JP2017116151A - Cooling device, electronic equipment and electric vehicle mounting the same - Google Patents
Cooling device, electronic equipment and electric vehicle mounting the same Download PDFInfo
- Publication number
- JP2017116151A JP2017116151A JP2015250159A JP2015250159A JP2017116151A JP 2017116151 A JP2017116151 A JP 2017116151A JP 2015250159 A JP2015250159 A JP 2015250159A JP 2015250159 A JP2015250159 A JP 2015250159A JP 2017116151 A JP2017116151 A JP 2017116151A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- path
- working fluid
- cooling device
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、冷却装置、これを搭載した電子機器、および電気自動車に関するものである。 The present invention relates to a cooling device, an electronic device equipped with the cooling device, and an electric vehicle.
従来この種の冷却装置は、電子機器および電気自動車の電力変換回路に搭載されたものが知られている。電気自動車では、駆動動力源となる電動モータを電力変換回路であるインバータ回路でスイッチング駆動していた。インバータ回路には、パワートランジスタを代表とする半導体スイッチング素子が複数個使われていて、それぞれの素子に数十アンペアの大電流が流れていた。そのため、大きな熱が発生し、冷却することが必要であった。 Conventionally, this type of cooling device is known to be mounted on a power conversion circuit of an electronic device or an electric vehicle. In an electric vehicle, an electric motor serving as a driving power source is switched by an inverter circuit that is a power conversion circuit. A plurality of semiconductor switching elements represented by power transistors are used in the inverter circuit, and a large current of several tens of amperes flows through each element. Therefore, great heat was generated and it was necessary to cool.
そこで、従来は、例えば特許文献1のように、加熱部101と冷却器102と上昇管103と下降管104とで構成するループ型ヒートパイプにより半導体スイッチング素子などの発熱体の冷却を行っていた。 Therefore, conventionally, as in Patent Document 1, for example, a heating element such as a semiconductor switching element is cooled by a loop heat pipe including a heating unit 101, a cooler 102, a rising pipe 103, and a lowering pipe 104. .
以下、特許文献1に示すループ型ヒートパイプについて、図8を参照しながら説明する。 Hereinafter, the loop heat pipe shown in Patent Document 1 will be described with reference to FIG.
図8に示すようにループ型ヒートパイプは上昇管103と下降管104とを別個に含むループ回路105と、ループ回路105に真空下において封入された作動流体である熱媒体106と、ループ回路105の一部を構成しかつループ回路105の上方に位置する冷却器102と、上昇管103の下部に位置する加熱部101と、ループ回路105内の下部に介装しループ回路105内の熱媒体106の循環方向を限定する逆止弁107とを備えている。 As shown in FIG. 8, the loop heat pipe includes a loop circuit 105 that includes an ascending pipe 103 and a descending pipe 104, a heat medium 106 that is a working fluid sealed in the loop circuit 105 under vacuum, and a loop circuit 105. And a heating unit 101 positioned below the riser pipe 103 and a heat medium in the loop circuit 105 interposed in the lower part in the loop circuit 105. And a check valve 107 for limiting the circulation direction of 106.
ここで、加熱部101に接触させた半導体スイッチング素子に熱が発生すると、発生した熱は加熱部101へ伝わり、加熱部101を循環する熱媒体106に熱が加えられ気化する。逆止弁107によりその循環方向が制限され、気化した熱媒体106は上昇管103を上昇し冷却器102に導かれて冷却され、ここで、加熱部101で加えられた熱を放出する。冷却器102で熱を放出した熱媒体106は下降管104を下降し、逆止弁107を介して再び加熱部101へと循環する。 Here, when heat is generated in the semiconductor switching element brought into contact with the heating unit 101, the generated heat is transmitted to the heating unit 101, and heat is applied to the heat medium 106 circulating in the heating unit 101 to be vaporized. The circulation direction is limited by the check valve 107, and the vaporized heat medium 106 rises up the ascending pipe 103 and is led to the cooler 102 to be cooled. Here, the heat applied by the heating unit 101 is released. The heat medium 106 that has released heat from the cooler 102 descends the downcomer 104 and circulates again to the heating unit 101 via the check valve 107.
このような従来の冷却装置において、上昇管103の管径は、発生する熱媒体106の気化量に応じて、気化量が多くなるほど、大きくする必要がある。すなわち、半導体スイッチング素子の発熱量が多いほど熱媒体106の気化量が多くなるため、上昇管103の管径を大きくする必要がある。一方で、半導体スイッチング素子の発熱量は常に一定とは限らず、同一の半導体スイッチング素子であっても運転状態によって発熱量が変動し、特に半導体スイッチング素子の起動時においては発熱量は通常運転時より少なくなる場合が多い。 In such a conventional cooling device, the diameter of the rising pipe 103 needs to be increased as the amount of vaporization increases in accordance with the amount of vaporization of the generated heat medium 106. That is, the greater the amount of heat generated by the semiconductor switching element, the greater the amount of vaporization of the heat medium 106. Therefore, it is necessary to increase the diameter of the riser tube 103. On the other hand, the amount of heat generated by a semiconductor switching element is not always constant, and even if the same semiconductor switching element is used, the amount of generated heat varies depending on the operating state. Often less.
このような場合、発熱量に対して、上昇管103の管径が大き過ぎると、上昇管103の途中で液相の熱媒体106が下側すなわち加熱部101側へ逆流する現象を引き起こす場合が多く、加熱部101で熱を受け取った熱媒体106がスムーズに冷却器102側に移動せず加熱部101内にとどまるため加熱部101の温度が上昇し、結果的に冷却性能が低下するという課題を有していた。 In such a case, if the pipe diameter of the riser tube 103 is too large with respect to the heat generation amount, a phenomenon may occur in which the liquid-phase heat medium 106 flows backward to the lower side, that is, the heating unit 101 side in the middle of the riser pipe 103. In many cases, the heat medium 106 that has received heat by the heating unit 101 does not move smoothly to the cooler 102 side but stays in the heating unit 101, so that the temperature of the heating unit 101 rises, resulting in a decrease in cooling performance. Had.
そこで本発明は、上記の従来の課題を解決するものであり、半導体スイッチング素子の起動時、上昇管103(放熱経路)内の熱媒体106(作動流体)が下側すなわち加熱部101側へ逆流することを防止することにより、起動時の低い発熱量でも受熱部から放熱部へ作動流体をスムーズに循環させることができ、結果的に冷却性能の低下を防止する却装置を提供することを目的とする。 Therefore, the present invention solves the above-described conventional problems, and when the semiconductor switching element is activated, the heat medium 106 (working fluid) in the riser tube 103 (heat radiation path) flows downward to the heating unit 101 side. It is an object of the present invention to provide a rejection device that can smoothly circulate the working fluid from the heat receiving portion to the heat radiating portion even with a low calorific value at the time of startup, and consequently prevents a decrease in cooling performance. And
そして、この目的を達成するために、本発明の冷却装置は、発熱体からの熱を前記発熱体に接触させた受熱板から前記作動流体に伝える受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とを備え、前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、前記帰還経路には逆流防止弁を備え、前記逆流防止弁の上流の圧力が前記逆流防止弁の下流の圧力より高くなった時に前記作動流体は前記逆流防止弁を通過し、前記作動流体は前記受熱板上に供給され、供給された前記作動流体の一部が気化し、その際の体積膨張により残りの作動流体が前記流入口と前記受熱板との隙間から外周部へ拡散され、前記受熱板の表面に前記作動流体が薄い膜として広がり気化するとともに、前記放熱経路の鉛直部は、主経路と副経路で構成され、前記副経路の断面積は、前記主経路の断面積より小さいことを特徴としており、これにより所期の目的を達成するものである。 In order to achieve this object, the cooling device of the present invention releases the heat of the working fluid from the heat receiving plate that transfers the heat from the heating element to the working fluid from the heat receiving plate that is in contact with the heating element. A heat dissipating part, a heat dissipating path connecting the heat receiving part and the heat dissipating part, and a feedback path, and the working fluid is transferred to the heat receiving part, the heat dissipating path, the heat dissipating part, the feedback path, and the heat receiving part. A cooling device that circulates heat and includes a backflow prevention valve in the return path, and the working fluid when a pressure upstream of the backflow prevention valve becomes higher than a pressure downstream of the backflow prevention valve Passes through the backflow prevention valve, the working fluid is supplied onto the heat receiving plate, a part of the supplied working fluid is vaporized, and the remaining working fluid is caused to expand from the inflow port to the inlet by volume expansion at that time. Diffused from the gap with the heat receiving plate to the outer periphery, The working fluid spreads and vaporizes as a thin film on the surface of the heat receiving plate, and the vertical portion of the heat dissipation path is composed of a main path and a sub-path, and the cross-sectional area of the sub-path is smaller than the cross-sectional area of the main path This achieves the intended purpose.
本発明の冷却装置によれば、発熱体からの熱を前記発熱体に接触させた受熱板から前記作動流体に伝える受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とを備え、前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、前記帰還経路には逆流防止弁を備え、前記逆流防止弁の上流の圧力が前記逆流防止弁の下流の圧力より高くなった時に前記作動流体は前記逆流防止弁を通過し、前記作動流体は前記受熱板上に供給され、供給された前記作動流体の一部が気化し、その際の体積膨張により残りの作動流体が前記流入口と前記受熱板との隙間から外周部へ拡散され、前記受熱板の表面に前記作動流体が薄い膜として広がり気化するとともに、前記放熱経路の鉛直部は、主経路と副経路で構成され、前記副経路の断面積は、前記主経路の断面積より小さい構成を有する。 According to the cooling device of the present invention, a heat receiving part that transmits heat from the heat generating element to the working fluid from a heat receiving plate that is in contact with the heat generating element, a heat radiating part that releases heat of the working fluid, and the heat receiving part. A heat dissipation path connecting the heat dissipation section and a return path are provided, and the working fluid is circulated to the heat receiving section, the heat dissipation path, the heat dissipation section, the return path, and the heat receiving section to move heat. A cooling device comprising a backflow prevention valve in the return path, and when the pressure upstream of the backflow prevention valve is higher than the pressure downstream of the backflow prevention valve, the working fluid passes through the backflow prevention valve. The working fluid is supplied onto the heat receiving plate, and a part of the supplied working fluid is vaporized, and the remaining working fluid is discharged from the gap between the inlet and the heat receiving plate due to volume expansion at that time. The working fluid is diffused to the surface of the heat receiving plate. As well as spread vaporized as a thin film, the vertical portion of the heat radiation path is constituted by the main path and the sub path, the cross-sectional area of the secondary path has a sectional area smaller than the configuration of the main path.
これにより、単一の放熱経路と比較して放熱経路を主経路と副経路の2つに分割することで、起動時の低い発熱量でも受熱部から放熱部へ作動流体をスムーズに循環させることができ、結果的に冷却性能の低下を防止することができるのである。 This allows the working fluid to circulate smoothly from the heat-receiving part to the heat-dissipating part even when the heat generation path is low by dividing the heat-dissipating path into two main paths and sub-paths compared to a single heat-dissipating path. As a result, a decrease in cooling performance can be prevented.
管路の断面積が小さいほど管路の中に存在する液体の表面張力は大きくなり、液体の表面を押し上げる方向に力がはたらくことが毛細管現象として知られている。すなわち、副経路の断面積を、主経路の断面積より小さくすることで、副経路内の作動流体の表面張力が大きくなり、副経路内の作動流体を押し上げる方向に力がはたらくので、放熱部側への作動流体を主経路より容易に運ぶことができる。その結果、起動時の低い発熱量でも受熱部から放熱部へ作動流体をスムーズに循環させることができ、結果的に冷却性能の低下を防止することができるのである。 It is known as a capillary phenomenon that the surface tension of the liquid existing in the pipe increases as the cross-sectional area of the pipe decreases, and the force acts in the direction of pushing up the surface of the liquid. That is, by making the cross-sectional area of the sub-path smaller than the cross-sectional area of the main path, the surface tension of the working fluid in the sub-path increases and the force acts in the direction of pushing up the working fluid in the sub-path. The working fluid to the side can be easily transported from the main path. As a result, it is possible to smoothly circulate the working fluid from the heat receiving portion to the heat radiating portion even with a low calorific value at the time of startup, and as a result, it is possible to prevent the cooling performance from being lowered.
本発明の請求項1記載の冷却装置は、発熱体からの熱を前記発熱体に接触させた受熱板から前記作動流体に伝える受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とを備え、前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、前記帰還経路には逆流防止弁を備え、前記逆流防止弁の上流の圧力が前記逆流防止弁の下流の圧力より高くなった時に前記作動流体は前記逆流防止弁を通過し、前記作動流体は前記受熱板上に供給され、供給された前記作動流体の一部が気化し、その際の体積膨張により残りの作動流体が前記流入口と前記受熱板との隙間から外周部へ拡散され、前記受熱板の表面に前記作動流体が薄い膜として広がり気化するとともに、前記放熱経路の鉛直部は、主経路と副経路で構成され、前記副経路の断面積は、前記主経路の断面積より小さい構成を有する。 The cooling device according to claim 1 of the present invention includes a heat receiving part that transmits heat from the heat generating element to the working fluid from a heat receiving plate that is in contact with the heating element, a heat radiating part that releases heat of the working fluid, and A heat-dissipating path connecting the heat-receiving part and the heat-dissipating part and a return path, and circulating the working fluid to the heat-receiving part, the heat-dissipating path, the heat-dissipating part, the return-path, and the heat-receiving part. A cooling device that moves, wherein the return path includes a backflow prevention valve, and when the pressure upstream of the backflow prevention valve becomes higher than the pressure downstream of the backflow prevention valve, the working fluid is the backflow prevention valve. The working fluid is supplied onto the heat receiving plate, a part of the supplied working fluid is vaporized, and the remaining working fluid is removed by a gap between the inlet and the heat receiving plate due to volume expansion at that time. Diffused from the outer periphery to the surface of the heat receiving plate With dynamic fluid spreads vaporized as a thin film, the vertical portion of the heat radiation path is constituted by the main path and the sub path, the cross-sectional area of the secondary path has a sectional area smaller than the configuration of the main path.
これにより、単一の放熱経路と比較して放熱経路を主経路と副経路の2つに分割することで、起動時の低い発熱量でも受熱部から放熱部へ作動流体をスムーズに循環させることができ、結果的に冷却性能の低下を防止することができるのである。管路の断面積が小さいほど管路の中に存在する液体の表面張力は大きくなり、液体の表面を押し上げる方向に力がはたらくことが毛細管現象として知られている。すなわち、副経路の断面積を、主経路の断面積より小さくすることで、副経路内の作動流体の表面張力が大きくなり、副経路内の作動流体を押し上げる方向に力がはたらくので、放熱部側への作動流体を主経路より容易に運ぶことができる。その結果、起動時の低い発熱量でも受熱部から放熱部へ作動流体をスムーズに循環させることができ、結果的に冷却性能の低下を防止できることになる。 This allows the working fluid to circulate smoothly from the heat-receiving part to the heat-dissipating part even when the heat generation path is low by dividing the heat-dissipating path into two main paths and sub-paths compared to a single heat-dissipating path. As a result, a decrease in cooling performance can be prevented. It is known as a capillary phenomenon that the surface tension of the liquid existing in the pipe increases as the cross-sectional area of the pipe decreases, and the force acts in the direction of pushing up the surface of the liquid. That is, by making the cross-sectional area of the sub-path smaller than the cross-sectional area of the main path, the surface tension of the working fluid in the sub-path increases and the force acts in the direction of pushing up the working fluid in the sub-path. The working fluid to the side can be easily transported from the main path. As a result, it is possible to smoothly circulate the working fluid from the heat receiving portion to the heat radiating portion even with a low calorific value at the time of startup, and as a result, it is possible to prevent a decrease in cooling performance.
また、副経路が、主経路に内接した構成としてもよい。これにより、簡素な構造で起動時の良好な作動流体の循環を実現できる。 The sub route may be inscribed in the main route. Thereby, it is possible to realize a good circulation of the working fluid at the start-up with a simple structure.
また、副経路が、主経路と同心円に位置させる構成としてもよい。これにより、起動時の良好な作動流体の循環を実現できる。 The sub route may be positioned concentrically with the main route. Thereby, it is possible to realize a good circulation of the working fluid at the time of activation.
また、放熱経路の主経路に内蔵した副経路が、主経路に外接する構成としてもよい。これにより、起動時の良好な作動流体の循環を実現できる。 Moreover, it is good also as a structure where the sub route built in the main route of the heat dissipation route circumscribes the main route. Thereby, it is possible to realize a good circulation of the working fluid at the time of activation.
また、主経路の断面積A1と副経路の断面積A2の面積比A2/A1が、0.1〜0.5の範囲とする構成としてもよい。これにより、起動時の良好な作動流体の循環を実現できる。 The area ratio A2 / A1 between the cross-sectional area A1 of the main path and the cross-sectional area A2 of the sub-path may be in the range of 0.1 to 0.5. Thereby, it is possible to realize a good circulation of the working fluid at the time of activation.
また、本発明の冷却装置を備えた構成とした電子機器とする構成にしてもよい。 これにより、電子機器の起動時、冷却装置内の作動流体の循環が安定し、冷却性能の低下を抑制することができるという効果を得ることができる。 Moreover, you may make it the structure set as the electronic device made into the structure provided with the cooling device of this invention. Thereby, at the time of starting of an electronic device, the effect | action that the circulation of the working fluid in a cooling device is stabilized and the fall of cooling performance can be suppressed can be acquired.
また、本発明の冷却装置を備えた構成とした電気自動車にしてもよい。これにより、電気自動車は、起動時、冷却装置内の作動流体の循環が安定し、冷却性能の低下を抑制する効果を有した冷却装置を備えた構成となり、その結果、電気自動車の起動時の動作安定性も確保できるという効果を得ることができる。 Moreover, you may make it the electric vehicle provided with the structure provided with the cooling device of this invention. As a result, the electric vehicle has a configuration including a cooling device having an effect of stabilizing the circulation of the working fluid in the cooling device at the time of starting and suppressing a decrease in cooling performance, and as a result, at the time of starting the electric vehicle. The effect that operation stability can also be secured can be obtained.
以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態1)
図1に示すように、電気自動車1の車軸(図示せず)を駆動する電動モータ(図示せず)は、電気自動車1内に配置した電力変換装置であるインバータ回路2に接続されている。
(Embodiment 1)
As shown in FIG. 1, an electric motor (not shown) that drives an axle (not shown) of the electric vehicle 1 is connected to an inverter circuit 2 that is a power conversion device arranged in the electric vehicle 1.
インバータ回路2は、電動モータに電力を供給するもので、複数個の半導体スイッチング素子9(図2)を備えおり、この半導体スイッチング素子9が動作中に熱を発生する。 The inverter circuit 2 supplies electric power to the electric motor, and includes a plurality of semiconductor switching elements 9 (FIG. 2). The semiconductor switching elements 9 generate heat during operation.
このため、この半導体スイッチング素子9を冷却するために、熱媒体となる作動流体11(図2)を循環させることで冷却を行う冷却装置3を備えている。 For this reason, in order to cool this semiconductor switching element 9, the cooling device 3 which cools by circulating the working fluid 11 (FIG. 2) used as a heat medium is provided.
ここで、この作動流体11には、例えば水やエタノール等を使用している。 Here, for example, water or ethanol is used as the working fluid 11.
冷却装置3は、作動流体11に熱を伝達する受熱部4と、伝達された作動流体11の熱を放出する放熱部5とを備え、受熱部4と放熱部5との間で熱媒体となる作動流体を循環させる放熱経路6と、帰還経路7とを設けることで、受熱部4、放熱経路6、放熱部5、帰還経路7、受熱部4を作動流体11が循環する循環経路を構成している。 The cooling device 3 includes a heat receiving part 4 that transmits heat to the working fluid 11 and a heat radiating part 5 that releases the heat of the transmitted working fluid 11, and a heat medium is provided between the heat receiving part 4 and the heat radiating part 5. By providing the heat dissipation path 6 for circulating the working fluid and the return path 7, a circulation path for circulating the working fluid 11 through the heat receiving part 4, the heat dissipation path 6, the heat dissipation part 5, the return path 7, and the heat receiving part 4 is configured. doing.
さらに、帰還経路7に逆流防止弁16(図2)を備えることで、受熱部4内で作動流体11が、高圧の気相状態(水の場合水蒸気)に変化した際、帰還経路7側へ逆流すること無く、液相を伴った混相状態で、受熱部4から放熱経路6を通って放熱部5に至り放熱後、全て液相状態で帰還経路7を経て受熱部4へと一方向に、循環するようになっている。 Furthermore, by providing the return path 7 with the backflow prevention valve 16 (FIG. 2), when the working fluid 11 is changed to a high-pressure gas phase state (water vapor in the case of water) in the heat receiving section 4, the return path 7 side is returned. Without reverse flow, in a mixed phase state with a liquid phase, the heat receiving part 4 passes through the heat dissipation path 6 to reach the heat dissipation part 5, and after radiating, all in the liquid phase state through the feedback path 7 to the heat receiving part 4 in one direction. It is supposed to circulate.
放熱部5は送風機8から外気が送風されることで、冷却され熱を放出している。 The heat radiating part 5 is cooled and released heat by the outside air being blown from the blower 8.
なお、この放熱部5から放出された熱は、電気自動車1の車内の暖房に活用することも出来る。 The heat released from the heat radiating unit 5 can also be used for heating the inside of the electric vehicle 1.
これより、図2を用いて、本発明の冷却装置3について詳述する。 From this, the cooling device 3 of this invention is explained in full detail using FIG.
図2に示すように受熱部4は、半導体スイッチング素子9に接触させて熱を吸収する受熱板10と、この受熱板10の表面を覆い、流れ込んだ作動流体11を蒸発させる受熱空間12を形成する受熱板カバー13とを備えている。 As shown in FIG. 2, the heat receiving unit 4 forms a heat receiving plate 10 that contacts the semiconductor switching element 9 and absorbs heat, and a heat receiving space 12 that covers the surface of the heat receiving plate 10 and evaporates the working fluid 11 that has flowed in. And a heat receiving plate cover 13.
さらに、受熱板カバー13には、受熱空間12に帰還経路7から作動流体11を流入させる流入口14と、受熱空間12から放熱経路6へ作動流体11を排出する排出口15が設けられている。 Further, the heat receiving plate cover 13 is provided with an inlet 14 for allowing the working fluid 11 to flow into the heat receiving space 12 from the return path 7 and an outlet 15 for discharging the working fluid 11 from the heat receiving space 12 to the heat dissipation path 6. .
また、帰還経路7には、流入口14近傍に逆流防止弁16を備えている。 Further, the return path 7 is provided with a backflow prevention valve 16 in the vicinity of the inlet 14.
このような構成による冷却装置3の作用について説明する。 The operation of the cooling device 3 having such a configuration will be described.
上記構成において、インバータ回路2(図1)の半導体スイッチング素子9が動作を開始すると電動モータに電力が供給されて、電気自動車1(図1)は、動きだすこととなる。 In the above configuration, when the semiconductor switching element 9 of the inverter circuit 2 (FIG. 1) starts operation, electric power is supplied to the electric motor, and the electric vehicle 1 (FIG. 1) starts to move.
このとき、半導体スイッチング素子9には大電流が流れることにより、大きな熱が発生する。 At this time, a large amount of heat is generated due to a large current flowing through the semiconductor switching element 9.
ここで、半導体スイッチング素子9で発生した熱は受熱板10へ伝わる。受熱板10へ伝わった熱は、受熱空間12の受熱板10上に供給された作動流体11を瞬時に気化させ、作動流体11の一部を気相状態へと変化させる。気化潜熱および顕熱を与えられた気相と液相との混相状態の作動流体11は、排出口15から放熱経路6へと循環して放熱部5に流入し、放熱部5で冷却され気相の作動流体11の全てが凝縮し、液相状態になることにより、凝縮潜熱および顕熱を外気に放出する。 Here, the heat generated in the semiconductor switching element 9 is transmitted to the heat receiving plate 10. The heat transmitted to the heat receiving plate 10 instantly vaporizes the working fluid 11 supplied onto the heat receiving plate 10 in the heat receiving space 12 and changes a part of the working fluid 11 to a gas phase state. The working fluid 11 in a mixed phase of the gas phase and the liquid phase to which the vaporization latent heat and sensible heat are given circulates from the discharge port 15 to the heat radiation path 6 and flows into the heat radiation portion 5, is cooled by the heat radiation portion 5, and is All of the phase working fluid 11 is condensed to be in a liquid phase state, thereby releasing latent heat of condensation and sensible heat to the outside air.
続いて、凝縮潜熱および顕熱を放出した作動流体11は帰還経路7へと循環し、逆流防止弁16の上に溜まることとなる。逆流防止弁16の上に溜まった作動流体11は、徐々に帰還経路7内で増加し、水頭圧力が高くなる。(水頭高さが高くなる。)一方、受熱空間12では作動流体11が供給されないため、作動流体11の気化に伴い徐々に作動流体11が減少し、受熱空間12の圧力が低下する。 Subsequently, the working fluid 11 that has released the condensation latent heat and sensible heat circulates to the return path 7 and accumulates on the backflow prevention valve 16. The working fluid 11 accumulated on the backflow prevention valve 16 gradually increases in the return path 7 and the head pressure increases. On the other hand, since the working fluid 11 is not supplied in the heat receiving space 12, the working fluid 11 gradually decreases as the working fluid 11 is vaporized, and the pressure in the heat receiving space 12 decreases.
逆流防止弁16の上流の圧力(逆流防止弁16の上流近傍の圧力と、帰還経路7内の作動流体11の持つ水頭圧力との和)が逆流防止弁16の下流の圧力(逆流防止弁16の下流近傍の圧力)より高くなった時に、逆流防止弁16が押し下げられて開き、作動流体11は逆流防止弁16を通過し、再び受熱空間12の受熱板10上に作動流体11が供給される。 The pressure upstream of the backflow prevention valve 16 (the sum of the pressure near the upstream of the backflow prevention valve 16 and the head pressure of the working fluid 11 in the return path 7) is the pressure downstream of the backflow prevention valve 16 (backflow prevention valve 16 The pressure of the backflow prevention valve 16 is pushed down and opened, the working fluid 11 passes through the backflow prevention valve 16, and the working fluid 11 is again supplied onto the heat receiving plate 10 of the heat receiving space 12. The
受熱空間12においては、逆流防止弁16を通過した作動流体11は、流入口14から受熱板10上に供給される。供給された作動流体11は、受熱板10の熱が加えられることで一部が気化する。そして、作動流体11は気化による体積膨張により、未沸騰の作動流体11を伴って流入口14と受熱板10との隙間から外周部へ高速拡散される。このとき、受熱板10の表面に、作動流体11が薄い膜として広がり、高温の受熱板10の熱を加えられ一瞬にして気化することとなる。 In the heat receiving space 12, the working fluid 11 that has passed through the check valve 16 is supplied from the inlet 14 onto the heat receiving plate 10. Part of the supplied working fluid 11 is vaporized by the heat of the heat receiving plate 10. Then, the working fluid 11 is diffused at a high speed from the gap between the inlet 14 and the heat receiving plate 10 to the outer peripheral portion along with the non-boiling working fluid 11 by volume expansion due to vaporization. At this time, the working fluid 11 spreads as a thin film on the surface of the heat receiving plate 10, and heat from the high temperature heat receiving plate 10 is applied to vaporize in an instant.
なお、受熱空間12を含む冷却装置3内部の内圧は、使用する作動流体11によって異なるが、例えば作動流体11として水を使用した場合、大気圧よりも低く設定することで、大気圧中の水の沸騰に比べて低い温度で気化させることができる。本実施の形態では、ほぼ真空に減圧した冷却装置3内に所望の水を封入し、外気温度に応じた飽和水蒸気状態にしておくことで、外気温度+数10度程度の気化温度で容易に水を気化させることができる。 The internal pressure of the cooling device 3 including the heat receiving space 12 varies depending on the working fluid 11 used. For example, when water is used as the working fluid 11, the water in the atmospheric pressure is set by setting the pressure lower than the atmospheric pressure. It can be vaporized at a temperature lower than that of boiling. In the present embodiment, desired water is sealed in the cooling device 3 whose pressure is reduced to a substantially vacuum, and a saturated water vapor state corresponding to the outside air temperature is maintained, so that the outside temperature + a vaporization temperature of about several tens of degrees can be easily achieved. Water can be vaporized.
これにより、半導体スイッチング素子9から発生した熱は、作動流体11に気化潜熱および顕熱として除去され、効率的な冷却が可能となる。 As a result, the heat generated from the semiconductor switching element 9 is removed to the working fluid 11 as latent heat of vaporization and sensible heat, thereby enabling efficient cooling.
また、作動流体11が気化するときに受熱空間12の圧力は増加するが、逆流防止弁16の作用により、作動流体11は逆流して帰還経路7側へ戻ることはなく、確実に排出口15から放熱経路6へ放出させることができる。 Further, when the working fluid 11 is vaporized, the pressure in the heat receiving space 12 increases. However, the working fluid 11 does not flow back to the return path 7 due to the action of the backflow prevention valve 16, and the discharge port 15 is reliably connected. To the heat dissipation path 6.
このように冷却装置3を動作させることで、規則的な受熱と放熱のサイクルができ、連続して作動流体11を受熱空間12で気化させて半導体スイッチング素子9からの熱を効率的に除去し、大きな冷却効果を実現することができる。 By operating the cooling device 3 in this manner, a regular heat receiving and releasing cycle can be performed, and the working fluid 11 is continuously vaporized in the heat receiving space 12 to efficiently remove the heat from the semiconductor switching element 9. A great cooling effect can be realized.
次に、本実施形態における最も特徴的な部分について説明する。 Next, the most characteristic part in this embodiment will be described.
図2に示す様に排出口15に接続した放熱経路6のうち鉛直方向に配置された鉛直部は、主経路6aと副経路6bの2つの経路に分割され、主経路6aに副経路6bが内接した構成となっている。副経路6bの作動流体11の循環方向に対する垂直断面積A2は、主経路6aの垂直断面積A1よりも相対的に小さくなっている。 As shown in FIG. 2, the vertical portion arranged in the vertical direction of the heat radiation path 6 connected to the discharge port 15 is divided into two paths of a main path 6a and a sub path 6b, and the sub path 6b is divided into the main path 6a. It has an inscribed configuration. The vertical cross-sectional area A2 with respect to the circulation direction of the working fluid 11 in the sub-path 6b is relatively smaller than the vertical cross-sectional area A1 of the main path 6a.
管路の断面積が小さいほど管路の中に存在する液体の表面張力は大きくなり、液体の表面を押し上げる方向に力がはたらくことが毛細管現象として知られている。すなわち、副経路6bの断面積を、主経路6aの断面積より小さくすることで、副経路6b内の作動流体11の表面張力が大きくなり、副経路6b内の作動流体11を押し上げる方向に力がはたらくので、放熱部5側への作動流体11を主経路6aより容易に運ぶことができる。その結果、起動時の低い発熱量でも受熱部4から放熱部5へ作動流体11をスムーズに循環させることができ、結果的に冷却性能の低下を防止することができるのである。 It is known as a capillary phenomenon that the surface tension of the liquid existing in the pipe increases as the cross-sectional area of the pipe decreases, and the force acts in the direction of pushing up the surface of the liquid. That is, by making the cross-sectional area of the sub-path 6b smaller than the cross-sectional area of the main path 6a, the surface tension of the working fluid 11 in the sub-path 6b increases, and the force in the direction of pushing up the working fluid 11 in the sub-path 6b is increased. Therefore, the working fluid 11 toward the heat radiating part 5 can be easily carried from the main path 6a. As a result, the working fluid 11 can be smoothly circulated from the heat receiving portion 4 to the heat radiating portion 5 even with a low heat generation amount at the time of startup, and as a result, a decrease in cooling performance can be prevented.
さらに、同時に従来の冷却装置の起動時に単一の上昇管内で発生していた、加熱された液相が加熱部側と冷却器側を行き来する脈動現象も防止することができる。 Furthermore, at the same time, it is possible to prevent the pulsation phenomenon that occurs in the single riser when the conventional cooling device is started and the heated liquid phase moves back and forth between the heating unit side and the cooler side.
ここで、前述の脈動現象について、図3、図4、図5を用いてもう少し詳しく説明を行うことにする。図3は、従来の冷却装置の起動時における上昇管103内の作動流体の状態を示す概略図である。図3(a)は、起動の極初期の状態で加熱部から熱を受けた上昇管に接触した作動流体(熱媒体)の一部が、管壁面で蒸発し多数の気泡を形成している状態である。管径が十分に大きい場合は、通常、加熱量が増加しても気泡のサイズが大きくなるだけであり、この状態が継続されることになる。しかし、上昇管の管径が縮小し、上昇管の内壁面に作動流体の表面張力による上部メニスカス108が形成されるような状態では、図3(b)に示すように、加熱された未沸騰の作動流体が一つの塊となって押し上げられることになる。この様な状態でも作動流体の表面張力が大きく、上下のメニスカスが維持できる状態であれば、加熱部側の圧力上昇を伴って冷却器側へ作動流体の塊は押し上げられることになる。しかし、作動流体の表面張力が上下のメニスカスを維持できるほど強く無い場合、管を上昇中に上下のメニスカスが崩壊し、図3(c)のように加熱部側にすべて逆流してくることになる。通常、この図3(a)〜(c)を繰り返す現象を脈動現象と呼ぶ。この現象を冷却装置から見た場合、一旦、加熱部から顕熱として熱を受け取った高温の作動流体が、冷却器に到達せず加熱部に逆流することになるため、熱輸送の媒体として機能しておらず、顕熱分が常に加熱部に累積する形となり、相変化を利用した冷却装置では、重大な冷却性能の低下や不安定動作をまねく現象となっている。また、図3(b)のように起動時に大量の作動流体を冷却器側まで押し上げるには、前述のとおり加熱部側の圧力上昇が必要であり、これは、作動流体の飽和温度を高めることとなり、結果的に冷却性能の低下を招くことになる。加えて図4は、従来の冷却装置において、図3で述べた脈動現象が発生した状態を投入熱量Qに対する作動流体の循環量や圧力変動として表した場合のグラフである。図4(a)は、投入熱量Qに対する作動流体の気相循環量Wgと液相循環量Wlの関係を表しており、同図より、投入熱量が低い範囲すなわち起動時に近い状態では、作動流体の循環量が極めて低いことを示している。また、図4(b)は、この時の投入熱量Qに対する受熱部内圧力Pを示したものであり、作動流体の循環が極めて低い範囲では急激な圧力上昇と圧力変動が存在することを示している。この高圧の圧力変動の領域が前記の脈動現象が発生した状態を示している。 Here, the above-described pulsation phenomenon will be described in more detail with reference to FIGS. 3, 4, and 5. FIG. 3 is a schematic view showing the state of the working fluid in the ascending pipe 103 when the conventional cooling device is started. In FIG. 3A, a part of the working fluid (heat medium) that has contacted the rising pipe that has received heat from the heating unit in the very initial state of activation evaporates on the pipe wall surface to form a large number of bubbles. State. When the tube diameter is sufficiently large, normally, even if the heating amount increases, only the bubble size increases, and this state is continued. However, in the state where the diameter of the riser pipe is reduced and the upper meniscus 108 is formed on the inner wall surface of the riser pipe due to the surface tension of the working fluid, as shown in FIG. The working fluid is pushed up as one lump. Even in such a state, if the surface tension of the working fluid is large and the upper and lower meniscuses can be maintained, the mass of the working fluid is pushed up to the cooler side with an increase in pressure on the heating unit side. However, if the surface tension of the working fluid is not strong enough to maintain the upper and lower meniscuses, the upper and lower meniscuses collapse while moving up the tube, and all flow back to the heating part side as shown in FIG. Become. Usually, the phenomenon of repeating FIGS. 3A to 3C is called a pulsation phenomenon. When this phenomenon is viewed from the cooling device, once the high-temperature working fluid that has received heat as sensible heat from the heating part does not reach the cooler and flows back to the heating part, it functions as a heat transport medium. However, the sensible heat always accumulates in the heating part, and the cooling device using the phase change is a phenomenon that causes a serious decrease in cooling performance and unstable operation. Further, as shown in FIG. 3B, in order to push a large amount of working fluid up to the cooler side at the time of startup, it is necessary to increase the pressure on the heating unit side as described above, which increases the saturation temperature of the working fluid. As a result, the cooling performance is reduced. In addition, FIG. 4 is a graph in a case where the state where the pulsation phenomenon described in FIG. FIG. 4A shows the relationship between the gas phase circulation amount Wg and the liquid phase circulation amount Wl of the working fluid with respect to the input heat quantity Q. From the figure, in the range where the input heat quantity is low, that is, near the start-up time, the working fluid It shows that the circulation amount of is extremely low. FIG. 4B shows the pressure P in the heat receiving portion with respect to the input heat quantity Q at this time, and shows that there is a sudden pressure increase and pressure fluctuation in a very low working fluid circulation range. Yes. This high pressure fluctuation region indicates a state in which the pulsation phenomenon occurs.
通常、脈動現象を防止するには、放熱経路の断面積を小さくするとこが有効である。しかし、相変化を用いた冷却装置では、作動流体が気化する段階で大きな体積膨張を伴うため、単純に放熱経路の断面積を縮小することは、最大熱輸送量自体を縮小する結果をまねくことになる。その点を説明したのが図5である。図5(a)は、放熱経路の管径を変化させた場合の投入熱量Qと受熱部内圧力Pを示したものである。太実線で示す断面積の大きい単一管である管断面積A1においては、投入熱量Qが小さい範囲、すなわち、起動時の発熱量が小さい範囲おいては、受熱部内圧力Pが上昇した状態で上下に変化を繰り返していることから、脈動現象が発生していることがわかる。 Normally, it is effective to reduce the cross-sectional area of the heat dissipation path in order to prevent the pulsation phenomenon. However, a cooling device using phase change involves a large volume expansion at the stage of vaporization of the working fluid, so simply reducing the cross-sectional area of the heat dissipation path will lead to a reduction in the maximum heat transport amount itself. become. FIG. 5 illustrates this point. FIG. 5 (a) shows the input heat quantity Q and the heat receiving portion internal pressure P when the tube diameter of the heat radiation path is changed. In the pipe cross-sectional area A1, which is a single pipe having a large cross-sectional area indicated by a thick solid line, in the range where the input heat quantity Q is small, that is, in the range where the heat generation amount at startup is small, Since the change is repeated up and down, it can be seen that a pulsation phenomenon occurs.
一方、細実線で示す断面積の小さい単一管である管断面積A2においては、管径を小さくして作動流体の表面張力が大きくなっているため上下のメニスカスが崩壊せず作動流体の塊が押し上げられるので、投入熱量Qが小さい範囲おいて、受熱部内圧力Pは、断面積の大きい単一管である管断面積A1ほど上昇せず、上下に変化もしていないことから、脈動現象が発生していないことがわかる。しかし、断面積の小さい単一管である管断面積A2においては、管断面積が小さいため、高発熱量側で急激に圧力上昇が起こっており高い熱量に対応できていないことを表している。 On the other hand, in the pipe cross-sectional area A2, which is a single pipe having a small cross-sectional area indicated by a thin solid line, the surface tension of the working fluid is increased by reducing the pipe diameter, so that the upper and lower meniscuses do not collapse and the working fluid mass Therefore, in the range where the input heat quantity Q is small, the pressure P in the heat receiving part does not rise as much as the pipe cross-sectional area A1, which is a single pipe having a large cross-sectional area, and does not change up and down. It turns out that it has not occurred. However, in the pipe cross-sectional area A2 which is a single pipe having a small cross-sectional area, the pipe cross-sectional area is small, so that the pressure rises abruptly on the high calorific value side, indicating that it cannot cope with the high heat quantity. .
これに対して、本発明の実施の形態1で示した放熱経路の鉛直部を主経路6aと副経路6bで構成した場合の断面積A3が点線で表したグラフである。断面積A3の場合、低発熱量の範囲では、管断面積A1と同じく起動時の圧力上昇と脈動現象は抑制されており、且つ高発熱量側では大きな管断面積A1に匹敵する低い圧力状態を示していることが分かる。すなわち、本発明の実施の形態1に示した放熱経路b6の鉛直部を主経路6aと副経路6bで構成することで、低発熱量時の圧力上昇と脈動現象を抑制し、且つ高発熱量に対しても十分な性能が確保できることを示した結果である。また、図5(b)は、放熱経路の主経路断面積A1と副経路断面積A2の比である経路断面積比(A2/A1)と起動時の最大圧力P3を示したグラフである。同図より、経路断面積(A2/A1)は、0.1〜0.5の範囲を選択すべきであることが分かる。 On the other hand, the cross-sectional area A3 when the vertical part of the heat radiation path shown in Embodiment 1 of the present invention is constituted by the main path 6a and the sub-path 6b is a graph represented by a dotted line. In the case of the cross-sectional area A3, in the range of the low calorific value, the pressure rise and pulsation phenomenon at the start-up are suppressed as in the pipe cross-sectional area A1, and on the high calorific value side, a low pressure state comparable to the large pipe cross-sectional area A1. It can be seen that That is, by configuring the vertical portion of the heat dissipation path b6 shown in the first embodiment of the present invention with the main path 6a and the sub-path 6b, the pressure rise and the pulsation phenomenon at the time of the low heat generation amount are suppressed, and the high heat generation amount. This is a result showing that sufficient performance can be secured. FIG. 5B is a graph showing a path cross-sectional area ratio (A2 / A1) that is a ratio of the main path cross-sectional area A1 and the sub-path cross-sectional area A2 of the heat dissipation path and the maximum pressure P3 at the time of startup. From the figure, it is understood that the path cross-sectional area (A2 / A1) should be selected in the range of 0.1 to 0.5.
次に、図6を用いて、図2で説明した放熱経路6の鉛直部の主経路6aと副経路6bの他の配置関係の場合について追加説明を加えることにする。図6(a)は、放熱経路6の主経路6aと副経路6bの軸心が同心円に配置された構成例であり、図6(b)は、放熱経路6の主経路6a内に仕切り板を加えて副経路6bが内接する形で構成とした例である。 Next, with reference to FIG. 6, additional explanation will be given for other arrangement relationships of the main path 6 a and the sub-path 6 b in the vertical portion of the heat radiation path 6 described in FIG. 2. 6A is a configuration example in which the axes of the main path 6a and the sub-path 6b of the heat dissipation path 6 are arranged concentrically, and FIG. 6B is a partition plate in the main path 6a of the heat dissipation path 6. In this example, the sub-path 6b is inscribed.
さらに、図7は、本発明の実施の形態2を示したものである。図6までの実施の形態1の場合は、放熱経路6の副経路6bが主経路6aの内部に配置されていたが、この場合、主経路6aの外側に副経路6bが併設する構成となっている。ただし、冷却装置としての特性は実施の形態1の場合と同様の冷却性能を実現することが可能である。 Furthermore, FIG. 7 shows Embodiment 2 of the present invention. In the case of the first embodiment up to FIG. 6, the sub route 6b of the heat dissipation path 6 is arranged inside the main route 6a. In this case, the sub route 6b is provided outside the main route 6a. ing. However, the characteristics as a cooling device can realize the same cooling performance as in the first embodiment.
以上、本発明の実施の形態1を用いることで起動時の冷却性能の低下や不安定動作を防止するとともに、低発熱量から高発熱量までの広い範囲で安定した高い冷却性能を維持した冷却装置を実現することが可能である。 As described above, the use of the first embodiment of the present invention prevents the cooling performance from being lowered and unstable operation at the start-up, and also maintains the stable high cooling performance in a wide range from the low heat generation amount to the high heat generation amount. An apparatus can be realized.
なお、上記実施形態においては、冷却装置3を電気自動車1に適用したものとして説明して来たが、電子機器に冷却装置3を適用することも出来る。 In addition, in the said embodiment, although demonstrated as what applied the cooling device 3 to the electric vehicle 1, the cooling device 3 can also be applied to an electronic device.
本発明にかかる冷却装置は、低発熱量から高発熱量までの広い範囲で安定した高い冷却性能を維持した冷却装置を実現することができ、電子機器および電気自動車の発熱量の変動が大きな半導体回路内の冷却に有用である。 The cooling device according to the present invention can realize a cooling device that maintains stable and high cooling performance in a wide range from a low calorific value to a high calorific value, and has a large variation in the calorific value of electronic devices and electric vehicles. Useful for cooling in the circuit.
1 電気自動車
2 インバータ回路
3 冷却装置
4 受熱部
5 放熱部
6 放熱経路
6a 主経路
6b 副経路
7 帰還経路
8 送風機
9 半導体スイッチング素子
10 受熱板
11 作動流体
12 受熱空間
13 受熱板カバー
14 流入口
15 排出口
16 逆流防止弁
DESCRIPTION OF SYMBOLS 1 Electric vehicle 2 Inverter circuit 3 Cooling device 4 Heat receiving part 5 Heat radiating part 6 Heat radiating path 6a Main path 6b Sub path 7 Return path 8 Blower 9 Semiconductor switching element 10 Heat receiving plate 11 Working fluid 12 Heat receiving space 13 Heat receiving plate cover 14 Inlet 15 Discharge port 16 Backflow prevention valve
Claims (7)
前記作動流体の熱を放出する放熱部と、
前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とを備え、
前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、
前記帰還経路には逆流防止弁を備え、
前記逆流防止弁の上流の圧力が前記逆流防止弁の下流の圧力より高くなった時に前記作動流体は前記逆流防止弁を通過し、前記作動流体は前記受熱板上に供給され、供給された前記作動流体は前記流入口と前記受熱板との隙間から外周部へ拡散され、前記受熱板の表面に前記作動流体が薄い膜として広がり気化するとともに、
前記放熱経路の鉛直部は、主経路路と副経路で構成され、
前記副経路の断面積は、前記主経路の断面積より小さいことを特徴とする冷却装置。 A heat receiving section for transferring heat from the heat generating element to the working fluid from a heat receiving plate in contact with the heat generating element;
A heat dissipating part for releasing the heat of the working fluid;
A heat dissipation path and a return path that connect the heat receiving section and the heat dissipation section;
A cooling device that circulates the working fluid to the heat receiving portion, the heat radiating path, the heat radiating portion, the return path, and the heat receiving portion to move heat;
The return path includes a backflow prevention valve,
When the pressure upstream of the backflow prevention valve becomes higher than the pressure downstream of the backflow prevention valve, the working fluid passes through the backflow prevention valve, and the working fluid is supplied onto the heat receiving plate and supplied. The working fluid is diffused from the gap between the inlet and the heat receiving plate to the outer periphery, and the working fluid spreads and vaporizes as a thin film on the surface of the heat receiving plate.
The vertical part of the heat dissipation path is composed of a main path and a sub-path,
The cooling device according to claim 1, wherein a cross-sectional area of the sub path is smaller than a cross-sectional area of the main path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015250159A JP2017116151A (en) | 2015-12-22 | 2015-12-22 | Cooling device, electronic equipment and electric vehicle mounting the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015250159A JP2017116151A (en) | 2015-12-22 | 2015-12-22 | Cooling device, electronic equipment and electric vehicle mounting the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017116151A true JP2017116151A (en) | 2017-06-29 |
Family
ID=59233988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015250159A Pending JP2017116151A (en) | 2015-12-22 | 2015-12-22 | Cooling device, electronic equipment and electric vehicle mounting the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017116151A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019054076A1 (en) * | 2017-09-13 | 2019-03-21 | 株式会社デンソー | Device temperature adjustment apparatus |
JP2019052837A (en) * | 2017-09-13 | 2019-04-04 | 株式会社デンソー | Apparatus temperature adjustment device |
-
2015
- 2015-12-22 JP JP2015250159A patent/JP2017116151A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019054076A1 (en) * | 2017-09-13 | 2019-03-21 | 株式会社デンソー | Device temperature adjustment apparatus |
JP2019052837A (en) * | 2017-09-13 | 2019-04-04 | 株式会社デンソー | Apparatus temperature adjustment device |
CN110892225A (en) * | 2017-09-13 | 2020-03-17 | 株式会社电装 | Equipment temperature adjusting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4978401B2 (en) | Cooling system | |
CN104487794B (en) | Cooling device, electric vehicle and electronic equipment equipped with the cooling device | |
JP6327406B2 (en) | Boiling cooling device and boiling cooling system | |
US7284389B2 (en) | Two-fluid spray cooling system | |
JP6605819B2 (en) | Cooling system | |
JPWO2012046338A1 (en) | Semiconductor package, cooling mechanism, and semiconductor package manufacturing method | |
JP5471119B2 (en) | Loop heat pipe, electronic device | |
JP2008249314A (en) | Thermosiphon type boiling cooler | |
JP5786132B2 (en) | Electric car | |
JP2017116151A (en) | Cooling device, electronic equipment and electric vehicle mounting the same | |
JP2014154683A (en) | Cooling apparatus | |
JP5891349B2 (en) | COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME | |
JP2007115917A (en) | Heat dispersion plate | |
JP2013145069A (en) | Cooling device, and electronic apparatus and electric vehicle equipped with the same | |
JP5252059B2 (en) | Cooling system | |
JP2013019549A (en) | Cooling device, and electronic apparatus and electric vehicle equipped with the same | |
JP2012251693A (en) | Heat transport apparatus, and cooling device of reactor containment vessel | |
KR100431500B1 (en) | Micro cooler device | |
US10634438B2 (en) | Cooling plate and information processing device | |
JP2014116385A (en) | Cooler and electric car and electronic apparatus mounting the same | |
JP2014052117A (en) | Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same | |
JP2015060901A (en) | COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME | |
JP5903549B2 (en) | COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR | |
JP5938574B2 (en) | Cooling device and electric vehicle equipped with the same | |
JP2017067355A (en) | COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR |