JP2017108089A - レーザ加工装置及びレーザ加工方法 - Google Patents
レーザ加工装置及びレーザ加工方法 Download PDFInfo
- Publication number
- JP2017108089A JP2017108089A JP2015245046A JP2015245046A JP2017108089A JP 2017108089 A JP2017108089 A JP 2017108089A JP 2015245046 A JP2015245046 A JP 2015245046A JP 2015245046 A JP2015245046 A JP 2015245046A JP 2017108089 A JP2017108089 A JP 2017108089A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- processing
- wafers
- laser
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Laser Beam Processing (AREA)
- Dicing (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
【課題】加速度及び速度を上げることなく単位時間当たりのウェーハの処理枚数を向上させるレーザ加工装置及びレーザ加工方法を提供する。
【解決手段】少なくとも一方向に延びる加工領域をそれぞれ有する複数のウェーハを第1方向に並べて保持する保持部と、複数のウェーハにレーザ光を照射するレーザ照射部と、複数のウェーハとレーザ照射部とを第1方向及び第1方向に直交する第2方向に相対的に移動させる移動機構部と、複数のウェーハのそれぞれの加工領域を第1方向に平行な同一直線上に配置する調整機構部と、複数のウェーハとレーザ照射部とを第1方向に相対移動させながら同一直線上に配置された複数のウェーハの加工領域にレーザ光を照射することで加工領域をレーザ加工する制御部と、を備えたレーザ加工装置によって上記課題を解決する。
【選択図】図1
【解決手段】少なくとも一方向に延びる加工領域をそれぞれ有する複数のウェーハを第1方向に並べて保持する保持部と、複数のウェーハにレーザ光を照射するレーザ照射部と、複数のウェーハとレーザ照射部とを第1方向及び第1方向に直交する第2方向に相対的に移動させる移動機構部と、複数のウェーハのそれぞれの加工領域を第1方向に平行な同一直線上に配置する調整機構部と、複数のウェーハとレーザ照射部とを第1方向に相対移動させながら同一直線上に配置された複数のウェーハの加工領域にレーザ光を照射することで加工領域をレーザ加工する制御部と、を備えたレーザ加工装置によって上記課題を解決する。
【選択図】図1
Description
本発明はレーザ加工装置及びレーザ加工方法に係り、特に複数枚のウェーハを同時に処理するレーザ加工装置及びレーザ加工方法に関する。
ウェーハの内部に集光点を合わせてレーザ光を照射し、ウェーハの切断予定ラインに沿ってウェーハの内部に多光子吸収による改質領域を形成するレーザ加工装置が知られている。
特許文献1には、ウェーハをX軸方向およびY軸方向にレーザ加工する場合に、XYZステージをX軸方向に一定速度で移動させてレーザビームを走査してX軸方向のレーザ加工を行った後、XYZステージをY軸方向に一定速度で移動させてレーザビームを走査してY軸方向のレーザ加工を行う技術が記載されている。
レーザ加工の処理速度を上げるには、加工時におけるレーザとウェーハとの相対移動の加速度及び速度を上げることが一般的である。しかしながら、加速度及び速度を向上させるには、モータの大型化、オートフォーカスの高レスポンス化、レーザの高出力化及び高繰り返し周波数化、加速度アップに伴う振動の増加という課題があり、大幅な向上の実現は困難であった。
本発明は、このような事情に鑑みてなされたもので、加速度及び速度を上げることなく単位時間当たりのウェーハの処理枚数を向上させるレーザ加工装置及びレーザ加工方法を提供することを目的とする。
上記目的を達成するためにレーザ加工装置の一の態様は、少なくとも一方向に延びる加工領域をそれぞれ有する複数のウェーハを第1方向に並べて保持する保持部と、保持部に保持された複数のウェーハにレーザ光を照射するレーザ照射部と、保持部に保持された複数のウェーハとレーザ照射部とを第1方向及び第1方向に直交する第2方向に相対的に移動させる移動機構部と、保持部に保持された複数のウェーハのそれぞれの加工領域を第1方向に平行な同一直線上に配置する調整機構部と、保持部に保持された複数のウェーハとレーザ照射部とを第1方向に相対移動させながら同一直線上に配置された複数のウェーハの加工領域にレーザ光を照射することで加工領域をレーザ加工する制御部と、を備えた。
本態様によれば、複数のウェーハのそれぞれの加工領域を第1方向に平行な同一直線上に配置し、複数のウェーハとレーザ照射部とを第1方向に相対移動させながら同一直線上に配置された複数のウェーハの加工領域にレーザ光を照射することで加工領域をレーザ加工するようにしたので、ウェーハとレーザ照射部との相対移動の加速度及び速度を上げることなく単位時間当たりのウェーハの処理枚数を向上させることができる。
調整機構部は、第1方向及び第2方向から形成される面に対して直交する第3方向を軸心として複数のウェーハのそれぞれを回転する回転調整機構部を備えることが好ましい。これにより、複数のウェーハのそれぞれの加工領域を第1方向に平行な同一直線上に適切に配置することができるので、精度よくレーザ加工することができる。
調整機構部は、複数のウェーハの第2方向の位置をそれぞれ調整する第2方向調整機構部を備えることが好ましい。これにより、複数のウェーハのそれぞれの加工領域を第1方向に平行な同一直線上に適切に配置することができるので、精度よくレーザ加工することができる。
調整機構部は、第1方向及び第2方向から形成される面に対する複数のウェーハの傾斜をそれぞれ調整するチルト調整機構部を備えることが好ましい。これにより、複数のウェーハのそれぞれの加工領域を第1方向に平行な同一直線上に適切に配置することができるので、精度よくレーザ加工することができる。
調整機構部は、複数のウェーハのレーザ照射部との距離をそれぞれ調整する高さ調整機構部を備えることが好ましい。これにより、精度良くレーザ加工することができる。
複数のウェーハを撮影する撮影部を備え、調整機構部は、撮影部の撮影結果に基づいて複数のウェーハのそれぞれの加工領域を第1方向に平行な同一直線上に配置することが好ましい。これにより、精度よくレーザ加工することができる。
移動機構部は、保持部を第1方向及び第1方向に直交する方向に相対的に移動させ、移動機構部の第1方向の移動に対応して移動機構部とは逆方向に移動するカウンターバランスを備えることが好ましい。これにより、保持部の移動によって平衡バランスを崩すことがなく、精度良くレーザ加工することができる。
第2方向の位置が異なる複数の加工領域にそれぞれレーザ光を照射する複数のレーザ照射部を備えることが好ましい。これにより、単位時間当たりのウェーハの処理枚数をさらに向上させることができる。
上記目的を達成するためにレーザ加工方法の一の態様は、少なくとも一方向に延びる加工領域をそれぞれ有する複数のウェーハを保持部において第1方向に並べて保持する保持工程と、保持部に保持された複数のウェーハにレーザ照射部においてレーザ光を照射するレーザ照射工程と、保持部とレーザ照射部とを第1方向及び第1方向に直交する第2方向に相対的に移動させる移動工程と、保持部に保持された複数のウェーハのそれぞれの加工領域を第1方向に平行な同一直線上に配置する調整工程と、保持部に保持された複数のウェーハとレーザ照射部とを第1方向に相対移動させながら同一直線上に配置された複数のウェーハの加工領域にレーザ光を照射することで加工領域をレーザ加工する制御工程と、を備えた。
本態様によれば、複数のウェーハのそれぞれの加工領域を第1方向に平行な同一直線上に配置し、複数のウェーハとレーザ照射部とを第1方向に相対移動させながら同一直線上に配置された複数のウェーハの加工領域にレーザ光を照射することで加工領域をレーザ加工するようにしたので、ウェーハとレーザ照射部との相対移動の加速度及び速度を上げることなく単位時間当たりのウェーハの処理枚数を向上させることができる。
本発明によれば、ウェーハとレーザ照射部との相対移動の加速度及び速度を上げることなく単位時間当たりのウェーハの処理枚数を向上させることができる。
以下、添付図面に従って本発明の好ましい実施の形態について詳説する。
〔レーザ加工装置の構成:第1の実施形態〕
図1は、第1の実施形態に係るレーザ加工装置10の全体構成を示す平面図であり、図2は、図1のA方向から見た側面図である。レーザ加工装置10は、半導体装置や電子部品等が形成されたウェーハを個々のチップに分割するレーザダイシング装置であり、図1及び図2に示すように、Yベース12、Y軸ステージガイド14、Y軸ステージ16、加工用X軸移動ステージガイド18、加工用X軸移動ステージ20、第1微動Y軸ステージ22、第2微動Y軸ステージ24、第1θステージ26、第2θステージ28、第1ウェーハチャック30、第2ウェーハチャック32、第1Z軸用コラム34、第2Z軸用コラム36、第1アライメント用光学ユニット38、第1加工用光学ユニット40、第2アライメント用光学ユニット42等を備えている。
図1は、第1の実施形態に係るレーザ加工装置10の全体構成を示す平面図であり、図2は、図1のA方向から見た側面図である。レーザ加工装置10は、半導体装置や電子部品等が形成されたウェーハを個々のチップに分割するレーザダイシング装置であり、図1及び図2に示すように、Yベース12、Y軸ステージガイド14、Y軸ステージ16、加工用X軸移動ステージガイド18、加工用X軸移動ステージ20、第1微動Y軸ステージ22、第2微動Y軸ステージ24、第1θステージ26、第2θステージ28、第1ウェーハチャック30、第2ウェーハチャック32、第1Z軸用コラム34、第2Z軸用コラム36、第1アライメント用光学ユニット38、第1加工用光学ユニット40、第2アライメント用光学ユニット42等を備えている。
Yベース12は、X軸方向(第1方向の一例)及びY軸方向(第2方向の一例)から形成されるXY平面に沿って配置された板状部材であり、Y軸ステージ16の基準平面を形成する。Yベース12の上面には、Y軸方向に沿ったY軸ステージガイド14が設けられており、Y軸ステージガイド14には、XY平面に沿って配置された板状部材であるY軸ステージ16の下面が係合している。Y軸ステージ16は、加工用X軸移動ステージ20の基準平面を形成し、Y軸ステージガイド14に沿って、後述する第1ウェーハW1及び第2ウェーハW2を加工可能な範囲でY軸方向に移動可能に支持される。
Y軸ステージ16の上面には、X軸方向に沿った加工用X軸移動ステージガイド18が設けられている。加工用X軸移動ステージガイド18には、XY平面に沿って配置された板状部材である加工用X軸移動ステージ20の下面が係合しており、加工用X軸移動ステージ20は、加工用X軸移動ステージガイド18に沿ってX軸方向に移動可能に支持される。
加工用X軸移動ステージ20の上面には、第1微動Y軸ステージ22及び第2微動Y軸ステージ24がX軸方向に並べて設けられている。第1微動Y軸ステージ22及び第2微動Y軸ステージ24(調整機構の一例)は、XY平面に沿った板状部材であり、加工用X軸移動ステージ20の上面においてそれぞれY軸方向に微小移動可能に支持されている。即ち、第1微動Y軸ステージ22及び第2微動Y軸ステージ24は、複数のウェーハのY軸方向の位置をそれぞれ調整するY軸方向調整機構部(第2方向調整機構部の一例)として機能する。
また、第1微動Y軸ステージ22及び第2微動Y軸ステージ24の上面には、それぞれ第1θステージ26及び第2θステージ28が設けられている。第1θステージ26及び第2θステージ28(調整機構の一例)はXY平面に沿った板状部材であり、その中心に設けられたZ軸方向に沿った軸を中心にXY平面を回転可能に支持されており、Yベース12に対してそれぞれθ方向に移動可能である。即ち、第1θステージ26及び第2θステージ28は、XY平面に対して直交するZ軸方向(第3方向の一例)を軸心として複数のウェーハのそれぞれを回転する回転調整機構部として機能する。
第1θステージ26及び第2θステージ28の上面には、それぞれ第1ウェーハチャック30及び第2ウェーハチャック32が設けられている。第1ウェーハチャック30及び第2ウェーハチャック32は、XY平面に沿った円盤状部材であり、その上面にはそれぞれ第1ウェーハW1及び第2ウェーハW2を載置可能な第1ウェーハ載置面30a及び第2ウェーハ載置面32aを有している。第1ウェーハ載置面30a及び第2ウェーハ載置面32aには、それぞれ多数の吸着穴(不図示)が形成されており、吸着穴にはウェーハ吸着用真空ポンプ(不図示)が接続される。このウェーハ吸着用真空ポンプを駆動することにより吸着穴からエアが吸引され、第1ウェーハ載置面30aに第1ウェーハW1が、第2ウェーハ載置面32aに第2ウェーハW2が吸着保持される。
このように、加工用X軸移動ステージ20は、複数のウェーハをX軸方向に並べて保持する保持部として機能する。また、加工用X軸移動ステージ20は加工用X軸移動ステージガイド18に沿ってX軸方向に移動可能に支持され、加工用X軸移動ステージガイド18が支持されるY軸ステージ16はY軸ステージガイド14に沿ってY軸方向に移動可能に支持されているため、Y軸ステージガイド14及び加工用X軸移動ステージガイド18は、第1ウェーハW1及び第2ウェーハW2と第1加工用光学ユニット40とをX軸方向及びY軸方向に相対的に移動させる移動機構部として機能する。
第1Z軸用コラム34は、第1アライメント用光学ユニット38及び第1加工用光学ユニット40をX軸方向について固定し、Z軸方向及びY軸方向へ移動するためのガイドである。第1Z軸用コラム34には、第1アライメント用光学ユニット38及び第1加工用光学ユニット40がZ軸方向及びY軸方向に移動可能に支持されている。同様に、第2Z軸用コラム36は、第2アライメント用光学ユニット42をX軸方向について固定し、Z軸方向及びY軸方向へ移動するためのガイドであり、第2Z軸用コラム36には、第2アライメント用光学ユニット42がZ軸方向及びY軸方向に移動可能に支持されている。また、第1アライメント用光学ユニット38及び第2アライメント用光学ユニット42は、それぞれの観察点(撮影点)間のX軸方向の距離が第1ウェーハチャック30及び第2ウェーハチャック32の中心間のX軸方向の距離と同じ距離となる位置に配置されている。
第1アライメント用光学ユニット38及び第2アライメント用光学ユニット42(撮影部の一例)は、InGaAs(Indium Gallium Arsenide(インジウムガリウムヒ化物))等の材料を用いた撮像素子を有する近赤外線カメラである。第1アライメント用光学ユニット38は、第1ウェーハチャック30の載置面に載置された第1ウェーハW1のパターン面の画像データを取得し、第2アライメント用光学ユニット42は、第2ウェーハチャック32の載置面に載置された第2ウェーハW2のパターン面の画像データを取得する。
第1加工用光学ユニット40(レーザ照射部の一例)は、図示しないレーザ発振器及びコンデンスレンズを有しており、第1ウェーハW1及び第2ウェーハW2の内部に集光点を合わせてレーザ光を照射する。また、第1加工用光学ユニット40は、オートフォーカス機構を備えており、照射したレーザ光のうち第1ウェーハW1及び第2ウェーハW2から反射したレーザ光を受光して合焦情報を取得し、取得した合焦情報に基づいて、レーザ光の集光点のウェーハ厚み方向の位置が一定となるように第1加工用光学ユニット40のコンデンスレンズの位置を制御する。
また、レーザ加工装置10は、第1ウェーハW1及び第2ウェーハW2を第1ウェーハチャック30及び第2ウェーハチャック32にロードし、第1ウェーハチャック30及び第2ウェーハチャック32から第1ウェーハW1及び第2ウェーハW2をアンロードするウェーハ交換用装置(不図示)を備えている。このウェーハ交換用装置は、レーザ加工装置10のウェーハ処理枚数(ここでは2枚)に応じたハンド数であることが望ましい。
〔レーザ加工装置の制御ユニット〕
図3は、レーザ加工装置10のシステム構成を示すブロック図である。レーザ加工装置10は、システム制御部50、X軸方向制御部52、Y軸方向制御部54、θ方向制御部56、アライメント用光学ユニット制御部58、及び加工制御部60等を備えている。
図3は、レーザ加工装置10のシステム構成を示すブロック図である。レーザ加工装置10は、システム制御部50、X軸方向制御部52、Y軸方向制御部54、θ方向制御部56、アライメント用光学ユニット制御部58、及び加工制御部60等を備えている。
システム制御部50(制御部の一例)は、レーザ加工装置10を構成する各部を統括的に制御する。
X軸方向制御部52は、モータ(不図示)を駆動することで加工用X軸移動ステージ20を制御し、第1ウェーハW1及び第2ウェーハW2をX軸方向に移動させる。Y軸方向制御部54は、モータ(不図示)を駆動することでY軸ステージ16を制御し、第1ウェーハW1及び第2ウェーハW2をY軸方向に移動させるとともに、モータ(不図示)を駆動することで第1微動Y軸ステージ22及び第2微動Y軸ステージ24を制御し、第1ウェーハW1及び第2ウェーハW2をY軸方向に微動させる。θ方向制御部56は、モータ(不図示)を駆動することで第1θステージ26及び第2θステージ28を制御し、第1ウェーハW1及び第2ウェーハW2をθ方向に回転移動させる。
アライメント用光学ユニット制御部58は、第1アライメント用光学ユニット38及び第2アライメント用光学ユニット42を制御し、第1ウェーハW1及び第2ウェーハW2のパターン面の画像データを取得し、システム制御部50に出力する。システム制御部50は、入力された画像データ(撮影結果の一例)に基づいて、Y軸方向制御部54を介して第1微動Y軸ステージ22及び第2微動Y軸ステージ24を制御し、第1ウェーハW1及び第2ウェーハW2のY軸方向を微調整する。さらに、θ方向制御部56を介して第1θステージ26及び第2θステージ28を制御し、Y軸方向を微調整した第1ウェーハW1及び第2ウェーハW2のθ方向を調整する。
加工制御部60は、第1アライメント用光学ユニット38の出力画像データに基づいて第1加工用光学ユニット40を制御し、集光点がウェーハ厚み方向に一定となるように第1ウェーハW1及び第2ウェーハW2にレーザ光を照射させる。
〔レーザ加工装置の動作〕
次に、レーザ加工装置10の動作(レーザ加工方法)について説明する。レーザ加工を行う第1ウェーハW1及び第2ウェーハW2は、それぞれ少なくとも一方向に延びる加工領域を有している。本実施形態では、表面に沿った直交する2方向(例えば、オリフラに平行な方向と直交する方向)に個々のチップに区画する加工ライン(加工領域)を有している。
次に、レーザ加工装置10の動作(レーザ加工方法)について説明する。レーザ加工を行う第1ウェーハW1及び第2ウェーハW2は、それぞれ少なくとも一方向に延びる加工領域を有している。本実施形態では、表面に沿った直交する2方向(例えば、オリフラに平行な方向と直交する方向)に個々のチップに区画する加工ライン(加工領域)を有している。
まず、図示しないウェーハ交換用装置により、第1ウェーハチャック30に第1ウェーハW1をロードし、第2ウェーハチャック32に第2ウェーハW2をロードする(保持工程の一例)。
次に、X軸方向制御部52及びY軸方向制御部54は、加工用X軸移動ステージ20及びY軸ステージ16によって第1ウェーハW1及び第2ウェーハW2をX軸方向及びY軸方向に移動させ、それぞれ第1アライメント用光学ユニット38及び第2アライメント用光学ユニット42のZ軸方向直下に移動させる。
続いて、アライメント用光学ユニット制御部58が第1アライメント用光学ユニット38によって第1ウェーハW1を観察する。この観察結果に基づいて、θ方向制御部56は第1θステージ26によって第1ウェーハW1のθ方向のアライメントを行い、第1ウェーハW1の加工領域をX軸方向と平行にする。これと同時に、アライメント用光学ユニット制御部58が第2アライメント用光学ユニット42によって第2ウェーハW2を観察し、この観察結果に基づいて、θ方向制御部56が第2θステージ28により第2ウェーハW2のθ方向のアライメントを行い、第2ウェーハW2の加工領域をX軸方向と平行にする。
次に、システム制御部50は、第1アライメント用光学ユニット38及び第2アライメント用光学ユニット42の観察結果から、第1ウェーハW1及び第2ウェーハW2のY軸方向の位置ずれを検出する。この検出した位置ずれに対して、Y軸方向制御部54は、第1微動Y軸ステージ22及び第2微動Y軸ステージ24により第1ウェーハW1及び第2ウェーハW2のY軸方向の位置を微調整し、Y軸方向の位置ずれを無くす。これにより、第1ウェーハW1の加工領域と第2ウェーハW2の加工領域とがX軸方向に平行な同一直線上に配置される(調整工程の一例)。
このように、第1微動Y軸ステージ22、第2微動Y軸ステージ24、第1θステージ26、及び第2θステージ28は、複数のウェーハのそれぞれの加工領域をX軸方向に平行な同一直線上に配置する調整機構部として機能する。
X軸方向制御部52は、このようにアライメントした第1ウェーハW1及び第2ウェーハW2の2枚のウェーハを、加工用X軸移動ステージ20により第1加工用光学ユニット40よりもX軸方向の一方側(例えば図1において第1加工用光学ユニット40の右側)に移動させる。
そして、X軸方向制御部52の制御により加工用X軸移動ステージ20を移動(相対移動の一例)させながら(移動工程の一例)、加工制御部60の制御により第1加工用光学ユニット40から第1ウェーハW1及び第2ウェーハW2の同一直線上に配置された加工領域にレーザを照射し(レーザ照射工程の一例)、2枚のウェーハの加工を行う(制御工程の一例)。
ここで、X軸方向制御部52は、第1加工用光学ユニット40の位置に被加工ウェーハ(例えば第1ウェーハW1)が到達するまで加工用X軸移動ステージ20を加速させ、第1加工用光学ユニット40の位置に到達してからレーザを被加工ウェーハに照射中は一定速度で移動させる。さらに、X軸方向制御部52は、第1加工用光学ユニット40の位置を被加工ウェーハ(例えば第2ウェーハW2)が通過した時点で加工用X軸移動ステージ20を減速させる。
第1ウェーハW1及び第2ウェーハW2の1つの加工領域の加工を終了すると、Y軸方向制御部54は、Y軸ステージ16をY軸方向に移動させることで次の加工領域を第1加工用光学ユニット40の照射位置に移動させ、X軸方向制御部52が再び加工用X軸移動ステージ20をX軸方向に移動させることで、次の加工領域のレーザ加工を行う。
第1ウェーハW1及び第2ウェーハW2のX軸方向に配置された全ての加工領域のレーザ加工が終了したら、第1θステージ26及び第2θステージ28により第1ウェーハW1及び第2ウェーハW2を回転(通常は90°)させ、直交する2方向の加工領域のうちまだ加工を行っていない方向の加工領域の加工を行う。例えば、オリフラに平行な方向の加工領域のレーザ加工を先に行った場合は、次にオリフラに直交する方向の加工領域のレーザ加工を行う。
全ての加工領域のレーザ加工が終了したら、第1ウェーハW1及び第2ウェーハW2を第1ウェーハチャック30及び第2ウェーハチャック32からアンロードする。
このように、本実施形態によれば、X軸方向に2枚のウェーハを配置し、X軸方向の移動加減速回数及びY軸方向の移動の回数をウェーハ1枚の場合と同様にして2枚のウェーハを同時に加工する。これにより、加工用X軸移動ステージ20の加工時の加速度及び速度を上げずとも、1枚のウェーハのみの加工を行った場合と比較して、単位時間当たりのウェーハの処理枚数を向上させることができる。
さらに、本実施形態によれば、加工時の加速度及び速度を上げていないため、加工制御部60の出力するレーザの高出力化、高繰り返し周波数化、及びオートフォーカスの高レスポンス化が不要であり、加速度アップに伴う振動の増加も発生しないという利点がある。また、ウェーハのロード、アンロード及びアライメントを複数枚同時に行うことで、さらに処理時間短縮が可能となる。
〔第2の実施形態〕
図4〜図6を用いて第2の実施形態に係るレーザ加工装置62について説明する。なお、図1〜図3に示すレーザ加工装置10と共通する部分には同一の符号を付し、その詳細な説明は省略する。
図4〜図6を用いて第2の実施形態に係るレーザ加工装置62について説明する。なお、図1〜図3に示すレーザ加工装置10と共通する部分には同一の符号を付し、その詳細な説明は省略する。
図4は、第2の実施形態に係るレーザ加工装置62の全体構成を示す平面図であり、図5は、図4のB方向から見た側面図である。また、図6は、レーザ加工装置62のシステム構成を示すブロック図である。
レーザ加工装置62は、レーザ加工装置10の構成に加え、第1カウンターバランス用X軸ステージガイド64、第2カウンターバランス用X軸ステージガイド66、第1カウンターバランス用X軸ステージ68、及び第2カウンターバランス用X軸ステージ70を備えている。
第1カウンターバランス用X軸ステージガイド64及び第2カウンターバランス用X軸ステージガイド66は、Y軸ステージ16の上面であって、加工用X軸移動ステージガイド18に関して対称にそれぞれX軸方向に沿って設けられている。
第1カウンターバランス用X軸ステージ68は、下面が第1カウンターバランス用X軸ステージガイド64と係合しており、第1カウンターバランス用X軸ステージガイド64に沿ってX軸方向に移動可能に支持される。また、第2カウンターバランス用X軸ステージ70は、下面が第2カウンターバランス用X軸ステージガイド66と係合しており、第2カウンターバランス用X軸ステージガイド66に沿ってX軸方向に移動可能に支持される。
X軸方向制御部52は、モータ(不図示)を駆動することで加工用X軸移動ステージ20を制御し、第1ウェーハW1及び第2ウェーハW2をX軸方向に移動させる。このとき、同時にモータ(不図示)を駆動することで、第1カウンターバランス用X軸ステージ68及び第2カウンターバランス用X軸ステージ70を加工用X軸移動ステージ20のX軸方向の移動に対応して加工用X軸移動ステージ20とはX軸方向の逆方向に移動させる。ここで、加工用X軸移動ステージ20によりY軸ステージ16に生じる反力と第1カウンターバランス用X軸ステージ68及び第2カウンターバランス用X軸ステージ70の移動により生じる反力とが相殺され、また加工用X軸移動ステージ20と第1カウンターバランス用X軸ステージ68及び第2カウンターバランス用X軸ステージ70との両者の重心移動が相殺されるように、第1カウンターバランス用X軸ステージ68及び第2カウンターバランス用X軸ステージ70を移動させる。
X軸方向に2枚のウェーハW1及びウェーハW2を並べて配置し、2枚を同時に処理すると、加工用X軸移動ステージ20のX軸方向移動量が大きくなり、Y軸ステージ16のX軸方向の中心に関して左右の重量バランスが大きく変化する。レーザ加工装置62によれば、加工用X軸移動ステージ20の移動に伴って第1カウンターバランス用X軸ステージ68及び第2カウンターバランス用X軸ステージ70をX軸方向の反対方向に移動させるので、Y軸ステージ16のX軸方向の中心に対して平衡バランスをとることができる。したがって、レーザ加工装置62のバランスを崩すことなく、高精度にレーザ加工を行うことができる。
〔第3の実施形態〕
図7〜図9を用いて第3の実施形態に係るレーザ加工装置72について説明する。なお、図4〜図6に示すレーザ加工装置62と共通する部分には同一の符号を付し、その詳細な説明は省略する。
図7〜図9を用いて第3の実施形態に係るレーザ加工装置72について説明する。なお、図4〜図6に示すレーザ加工装置62と共通する部分には同一の符号を付し、その詳細な説明は省略する。
図7は、第3の実施形態に係るレーザ加工装置72の全体構成を示す平面図であり、図8は、図7のC方向から見た側面図である。また、図9は、レーザ加工装置72のシステム構成を示すブロック図である。
レーザ加工装置72は、レーザ加工装置62の構成に加え、加工用X軸移動ステージ20と第1微動Y軸ステージ22との間に第1微動Z軸ステージ74及び第1チルトステージ78、加工用X軸移動ステージ20と第2微動Y軸ステージ24との間に第2微動Z軸ステージ76及び第2チルトステージ80を備えている。
第1微動Z軸ステージ74及び第2微動Z軸ステージ76は、加工用X軸移動ステージ20の上面にX軸方向に並べて設けられている。第1微動Z軸ステージ74及び第2微動Z軸ステージ76はXY平面に沿った板状部材であり、加工用X軸移動ステージ20の上面においてそれぞれZ軸方向に微小移動可能に支持されている。即ち、第1微動Z軸ステージ74及び第2微動Z軸ステージ76(調整機構部の一例)は、複数のウェーハの第1加工用光学ユニット40との距離をそれぞれ調整する高さ調整機構部として機能する。
Z軸方向制御部82は、モータ(不図示)を駆動することで第1微動Z軸ステージ74を制御し、第1ウェーハW1をZ軸方向に微動させる。また、モータ(不図示)を駆動することで第2微動Z軸ステージ76を制御し、第2ウェーハW2をZ軸方向に微動させる。第1微動Z軸ステージ74及び第2微動Z軸ステージ76により、第1ウェーハW1及び第2ウェーハW2のZ軸方向高さを一定とすることで、より高精度なレーザ加工を行うことができる。
第1微動Z軸ステージ74及び第2微動Z軸ステージ76の上面には、それぞれ第1チルトステージ78及び第2チルトステージ80(調整機構部の一例)が設けられている。第1チルトステージ78及び第2チルトステージ80は板状部材であり、それぞれ第1ウェーハW1及び第2ウェーハW2の表面の向きを加工用X軸移動ステージ20に対して傾けるチルト調整可能に支持されている。即ち、第1チルトステージ78及び第2チルトステージ80は、XY平面に対する複数のウェーハの傾斜をそれぞれ調整するチルト調整機構部として機能する。
チルト制御部84は、モータ(不図示)を駆動することで第1チルトステージ78を制御し、第1ウェーハW1の向きを調整する。また、チルト制御部84は、モータ(不図示)を駆動することで第2チルトステージ80を制御し、第2ウェーハW2の向きを調整する。第1チルトステージ78及び第2チルトステージ80により、第1ウェーハW1及び第2ウェーハW2の加工用X軸移動ステージ20に対する向きを調整することで、より高精度なレーザ加工を行うことができる。
〔第4の実施形態〕
図10〜図12を用いて第4の実施形態に係るレーザ加工装置86について説明する。なお、図7〜図9に示すレーザ加工装置72と共通する部分には同一の符号を付し、その詳細な説明は省略する。
図10〜図12を用いて第4の実施形態に係るレーザ加工装置86について説明する。なお、図7〜図9に示すレーザ加工装置72と共通する部分には同一の符号を付し、その詳細な説明は省略する。
図10は、第4の実施形態に係るレーザ加工装置86の全体構成を示す平面図であり、図11は、図10のD方向から見た側面図である。また、図12は、レーザ加工装置86のシステム構成を示すブロック図である。
レーザ加工装置86は、レーザ加工装置72の構成に加え、第2加工用光学ユニット88を備えている。第2加工用光学ユニット88は、第2Z軸用コラム36にZ軸方向及びY軸方向に移動可能に支持されている。
第2加工用光学ユニット88は、第1加工用光学ユニット40と同様に、図示しないレーザ発振器及びコンデンスレンズを有している。また、第2加工用光学ユニット88はオートフォーカス機構を備えており、加工制御部60は、第2加工用光学ユニット88から取得した合焦情報に基づいて、レーザ光の集光点のウェーハ厚み方向の位置が一定となるように第2加工用光学ユニット88のコンデンスレンズの位置を制御する。
このように構成されたレーザ加工装置86は、まず、第1ウェーハW1及び第2ウェーハW2のアライメントを行う。
その後、X軸方向制御部52の制御により加工用X軸移動ステージ20をX軸方向、例えば、第1ウェーハW1を第2加工用光学ユニット88より右側から、第2ウェーハW2が第1加工用光学ユニット40を越えるまで、左方向に移動させながら、加工制御部60の制御により第1加工用光学ユニット40及び第2加工用光学ユニット88からレーザを照射することで、第1加工用光学ユニット40により第1ウェーハW1の加工を行った後、引き続き第2ウェーハW2の加工を行うと同時に、第2加工用光学ユニット88により、異なるY座標における加工領域に対して、第1ウェーハW1及び第2ウェーハW2の加工を行う。
ここで、X軸方向制御部52は、第2加工用光学ユニット88の位置(レーザ照射位置)に第1ウェーハW1が到達するまで加工用X軸移動ステージ20を加速させ、第2加工用光学ユニット88の位置に到達してから一定速度で移動させる。さらに、X軸方向制御部52は、第1加工用光学ユニット40の位置を第2ウェーハW2が通過した時点で加工用X軸移動ステージ20を減速させる。
第1ウェーハW1及び第2ウェーハW2の第1加工用光学ユニット40及び第2加工用光学ユニット88に対応する加工領域の加工を終了すると、Y軸方向制御部54は、Y軸ステージ16をY軸方向に移動させることで次の加工領域を第1加工用光学ユニット40及び第2加工用光学ユニット88の照射位置に移動させ、X軸方向制御部52が再び加工用X軸移動ステージ20をX軸方向(今度は右方向)に移動させることで、次の加工領域のレーザ加工を行う。
第1ウェーハW1及び第2ウェーハW2のX軸方向に配置された全ての加工領域のレーザ加工が終了したら、第1θステージ26及び第2θステージ28により第1ウェーハW1及び第2ウェーハW2を90°回転させ、直交する2方向の加工領域のうちまだ加工を行っていない方向の加工領域の加工を行う。
これにより、ウェーハ1枚を加工する場合と同じ加工用X軸移動ステージ20のX軸方向の加減速回数で、またY軸方向の移動回数は加工用光学ユニットの総数に応じ、約1/2で2枚のウェーハの加工が可能である。したがって、単位時間当たりのウェーハの処理枚数を向上させることができる。
〔第5の実施形態〕
図13〜図15を用いて第5の実施形態に係るレーザ加工装置90について説明する。なお、図10〜図12に示すレーザ加工装置86と共通する部分には同一の符号を付し、その詳細な説明は省略する。
図13〜図15を用いて第5の実施形態に係るレーザ加工装置90について説明する。なお、図10〜図12に示すレーザ加工装置86と共通する部分には同一の符号を付し、その詳細な説明は省略する。
図13は、第5の実施形態に係るレーザ加工装置90の全体構成を示す平面図であり、図14は、図13のE方向から見た側面図である。また、図15は、レーザ加工装置90のシステム構成を示すブロック図である。
レーザ加工装置90は、レーザ加工装置86の構成に加え、第1ウェーハ表面・チャック表面測定用高さ検出器92及び第2ウェーハ表面・チャック表面測定用高さ検出器94を備えている。
第1ウェーハ表面・チャック表面測定用高さ検出器92は、第1Z軸用コラム34に支持されており、第1ウェーハチャック30の第1ウェーハ載置面30aの表面高さ及び第1ウェーハ載置面30aに載置された第1ウェーハW1の表面高さを非接触で検出する。表面高さの検出の際には、加工用X軸移動ステージ20によるX軸方向の移動、Y軸ステージ16によるY軸方向の移動、第1θステージ26によるθ方向の回転移動を行うことで、第1ウェーハ載置面30a及び第1ウェーハW1の各位置における表面高さを検出することができる。
第2ウェーハ表面・チャック表面測定用高さ検出器94は、第2Z軸用コラム36に支持されており、第2ウェーハチャック32の第2ウェーハ載置面32aの表面高さ及び第2ウェーハ載置面32aに載置された第2ウェーハW2の表面高さを非接触で検出する。第1ウェーハ表面・チャック表面測定用高さ検出器92と同様に、表面高さの検出の際に、X軸方向の移動、Y軸方向の移動、θ方向の回転移動を行うことで、第2ウェーハ載置面32a及び第2ウェーハW2の各位置における表面高さを検出することができる。
高さ検出制御部96は、この検出結果をシステム制御部50に出力する。システム制御部50は、この検出結果に基づいて、Z軸方向制御部82を介して第1微動Z軸ステージ74及び第2微動Z軸ステージ76を制御することで、第1ウェーハW1及び第2ウェーハW2のZ軸方向高さを一定とすることができ、より高精度なレーザ加工を行うことができる。また、第1ウェーハW1と第2ウェーハW2の相対的な表面高さが予め測定されるため、例えば第1ウェーハW1の加工後に第2ウェーハW2を連続して加工する際にも、第2ウェーハW2の突入高さが予測可能となり、オートフォーカス機能の性能向上が可能となる。
また、システム制御部50は、この検出結果に基づいて、チルト制御部84を介して第1チルトステージ78及び第2チルトステージ80を制御することで、第1ウェーハW1及び第2ウェーハW2の加工用X軸移動ステージ20に対する向きを一定とすることができ、より高精度なレーザ加工を行うことができる。
〔第6の実施形態〕
図16〜図18を用いて第6の実施形態に係るレーザ加工装置100について説明する。なお、これまで図13〜図15に示すレーザ加工装置90と共通する部分には同一の符号を付し、その詳細な説明は省略する。
図16〜図18を用いて第6の実施形態に係るレーザ加工装置100について説明する。なお、これまで図13〜図15に示すレーザ加工装置90と共通する部分には同一の符号を付し、その詳細な説明は省略する。
図16は、第6の実施形態に係るレーザ加工装置100の全体構成を示す平面図であり、図17は、図16のF方向から見た側面図である。また、図18は、レーザ加工装置100のシステム構成を示すブロック図である。
レーザ加工装置100は、レーザ加工装置90の構成に加え、第3微動Y軸ステージ102、第3θステージ104、第3ウェーハチャック106、第3Z軸用コラム108、第3アライメント用光学ユニット110、第3加工用光学ユニット112、及び第3ウェーハ表面・チャック表面測定用高さ検出器114等を備えている。
第3微動Y軸ステージ102は、加工用X軸移動ステージ20の上面に、第1微動Y軸ステージ22及び第2微動Y軸ステージ24とともにX軸方向に並べて設けられている。第3微動Y軸ステージ102の構成及び作用は、第1微動Y軸ステージ22及び第2微動Y軸ステージ24と同様である。
第3θステージ104は、第3微動Y軸ステージ102の上面に設けられている。第3θステージ104の構成及び作用は、第1θステージ26及び第2θステージ28と同様である。
第3ウェーハチャック106は、第3θステージ104の上面に設けられている。第3ウェーハチャック106の構成及び作用は、第1ウェーハチャック30及び第2ウェーハチャック32と同様である。
第3Z軸用コラム108は、第3アライメント用光学ユニット110及び第3加工用光学ユニット112をX軸方向について固定し、Z軸方向及びY軸方向へ移動するためのガイドである。第3アライメント用光学ユニット110は、第2アライメント用光学ユニット42との観察点間のX軸方向の距離が、第2ウェーハチャック32及び第3ウェーハチャック106の中心間のX軸方向の距離と同じ距離となる位置に配置されている。
第3アライメント用光学ユニット110の構成及び作用は、第1アライメント用光学ユニット38及び第2アライメント用光学ユニット42と同様である。第3アライメント用光学ユニット110は、第3ウェーハチャック106の載置面に載置された第3ウェーハW3のパターン面の画像データを取得する。
第3加工用光学ユニット112の構成及び作用は、第1加工用光学ユニット40及び第2加工用光学ユニット88と同様である。
第3加工用光学ユニット112は、オートフォーカス機構を備えており、加工制御部60は、第3加工用光学ユニット112から取得した合焦情報に基づいて、レーザ光の集光点のウェーハ厚み方向の位置が一定となるように第3加工用光学ユニット112のコンデンスレンズの位置を制御する。
第3ウェーハ表面・チャック表面測定用高さ検出器114は、第3Z軸用コラム108に支持されており、第3ウェーハチャック106の第3ウェーハ載置面106aの表面高さ及び第3ウェーハ載置面106aに載置された第3ウェーハW3の表面高さを非接触で検出する。第1ウェーハ表面・チャック表面測定用高さ検出器92及び第2ウェーハ表面・チャック表面測定用高さ検出器94と同様に、表面高さの検出の際には、加工用X軸移動ステージ20によるX軸方向の移動、Y軸ステージ16によるY軸方向の移動、第3θステージ104によるθ方向の回転移動を行うことで、第3ウェーハ載置面106a及び第3ウェーハW3の各位置における表面高さを検出することができる。
このように構成されたレーザ加工装置100は、図示しないウェーハ交換用装置により、第1ウェーハW1、第2ウェーハW2、及び第3ウェーハW3をそれぞれ第1ウェーハチャック30、第2ウェーハチャック32及び第3ウェーハチャック106にロードし、これまでと同様に、第1ウェーハW1及び第2ウェーハW2のθ方向のアライメントを行う。
また、同時にアライメント用光学ユニット制御部58の制御に応じて第3アライメント用光学ユニット110が第3ウェーハW3を観察し、観察結果に基づいて、θ方向制御部56は第3θステージ104を制御して第3ウェーハW3のθ方向のアライメントを行い、第3ウェーハW3の加工領域をX軸方向と平行にする。
次に、システム制御部50は、第1アライメント用光学ユニット38、第2アライメント用光学ユニット42、及び第3アライメント用光学ユニット110の観察結果から、第1ウェーハW1、第2ウェーハW2、及び第3ウェーハW3のY軸方向の位置ずれを検出し、Y軸方向制御部54の制御により第1微動Y軸ステージ22、第2微動Y軸ステージ24、及び第3微動Y軸ステージ102が第1ウェーハW1、第2ウェーハW2、及び第3ウェーハW3のY軸方向の位置を微調整し、Y軸方向の位置ずれを無くす。これにより、第1ウェーハW1の加工領域と第2ウェーハW2の加工領域と第3ウェーハW3の加工領域とがX軸方向に平行な同一直線上に配置される。
そして、X軸方向制御部52の制御により加工用X軸移動ステージ20をX軸方向、例えば、第1ウェーハW1を第3加工用光学ユニット112より右側から、第3ウェーハW3が第1加工用光学ユニット40を越えるまで、左方向に移動させながら、加工制御部60の制御により第1加工用光学ユニット40、第2加工用光学ユニット88、及び第3加工用光学ユニット112からレーザを照射し、第1ウェーハW1、第2ウェーハW2、及び第3ウェーハW3の3枚のウェーハの異なるY座標における加工領域(第2方向の位置が異なる複数の加工領域の一例)について加工を行う。
ここで、X軸方向制御部52は、第3加工用光学ユニット112の位置に第1ウェーハW1が到達するまで加工用X軸移動ステージ20を加速させ、第1加工用光学ユニット40の位置に到達してから一定速度で移動させる。さらに、X軸方向制御部52は、第1加工用光学ユニット40の位置を第3ウェーハW3が通過した時点で加工用X軸移動ステージ20を減速させる。
第1ウェーハW1、第2ウェーハW2、及び第3ウェーハW3の第1加工用光学ユニット40、第2加工用光学ユニット88、及び第3加工用光学ユニット112に対応する加工領域の加工を終了すると、Y軸方向制御部54は、Y軸ステージ16をY軸方向に移動させることで次の加工領域を第1加工用光学ユニット40の照射位置に移動させ、X軸方向制御部52が再び加工用X軸移動ステージ20をX軸方向(今度は右方向)に移動させることで、次の加工領域のレーザ加工を行う。
第1ウェーハW1、第2ウェーハW2、及び第3ウェーハW3のX軸方向に配置された全ての加工領域のレーザ加工が終了したら、第1θステージ26、第2θステージ28、及び第3θステージ104により第1ウェーハW1、第2ウェーハW2、及び第3ウェーハW3を90°回転させ、直交する2方向の加工領域のうちまだ加工を行っていない方向の加工領域の加工を行う。
全ての加工領域のレーザ加工が終了したら、第1ウェーハW1、第2ウェーハW2、及び第3ウェーハW3を第1ウェーハチャック30、第2ウェーハチャック32、及び第3ウェーハチャック106からアンロードする。
このように、本実施形態によれば、X軸方向に3枚のウェーハを配置し、X軸方向の移動及びY軸方向の移動の回数をウェーハ1枚の場合と同様にして3枚のウェーハを同時に加工する。これにより、ウェーハ1枚を加工する場合と同じ加工用X軸移動ステージ20のX軸方向の加減速回数で3枚のウェーハの加工が可能である。また、Y軸方向の移動回数も加工用光学ユニットの総数に応じ、約1/3へ低減される。したがって、加工用X軸移動ステージ20の加工時の加速度及び速度を上げずとも、1枚のウェーハのみの加工を行った場合と比較して、単位時間当たりのウェーハの処理枚数を向上させることができる。X軸方向に4枚以上のウェーハを配置することも可能である。
本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。
10,62,72,86,90,100…レーザ加工装置、16…Y軸ステージ、20…加工用X軸移動ステージ、22…第1微動Y軸ステージ、24…第2微動Y軸ステージ、26…第1θステージ、28…第2θステージ、30…第1ウェーハチャック、32…第2ウェーハチャック、38…第1アライメント用光学ユニット、40…第1加工用光学ユニット、42…第2アライメント用光学ユニット、68…第1カウンターバランス用X軸ステージ、70…第2カウンターバランス用X軸ステージ、74…第1微動Z軸ステージ、76…第2微動Z軸ステージ、78…第1チルトステージ、80…第2チルトステージ、88…第2加工用光学ユニット、92…第1ウェーハ表面・チャック表面測定用高さ検出器、94…第2ウェーハ表面・チャック表面測定用高さ検出器、W1…第1ウェーハ、W2…第2ウェーハ
Claims (9)
- 少なくとも一方向に延びる加工領域をそれぞれ有する複数のウェーハを第1方向に並べて保持する保持部と、
前記保持部に保持された複数のウェーハにレーザ光を照射するレーザ照射部と、
前記保持部に保持された複数のウェーハと前記レーザ照射部とを前記第1方向及び前記第1方向に直交する第2方向に相対的に移動させる移動機構部と、
前記保持部に保持された複数のウェーハのそれぞれの加工領域を前記第1方向に平行な同一直線上に配置する調整機構部と、
前記保持部に保持された複数のウェーハと前記レーザ照射部とを前記第1方向に相対移動させながら前記同一直線上に配置された複数のウェーハの加工領域に前記レーザ光を照射することで前記加工領域をレーザ加工する制御部と、
を備えたレーザ加工装置。 - 前記調整機構部は、前記第1方向及び前記第2方向から形成される面に対して直交する第3方向を軸心として前記複数のウェーハのそれぞれを回転する回転調整機構部を備えた請求項1に記載のレーザ加工装置。
- 前記調整機構部は、前記複数のウェーハの前記第2方向の位置をそれぞれ調整する第2方向調整機構部を備えた請求項1又は2に記載のレーザ加工装置。
- 前記調整機構部は、前記第1方向及び前記第2方向から形成される面に対する前記複数のウェーハの傾斜をそれぞれ調整するチルト調整機構部を備えた請求項1から3のいずれか1項に記載のレーザ加工装置。
- 前記調整機構部は、前記複数のウェーハの前記レーザ照射部との距離をそれぞれ調整する高さ調整機構部を備えた請求項1から4のいずれか1項に記載のレーザ加工装置。
- 前記複数のウェーハを撮影する撮影部を備え、
前記調整機構部は、前記撮影部の撮影結果に基づいて前記複数のウェーハのそれぞれの加工領域を前記第1方向に平行な同一直線上に配置する請求項1から5のいずれか1項に記載のレーザ加工装置。 - 前記移動機構部は、前記保持部を前記第1方向及び前記第1方向に直交する方向に相対的に移動させ、
前記移動機構部の前記第1方向の移動に対応して前記移動機構部とは逆方向に移動するカウンターバランスを備えた請求項1から6のいずれか1項に記載のレーザ加工装置。 - 前記第2方向の位置が異なる複数の加工領域にそれぞれ前記レーザ光を照射する複数のレーザ照射部を備えた請求項1から7のいずれか1項に記載のレーザ加工装置。
- 少なくとも一方向に延びる加工領域をそれぞれ有する複数のウェーハを保持部において第1方向に並べて保持する保持工程と、
前記保持部に保持された複数のウェーハにレーザ照射部においてレーザ光を照射するレーザ照射工程と、
前記保持部と前記レーザ照射部とを前記第1方向及び前記第1方向に直交する第2方向に相対的に移動させる移動工程と、
前記保持部に保持された複数のウェーハのそれぞれの加工領域を前記第1方向に平行な同一直線上に配置する調整工程と、
前記保持部に保持された複数のウェーハと前記レーザ照射部とを前記第1方向に相対移動させながら前記同一直線上に配置された複数のウェーハの加工領域に前記レーザ光を照射することで前記加工領域をレーザ加工する制御工程と、
を備えたレーザ加工方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015237629 | 2015-12-04 | ||
JP2015237629 | 2015-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017108089A true JP2017108089A (ja) | 2017-06-15 |
Family
ID=59060049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015245046A Pending JP2017108089A (ja) | 2015-12-04 | 2015-12-16 | レーザ加工装置及びレーザ加工方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017108089A (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190028301A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028322A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028321A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028300A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028312A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028302A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028323A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
CN109524353A (zh) * | 2017-09-19 | 2019-03-26 | 株式会社迪思科 | 晶片的加工方法 |
CN109524354A (zh) * | 2017-09-19 | 2019-03-26 | 株式会社迪思科 | 晶片的加工方法 |
CN109524352A (zh) * | 2017-09-19 | 2019-03-26 | 株式会社迪思科 | 晶片的加工方法 |
CN109545743A (zh) * | 2017-09-19 | 2019-03-29 | 株式会社迪思科 | 晶片的加工方法 |
JP2020171961A (ja) * | 2019-04-09 | 2020-10-22 | 株式会社ディスコ | レーザー加工装置 |
JP2021061280A (ja) * | 2019-10-03 | 2021-04-15 | 株式会社東京精密 | 加工装置及び方法 |
-
2015
- 2015-12-16 JP JP2015245046A patent/JP2017108089A/ja active Pending
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI788410B (zh) * | 2017-09-08 | 2023-01-01 | 日商迪思科股份有限公司 | 晶圓之加工方法 |
KR20190028322A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028321A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028300A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028312A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028302A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028323A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
CN109494189A (zh) * | 2017-09-08 | 2019-03-19 | 株式会社迪思科 | 晶片的加工方法 |
KR102631710B1 (ko) * | 2017-09-08 | 2024-01-30 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR102631711B1 (ko) * | 2017-09-08 | 2024-01-30 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR102631706B1 (ko) * | 2017-09-08 | 2024-01-30 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR102627958B1 (ko) * | 2017-09-08 | 2024-01-19 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR102627412B1 (ko) * | 2017-09-08 | 2024-01-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
CN109494189B (zh) * | 2017-09-08 | 2023-10-13 | 株式会社迪思科 | 晶片的加工方法 |
JP2019050248A (ja) * | 2017-09-08 | 2019-03-28 | 株式会社ディスコ | ウェーハの加工方法 |
KR102581128B1 (ko) * | 2017-09-08 | 2023-09-20 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR102581129B1 (ko) * | 2017-09-08 | 2023-09-20 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190028301A (ko) * | 2017-09-08 | 2019-03-18 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR102569620B1 (ko) * | 2017-09-19 | 2023-08-22 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR102569619B1 (ko) * | 2017-09-19 | 2023-08-22 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
CN109524353A (zh) * | 2017-09-19 | 2019-03-26 | 株式会社迪思科 | 晶片的加工方法 |
CN109524354A (zh) * | 2017-09-19 | 2019-03-26 | 株式会社迪思科 | 晶片的加工方法 |
JP7098224B2 (ja) | 2017-09-19 | 2022-07-11 | 株式会社ディスコ | ウェーハの加工方法 |
JP7098222B2 (ja) | 2017-09-19 | 2022-07-11 | 株式会社ディスコ | ウェーハの加工方法 |
JP7098223B2 (ja) | 2017-09-19 | 2022-07-11 | 株式会社ディスコ | ウェーハの加工方法 |
TWI772519B (zh) * | 2017-09-19 | 2022-08-01 | 日商迪思科股份有限公司 | 晶圓加工方法 |
JP2019054185A (ja) * | 2017-09-19 | 2019-04-04 | 株式会社ディスコ | ウェーハの加工方法 |
TWI798260B (zh) * | 2017-09-19 | 2023-04-11 | 日商迪思科股份有限公司 | 晶圓加工方法 |
TWI798259B (zh) * | 2017-09-19 | 2023-04-11 | 日商迪思科股份有限公司 | 晶圓加工方法 |
KR102569621B1 (ko) * | 2017-09-19 | 2023-08-22 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
JP2019054184A (ja) * | 2017-09-19 | 2019-04-04 | 株式会社ディスコ | ウェーハの加工方法 |
CN109524352A (zh) * | 2017-09-19 | 2019-03-26 | 株式会社迪思科 | 晶片的加工方法 |
JP2019054183A (ja) * | 2017-09-19 | 2019-04-04 | 株式会社ディスコ | ウェーハの加工方法 |
CN109545743A (zh) * | 2017-09-19 | 2019-03-29 | 株式会社迪思科 | 晶片的加工方法 |
KR20190032189A (ko) * | 2017-09-19 | 2019-03-27 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190032190A (ko) * | 2017-09-19 | 2019-03-27 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
KR20190032188A (ko) * | 2017-09-19 | 2019-03-27 | 가부시기가이샤 디스코 | 웨이퍼의 가공 방법 |
JP2020171961A (ja) * | 2019-04-09 | 2020-10-22 | 株式会社ディスコ | レーザー加工装置 |
CN111805076A (zh) * | 2019-04-09 | 2020-10-23 | 株式会社迪思科 | 激光加工装置 |
JP7449097B2 (ja) | 2019-04-09 | 2024-03-13 | 株式会社ディスコ | レーザー加工装置 |
CN111805076B (zh) * | 2019-04-09 | 2024-09-13 | 株式会社迪思科 | 激光加工装置 |
JP7417018B2 (ja) | 2019-10-03 | 2024-01-18 | 株式会社東京精密 | 加工装置及び方法 |
JP2021061280A (ja) * | 2019-10-03 | 2021-04-15 | 株式会社東京精密 | 加工装置及び方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017108089A (ja) | レーザ加工装置及びレーザ加工方法 | |
KR102355837B1 (ko) | 레이저 가공 장치 | |
US9851645B2 (en) | Device and method for aligning substrates | |
US8462331B2 (en) | Laser processing method and laser processing apparatus | |
CN108723584B (zh) | 高度位置检测单元的评价用治具和评价方法 | |
TW200936340A (en) | Dicing device and dicing method | |
WO2013038606A1 (ja) | レーザ加工装置およびレーザ加工方法 | |
CN112207463A (zh) | 激光加工装置 | |
US9149886B2 (en) | Modified layer forming method | |
KR102773220B1 (ko) | 레이저 발진기 지지 테이블, 레이저 가공 장치 및 레이저 발진기 지지 테이블의 조정 방법 | |
TWI774950B (zh) | 雷射光線的焦點位置檢測方法 | |
JP7218494B2 (ja) | レーザダイシング装置 | |
JP7292797B2 (ja) | 傾き確認方法 | |
JP7242140B2 (ja) | 収差確認方法 | |
JP2021023978A (ja) | レーザー加工装置の加工性能の確認方法 | |
CN112475597A (zh) | 位置调整方法和位置调整装置 | |
JP7122822B2 (ja) | レーザー加工装置 | |
CN112439988A (zh) | 激光加工装置的光轴确认方法 | |
KR20200144473A (ko) | 반사율 측정 장치 및 레이저 가공 장치 | |
JP7292798B2 (ja) | 傾き確認方法 | |
JP7323304B2 (ja) | 被加工物の分割方法 | |
TW202307948A (zh) | 加工裝置及振動檢測方法 | |
KR20230171386A (ko) | 가공 장치 | |
JP2018117094A (ja) | 加工装置 | |
JP2024006434A (ja) | レーザー加工装置の検査方法及びレーザー加工装置 |