed in a three-dimensional network, and a space (that is, the pore 1a) is formed inside. ) Having a crystalline polymer structure (steric lattice structure: see FIG. 1). In addition, you may synthesize | combine A liquid and B liquid in the heated state.

ここで、上記A液に溶かす金属イオンとしては、亜鉛イオンの以外に、例えば、コバルトイオン、鉄イオン、アルミニウムイオン、ニッケルイオン、マグネシウムイオンなどであってもよい。   Here, as a metal ion melt | dissolved in said A liquid, cobalt ion, iron ion, aluminum ion, nickel ion, magnesium ion etc. may be sufficient other than zinc ion, for example.

また、上記B液に溶かす有機リガンドとしては、ベンゼン環を2つ以上、カルボキシル基を2つ以上有するもの、またはアミノ基を2つ以上有するものであればよい。   The organic ligand dissolved in the solution B may be any one having two or more benzene rings, two or more carboxyl groups, or one having two or more amino groups.

さらに、上記A液及びB液に用いる溶媒としては、NMPの以外に、例えば、メタノール、DMSO(ジメチルスルホキシド:C26SO)、DMF(ジメチルホルムアミド:C37NO)、DMA(ジメチルアセトアミド:C49NO)などであってもよい。 Furthermore, as a solvent used for the liquid A and liquid B, in addition to NMP, for example, methanol, DMSO (dimethyl sulfoxide: C 2 H 6 SO), DMF (dimethylformamide: C 3 H 7 NO), DMA (dimethyl) Acetamide: C 4 H 9 NO) may be used.

<S2:MOF洗浄工程>
次に、上記MOF合成工程S1により得られた合成物を、その合成に用いた溶媒(NMP)にて洗浄した後に24時間静置し、さらに乾燥することによりMOF(粒子状の物質)を得る。
<S2: MOF cleaning process>
Next, the synthetic product obtained in the MOF synthesis step S1 is washed with the solvent (NMP) used for the synthesis, left to stand for 24 hours, and further dried to obtain MOF (particulate matter). .

<S3:MOF焼成工程>
上記洗浄後のMOFに導電性をもたせるために、窒素雰囲気中において5℃/分で800℃まで昇温し、800℃を5時間保持し、その後5℃/分で室温まで降温することにより、粒子状のMOF焼結体を得る。
<S3: MOF firing step>
In order to give conductivity to the MOF after washing, the temperature is raised to 800 ° C. at 5 ° C./min in a nitrogen atmosphere, held at 800 ° C. for 5 hours, and then lowered to room temperature at 5 ° C./min. A particulate MOF sintered body is obtained.

<S11:細孔評価工程>
(MOF焼結体の窒素吸着測定)
窒素吸脱着測定装置(Bellsorp min マイクロトラック・ベル株式会社製)を用いて、上記工程S1〜S3にて作製したMOF焼結体(以下、本実施例のMOF焼結体という)について窒素吸着測定を行った。その測定結果(窒素吸脱着等温線)を図4に示す。また、窒素吸着測定の測定結果から得られた細孔分布データ(細孔表面積、及びポア径が2〜6nmの細孔の全細孔容積に対する細孔割合(2〜6nm割合))を下記の表1に示す。
<S11: Pore evaluation step>
(Measurement of nitrogen adsorption of MOF sintered body)
Using a nitrogen adsorption / desorption measurement device (Belsorp min Microtrack Bell Co., Ltd.), the nitrogen adsorption measurement of the MOF sintered body produced in the above steps S1 to S3 (hereinafter referred to as the MOF sintered body of this example). Went. The measurement results (nitrogen adsorption / desorption isotherm) are shown in FIG. Moreover, the pore distribution data obtained from the measurement result of nitrogen adsorption measurement (pore surface area and pore ratio (pore ratio of 2 to 6 nm) with respect to the total pore volume of pores having a pore diameter of 2 to 6 nm) are as follows: Table 1 shows.

なお、表1に示す「2〜6nm割合」は、細孔分布データから、式[2〜6nmの分布面積/すべての細孔径における分布面積]を用いて算出した。   The “2 to 6 nm ratio” shown in Table 1 was calculated from the pore distribution data using the formula [distribution area of 2 to 6 nm / distribution area in all pore diameters].

(活性炭の窒素吸着測定)
キャパシタ電極に一般に用いられている活性炭について、上に記した[MOF焼結体の窒素吸着測定]と同様にして窒素吸着測定を行った。その測定結果(窒素吸脱着等温線)を図4に示す。また、窒素吸着測定の測定結果から得られた細孔分布データ(細孔表面積、及び、ポア径が2〜6nmの細孔の全細孔容積に対する細孔割合(2〜6nm割合))を下記の表1に示す。
(Measurement of nitrogen adsorption on activated carbon)
The activated carbon generally used for the capacitor electrode was subjected to nitrogen adsorption measurement in the same manner as described above [Measurement of nitrogen adsorption of MOF sintered body]. The measurement results (nitrogen adsorption / desorption isotherm) are shown in FIG. In addition, the pore distribution data (pore surface area and pore ratio (2 to 6 nm ratio) with respect to the total pore volume of pores having a pore diameter of 2 to 6 nm) obtained from the measurement results of nitrogen adsorption measurement are as follows: Table 1 shows.

Figure 2017135196
Figure 2017135196

(評価)
図4の測定結果(窒素吸脱着等温線)から判るように、本実施例のMOF焼結体では、中圧(P/P0=0.5)付近から窒素吸着量が上昇している。この現象は粒子内部にまで窒素分子が侵入していることを示している。これに対し、活性炭では、中圧付近での吸着量上昇は見られないことから、活性炭内部にまで窒素分子は侵入していないと推察される。
(Evaluation)
As can be seen from the measurement results in FIG. 4 (nitrogen adsorption / desorption isotherm), in the MOF sintered body of this example, the nitrogen adsorption amount increases from around the intermediate pressure (P / P0 = 0.5). This phenomenon indicates that nitrogen molecules have penetrated into the particles. In contrast, activated carbon does not show an increase in the amount of adsorption near the intermediate pressure, so it is presumed that nitrogen molecules have not penetrated into the activated carbon.

また、本実施例のMOF焼結体においては、ヒステリシス曲線が往路(吸着)と復路(脱着)とで異なる挙動が見られる。この現象は、ポア径が2〜6nmの細孔が多く存在していることを示している。   In addition, in the MOF sintered body of the present example, the hysteresis curve shows different behaviors in the forward path (adsorption) and the backward path (desorption). This phenomenon indicates that there are many pores having a pore diameter of 2 to 6 nm.

具体的には、上記表1の[2〜6nm割合]に示すように、本実施例のMOF焼結体においては、ポア径が2〜6nmの細孔の全細孔容積に対する細孔割合が19.9%であるに対し、活性炭ではその細孔割合が4.8%である。このように本実施例のMOF焼結体では、2〜6nm割合つまり有機電解液の電解質イオンの吸脱着が容易な細孔の細孔割合が、活性炭に対して4倍以上も存在していることから、電解質イオンの吸脱着量が活性炭に対し十分に多いと言える。   Specifically, as shown in [2 to 6 nm ratio] in Table 1 above, in the MOF sintered body of this example, the pore ratio with respect to the total pore volume of pores having a pore diameter of 2 to 6 nm is In contrast to 19.9%, activated carbon has a pore ratio of 4.8%. As described above, in the MOF sintered body of this example, the ratio of 2 to 6 nm, that is, the ratio of the pores in which the electrolyte ions of the organic electrolyte solution are easily adsorbed and desorbed is 4 times or more that of the activated carbon. Therefore, it can be said that the adsorption / desorption amount of the electrolyte ions is sufficiently larger than that of the activated carbon.

ここで、活性炭では、2〜6nm割合は4.8%であり、この活性炭よりも電解質イオンを有効に吸脱着することを可能にするために、本実施形態のMOF焼結体1では、ポア径が2nm以上6nm以下の細孔の全細孔容積に対する細孔割合を5%以上と規定している。   Here, in the case of activated carbon, the ratio of 2 to 6 nm is 4.8%. In order to enable the adsorption and desorption of electrolyte ions more effectively than in this activated carbon, the MOF sintered body 1 of the present embodiment has a pore size. The ratio of pores with respect to the total pore volume of pores having a diameter of 2 nm or more and 6 nm or less is defined as 5% or more.

<S4:電極作製工程>
上記工程S1〜S3にて作製したMOF焼結体(平均粒径2.5μm)を活物質として用い、その[活物質(MOF焼結体)]と[導電助剤(アセチレンブラッック)]と[結着剤(PVDF(ポリフッ化ビニリデン樹脂))]とを[8:1:1]の重量比で混練した。その混練物をペースト状にしたものをアルミニウム箔(厚さ:0.020mm)上に、乾燥・プレス後の電極厚み(アルミニウム箔の厚さも含む)が40μmとなるように塗布する。その後に乾燥・プレスを行うことにより、キャパシタ電極を作製した。
<S4: Electrode manufacturing process>
Using the MOF sintered body (average particle size 2.5 μm) prepared in the above steps S1 to S3 as an active material, its [active material (MOF sintered body)] and [conducting aid (acetylene black)] And [Binder (PVDF (polyvinylidene fluoride resin))] were kneaded at a weight ratio of [8: 1: 1]. The kneaded product in paste form is applied on an aluminum foil (thickness: 0.020 mm) so that the electrode thickness (including the thickness of the aluminum foil) after drying and pressing is 40 μm. Thereafter, drying and pressing were performed to produce a capacitor electrode.

<S12:容量評価工程>
(本実施例のキャパシタ電極の容量測定)
定電流充放電試験装置(VSP300 Biologic社製)を用いて、上記工程S1〜S4にて作製したキャパシタ電極(以下、本実施例のキャパシタ電極という)について放電容量を測定した。その測定結果を上記表1に示す。なお、表1には、放電時に流れた電気量[C]を、活物質(MOF焼結体)の重量(g)と放電電圧(V)で除したもの[容量F/g]を評価値として示している。
<S12: Capacity evaluation process>
(Capacitance measurement of capacitor electrode of this example)
Using a constant current charge / discharge test apparatus (manufactured by VSP300 Biological), the discharge capacity was measured for the capacitor electrodes (hereinafter referred to as capacitor electrodes of this example) produced in the above steps S1 to S4. The measurement results are shown in Table 1 above. Table 1 shows the evaluation value of [capacity F / g] obtained by dividing the amount of electricity [C] flowing during discharge by the weight (g) of the active material (MOF sintered body) and the discharge voltage (V). As shown.

(活性炭を用いたキャパシタ電極の作製・容量測定)
まず、キャパシタ電極に一般に用いられている活性炭を活物質として、上に記した電極作製工程S4と同様な処理にてキャパシタ電極を作製した。そして、このようにして作製したキャパシタ電極(以下、比較例のキャパシタ電極)について、上に記した[本実施例のキャパシタ電極の容量測定]と同様にして容量測定を行った。その測定結果を上記表1に示す。なお、表1には、放電容量Fを活物質(活性炭)の重量で除したもの[容量F/g]を評価値として示している。
(Production and capacitance measurement of capacitor electrodes using activated carbon)
First, a capacitor electrode was manufactured by the same process as the electrode manufacturing step S4 described above using activated carbon generally used for a capacitor electrode as an active material. The capacitor electrode thus fabricated (hereinafter referred to as a capacitor electrode of a comparative example) was subjected to capacitance measurement in the same manner as described above [Capacitance measurement of capacitor electrode of this example]. The measurement results are shown in Table 1 above. In Table 1, the discharge capacity F divided by the weight of the active material (activated carbon) [capacity F / g] is shown as an evaluation value.

(評価)
細孔表面積と容量F/gとの関係からキャパシタ電極の評価を行う。
(Evaluation)
The capacitor electrode is evaluated from the relationship between the pore surface area and the capacity F / g.

まず、一般的に細孔表面積が大きいほど、容量F/gは大きくなるとされている。ここで、上記表1に示すように、本実施例のキャパシタ電極(MOF焼結体を用いて作製したもの)は、細孔表面積が比較例のキャパシタ電極(活性炭を用いて作製したもの)よりも小さいにもかかわらず、容量F/gがほぼ同等である(24F/g≒25F/g)。このことから、ポア径が2nm以上6nm以下の細孔の存在(2〜6nm割合が活性炭と比べて多いこと)が容量発現に有効に寄与していることがわかる。   First, it is generally said that the capacity F / g increases as the pore surface area increases. Here, as shown in Table 1 above, the capacitor electrode of this example (produced using the MOF sintered body) has a pore surface area larger than that of the capacitor electrode of the comparative example (produced using activated carbon). However, the capacitance F / g is almost equal (24 F / g≈25 F / g). From this, it can be seen that the presence of pores having a pore diameter of 2 nm or more and 6 nm or less (the ratio of 2 to 6 nm is larger than that of activated carbon) contributes effectively to capacity development.

以上の評価結果から、本実施形態の多孔性金属錯体の焼結体(MOF焼結体)1を用いたキャパシタ電極は、活性炭を用いたキャパシタ電極と比べて、有機電解液の電解質イオンIonの吸脱着量が多くて大きな容量を発現できることが確認できた。   From the above evaluation results, the capacitor electrode using the porous metal complex sintered body (MOF sintered body) 1 of the present embodiment has a higher concentration of electrolyte ions Ion of the organic electrolyte than the capacitor electrode using activated carbon. It was confirmed that the adsorption / desorption amount was large and a large capacity could be expressed.

−他の実施形態−
なお、今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上に記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
-Other embodiments-
In addition, embodiment disclosed this time is an illustration in all the points, Comprising: It does not become a basis of limited interpretation. Therefore, the technical scope of the present invention should not be construed by only the embodiments described above, but is defined based on the description of the claims. Further, the technical scope of the present invention includes all modifications within the scope and meaning equivalent to the scope of the claims.

例えば、本発明は、自動車分野に用いられる電気二重層キャパシタに限られず、他の各種分野に用いられる電気二重層キャパシタのキャパシタ電極にも適用できる。   For example, the present invention is not limited to electric double layer capacitors used in the field of automobiles, but can also be applied to capacitor electrodes of electric double layer capacitors used in other various fields.

本発明は、電気二重層キャパシタに用いられるキャパシタ電極に有効に利用することができる。   The present invention can be effectively used for capacitor electrodes used in electric double layer capacitors.

1 多孔性金属錯体の焼結体(MOF焼結体)
1a 細孔
1b 骨格
Ion 有機電解液の電解質イオン
1 Porous metal complex sintered body (MOF sintered body)
1a pore 1b skeleton Ion electrolyte of organic electrolyte

Claims (3)

電気二重層キャパシタに用いられるキャパシタ電極であって、
細孔の外郭を構成する骨格が3次元網目構造に形成され、かつ、細孔径が2nm以上6nm以下の細孔を有する多孔性金属錯体の焼結体を含んで形成されていることを特徴とするキャパシタ電極。
A capacitor electrode used for an electric double layer capacitor,
The skeleton constituting the outline of the pores is formed in a three-dimensional network structure, and is formed including a sintered body of a porous metal complex having pores having a pore diameter of 2 nm to 6 nm. Capacitor electrode.
請求項1に記載のキャパシタ電極において、
前記多孔性金属錯体の焼結体の前記細孔径が2nm以上6nm以下の細孔の、全細孔容積に対する細孔割合が5%以上であることを特徴とするキャパシタ電極。
The capacitor electrode according to claim 1,
A capacitor electrode, wherein a pore ratio of pores having a pore diameter of 2 nm or more and 6 nm or less of the sintered body of the porous metal complex is 5% or more with respect to the total pore volume.
請求項1または2に記載のキャパシタ電極を製造する方法であって、
金属イオンを溶媒に溶解させたA液と、有機リガンドを溶媒に溶解させたB液とを混ぜ合わせて合成する合成工程と、
前記合成工程により得られた合成物を、その合成に用いた溶媒にて洗浄することにより粒子状の多孔性金属錯体を得る洗浄工程と、
前記洗浄後の粒子状の多孔性金属錯体に導電性を持たせるために、当該多孔性金属錯体を不活性雰囲気中において所定温度で焼成することにより、粒子状の多孔性金属錯体の焼結体を得る焼成工程と、
前記焼成後の粒子状の多孔性金属錯体の焼結体を活物質として用い、その活物質である多孔性金属錯体の焼結体と導電助剤と結着剤とを所定の重量比で混練し、その混練物をペースト状にしたものを金属箔上に塗布した後に乾燥させることによりキャパシタ電極を得る電極作製工程と、
を含むことを特徴とするキャパシタ電極の製造方法。
A method for manufacturing a capacitor electrode according to claim 1, comprising:
A synthesis step of mixing and synthesizing solution A in which metal ions are dissolved in a solvent and solution B in which an organic ligand is dissolved in a solvent;
A washing step of obtaining a particulate porous metal complex by washing the compound obtained by the synthesis step with a solvent used in the synthesis;
In order to give conductivity to the particulate porous metal complex after washing, the porous metal complex is fired at a predetermined temperature in an inert atmosphere, whereby a sintered body of the particulate porous metal complex is obtained. A firing step to obtain,
The sintered porous metal complex sintered body after firing is used as an active material, and the porous metal complex sintered body, the conductive auxiliary agent, and the binder, which are the active materials, are kneaded at a predetermined weight ratio. Then, an electrode manufacturing step for obtaining a capacitor electrode by applying a paste of the kneaded product on a metal foil and then drying it,
A method of manufacturing a capacitor electrode, comprising:
JP2016012493A 2016-01-26 2016-01-26 Capacitor electrode and method for manufacturing the same Pending JP2017135196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012493A JP2017135196A (en) 2016-01-26 2016-01-26 Capacitor electrode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012493A JP2017135196A (en) 2016-01-26 2016-01-26 Capacitor electrode and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2017135196A true JP2017135196A (en) 2017-08-03

Family

ID=59503949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012493A Pending JP2017135196A (en) 2016-01-26 2016-01-26 Capacitor electrode and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2017135196A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063084A (en) * 1973-09-18 1975-05-29
JP2002126512A (en) * 2000-10-19 2002-05-08 Toyota Motor Corp Natural gas storage material and method for producing the same
WO2005028719A1 (en) * 2003-09-19 2005-03-31 Teijin Limited Fibrous activated carbon and nonwoven fabric made of same
JP2008060282A (en) * 2006-08-31 2008-03-13 Seiko Instruments Inc Electric double layer capacitor
CN101604580A (en) * 2009-04-03 2009-12-16 中国科学院上海硅酸盐研究所 Method for preparing porous carbon electrode material by one-step decomposition method of single-source compound
JP2011126775A (en) * 2009-12-15 2011-06-30 Samsung Electronics Co Ltd Hybrid porous material and method for producing the same
JP2012519171A (en) * 2009-02-27 2012-08-23 ユーオーピー エルエルシー Coordination block copolymer
JP2014189537A (en) * 2013-03-28 2014-10-06 Jx Nippon Oil & Energy Corp Porous metal complex
JP2015151324A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Activated carbon and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063084A (en) * 1973-09-18 1975-05-29
JP2002126512A (en) * 2000-10-19 2002-05-08 Toyota Motor Corp Natural gas storage material and method for producing the same
WO2005028719A1 (en) * 2003-09-19 2005-03-31 Teijin Limited Fibrous activated carbon and nonwoven fabric made of same
JP2008060282A (en) * 2006-08-31 2008-03-13 Seiko Instruments Inc Electric double layer capacitor
JP2012519171A (en) * 2009-02-27 2012-08-23 ユーオーピー エルエルシー Coordination block copolymer
CN101604580A (en) * 2009-04-03 2009-12-16 中国科学院上海硅酸盐研究所 Method for preparing porous carbon electrode material by one-step decomposition method of single-source compound
JP2011126775A (en) * 2009-12-15 2011-06-30 Samsung Electronics Co Ltd Hybrid porous material and method for producing the same
JP2014189537A (en) * 2013-03-28 2014-10-06 Jx Nippon Oil & Energy Corp Porous metal complex
JP2015151324A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Activated carbon and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIMIN HUANG ET AL.: "Synthesis, morphology control, and properties of porous metal-organic coordination polymers", MICROPOROUS AND MESOPOROUS MATERIALS, vol. Volume 58, Issue2, JPN6019022519, 4 March 2003 (2003-03-04), pages 105 - 114, ISSN: 0004172840 *

Similar Documents

Publication Publication Date Title
Li et al. Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon
Young et al. High energy density supercapacitors composed of nickel cobalt oxide nanosheets on nanoporous carbon nanoarchitectures
Li et al. High-performance self-assembly MnCo2O4 nanosheets for asymmetric supercapacitors
Li et al. Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor
Pender et al. Carbon nitride transforms into a high lithium storage capacity nitrogen-rich carbon
Salunkhe et al. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework
Shi et al. Nickel metal-organic framework nanoparticles as electrode materials for Li-ion batteries and supercapacitors
Mao et al. 3D graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor
Vinny et al. An excellent cycle performance of asymmetric supercapacitor based on bristles like α-MnO2 nanoparticles grown on multiwalled carbon nanotubes
Wang et al. Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance
Lang et al. Study on the electrochemical properties of cubic ordered mesoporous carbon for supercapacitors
Tan et al. Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66)
Moosavifard et al. 3D ordered nanoporous NiMoO 4 for high-performance supercapacitor electrode materials
Dar et al. Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with macro-structured porous copper oxide
Sun et al. Rational design of uniformly embedded metal oxide nanoparticles into nitrogen-doped carbon aerogel for high-performance asymmetric supercapacitors with a high operating voltage window
Aftabuzzaman et al. A facile route to well-dispersed Ru nanoparticles embedded in self-templated mesoporous carbons for high-performance supercapacitors
KR101832663B1 (en) three dimensional graphene structure having high density and capacity properties, manufacturing method thereof and electrode material comprising the same
CN103985884A (en) A kind of nitrogen-doped carbon nanomaterial, its preparation method and application
Wu et al. N, O-codoped porous carbon nanosheets for capacitors with ultra-high capacitance
Shinde et al. Nitrogen-doped carbon integrated nickel–cobalt metal phosphide marigold flowers as a high capacity electrode for hybrid supercapacitors
CN106430146A (en) Nitrogen-manganese co-doped hierarchical porous carbon material preparation method
Wang et al. Electro-synthesized Ni coordination supermolecular-networks-coated exfoliated graphene composite materials for high-performance asymmetric supercapacitors
TW201522219A (en) High-voltage and high-capacitance activated carbon and carbon-based electrodes
Buğday et al. Porous carbon prepared by zeolitic imidazolate framework (ZIF‐7‐III) as the precursor for supercapacitor applications in different electrolytes
Pooriraj et al. Impact of silver incorporation on cobalt rich 3-D porous carbon arising from solid state thermolysis of ZIF-67 as a pseudocapacitor electrode: improvement of diffusion-controlled charge storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191217