JP2017133845A - Magnetic sensor device - Google Patents
Magnetic sensor device Download PDFInfo
- Publication number
- JP2017133845A JP2017133845A JP2016011356A JP2016011356A JP2017133845A JP 2017133845 A JP2017133845 A JP 2017133845A JP 2016011356 A JP2016011356 A JP 2016011356A JP 2016011356 A JP2016011356 A JP 2016011356A JP 2017133845 A JP2017133845 A JP 2017133845A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic sensor
- permanent magnet
- magnetic
- reference numeral
- symbol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000696 magnetic material Substances 0.000 claims description 9
- 239000000126 substance Substances 0.000 abstract description 4
- 230000004907 flux Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Geophysics And Detection Of Objects (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
Abstract
Description
本発明は、例えば紙幣、有価証券などの紙葉状被検知物(以下、紙葉類と称す)に含まれる磁性体を検出する磁気センサ装置に関するものである。 The present invention relates to a magnetic sensor device that detects a magnetic substance contained in a sheet-like object to be detected (hereinafter referred to as a paper sheet) such as banknotes and securities.
最近、偽造された紙幣や有価証券などの紙葉類はますます精巧になり、真偽を見分け難くなっている。 Recently, paper sheets such as forged banknotes and securities have become more and more sophisticated, making it difficult to distinguish between authenticity and authenticity.
一方、偽造防止・真偽鑑別のために、紙葉類に多種類の偽造防止対策が施されている。例えば、紙葉類に印刷パタ−ンの細かな磁性体(以下、磁気印刷と称す。)を配置したり、磁気特性の異なる複数の磁性体を複数配置したりしている。 On the other hand, various types of anti-counterfeiting measures have been taken on paper sheets to prevent counterfeiting and authenticate. For example, a fine magnetic material (hereinafter referred to as magnetic printing) having a printed pattern is arranged on a paper sheet, or a plurality of magnetic materials having different magnetic characteristics are arranged.
磁気センサ装置の主な構成要素は、紙葉類に含まれる磁性体を磁化させるための磁界発生部と、磁化された磁性体の磁界強度を電圧変化や電流変化に変換する磁電変換素子と、その磁電変換素子からの微弱出力を増幅し検出する検出部と、を備えている。 The main components of the magnetic sensor device are a magnetic field generator for magnetizing a magnetic material contained in a paper sheet, a magnetoelectric conversion element that converts the magnetic field strength of the magnetized magnetic material into a voltage change or a current change, A detection unit that amplifies and detects a weak output from the magnetoelectric conversion element.
ここで、紙葉類に含まれる磁性体を磁化させるための磁界(以下、バイアス磁界と称す。)の発生方法としては、永久磁石を用いる方法と、電磁石を用いる方法があるが、一般的に、電力を必要としない、前者が用いられる。 Here, as a method for generating a magnetic field (hereinafter referred to as a bias magnetic field) for magnetizing a magnetic substance contained in a paper sheet, there are a method using a permanent magnet and a method using an electromagnet. The former is used, which does not require power.
永久磁石を用いる場合、電磁石のようにコイル電流調整でバイアス磁界強度(以下、磁力と称す。)を調整できないため、永久磁石の発生磁力や磁界分布を考慮する必要がある。 When a permanent magnet is used, it is necessary to consider the generated magnetic force and magnetic field distribution of the permanent magnet because the bias magnetic field strength (hereinafter referred to as magnetic force) cannot be adjusted by adjusting the coil current like an electromagnet.
そこで、下記特許文献1(特開2007−085980号公報)にあるように、紙幣等の磁気印刷部を局部的に検出する場合は、磁気センサ素子1個に対し、永久磁石を1個配置すれば、磁気センサ素子が受ける磁力調整を1対1で行えるため、磁力バラツキはさほど問題にならないが、近年のように、紙幣等の全面に渡り磁気印刷部を検出して真偽鑑別精度を向上させる場合、下記特許文献2(特表2009−524019号公報)にあるように、磁気センサ素子を複数個1列に配置して、1個の長尺永久磁石でバイアス磁界を発生させる方式を用いる。 Therefore, as described in the following Patent Document 1 (Japanese Patent Laid-Open No. 2007-085980), when a magnetic printing unit such as a banknote is detected locally, one permanent magnet is arranged for one magnetic sensor element. For example, since the magnetic force received by the magnetic sensor element can be adjusted on a one-to-one basis, there is not much problem with magnetic force variation. However, as in recent years, the magnetic printing part is detected over the entire surface of banknotes, etc., and the accuracy of authenticity discrimination is improved. In this case, as described in the following Patent Document 2 (Japanese Patent Publication No. 2009-524019), a system in which a plurality of magnetic sensor elements are arranged in one row and a bias magnetic field is generated by one long permanent magnet is used. .
この場合、紙幣等の全面に渡り磁気印刷部を検出し精密で安定的に磁気印刷状態を検出するには複数の磁気センサ素子へ均一な磁力のバイアス磁界を掛ける必要があるが、長尺の直方体形状の永久磁石の特性として、永久磁石の長手方向の磁力分布が均一ではなく、永久磁石両端部の磁力が角状に高くなるため、バイアス磁界を均一に掛けることが困難であった。 In this case, it is necessary to apply a bias magnetic field with a uniform magnetic force to a plurality of magnetic sensor elements in order to detect the magnetic printing portion over the entire surface of a bill or the like and detect the magnetic printing state accurately and stably. As a characteristic of the rectangular parallelepiped permanent magnet, the magnetic force distribution in the longitudinal direction of the permanent magnet is not uniform, and the magnetic force at both ends of the permanent magnet is increased in a square shape, so that it is difficult to apply the bias magnetic field uniformly.
下記特許文献2(特表2009−524019号公報)は、個々の磁気センサ素子毎の電子回路調整でこの問題を解決したものであるが、電子回路が複雑になる欠点があった。 Japanese Patent Application Laid-Open No. 2009-524019 below solves this problem by adjusting the electronic circuit for each individual magnetic sensor element, but has a drawback that the electronic circuit becomes complicated.
このように、磁気センサ素子を複数個1列に配置して、1個の長尺永久磁石でバイアス磁界を発生させる磁気センサ装置においては、直方体形状の永久磁石の長手方向両端部の磁力が極端に低くまた角状に高くなる現象により、各磁気センサ素子へのバイアス磁界が不均一となる。そのため、紙幣等の全面に渡り磁気印刷部を検出し精密で安定的に磁気印刷状態を検出することが困難であった。 As described above, in a magnetic sensor device in which a plurality of magnetic sensor elements are arranged in one row and a bias magnetic field is generated by one long permanent magnet, the magnetic force at both ends in the longitudinal direction of the rectangular parallelepiped permanent magnet is extremely high. The bias magnetic field to each magnetic sensor element becomes non-uniform due to the phenomenon that the magnetic sensor element becomes low and squarely high. For this reason, it is difficult to detect the magnetic printing state over the entire surface of a bill or the like and detect the magnetic printing state accurately and stably.
本発明は、上記実情に鑑みてなされたものであり、磁気センサ素子を複数個1列に配置して、1個の長尺永久磁石でバイアス磁界を発生させる磁界センサ装置において、永久磁石が発生するバイアス磁界を均一に各磁気センサ素子に掛けることができ、紙葉類に含まれる磁性体の状態を精密で安定的に検出することができる磁気センサ装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a permanent magnet is generated in a magnetic field sensor device in which a plurality of magnetic sensor elements are arranged in a row and a bias magnetic field is generated by one long permanent magnet. An object of the present invention is to provide a magnetic sensor device that can uniformly apply a bias magnetic field to each magnetic sensor element and can accurately and stably detect the state of a magnetic substance contained in a paper sheet.
本発明に係る磁気センサ装置は、搬送路を搬送される紙葉類に含まれる磁性体を検出する磁気センサ装置であって、1列に配置された複数の磁気センサ素子と、長尺の永久磁石とを備える。前記永久磁石は、前記複数の磁気センサ素子に対して前記搬送路側とは反対側に配置され、前記複数の磁気センサ素子の配列方向に対して平行に延びる。前記複数の磁気センサ素子は、前記永久磁石の長手方向の両端から当該永久磁石の高さ寸法の1/2以上離れた位置にのみ配置されている。 A magnetic sensor device according to the present invention is a magnetic sensor device that detects a magnetic material contained in a paper sheet conveyed on a conveyance path, and includes a plurality of magnetic sensor elements arranged in a row and a long permanent element. And a magnet. The permanent magnet is disposed on the side opposite to the conveyance path side with respect to the plurality of magnetic sensor elements, and extends in parallel with the arrangement direction of the plurality of magnetic sensor elements. The plurality of magnetic sensor elements are disposed only at positions that are separated from both ends of the permanent magnet in the longitudinal direction by a half or more of the height dimension of the permanent magnet.
このような構成によれば、永久磁石の長手方向の両端から当該永久磁石の高さ寸法の1/2未満の範囲で生じる角状に磁界分布が高くなる部分よりも内側に、複数の磁気センサ素子を配置することができる。これにより、磁界分布の不均一部分を回避し、均一な磁界を各磁気センサ素子へ掛けることができ、紙葉類の磁気印刷の状態を精密で安定的に検出できる。 According to such a configuration, a plurality of magnetic sensors are arranged on the inner side of the corner where the magnetic field distribution is increased in a range less than half the height dimension of the permanent magnet from both ends in the longitudinal direction of the permanent magnet. Elements can be placed. Thereby, a non-uniform portion of the magnetic field distribution can be avoided, a uniform magnetic field can be applied to each magnetic sensor element, and the magnetic printing state of the paper sheet can be detected accurately and stably.
前記永久磁石の高さ寸法を幅寸法で除した寸法比が1から3の範囲であることが好ましい。 It is preferable that the dimension ratio obtained by dividing the height dimension of the permanent magnet by the width dimension is in the range of 1 to 3.
このような構成によれば、永久磁石の材料の使用量が同じでも最も効率の良い寸法で永久磁石を形成することができる。これにより、できるだけ少ない材料を使用して磁束密度の高い永久磁石を形成することができるため、より低コストで紙葉類の磁気印刷の状態を精密に検出できる。 According to such a configuration, the permanent magnet can be formed with the most efficient dimension even if the amount of the permanent magnet used is the same. As a result, a permanent magnet having a high magnetic flux density can be formed using as little material as possible, so that the state of magnetic printing on the paper sheet can be accurately detected at a lower cost.
前記永久磁石の長手寸法を高さ寸法で除した寸法比が3以上であることが好ましい。 It is preferable that a dimensional ratio obtained by dividing the longitudinal dimension of the permanent magnet by the height dimension is 3 or more.
このような構成によれば、角状に磁界分布が高くなる現象が生じやすい寸法の永久磁石を使用する場合に、磁界分布の不均一部分を回避し、均一な磁界を各磁気センサ素子へ掛けることができる。 According to such a configuration, when using a permanent magnet having a size that is likely to cause a phenomenon in which the magnetic field distribution is increased in a square shape, a non-uniform portion of the magnetic field distribution is avoided and a uniform magnetic field is applied to each magnetic sensor element. be able to.
前記磁気センサ素子が、ホ−ル素子であることが好ましい。 The magnetic sensor element is preferably a hall element.
このような構成によれば、紙葉類が搬送されているときだけでなく、静止しているときにも紙葉類に含まれる磁性体を検出することができ、またその動作速度が検出感度変化にほとんど影響を与えないホール素子を用いて、紙葉類の磁気印刷の状態をより精密で安定的に検出できる。 According to such a configuration, the magnetic material contained in the paper sheet can be detected not only when the paper sheet is being transported but also when it is stationary, and the operation speed is based on the detection sensitivity. Using a Hall element that hardly affects changes, the state of magnetic printing of paper sheets can be detected more precisely and stably.
本発明によれば、永久磁石が発生するバイアス磁界を均一に各磁気センサ素子へ掛けることができ、紙葉類に含まれる磁性体の状態を精密で安定的に検出することができる。 According to the present invention, a bias magnetic field generated by a permanent magnet can be uniformly applied to each magnetic sensor element, and the state of a magnetic body contained in a paper sheet can be detected accurately and stably.
図1及び図2は、本発明の磁気センサ装置の構成である磁気センサ素子(符号1)と永久磁石(符号2)と紙葉類(符号3)の位置関係を示した図である。図1は磁気センサ装置の正面図を示しており、図2は磁気センサ装置の断面図を示している。 1 and 2 are diagrams showing the positional relationship among a magnetic sensor element (reference numeral 1), a permanent magnet (reference numeral 2), and a paper sheet (reference numeral 3), which is a configuration of the magnetic sensor device of the present invention. FIG. 1 shows a front view of the magnetic sensor device, and FIG. 2 shows a cross-sectional view of the magnetic sensor device.
図1の正面図に示すように、磁気センサ装置には、複数の磁気センサ素子(符号1)が備えられている。複数の磁気センサ素子(符号1)は、電気配線を施した基材(符号5)上に1列に配置されている。永久磁石(符号2)は、複数の磁気センサ素子(符号1)の配列方向に対して平行に延びる長尺の直方体形状を有している。この例では、永久磁石(符号2)のN極が磁気センサ素子(符号1)側に位置しているが、これに限らず、S極が磁気センサ素子(符号1)側に位置していてもよい。 As shown in the front view of FIG. 1, the magnetic sensor device includes a plurality of magnetic sensor elements (reference numeral 1). The plurality of magnetic sensor elements (symbol 1) are arranged in a row on a base material (symbol 5) provided with electrical wiring. The permanent magnet (reference numeral 2) has an elongated rectangular parallelepiped shape extending in parallel with the arrangement direction of the plurality of magnetic sensor elements (reference numeral 1). In this example, the N pole of the permanent magnet (symbol 2) is located on the magnetic sensor element (symbol 1) side, but not limited to this, the S pole is located on the magnetic sensor element (symbol 1) side. Also good.
紙葉類(符号3)は、複数の磁気センサ素子(符号1)に対して、永久磁石(符号2)側とは反対側に形成された搬送路を搬送される。この例では、紙葉類(符号3)が図1における手前から奥へ、または奥から手前の方向に搬送される。すなわち、紙葉類(符号3)は、複数の磁気センサ素子(符号1)の配列方向に対して交差する方向、好ましくは直交する方向に沿って搬送路を搬送される。図2の断面図では、紙葉類(符号3)の左右に示した矢印が、搬送方向を示している。 The paper sheet (symbol 3) is transported on a transport path formed on the side opposite to the permanent magnet (symbol 2) side with respect to the plurality of magnetic sensor elements (symbol 1). In this example, the paper sheet (reference numeral 3) is conveyed from the front side to the back side in FIG. 1 or from the back side to the front side. That is, the paper sheet (symbol 3) is transported on the transport path along a direction that intersects, preferably perpendicular to, the arrangement direction of the plurality of magnetic sensor elements (symbol 1). In the cross-sectional view of FIG. 2, the arrows shown on the left and right of the paper sheet (reference numeral 3) indicate the transport direction.
また、複数の磁気センサ素子(符号1)と紙葉類(符号3)との間には、非磁性金属からなる薄板状のカバ−(符号4)が配置されている。カバ−(符号4)は、紙葉類(符号3)の搬送路面を構成するとともに、磁気センサ素子(符号1)を保護する機能を有している。 Further, a thin plate cover (reference numeral 4) made of a nonmagnetic metal is disposed between the plurality of magnetic sensor elements (reference numeral 1) and the paper sheets (reference numeral 3). The cover (reference numeral 4) constitutes a transport path surface of the paper sheet (reference numeral 3) and has a function of protecting the magnetic sensor element (reference numeral 1).
また、図示していないが、これら磁気センサ素子(符号1)、永久磁石(符号2)、カバ−(符号4)は、一定間隔となるように非磁性金属またはプラスチック製の筐体で支持されている。これにより、一体的な磁気センサ装置が構成され、磁気センサ素子(符号1)、永久磁石(符号2)、カバ−(符号4)の位置関係が変化しないように固定されている。 Although not shown, the magnetic sensor element (reference numeral 1), the permanent magnet (reference numeral 2), and the cover (reference numeral 4) are supported by a nonmagnetic metal or plastic casing so as to have a constant interval. ing. Thus, an integral magnetic sensor device is configured and fixed so that the positional relationship between the magnetic sensor element (reference numeral 1), the permanent magnet (reference numeral 2), and the cover (reference numeral 4) does not change.
複数の磁気センサ素子(符号1)は、永久磁石(符号2)の磁界中に設けられている。搬送路に紙葉類(符号3)が搬送されて、紙葉類(符号3)に含まれる磁性体(磁気印刷部)が、磁気センサ素子(符号1)近傍を通過する時には、永久磁石(符号2)の磁界で磁気印刷部が帯磁することにより、磁気センサ素子(符号1)が受ける磁界が変化する。そのため、この変化を複数の磁気センサ素子(符号1)で電気的に検出することにより、磁気印刷の状態を判定することができる。 The plurality of magnetic sensor elements (reference numeral 1) are provided in the magnetic field of the permanent magnet (reference numeral 2). When the paper sheet (symbol 3) is transported to the transport path and the magnetic material (magnetic printing unit) included in the paper sheet (symbol 3) passes near the magnetic sensor element (symbol 1), a permanent magnet ( When the magnetic printing unit is magnetized by the magnetic field indicated by reference numeral 2), the magnetic field received by the magnetic sensor element (reference numeral 1) changes. Therefore, the state of magnetic printing can be determined by electrically detecting this change with a plurality of magnetic sensor elements (reference numeral 1).
複数の磁気センサ素子(符号1)は、搬送路を搬送される紙葉類(符号3)に対向する範囲に配置されている。したがって、搬送路に紙葉類(符号3)を搬送しながら磁界の変化を複数の磁気センサ素子(符号1)で検出することにより、紙葉類(符号3)の全面に渡り磁気印刷部を検出することができる。 The plurality of magnetic sensor elements (symbol 1) are arranged in a range facing the paper sheet (symbol 3) transported through the transport path. Therefore, by detecting the change of the magnetic field by the plurality of magnetic sensor elements (reference numeral 1) while conveying the paper sheet (reference numeral 3) to the conveyance path, the magnetic printing unit is spread over the entire surface of the paper sheet (reference numeral 3). Can be detected.
本発明の実施例としては、磁気センサ素子(符号1)にホ−ル素子を用いた。ホ−ル素子には、主にGaAs系、InAs系、InSb系があるが、温度特性が良いGaAs系を用いた。本発明ではホ−ル素子に対し磁界を印加する方向を略直角にしている。 As an example of the present invention, a hall element was used as the magnetic sensor element (reference numeral 1). Hall elements mainly include GaAs, InAs, and InSb, but GaAs based on good temperature characteristics was used. In the present invention, the direction in which the magnetic field is applied to the hole element is set at a substantially right angle.
また、磁界磁束密度は、種々実験の結果、紙葉類(符号3)の通過位置に於いて100ミリテスラ〜200ミリテスラ(以下mT)とすれば感度出力とノイズ比(S/N比)が良く、実施例では、ほぼ150mTになるように、永久磁石(符号2)を選定し永久磁石(符号2)と紙葉類(符号3)の通過位置との距離を2mmとした。 In addition, as a result of various experiments, the magnetic field magnetic flux density has a good sensitivity output and noise ratio (S / N ratio) if it is 100 to 200 millitesla (hereinafter referred to as mT) at the passing position of the paper sheet (reference numeral 3). In the example, the permanent magnet (reference numeral 2) was selected so that the distance was approximately 150 mT, and the distance between the permanent magnet (reference numeral 2) and the passage position of the paper sheet (reference numeral 3) was 2 mm.
なお、この距離は2mmに限定するものではなく、永久磁石(符号2)の特性・形状や磁気センサ装置全体の形状デザインにより変えることが出来る。 This distance is not limited to 2 mm, but can be changed depending on the characteristics and shape of the permanent magnet (reference numeral 2) and the shape design of the entire magnetic sensor device.
本発明では、紙葉類(符号3)の全域に渡り磁気印刷の状態を判定するため、複数個のホ−ル素子を1列状に配列している。したがって紙葉類(符号3)の磁気印刷の状態を精密で安定的に検出するためには、各ホ−ル素子に出来るだけ均一な磁界を掛ける必要があるが、本発明では、ホ−ル素子(符号1)の配列方向に対して平行に角棒状の永久磁石(符号2)を配置している。そこで、最適な永久磁石(符号2)の寸法を選定するため、図3に示すように、材質は樹脂磁石で寸法が高さ寸法(符号a)、幅寸法(符号b)、長手寸法(符号c)の角状棒の永久磁石(符号2)を作成した。ここで図中のN、Sは磁極を表している。その磁極に磁化した永久磁石(符号2)を各寸法作成し、磁石N極面からZ軸方向の距離(符号d)が1mm離れた位置と、2mm離れた位置とで、それぞれZ軸方向の磁束密度をテスラメ−タのセンサプロ−ブ(符号6)により測定した。具体的には、永久磁石(符号2)の長手方向の略中央位置においてセンサプロ−ブ(符号6)をY軸方向に移動させた時のピーク値を測定した。 In the present invention, in order to determine the state of magnetic printing over the entire area of the paper sheet (reference numeral 3), a plurality of hole elements are arranged in a line. Therefore, in order to accurately and stably detect the magnetic printing state of the paper sheet (reference numeral 3), it is necessary to apply a magnetic field as uniform as possible to each hole element. A rectangular bar-shaped permanent magnet (reference numeral 2) is arranged in parallel to the arrangement direction of the elements (reference numeral 1). Therefore, in order to select the optimum dimension of the permanent magnet (reference numeral 2), as shown in FIG. 3, the material is a resin magnet, and the dimension is a height dimension (reference numeral a), a width dimension (reference numeral b), and a longitudinal dimension (reference numeral). A permanent magnet (reference numeral 2) of a square bar of c) was prepared. Here, N and S in the figure represent magnetic poles. Each dimension of a permanent magnet (reference numeral 2) magnetized on the magnetic pole is prepared, and the Z-axis direction distance (reference numeral d) from the magnet N pole surface is 1 mm away and 2 mm away, respectively. The magnetic flux density was measured with a sensor probe (symbol 6) of a Tesla meter. Specifically, the peak value was measured when the sensor probe (symbol 6) was moved in the Y-axis direction at a substantially central position in the longitudinal direction of the permanent magnet (symbol 2).
作成した永久磁石(符号2)の寸法は、長手寸法(符号c)はすべて50mmに固定し、幅寸法(符号b)を4mmから16mmまで2mm間隔で変化させた。また、永久磁石(符号2)の高さ寸法(符号a)は、幅寸法(符号b)と高さ寸法(符号a)の積が100mm2となるように変化させた。 As for the dimensions of the produced permanent magnet (reference numeral 2), all the longitudinal dimensions (reference numeral c) were fixed to 50 mm, and the width dimension (reference numeral b) was changed from 4 mm to 16 mm at intervals of 2 mm. The height dimension (symbol a) of the permanent magnet (symbol 2) was changed so that the product of the width dimension (symbol b) and the height dimension (symbol a) was 100 mm 2 .
ここで、積を100mm2としたのは、永久磁石(符号2)の使用量を一定条件にするためである。 Here, the reason why the product is set to 100 mm 2 is to make the usage amount of the permanent magnet (reference numeral 2) constant.
前記で実験測定した結果が下記表1である。
この表1中では、高さ寸法/幅寸法を磁石寸法比(a/b)として示している。この結果の磁石寸法比(高さ寸法/幅寸法)を横軸にし、磁束密度(ピーク値)を縦軸にグラフ化したものが図4である。 In Table 1, the height dimension / width dimension is shown as a magnet dimension ratio (a / b). FIG. 4 is a graph in which the resulting magnet dimension ratio (height dimension / width dimension) is plotted on the horizontal axis and the magnetic flux density (peak value) is plotted on the vertical axis.
この図4の結果によれば、測定距離により多少異なるが、磁石寸法比(高さ寸法/幅寸法)が1以下では、磁束密度が上昇傾向で、磁石寸法比(高さ寸法/幅寸法)が3以上では磁束密度が横ばい若しくは下降傾向となることを示している。 According to the results of FIG. 4, although slightly different depending on the measurement distance, when the magnet size ratio (height size / width size) is 1 or less, the magnetic flux density tends to increase, and the magnet size ratio (height size / width size). 3 or more indicates that the magnetic flux density is flat or has a downward trend.
したがって、永久磁石(符号2)の材料の使用量が同じで最も効率の良い永久磁石(符号2)の寸法は、磁石寸法比(高さ寸法/幅寸法)が1から3であり、望ましくは2から3である。このような寸法で永久磁石(符号2)を形成することにより、できるだけ少ない材料を使用して磁束密度の高い永久磁石(符号2)を形成することができるため、より低コストで紙葉類(符号3)の磁気印刷の状態を精密に検出できる。 Accordingly, the most efficient permanent magnet (reference numeral 2) with the same amount of material used for the permanent magnet (reference numeral 2) has a magnet size ratio (height dimension / width dimension) of 1 to 3, preferably 2 to 3. By forming the permanent magnet (reference numeral 2) with such dimensions, it is possible to form a permanent magnet (reference numeral 2) having a high magnetic flux density by using as little material as possible. The state of magnetic printing of reference 3) can be accurately detected.
次に長手寸法(符号c)については、図3で、永久磁石(符号2)の高さ寸法(符号a)を10mm、幅寸法(符号b)を8mmに固定し、長手寸法(符号c)を10mmから100mmまで段階的に変えたものを作成した。そして、磁石N極面からZ軸方向の距離(符号d)が1.5mm離れた位置のZ軸方向の磁束密度を、テスラメ−タのセンサプロ−ブ(符号6)により測定した。具体的には、センサプロ−ブ(符号6)を永久磁石(符号2)の幅寸法の略中央位置においてX軸方向に移動させた時の磁束密度を、0.2mm間隔で連続的に測定した。 Next, regarding the longitudinal dimension (symbol c), the height dimension (symbol a) of the permanent magnet (symbol 2) is fixed to 10 mm and the width dimension (symbol b) is fixed to 8 mm in FIG. Was prepared in a stepwise manner from 10 mm to 100 mm. Then, the magnetic flux density in the Z-axis direction at a position where the distance in the Z-axis direction (symbol d) is 1.5 mm away from the magnet N pole surface was measured with a sensor probe (symbol 6) of a Tesla meter. Specifically, the magnetic flux density when the sensor probe (symbol 6) was moved in the X-axis direction at a substantially central position of the width dimension of the permanent magnet (symbol 2) was continuously measured at intervals of 0.2 mm. .
図5及び図6は、X軸方向の測定距離を横軸に、各測定位置での磁束密度を縦軸にして、磁界分布をグラフ化したものである。これらの図5及び図6では、永久磁石(符号2)の長手寸法(符号c)を変えて実験した結果が各磁界分布グラフで表されており、それぞれの実験に使用した永久磁石(符号2)の寸法が各グラフの下に長方形の形状で並べて示されている。図5は永久磁石(符号2)の長手寸法(符号c)が10mm、20mm、30mm、40mmのときの各磁界分布グラフを上下に並べて表しており、図6は永久磁石(符号2)の長手寸法(符号c)が50mm、70mm、100mmのときの各磁界分布グラフを上下に並べて表している。 5 and 6 are graphs of the magnetic field distribution with the measurement distance in the X-axis direction as the horizontal axis and the magnetic flux density at each measurement position as the vertical axis. In these FIG.5 and FIG.6, the result of having experimented by changing the longitudinal dimension (code | symbol c) of a permanent magnet (code | symbol 2) is represented by each magnetic field distribution graph, and the permanent magnet (code | symbol 2) used for each experiment is shown. ) Are shown in a rectangular shape below each graph. FIG. 5 shows the respective magnetic field distribution graphs when the longitudinal dimension (symbol c) of the permanent magnet (symbol 2) is 10 mm, 20 mm, 30 mm, and 40 mm, and FIG. 6 shows the longitudinal direction of the permanent magnet (symbol 2). The magnetic field distribution graphs when the dimension (symbol c) is 50 mm, 70 mm, and 100 mm are shown side by side.
また、図5及び図6において永久磁石(符号2)の内側に破線で示した縦線は、永久磁石(符号2)の両端から高さ寸法(符号a)の1/2の距離だけ離れた位置、及び1/1の距離だけ離れた位置を示している。この例では、永久磁石(符号2)の高さ寸法(符号a)が10mmであるため、上記1/2の距離は5mmであり、上記1/1の距離は10mmである。 5 and 6, the vertical line indicated by a broken line inside the permanent magnet (reference numeral 2) is separated from both ends of the permanent magnet (reference numeral 2) by a distance of ½ of the height dimension (reference numeral a). A position and a position separated by a distance of 1/1 are shown. In this example, since the height dimension (symbol a) of the permanent magnet (symbol 2) is 10 mm, the ½ distance is 5 mm and the 1/1 distance is 10 mm.
これらのグラフに示された実験結果によれば、永久磁石(符号2)の長手寸法(符号c)が大きくなるに従い、磁界分布は台形状に平らになる。しかし、永久磁石(符号2)の長手寸法(符号c)を高さ寸法(符号a)で除した寸法比が3以上、すなわち永久磁石(符号2)の長手寸法(符号c)が30mm以上になると、永久磁石(符号2)の両端では磁界分布の立下りが大きくなるとともに、永久磁石(符号2)の両端部より少し内側で、角状に磁界分布が高くなり、永久磁石(符号2)の中央部に比べて磁束密度変化が大きくなっている。したがって、永久磁石(符号2)の端部に配置された磁気センサ素子(符号1)と、永久磁石(符号2)の中央部に配置された磁気センサ素子(符号1)とでは、磁界磁力に差が生じるため検知出力がバラツキ、紙葉類(符号3)の磁気印刷の状態を精密で安定的に検出することができない。 According to the experimental results shown in these graphs, the magnetic field distribution becomes flat in a trapezoidal shape as the longitudinal dimension (symbol c) of the permanent magnet (symbol 2) increases. However, the dimension ratio obtained by dividing the longitudinal dimension (symbol c) of the permanent magnet (symbol 2) by the height dimension (symbol a) is 3 or more, that is, the longitudinal dimension (symbol c) of the permanent magnet (symbol 2) is 30 mm or more. Then, the fall of the magnetic field distribution becomes large at both ends of the permanent magnet (reference numeral 2), and the magnetic field distribution increases in a rectangular shape slightly inside the both end parts of the permanent magnet (reference numeral 2). The change in the magnetic flux density is larger than that in the central part. Therefore, the magnetic sensor element (symbol 1) disposed at the end of the permanent magnet (symbol 2) and the magnetic sensor element (symbol 1) disposed at the center of the permanent magnet (symbol 2) have a magnetic field magnetic force. Since the difference occurs, the detection output varies, and the magnetic printing state of the paper sheet (reference numeral 3) cannot be detected accurately and stably.
そこで、本実施形態では、図5及び図6に示す永久磁石(符号2)の両端から高さ寸法(符号a)の1/2の距離だけ離れた縦線位置よりも内側、望ましくは、永久磁石(符号2)の両端から高さ寸法(符号a)の1/1の距離だけ離れた縦線位置よりも内側の範囲に磁気センサ素子(符号1)を配置する。すなわち、図1で説明すると、長尺の永久磁石(符号2)の両端から、複数の磁気センサ素子(符号1)のうち配列方向の両端に位置する磁気センサ素子(符号1)までの距離e1及びe2を、永久磁石(符号2)の高さ寸法(符号a)の1/2以上、望ましくは1/1以上としている。 Therefore, in the present embodiment, the permanent magnet (reference numeral 2) shown in FIGS. 5 and 6 is located on the inner side of the vertical line position separated from the both ends of the height dimension (reference numeral a) by a distance of 1/2 of the height dimension (reference numeral a). The magnetic sensor element (symbol 1) is arranged in a range on the inner side of the vertical line position separated from both ends of the magnet (symbol 2) by a distance of 1/1 of the height dimension (symbol a). That is, with reference to FIG. 1, the distance e1 from both ends of the long permanent magnet (reference numeral 2) to the magnetic sensor elements (reference numeral 1) located at both ends in the arrangement direction among the plurality of magnetic sensor elements (reference numeral 1). And e2 are set to 1/2 or more, preferably 1/1 or more of the height dimension (reference a) of the permanent magnet (reference 2).
これにより、永久磁石(符号2)の長手方向の両端から当該永久磁石(符号2)の高さ寸法(符号a)の1/2以上離れた位置、望ましくは1/1以上離れた位置にのみ複数の磁気センサ素子(符号1)が配置されている。この例では、上記距離e1及びe2が、複数の磁気センサ素子(符号1)における配列方向の両端に配置された磁気センサ素子(符号1)の中心を基準としているが、これに限らず、例えば磁気センサ素子(符号1)の端縁を基準としていてもよい。 Thereby, from the both ends of the longitudinal direction of a permanent magnet (code | symbol 2), the position away from 1/2 or more of the height dimension (code | symbol a) of the said permanent magnet (code | symbol 2), Preferably it is only the position away from 1/1 or more. A plurality of magnetic sensor elements (reference numeral 1) are arranged. In this example, the distances e1 and e2 are based on the centers of the magnetic sensor elements (reference numeral 1) arranged at both ends in the arrangement direction of the plurality of magnetic sensor elements (reference numeral 1). The edge of the magnetic sensor element (reference numeral 1) may be used as a reference.
このように、本実施形態では、永久磁石(符号2)の長手方向の両端から当該永久磁石(符号2)の高さ寸法(符号a)の1/2未満の範囲で生じる角状に磁界分布が高くなる部分よりも内側に、複数の磁気センサ素子(符号1)を配置することができる。これにより、磁界分布の不均一部分を回避し、均一な磁界を各磁気センサ素子(符号1)へ掛けることができ、紙葉類(符号3)の磁気印刷の状態を精密で安定的に検出できる。 As described above, in this embodiment, the magnetic field distribution is formed in a square shape that occurs in a range less than ½ of the height dimension (symbol a) of the permanent magnet (symbol 2) from both ends in the longitudinal direction of the permanent magnet (symbol 2). A plurality of magnetic sensor elements (reference numeral 1) can be arranged on the inner side of the portion where the height increases. As a result, a non-uniform portion of the magnetic field distribution can be avoided, a uniform magnetic field can be applied to each magnetic sensor element (reference numeral 1), and the magnetic printing state of the paper sheet (reference numeral 3) can be detected accurately and stably. it can.
特に、永久磁石(符号2)の高さ寸法(符号a)を幅寸法(符号b)で除した寸法比(a/b)が1から3の範囲であれば、永久磁石(符号2)の材料の使用量が同じでも最も効率の良い寸法で永久磁石(符号2)を形成することができる。これにより、できるだけ少ない材料を使用して磁束密度の高い永久磁石(符号2)を形成することができるため、より低コストで紙葉類(符号3)の磁気印刷の状態を精密に検出できる。 In particular, if the dimensional ratio (a / b) obtained by dividing the height dimension (symbol a) of the permanent magnet (symbol 2) by the width dimension (symbol b) is in the range of 1 to 3, the permanent magnet (symbol 2) Even if the amount of material used is the same, the permanent magnet (reference numeral 2) can be formed with the most efficient dimensions. As a result, a permanent magnet (reference numeral 2) having a high magnetic flux density can be formed using as little material as possible, so that the magnetic printing state of the paper sheet (reference numeral 3) can be accurately detected at a lower cost.
また、紙葉類(符号3)が搬送されているときだけでなく、静止しているときにも紙葉類(符号3)に含まれる磁性体を検出することができ、またその動作速度が検出感度変化にほとんど影響を与えないホール素子を磁気センサ素子(符号1)として用いれば、紙葉類(符号3)の磁気印刷の状態をより精密で安定的に検出できる。 Further, the magnetic material contained in the paper sheet (reference numeral 3) can be detected not only when the paper sheet (reference numeral 3) is being transported but also when it is stationary, and its operation speed is If a Hall element that hardly affects the change in detection sensitivity is used as the magnetic sensor element (reference numeral 1), the magnetic printing state of the paper sheet (reference numeral 3) can be detected more precisely and stably.
1 磁気センサ素子
2 永久磁石
3 紙葉類
4 カバ−
5 基材
6 テスラメ−タのセンサプロ−ブ
a 永久磁石の高さ寸法
b 永久磁石の幅寸法
c 永久磁石の長手寸法
d 磁界分布測定距離
e1,e2 永久磁石の両端から磁気センサ素子までの距離
1
5
Claims (4)
1列に配置された複数の磁気センサ素子と、
前記複数の磁気センサ素子に対して前記搬送路側とは反対側に配置され、前記複数の磁気センサ素子の配列方向に対して平行に延びる長尺の永久磁石とを備え、
前記複数の磁気センサ素子は、前記永久磁石の長手方向の両端から当該永久磁石の高さ寸法の1/2以上離れた位置にのみ配置されていることを特徴とする磁気センサ装置。 A magnetic sensor device for detecting a magnetic material contained in a paper sheet conveyed through a conveyance path,
A plurality of magnetic sensor elements arranged in a row;
A long permanent magnet disposed on the opposite side of the transport path side with respect to the plurality of magnetic sensor elements, and extending in parallel with the arrangement direction of the plurality of magnetic sensor elements;
The magnetic sensor device is characterized in that the plurality of magnetic sensor elements are arranged only at positions separated from both ends of the permanent magnet in the longitudinal direction by 1/2 or more of the height dimension of the permanent magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016011356A JP6660191B2 (en) | 2016-01-25 | 2016-01-25 | Magnetic sensor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016011356A JP6660191B2 (en) | 2016-01-25 | 2016-01-25 | Magnetic sensor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017133845A true JP2017133845A (en) | 2017-08-03 |
JP6660191B2 JP6660191B2 (en) | 2020-03-11 |
Family
ID=59504286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016011356A Expired - Fee Related JP6660191B2 (en) | 2016-01-25 | 2016-01-25 | Magnetic sensor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6660191B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021012163A (en) * | 2019-07-09 | 2021-02-04 | 日亜化学工業株式会社 | Magnetic sensor device |
WO2021108039A1 (en) * | 2019-11-28 | 2021-06-03 | Hewlett-Packard Development Company, L.P. | Paper feed device with 3d magnetic sensor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070209904A1 (en) * | 2006-03-09 | 2007-09-13 | Freeman Jay D | Currency discrimination system and method |
WO2010052797A1 (en) * | 2008-11-10 | 2010-05-14 | グローリー株式会社 | Magnetic property detection apparatus |
WO2014123142A1 (en) * | 2013-02-07 | 2014-08-14 | 三菱電機株式会社 | Magnetic sensor device |
JP2015200551A (en) * | 2014-04-07 | 2015-11-12 | セイコーNpc株式会社 | magnetic sensor module |
JP2015535339A (en) * | 2012-10-31 | 2015-12-10 | 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. | Magnetic currency verification head |
JP2016206069A (en) * | 2015-04-24 | 2016-12-08 | 日本電産サンキョー株式会社 | Magnetic sensor device |
WO2017126373A1 (en) * | 2016-01-19 | 2017-07-27 | 株式会社村田製作所 | Magnetic medium detection device |
-
2016
- 2016-01-25 JP JP2016011356A patent/JP6660191B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070209904A1 (en) * | 2006-03-09 | 2007-09-13 | Freeman Jay D | Currency discrimination system and method |
WO2010052797A1 (en) * | 2008-11-10 | 2010-05-14 | グローリー株式会社 | Magnetic property detection apparatus |
JP2015535339A (en) * | 2012-10-31 | 2015-12-10 | 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. | Magnetic currency verification head |
WO2014123142A1 (en) * | 2013-02-07 | 2014-08-14 | 三菱電機株式会社 | Magnetic sensor device |
JP2015200551A (en) * | 2014-04-07 | 2015-11-12 | セイコーNpc株式会社 | magnetic sensor module |
JP2016206069A (en) * | 2015-04-24 | 2016-12-08 | 日本電産サンキョー株式会社 | Magnetic sensor device |
WO2017126373A1 (en) * | 2016-01-19 | 2017-07-27 | 株式会社村田製作所 | Magnetic medium detection device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021012163A (en) * | 2019-07-09 | 2021-02-04 | 日亜化学工業株式会社 | Magnetic sensor device |
WO2021108039A1 (en) * | 2019-11-28 | 2021-06-03 | Hewlett-Packard Development Company, L.P. | Paper feed device with 3d magnetic sensor |
Also Published As
Publication number | Publication date |
---|---|
JP6660191B2 (en) | 2020-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9595152B2 (en) | Magnetic property detection apparatus | |
JP5867235B2 (en) | Magnetic sensor device | |
JP5979214B2 (en) | Magnetic sensor device | |
JP5757866B2 (en) | Measuring device for measuring magnetic properties and method for manufacturing the measuring device | |
WO2013153986A1 (en) | Magnetic sensor | |
WO2005083457A1 (en) | Prolonged magnetic sensor | |
JP2009163336A (en) | Magnetic pattern detection device | |
KR20140051385A (en) | Measuring device for measuring the magnetic properties of the surroundings of the measuring device | |
JP6359858B2 (en) | Magnetic field detection device and magnetic identification device | |
JP6300908B2 (en) | Magnetic sensor device | |
JP6550587B2 (en) | Magnetic line sensor and discrimination device using the same | |
WO2017082379A1 (en) | Magnetic detection apparatus | |
JP5858248B2 (en) | Magnetic sensor | |
JP6660191B2 (en) | Magnetic sensor device | |
JP5799882B2 (en) | Magnetic sensor device | |
RU2648010C2 (en) | Metering device for measuring the magnetic properties of environment of the metering device | |
TW446920B (en) | Device for detecting a magnetic sign of a test object and automatic bill identification machine | |
JP5861551B2 (en) | Magnetic sensor device | |
JP2016095138A (en) | Magnetic sensor | |
JP6315802B2 (en) | Magnetic sensor device | |
JP6980166B1 (en) | Magnetic sensor device | |
JP3105238U (en) | Magnetic sensor device | |
JP2021012163A (en) | Magnetic sensor device | |
JP2018017696A (en) | Magnetism identification device | |
JP2006309669A (en) | Paper sheet identification device and paper sheet-identifying magnetic sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6660191 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |