JP2017106113A - Nitrided plate component and method for producing the same - Google Patents
Nitrided plate component and method for producing the same Download PDFInfo
- Publication number
- JP2017106113A JP2017106113A JP2016235824A JP2016235824A JP2017106113A JP 2017106113 A JP2017106113 A JP 2017106113A JP 2016235824 A JP2016235824 A JP 2016235824A JP 2016235824 A JP2016235824 A JP 2016235824A JP 2017106113 A JP2017106113 A JP 2017106113A
- Authority
- JP
- Japan
- Prior art keywords
- less
- face
- plate
- nitrogen
- shear end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、適正な素材の製造方法と成形を行った後にガス軟窒化処理を施すことによって優れた耐久性を有する窒化プレート部品とその製造方法に関し、例えばトルクコンバータ用プレート部品とその製造方法に関する。 The present invention relates to an appropriate material manufacturing method and a nitrided plate part having excellent durability by performing gas soft nitriding after forming and a manufacturing method thereof, for example, a torque converter plate part and a manufacturing method thereof. .
自動車や各機械部品には、表面硬化処理を施した部品が数多く使用されている。表面硬化処理は一般に耐摩耗性や疲労強度改善を目的として施され、代表的な表面硬化処理方法として、浸炭、窒化、高周波焼入れ等が挙げられる。 Many parts subjected to surface hardening treatment are used in automobiles and machine parts. The surface hardening treatment is generally performed for the purpose of improving wear resistance and fatigue strength, and typical surface hardening treatment methods include carburizing, nitriding, induction hardening, and the like.
ガス窒化、ガス軟窒化、塩浴軟窒化などの窒化処理は、他の方法と異なり、熱処理歪みを小さくすることができるという利点を有する。したがって、窒化は動車部材においてはクランクシャフト、トランスミッションギアといった精密加工を施した部品、あるいはプレスにより成形されるディスク、プレートといった、硬化処理後に形状精度を要するものに適した表面硬化処理である。 Unlike other methods, nitriding such as gas nitriding, gas soft nitriding, and salt bath soft nitriding has the advantage that heat treatment strain can be reduced. Therefore, nitriding is a surface hardening process suitable for parts that require precision processing after hardening, such as parts that have been subjected to precision machining, such as crankshafts and transmission gears, or disks and plates formed by pressing.
窒化処理のうち、ガス窒化、塩浴窒化などがあげられるが、その中でも、窒素と共に炭素を含む浴又は雰囲気にて処理されるガス軟窒化処理は、窒化ポテンシャルを高めることで短時間の処理でよく、数時間で表面硬化層深さを高めた部品を得ることができる。このガス軟窒化処理では、表面硬化深さの高い表面硬化層が形成され、部品として優れた耐磨耗性を得ることが出来るほか、表面硬化の効果によって耐久性が大きく向上することが特徴である。以上のことから、ガス軟窒化処理は優れた寸法精度、耐磨耗性および経済性を兼ね備えた技術であり、耐磨耗性向上を目的とした浸炭焼入れ処理をガス軟窒化処理に置換することが求められている。 Among the nitriding treatments, there are gas nitriding, salt bath nitriding, etc. Among them, gas soft nitriding treatment that is performed in a bath or atmosphere containing carbon together with nitrogen can be performed in a short time by increasing the nitriding potential. Well, it is possible to obtain a component having an increased surface hardened layer depth within a few hours. This gas soft nitriding treatment is characterized by the formation of a hardened surface layer with a high depth of hardened surface, which provides excellent wear resistance as a part, and the durability is greatly improved by the effect of surface hardening. is there. From the above, gas soft nitriding is a technology that combines excellent dimensional accuracy, wear resistance, and economy, and carburizing and quenching for the purpose of improving wear resistance is replaced by gas soft nitriding. Is required.
しかしながら、鉄鋼材料を素材として用いたガス軟窒化処理部品については、耐磨耗性に優れた表面化合物層を形成させるためA1点以下温度域における処理を行う必要がある。その結果、浸炭処理や高周波焼入れ処理のようにマルテンサイト変態を生じないため、一般に、部品表層に生ずる圧縮の残留応力が小さく、浸炭処理材と同等以上の耐久性を確保することが困難である。 However, gas soft nitriding parts using steel materials as raw materials need to be processed in a temperature range of A1 point or less in order to form a surface compound layer having excellent wear resistance. As a result, martensite transformation does not occur as in carburizing and induction hardening processes, and in general, the residual stress of compression generated in the surface of the component is small, and it is difficult to ensure durability equal to or higher than that of the carburized material. .
トルクコンバータを構成する動力伝達の役割を担うプレート部品は、タービンに接合されたプレート側面に爪部が配置され、ピストンに配置されたスプリングを介して動力伝達をなす。このとき、爪部はプレート面内方向に荷重が負荷され、プレートと爪部間のコーナー部付近で応力集中し、この部位から疲労き裂が発生しやすい。部品耐久性は動力伝達の際に発生する応力を低減させることで向上する。その手段としてはプレートと爪部間のコーナー部の形状を緩やかにすることや増肉が上げられるが、空間制約や動力伝達効率の観点から好ましくない。 The plate component that plays the role of power transmission that constitutes the torque converter has a claw portion disposed on the side surface of the plate joined to the turbine, and transmits power via a spring disposed on the piston. At this time, the claw portion is loaded in the in-plane direction of the plate, stress concentrates near the corner between the plate and the claw portion, and a fatigue crack is likely to occur from this portion. Component durability is improved by reducing the stress generated during power transmission. As the means, the shape of the corner portion between the plate and the claw portion can be loosened and the thickness can be increased, but it is not preferable from the viewpoint of space restriction and power transmission efficiency.
一方、特許文献1には、ガス軟窒化処理後の疲労強度を向上させる技術が開示されている。特許文献1に開示される技術においては、鋼板の転位密度や金属組織を制御することで疲労特性が向上させている。 On the other hand, Patent Document 1 discloses a technique for improving the fatigue strength after gas soft nitriding. In the technique disclosed in Patent Document 1, fatigue characteristics are improved by controlling the dislocation density and metal structure of the steel sheet.
また、動力伝達の役割を担うトルクコンバータ用プレート部品は、一般的に製造工程においてせん断加工を施された後に、プレス工程を経て所定の部品形状を得る。そのため、最終製品においてもせん断加工時に生成する破断面の性状を受けることとなる。ガス軟窒化されたトルクコンバータ用プレート部品に関わらず、端面は粗度が高く、微視的な応力集中を受け、より高い応力が発生する。 Moreover, the plate part for torque converters that plays the role of power transmission is generally subjected to a shearing process in the manufacturing process and then has a predetermined part shape through a pressing process. For this reason, the final product also receives the properties of the fracture surface generated during shearing. Regardless of the gas soft nitrided torque converter plate component, the end face has a high roughness and receives a microscopic stress concentration, resulting in a higher stress.
例えば、せん断面の特性を向上させる目的で、特許文献2にはプレートディスククラッチ用鋼板が発明されている。特許文献3では素材の転位密度を制御することでせん断端面の耐久性を向上された鋼板素材に関する発明があり、これらはいずれもせん断面から疲労き裂が発生しやすい用途において非常に有効な技術である。 For example, in order to improve the characteristics of the shear surface, Patent Document 2 invents a steel plate for a plate disk clutch. In Patent Document 3, there is an invention related to a steel plate material in which the durability of the shear end face is improved by controlling the dislocation density of the material, both of which are very effective techniques in applications where fatigue cracks are likely to occur from the shear surface. It is.
しかし、特許文献1に開示された技術は平面部の疲労特性を向上させる技術であり、窒化プレート部品へ適用しても、十分な疲労強度を達成させる技術ではない。これは、窒化プレート部品の疲労強度がせん断端面の耐久性によって決まるためである。加えて、特許文献1に記載されるようなTiやNbを含んだ成分を有する鋼板においてフェライト分率を80%以上とすることは、窒化プレート部品の平面部における疲労強度の低下をもたらす原因となる。すなわち、TiやNbを含んだフェライト鋼では降伏伸びが生じる。この降伏伸びは、窒化処理前段階でプレス部品の表面に、しわ模様を形成させる原因である。このしわ模様は応力集中をもたらすためせん断端面以外の表面の疲労強度を低下させる。さらにせん断端面がある場合、せん断端面とプレス部品の表面稜線では微視的に応力集中することで、せん断端面の疲労強度は著しく低下する。 However, the technique disclosed in Patent Document 1 is a technique for improving the fatigue characteristics of the planar portion, and is not a technique for achieving sufficient fatigue strength even when applied to a nitride plate component. This is because the fatigue strength of the nitride plate component is determined by the durability of the shear end face. In addition, in the steel sheet having a component containing Ti or Nb as described in Patent Document 1, setting the ferrite fraction to 80% or more is a cause of reducing the fatigue strength in the plane portion of the nitride plate component. Become. That is, yield elongation occurs in ferritic steel containing Ti and Nb. This yield elongation is a cause of forming a wrinkle pattern on the surface of the pressed part before the nitriding treatment. Since this wrinkle pattern causes stress concentration, the fatigue strength of the surface other than the shear end face is reduced. Further, when there is a shear end face, the fatigue strength of the shear end face is remarkably reduced by concentrating the stress microscopically at the shear end face and the surface ridge line of the pressed part.
また、後述するとおり本発明者の検討において、特許文献3に記載の技術は、浸炭処理材同等以上のガス軟窒化を施したトルクコンバータ部品の耐久性を発現させるために適用できる技術ではないことが分かった。これはガス軟窒化を施したトルクコンバータ部品はせん断端面からではなく、せん断端面近傍の内部からき裂発生するためである。特許文献3では、せん断端面の疲労強度を打抜き穴のある平面曲げ疲労試験で評価を行っている。この打抜き穴のある平面曲げ疲労試験では打抜き穴のせん断端面の縁(すなわち、鋼板表面とせん断端面のなす稜線)が最も高い応力を受ける。ところが、窒化プレート部品はせん断端面の面内が均一に負荷を受けるため、打抜き穴のある平面曲げ疲労試験とは疲労き裂の発生挙動が異なる。そのため、特許文献3に記載される技術では窒化プレート部品の疲労強度を十分に高くすることができない。 In addition, as will be described later, in the study of the present inventor, the technique described in Patent Document 3 is not a technique that can be applied to develop the durability of a torque converter component that has been subjected to gas soft nitriding that is equal to or higher than the carburized material. I understood. This is because the torque converter component subjected to gas soft nitriding does not start from the shear end face but cracks from the inside in the vicinity of the shear end face. In Patent Document 3, the fatigue strength of the shear end face is evaluated by a plane bending fatigue test having a punched hole. In the plane bending fatigue test with the punched hole, the edge of the shear end face of the punched hole (that is, the ridge line formed between the steel plate surface and the shear end face) receives the highest stress. However, since the nitride plate parts are uniformly loaded in the plane of the shear end face, the fatigue crack generation behavior is different from the plane bending fatigue test with punched holes. Therefore, the technique described in Patent Document 3 cannot sufficiently increase the fatigue strength of the nitride plate component.
そこで、本発明の目的は、上記問題に鑑みてなされたものであり、浸炭処理材と同等以上の疲労強度を発現する窒化プレート部品およびその製造方法を提供することにある。 Accordingly, an object of the present invention has been made in view of the above problems, and it is an object of the present invention to provide a nitride plate component that exhibits fatigue strength equal to or higher than that of a carburized material and a method for manufacturing the same.
本発明者らは、せん断端面近傍の部品内部から疲労き裂が発生した位置の特徴をさまざまな因子で整理した。その結果、ガス軟窒化処理を施したトルクコンバータ用プレート部品に代表される窒化プレート部品(以後、ガス軟窒化処理を施したトルクコンバータ用プレート部品のことを単に「窒化プレート部品」または「プレート部品」とも呼ぶ)の疲労強度は、疲労き裂発生位置と良い相関があり、さらに、部品の内部の窒素濃度を所定の値に制御することにより、浸炭処理材同等以上の疲労強度を発現することを見出した。さらに検討を継続した結果、疲労き裂の発生位置は部品のせん断加工ひずみ履歴のよって制御でき、これは素材の化学組成、製造条件を特定の範囲に限定することで、疲労強度が向上することが分かった。これらの検討から、制御すら困難であると思われた、窒化プレート部品の疲労強度を浸炭処理材(以後、「浸炭プレート部品」と呼ぶこともある)の疲労強度と同等以上とすることに成功し、本発明に至った。その具体的手段は以下の通りである。 The present inventors arranged the characteristics of the position where the fatigue crack occurred from the inside of the part near the shear end face by various factors. As a result, nitride plate parts represented by torque converter plate parts subjected to gas soft nitriding (hereinafter referred to simply as “nitride plate parts” or “plate parts” The fatigue strength is also well-correlated with the fatigue crack initiation position. Furthermore, by controlling the nitrogen concentration inside the part to a predetermined value, the fatigue strength equivalent to or higher than that of the carburized material should be exhibited. I found. As a result of further investigations, the fatigue crack initiation position can be controlled by the shearing strain history of the part, which means that the fatigue strength is improved by limiting the chemical composition and manufacturing conditions of the material to a specific range. I understood. From these studies, we succeeded in making the fatigue strength of nitrided plate parts, which seemed to be difficult to control, equal to or greater than the fatigue strength of carburized materials (hereinafter sometimes referred to as “carburized plate parts”). The present invention has been achieved. The specific means is as follows.
(1) せん断端面を有する窒化プレート部品であって、
窒素を除く化学組成が、質量%で、
C:0.025%以上、0.113%以下、
Si:0.10%以下、
Mn:0.71%以上、1.49%以下
P:0.020%以下、
S:0.0200%以下、
Ti:0.020%以上、0.091%以下、
Cr:0.130%以上、0.340%以下、
Al:0.10%以上、0.35%以下、
Nb:0.001%以上0.020%以下、
Mo:0.001%以上0.140%以下、
V:0.001%以上0.100%以下、
B:0.0001%以上0.0030%以下、
Cu:0.00%以上0.13%以下、
Ni:0.00%以上0.08%未満、
W:0.00%以上0.07%以下、
Co:0.00%以上0.07%以下、
Ca:0.0000%以上0.0070%未満、
Mg:0.0000%以上0.0050%未満、
REM:0.0000%以上0.0050%未満、および
残部:Feおよび不純物を含有し、金属組織中におけるフェライト組織の面積率が70%以下である窒化プレート部品において、
当該窒化プレート部品のせん断端面からせん断端面法線方向への距離が0.05mm以上、0.10mm以下の範囲の窒素平均含有量が質量%で0.4000%以上、1.2000%以下、かつ0.015mm以上、0.200mm以下の最低窒素含有量が0.0600%以上であり、
窒化処理による窒素侵入がない領域の窒素含有量として、当該窒化プレート部品のせん断端面からせん断端面法線方向に少なくとも5mm以上離れた部分の板厚方向中心部を原点とし、原点から板厚中心線に沿って1mm離れた位置までの区間で3乃至5箇所で窒素含有量を線上測定し、その窒素含有量の平均値が0.0007%以上、0.0300%以下である、窒化プレート部品。
(1) A nitride plate component having a shear end face,
The chemical composition excluding nitrogen is mass%,
C: 0.025% or more, 0.113% or less,
Si: 0.10% or less,
Mn: 0.71% or more, 1.49% or less P: 0.020% or less,
S: 0.0200% or less,
Ti: 0.020% or more, 0.091% or less,
Cr: 0.130% or more, 0.340% or less,
Al: 0.10% or more, 0.35% or less,
Nb: 0.001% or more and 0.020% or less,
Mo: 0.001% or more and 0.140% or less,
V: 0.001% to 0.100%,
B: 0.0001% or more and 0.0030% or less,
Cu: 0.00% or more and 0.13% or less,
Ni: 0.00% or more and less than 0.08%,
W: 0.00% or more and 0.07% or less,
Co: 0.00% or more and 0.07% or less,
Ca: 0.0000% or more and less than 0.0070%,
Mg: 0.0000% or more and less than 0.0050%,
In the nitride plate component containing REM: 0.0000% or more and less than 0.0050%, and the balance: Fe and impurities, and the area ratio of the ferrite structure in the metal structure is 70% or less,
The nitrogen average content in the range of 0.05 mm or more and 0.10 mm or less in the distance from the shear end face to the shear end face normal direction of the nitride plate part is 0.4000% or more and 1.2000% or less in mass%, and The minimum nitrogen content of 0.015 mm or more and 0.200 mm or less is 0.0600% or more,
Nitrogen content in the region where no nitrogen intrusion occurs due to nitriding treatment, the origin is the thickness direction center of the nitride plate part at least 5 mm away from the shear end face in the normal direction of the shear end face, and the thickness center line from the origin A nitrogen plate component in which the nitrogen content is measured on a line at 3 to 5 points in a section up to a position 1 mm away along the line, and the average value of the nitrogen content is 0.0007% or more and 0.0300% or less.
(2)化学組成が質量%で、
C:0.025%以上、0.113%以下、
Si:0.10%以下、
Mn:0.71%以上、1.49%以下
P:0.020%以下、
S:0.0200%以下、
Ti:0.020%以上、0.091%以下、
Cr:0.130%以上、0.340%以下、
Al:0.10%以上、0.35%以下、
N:0.0007%以上、0.0100%以下、
Nb:0.001%以上0.020%以下、
Mo:0.001%以上0.140%以下、
V:0.001%以上0.100%以下、
B:0.0001%以上0.0030%以下、
Cu:0.00%以上0.13%以下、
Ni:0.00%以上0.08%未満、
W:0.00%以上0.07%以下、
Co:0.00%以上0.07%以下、
Ca:0.0000%以上0.0070%未満、
Mg:0.0000%以上0.0050%未満、
REM:0.0000%以上0.0050%未満、および
残部:Feおよび不純物を含有するスラブを、熱延仕上圧延出側温度850℃以上、960℃未満の範囲で熱間圧延を施して鋼板を得、
その後、熱延仕上圧延終了後から3秒以内に冷却を開始し、さらに熱延仕上圧延終了後から29秒以内に前記鋼板を460℃以上、630℃以下まで冷却し、
前記鋼板を巻き取ることで、金属組織中におけるフェライト組織の面積率が70%以下である鋼板コイルとなし、
さらに酸洗した当該鋼板コイルを用いた窒化プレート部品を製造する場合であって、当該鋼板コイルを巻き開いた後に、前記鋼板に塑性ひずみ量にて0.03%以上、3.00%以下範囲の曲げ・曲げ戻しを与え、
再び前記鋼板を巻き直すことなく、せん断加工とプレス成形を施してプレート部品形状とし、
アンモニアガスが30%超の体積構成比の雰囲気で、500℃以上、620℃未満の温度に調整された密閉炉内にて、60分以上の時間、前記鋼板を滞在させて窒化させる、窒化プレート部品の製造方法。
(2) The chemical composition is mass%,
C: 0.025% or more, 0.113% or less,
Si: 0.10% or less,
Mn: 0.71% or more, 1.49% or less P: 0.020% or less,
S: 0.0200% or less,
Ti: 0.020% or more, 0.091% or less,
Cr: 0.130% or more, 0.340% or less,
Al: 0.10% or more, 0.35% or less,
N: 0.0007% or more, 0.0100% or less,
Nb: 0.001% or more and 0.020% or less,
Mo: 0.001% or more and 0.140% or less,
V: 0.001% to 0.100%,
B: 0.0001% or more and 0.0030% or less,
Cu: 0.00% or more and 0.13% or less,
Ni: 0.00% or more and less than 0.08%,
W: 0.00% or more and 0.07% or less,
Co: 0.00% or more and 0.07% or less,
Ca: 0.0000% or more and less than 0.0070%,
Mg: 0.0000% or more and less than 0.0050%,
REM: 0.0000% or more and less than 0.0050%, and balance: slab containing Fe and impurities is hot rolled in a range of hot rolling finish rolling outlet temperature of 850 ° C. or more and less than 960 ° C. Get
Thereafter, cooling is started within 3 seconds after the hot rolling finish rolling is completed, and further, the steel sheet is cooled to 460 ° C. or more and 630 ° C. or less within 29 seconds after the hot rolling finish rolling is finished,
By winding up the steel sheet, the area ratio of the ferrite structure in the metal structure is a steel sheet coil of 70% or less,
Furthermore, in the case of manufacturing a nitride plate part using the pickled steel plate coil, after unrolling the steel plate coil, the steel plate has a plastic strain amount of 0.03% or more and 3.00% or less. Of bending and unbending,
Without re-rolling the steel plate again, it is subjected to shearing and press forming into a plate part shape,
A nitride plate in which the steel sheet is allowed to stay in a closed furnace adjusted to a temperature of 500 ° C. or higher and lower than 620 ° C. for 60 minutes or longer in an atmosphere having a volume composition ratio of ammonia gas of more than 30% and nitrided. A manufacturing method for parts.
本発明によれば、従来制御すら困難とされた、窒化プレート部品の疲労き裂の発生位置を制御することで、浸炭処理材同等以上の疲労強度を発現することが可能となる。これにより部品性能の経済性を両立させた部品製造が可能となるなど、産業上の貢献が顕著でなる。 According to the present invention, it is possible to develop a fatigue strength equal to or higher than that of the carburized material by controlling the occurrence position of the fatigue crack of the nitride plate part, which has been difficult to control conventionally. This makes remarkable industrial contributions, such as the ability to manufacture parts that balance the economics of part performance.
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。 Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
トルクコンバータ用プレート部品に代表される窒化プレート部品は、回転軸に対して垂直に配置される結果、プレートのせん断面の面外に応力を受けるが、せん断端面でなく、せん断端面近傍の内部から疲労き裂が発生する。本発明は、この疲労き裂の発生位置に着目し、疲労強度との関係を調査し、窒化部品の窒素含有量、部品の平均化学組成を限定しており、以下では、その限定理由を説明する。 Nitride plate parts represented by torque converter plate parts are arranged perpendicular to the rotation axis, and as a result, are subjected to stress outside the shear plane of the plate, but not from the shear end face but from inside the shear end face. A fatigue crack occurs. The present invention focuses on the occurrence position of this fatigue crack, investigates the relationship with fatigue strength, limits the nitrogen content of nitrided parts, and the average chemical composition of the parts. The reason for the limitation will be described below. To do.
1.1 窒化部分の窒素含有量
まず、窒素含有量を着目するに至った経緯と、窒素含有量の限定理由について説明する。ここで本発明における窒素含有量とは、EPMA(Electron Probe Micro Analyser)装置で測定されたものであり、Wフィラメントより照射された電子線の反射したKα線から同定した値を採用している。なお、窒素の測定方法は他にガス分析などが挙げられるが、空間分解能に乏しいため、測定方法として好ましくない。
1.1 Nitrogen Content of Nitrided Part First, the background of focusing on the nitrogen content and the reason for limiting the nitrogen content will be described. Here, the nitrogen content in the present invention is measured with an EPMA (Electron Probe Micro Analyzer) apparatus, and a value identified from a Kα ray reflected from an electron beam irradiated from a W filament is adopted. In addition, although the gas measurement etc. are mentioned as another measuring method of nitrogen, since spatial resolution is scarce, it is not preferable as a measuring method.
また、窒素は、表面の油等の汚れが電子線により分解することで発生するため、被測定品の表面仕上げが重要である。表面仕上げの方法としては、測定面を切断し、エメリー紙およびアルミナ等の微粒子で鏡面仕上げを行った後、ナイタール等による腐食を行わず、アセトンやエタノール等の液体中で超音波洗浄をし、ブロワー等で乾燥させた後、少なくとも24時間以上はシリカゲルを含んだ密閉容器で乾燥させた後に測定を行う必要がある。なお、密閉容器はロータリーポンプ等につなぎこみ、10−3Torr程度まで真空度を高めることが好ましい。 Further, since nitrogen is generated when the surface of the surface such as oil is decomposed by an electron beam, the surface finish of the measurement object is important. As the surface finishing method, cut the measurement surface, mirror finish with fine particles such as emery paper and alumina, and then perform ultrasonic cleaning in a liquid such as acetone or ethanol without corrosion by nital etc. After drying with a blower or the like, it is necessary to perform measurement after drying in a closed container containing silica gel for at least 24 hours. The sealed container is preferably connected to a rotary pump or the like, and the degree of vacuum is preferably increased to about 10 −3 Torr.
ガス軟窒化処理は後述する雰囲気に調整された密閉炉内で処理を行うため、炉内雰囲気と接触した面は均一に窒化がなされる。そのため、窒素含有量の測定箇所は窒化プレート部品の任意の箇所のせん断端面を選定し、せん断端面からプレート部品内部に向けて垂直な方向に切断を行ってよく、その切断面を上記した方法で表面仕上げを行い、窒素含有量を測定すればよい。ただし、せん断端面以外の表面も窒化がされているため、その影響を受けない位置として、せん断端面方向の測定位置は板厚中心から±0.1mm以内の範囲の線上に沿って、0.001mm以上、0.005mm以下の間隔で窒素含有量を測定すればよい。 Since the gas soft nitriding is performed in a closed furnace adjusted to an atmosphere described later, the surface in contact with the furnace atmosphere is uniformly nitrided. Therefore, the measurement location of nitrogen content may be selected from the shear end face of any part of the nitriding plate part and cut in the vertical direction from the shear end face to the inside of the plate part. Surface finishing may be performed and the nitrogen content may be measured. However, since the surface other than the shear end face is also nitrided, the measurement position in the direction of the shear end face is 0.001 mm along a line within a range of ± 0.1 mm from the center of the plate thickness as a position not affected by this. As described above, the nitrogen content may be measured at intervals of 0.005 mm or less.
ここで、窒素含有量は部品の任意のせん断端面を選定してよいが、測定ばらつきを考慮し、少なくとも、3箇所以上の測定を行い、最大で5箇所の測定を行えば十分である。なお、事前に疲労試験を行い、疲労き裂が発生する位置を測定箇所として含ませることが好ましい。 Here, as for the nitrogen content, an arbitrary shear end face of the part may be selected, but it is sufficient to perform measurement at least at three locations and measure at most five locations in consideration of measurement variation. In addition, it is preferable to perform a fatigue test in advance and include a position where a fatigue crack occurs as a measurement location.
上記した測定方法で得られた窒素含有量の線上データから、後述する理由で、せん断端面からせん断端面法線方向への距離が0.05mm以上、0.10mm以下の範囲で、区間積分を行って得られた窒素含有量の総量を、その区間の測定点数で除した値を、その部品箇所の窒素平均含有量とし、窒化プレート部品の窒素平均含有量と定義する。 Based on the nitrogen content line data obtained by the measurement method described above, interval integration was performed in the range from 0.05 mm to 0.10 mm in the distance from the shear end surface to the normal direction of the shear end surface for reasons described later. A value obtained by dividing the total amount of nitrogen content obtained by dividing by the number of measurement points in the section is defined as the nitrogen average content of the nitride plate component, which is defined as the nitrogen average content of the component portion.
せん断端面から窒化プレート部品内部に向けて、せん断端面法線方向への距離が、0.015mm以上、0.200mm以下の最低窒素含有量とは、次のように測定された値と定義する。すなわち、せん断端面以外の表面からの窒素侵入の影響を受けない位置として、板厚中心から±0.1mm以内の範囲のせん断端面を原点として、せん断端面法線方向にプレート部品内部側に、0.001mm以上、0.005mm以下の間隔で測定された窒素含有量の線上データにおいて、ある測定点とその両隣接点を含んだ3点の平均値を求める。その平均値が0.015mm以上、0.200mm以下の範囲で最も低い値のことを最低窒素含有量と呼ぶ。 The minimum nitrogen content in which the distance from the shear end face to the inside of the nitride plate part in the normal direction to the shear end face is 0.015 mm or more and 0.200 mm or less is defined as a value measured as follows. That is, as a position that is not affected by nitrogen intrusion from a surface other than the shear end face, the origin is a shear end face within a range of ± 0.1 mm from the center of the plate thickness, and the inside of the plate part in the normal direction of the shear end face is 0. In the linear data of nitrogen content measured at intervals of 0.001 mm or more and 0.005 mm or less, an average value of three points including a certain measurement point and its adjacent points is obtained. The lowest value in the range where the average value is 0.015 mm or more and 0.200 mm or less is called the minimum nitrogen content.
ここで、この最低窒素含有量を測定する場合、せん断端面からプレート部品内部に向けて、せん断端面法線方向への距離が0.015mm未満では窒化化合物層が形成した領域であるため測定の範囲から除外する必要がある。この最低窒素含有量を測定するためのサンプルは、窒素含有量は部品の任意のせん断端面を選定してよい。また、最低窒素含有量を測定するためのサンプルは、せん断端面からせん断端面法線方向への距離が0.05mm以上、0.10mm以下の範囲の窒素平均含有量を測定したものと同じものを用いてもよい。しかし、測定ばらつきを考慮し、少なくとも、3箇所以上の測定を行う必要があり、最大で5箇所の測定を行えば十分である。本発明では、以上の方法で測定された各箇所の最低窒素含有量の平均値を、せん断端面からプレート部品内部に向けて、せん断端面法線方向への距離が、0.015mm以上、0.200mm以下の最低窒素含有量と定義する。 Here, when measuring the minimum nitrogen content, the range of the measurement is because the nitride compound layer is formed when the distance from the shear end face to the inside of the plate part in the normal direction of the shear end face is less than 0.015 mm. It is necessary to exclude from. The sample for measuring the minimum nitrogen content may select an arbitrary shear end face of the component for the nitrogen content. In addition, the sample for measuring the minimum nitrogen content is the same as that measured for the average nitrogen content in the range of 0.05 mm or more and 0.10 mm or less in the distance from the shear end surface to the normal direction of the shear end surface. It may be used. However, in consideration of measurement variation, it is necessary to perform measurement at least at three locations, and it is sufficient to perform measurement at five locations at the maximum. In the present invention, the average value of the minimum nitrogen content at each location measured by the above method is directed from the shear end face toward the inside of the plate part, and the distance in the normal direction of the shear end face is 0.015 mm or more, 0. It is defined as the minimum nitrogen content of 200 mm or less.
また、せん断端面から少なくとも5mm以上離れた部分の板厚方向中心部の窒素含有量は、ガス軟窒化処理による窒素侵入がない領域として次のような測定方法で求めればよい。すなわち、窒化プレート部品の任意のせん断端面において、せん断端面から法線方向に少なくとも5mm以上離れた部分の板厚方向中心部を原点とし、原点から板厚中心線に沿って1mm離れた位置までの区間を0.001mm以上、0.005mm以下などの任意の間隔で窒素含有量を線上測定し、その区間の窒素含有量の平均値を求める。その平均値の測定を、窒化プレート部品の任意のせん断端面3箇所について実施し、その平均値を求め、この平均値をせん断端面から少なくとも5mm以上離れた位置板厚方向中心部の窒素含有量とする。なお、測定箇所は3箇所以上測定しても良いが、最大でも5箇所を測定すれば十分に、測定ばらつきを無視できる精度となる。 Further, the nitrogen content in the central part in the thickness direction at least 5 mm away from the shear end face may be obtained by the following measurement method as a region where no nitrogen intrusion is caused by gas soft nitriding. That is, in an arbitrary shear end face of the nitride plate part, the center in the thickness direction of the portion at least 5 mm or more away from the shear end face in the normal direction is the origin, and from the origin to a position 1 mm away along the thickness center line. The nitrogen content is measured on a line at an arbitrary interval such as 0.001 mm or more and 0.005 mm or less, and the average value of the nitrogen content in the section is obtained. The average value is measured at three arbitrary shear end faces of the nitride plate part, the average value is obtained, and the average value is determined by the nitrogen content at the center in the plate thickness direction at least 5 mm away from the shear end face. To do. Note that three or more measurement points may be measured. However, if a maximum of five points are measured, the measurement variation can be sufficiently ignored.
ガス軟窒化による窒素の最大侵入深さは最大でも0.6mmであるため、板厚が1.2mm未満の窒化プレート部品では、表裏面から侵入した窒素の影響が生まれ得る。板厚中心部では鋼板製造段階での偏析が多く、窒化プレート部品のせん断端面を面外変形させ、脆性的に破壊させたときのき裂の起点になる。そのため、せん断端面から少なくとも5mm以上離れた部分の板厚方向中心部の窒素含有量は、本発明の目的とする疲労には影響を及ぼさないが、窒化プレート部品の基本的要件として、後述のごとく範囲を規定した。なお、本発明は上記の厚さに限定されるものではなく、板厚が1.2mm以下であっても、せん断面から少なくとも5mm以上離れた部分の板厚方向中心部の窒素含有量が質量にて、0.0007%以上、0.0300%以下であれば、窒化の影響は小さいものとして、本発明の「窒化処理による窒素侵入がない領域の窒素含有量」に該当するものとする。また後述のように、鋼材の成分の取鍋分析値と前記EPMA分析値がほぼ同じ値であることから、鋼材の成分の取鍋分析値を用いてもよい。またJIS G1258の発光分光文分析方法を用いることも可能である。尚、窒化プレート部品の板厚を特に限定する必要はないが、板厚範囲を1.0mm以上8.0mm以下としてもよい。必要に応じて、板厚の下限を1.2mm又は1.5mmとしてもよい。板厚の上限を6.0mm、5.0mm又は3.8mmとしてもよい。 Since the maximum penetration depth of nitrogen by gas soft nitriding is 0.6 mm at the maximum, in the nitride plate component having a plate thickness of less than 1.2 mm, the influence of nitrogen that has entered from the front and back surfaces can be produced. In the central part of the plate thickness, there is a large amount of segregation during the steel plate production stage, which becomes the starting point of cracks when the shear end face of the nitride plate part is deformed out of plane and broken brittlely. Therefore, the nitrogen content at the central portion in the thickness direction at least 5 mm away from the shear end face does not affect the fatigue intended by the present invention, but as a basic requirement of the nitride plate component, as described later. A range was defined. Note that the present invention is not limited to the above thickness, and even if the plate thickness is 1.2 mm or less, the nitrogen content in the central portion in the plate thickness direction at least 5 mm or more away from the shear plane is mass. In the case of 0.0007% or more and 0.0300% or less, the influence of nitriding is considered to be small, and it corresponds to the “nitrogen content in a region where nitrogen does not enter due to nitriding”. Further, as described later, since the ladle analysis value of the steel material component and the EPMA analysis value are substantially the same value, the ladle analysis value of the steel material component may be used. It is also possible to use the emission spectral statement analysis method of JIS G1258. The plate thickness of the nitride plate component is not particularly limited, but the plate thickness range may be 1.0 mm or greater and 8.0 mm or less. If necessary, the lower limit of the plate thickness may be 1.2 mm or 1.5 mm. The upper limit of the plate thickness may be 6.0 mm, 5.0 mm, or 3.8 mm.
なお、ガス軟窒化処理は炉体内で、複数の同一部品を処理することが多く、炉内でのガス滞留などの雰囲気の影響を受けることが想定される場合は、炉内に最外位置に配置された部品と、中央に配置された部品からそれぞれ1つ以上を抽出し、上記した窒化プレート部品の窒素含有量を測定し、抽出した全ての窒化プレート部品で目的の値に達するか否かを判定すればよい。本発明において、単に窒素平均含有量という言葉を使った場合は、上記した窒化プレート部品の窒素平均含有量のことを指す。 Note that gas soft nitriding often involves processing a plurality of identical parts in the furnace, and if it is assumed that the furnace is affected by the atmosphere such as gas stagnation in the furnace, it should be placed in the outermost position in the furnace. Extract one or more from each of the arranged parts and the part arranged in the center, measure the nitrogen content of the above nitrided plate parts, and whether all of the extracted nitrided plate parts reach the target value Can be determined. In the present invention, when the term “average nitrogen content” is simply used, it means the average nitrogen content of the above-mentioned nitride plate component.
ここで参考として、R形状を持った部品の測定部位の例を図1、図2に示した。図1は、R形状を有する窒化プレート部品のR部の拡大写真、図2は、図1に記載される切断部分の切断面の拡大写真である。図1のごとく、R部のせん断端面その稜線の法線方向に切断を行い、その断面(図2に示す切断面)の板厚中心±0.1mmの範囲で、せん断端面を0点としてプレート内部方向に深さで0.05mm以上、0.10mm以下の範囲で窒素平均含有量を測定し、0.015mm以上、0.200mm以下の範囲の最低窒素含有量を測定すればよい。なお、図2の断面写真は、見易いようにナイタール腐食を行っているが、EPMAでの測定の際は、前述の通り腐食を行っていけない。また、図2中、全表層で観察される白色の部位は、窒化化合物層であり、測定範囲から除外される。 For reference, examples of measurement parts of R-shaped parts are shown in FIGS. FIG. 1 is an enlarged photograph of an R portion of a nitride plate part having an R shape, and FIG. 2 is an enlarged photograph of a cut surface of the cut portion described in FIG. As shown in FIG. 1, the shear end face of the R part is cut in the normal direction of its ridgeline, and the plate is set with the shear end face as 0 point in the range of the thickness center of the cross section (cut face shown in FIG. 2) ± 0.1 mm. The average nitrogen content may be measured in the range of 0.05 mm or more and 0.10 mm or less in depth in the internal direction, and the minimum nitrogen content in the range of 0.015 mm or more and 0.200 mm or less may be measured. In addition, although the cross-sectional photograph of FIG. 2 performs nital corrosion for easy viewing, it is not possible to perform corrosion as described above when measuring with EPMA. Moreover, the white site | part observed in all the surface layers in FIG. 2 is a nitride compound layer, and is excluded from a measurement range.
疲労強度は以下の通りの方法で評価を実施し、合否の判定を行った。すなわち、例えばトルクコンバータ等に用いるプレート部品は、動力伝達の役割を果たす際に、回転軸に垂直に配置されるため、プレート面内にトルクがかけられる。このときにプレートせん断端面に最も高い応力が負荷される。このような、負荷状態を再現することを目的として、図3に示した試験片を用いて、面外変形を模擬した疲労試験を実施した。プレス工程での板厚クリアランス管理値は一般的に15%であるが、金型の損耗や、軸ズレ等の影響で劣位なせん断端面性状となることを想定して、板厚クリアランスを20%としてせん断加工を施したものである。ここで、せん断加工におけるクリアランスとは、せん断加工時のポンチまたは刃とダイスとの隙間のことを指す。また、板厚クリアランスとは、このクリアランスを板厚で除した値のことである。 Fatigue strength was evaluated by the following method to determine pass / fail. That is, for example, when a plate component used in a torque converter or the like plays a role of power transmission, torque is applied to the plate surface because it is arranged perpendicular to the rotation axis. At this time, the highest stress is applied to the plate shear end face. For the purpose of reproducing such a load state, a fatigue test simulating out-of-plane deformation was performed using the test piece shown in FIG. The plate thickness clearance control value in the pressing process is generally 15%, but the plate thickness clearance is 20% on the assumption that inferior shear end face properties will be caused by die wear and shaft misalignment. As shown in FIG. Here, the clearance in the shearing process refers to a gap between the punch or blade and the die during the shearing process. Further, the plate thickness clearance is a value obtained by dividing the clearance by the plate thickness.
また、疲労試験は、周波数25Hz、応力比―1とし繰返し負荷を与えることにより行い、SN曲線から107回の応力振幅を求めた。そして、一般的には107回の疲労振幅を疲労限度と言う場合もあるが、本発明においては疲労強度と言うこととした。応力値は、図3中の「ひずみゲージ付与」の位置に、R部の接線に平行になるようにひずみゲージを添付し、測定された値を採用した。また、せん断端面から疲労き裂発生位置まで距離は、疲労強度よりも20MPa高い応力振幅を負荷し、疲労破断させることで得られた疲労破面を走査電子顕微鏡(SEM)により観察することで測定された値であり、疲労き裂発生位置からせん断端面に対する法線方向の距離のことを指す。 The fatigue test was performed by applying a repeated load with a frequency of 25 Hz and a stress ratio of −1, and the stress amplitude of 10 7 times was obtained from the SN curve. In general, the fatigue amplitude of 10 7 times may be referred to as a fatigue limit, but in the present invention, it is referred to as fatigue strength. As the stress value, a value obtained by attaching a strain gauge so as to be parallel to the tangent to the R portion at the position of “applying a strain gauge” in FIG. 3 was adopted. The distance from the shear end face to the fatigue crack initiation position was measured by applying a stress amplitude 20 MPa higher than the fatigue strength and observing the fatigue fracture surface obtained by fatigue fracture with a scanning electron microscope (SEM). This is the value in the normal direction from the fatigue crack initiation position to the shear end face.
なお、疲労き裂の発生位置を測定するための疲労破壊試験条件は、破断繰返し数が105回以上となる応力振幅であれば、どのような応力振幅値を選定してもよい。破断繰返し数が105回以上となる応力振幅では、降伏応力以下であるため、疲労試験中に被試験体の形状が変化せず、応力振幅によって疲労き裂の発生位置が変わらないためである。 Incidentally, the fatigue fracture test conditions for measuring the occurrence position of the fatigue crack, if the stress amplitude number of cycles to failure is greater than or equal to 10 5 times, may be selected what stress amplitude value. This is because the stress amplitude at which the number of repetitions of fracture is 10 5 times or more is less than the yield stress, so that the shape of the DUT does not change during the fatigue test, and the fatigue crack generation position does not change depending on the stress amplitude. .
本発明の目的とするところは、浸炭処理材同等以上の疲労強度を発現させることである。そこでまず、目標となる浸炭処理プレート基準部品の疲労強度を求める。表1中のBaseと記載した成分を用いて、表2に記載した製造方法で作成したプレス品を、カーボンポテンシャルで0.8〜0.9質量%の範囲に雰囲気を調整し、910℃の温度で270分の保持をした後、油冷却を施すことで浸炭プレート基準部品を製造したところ、疲労強度が517MPaであった。以後、この値を閾値に用いて疲労強度の合否を決定した。 The object of the present invention is to develop fatigue strength equal to or higher than that of the carburized material. Therefore, first, the fatigue strength of the target carburized plate reference part is obtained. Using the component described as Base in Table 1, the atmosphere was adjusted to a range of 0.8 to 0.9% by mass with a carbon potential of a press product created by the manufacturing method described in Table 2, and 910 ° C. After maintaining the temperature for 270 minutes, the carburized plate reference part was manufactured by oil cooling, and the fatigue strength was 517 MPa. Thereafter, the pass / fail of fatigue strength was determined using this value as a threshold value.
さらに、表3の試験番号1〜22は、表1のTry1〜11の成分(鋼材の成分の取鍋分析値)を用いて表2に記載の製造方法で試作した窒化プレート部品であり、これらの疲労試験結果を前記浸炭プレート基準部品の疲労強度と比較していく。なお、試験番号12、13、17、21を除いて、各鋼板コイルを開いた際に、巾方向に波打った形状の箇所だったため、せん断加工を実施するのが困難であった。そのため、コイルを巻き開いた後、所定の塑性ひずみ量となる曲げ・曲げ戻しの矯正加工を施し、窒化プレート部品を試作した。この工程は、後述の様に、せん断端面からせん断端面法線方向への距離が0.015mm以上、0.200mm以下の範囲の最低窒素含有量であるN**、せん断端面からせん断端面法線方向への距離が0.05mm以上、0.10mm以下の範囲の窒素平均含有量であるN*と密接な関係を持つ。以下では、まずN*とN**を要件として扱うに至った経緯と限定理由について述べて、その後、N*とN**と製造方法との関係を述べる。 Furthermore, test numbers 1 to 22 in Table 3 are nitride plate parts that were prototyped by the manufacturing method described in Table 2 using the components of Try 1 to 11 in Table 1 (the ladle analysis values of the components of the steel material). The fatigue test results are compared with the fatigue strength of the carburized plate reference part. Except for Test Nos. 12, 13, 17, and 21, when each steel sheet coil was opened, it was a portion with a wave shape in the width direction, and thus it was difficult to perform shearing. Therefore, after the coil was unwound, a bending / unbending correction process to obtain a predetermined plastic strain amount was performed, and a nitride plate part was prototyped. In this step, as described later, the distance from the shear end face to the shear end face normal direction is N ** which is the minimum nitrogen content in the range of 0.015 mm or more and 0.200 mm or less, and the shear end face to the shear end face normal. It has a close relationship with N * , which is the average nitrogen content in the range of 0.05 mm or more and 0.10 mm or less in the distance in the direction. In the following, the background and reason for limiting N * and N ** as requirements will be described first, and then the relationship between N * and N ** and the manufacturing method will be described.
なお、表1中の「N」含有量は、鋳片またはスラブに含まれる量を示す。また、各例において、残部は鉄および未分析の不純物である。また、表2、表3中、「FT」は熱延仕上圧延出側温度(℃)を、「t1」は熱延仕上圧延終了後から冷却開始までの時間(秒)を、「CT」は冷却停止温度(℃)を、「t2」は熱延仕上圧延終了から冷却終了(冷却停止)に至るまでの時間(秒)を、「d」は疲労き裂発生深さ(mm)を、それぞれ示す。 In addition, "N" content in Table 1 shows the quantity contained in a slab or a slab. In each example, the balance is iron and unanalyzed impurities. In Tables 2 and 3, “FT” is the hot rolling finish rolling temperature (° C.), “t1” is the time (seconds) from the end of hot rolling finish to the start of cooling, and “CT” is The cooling stop temperature (° C.), “t2” is the time (seconds) from the end of hot rolling finish rolling to the end of cooling (cooling stop), “d” is the fatigue crack initiation depth (mm), Show.
発明者の検討の結果、せん断端面から疲労き裂発生位置までの距離(以後、単に疲労き裂発生位置と呼ぶ)が0.200mm以上の場合に、窒化プレート部品の疲労強度が浸炭プレート部品を超える場合が認められた。これは疲労き裂発生位置が深くなることで、負荷応力が低減することで、疲労強度が満足したものと考えられる。窒化プレート部品においては窒素が転位に固着することで、疲労き裂発生限界応力を高める。したがってき裂発生位置を0.200mm超とするために、0.200mm以下での窒素量を調整することで解決できないか検討した。 As a result of the inventor's investigation, when the distance from the shear end surface to the fatigue crack generation position (hereinafter simply referred to as the fatigue crack generation position) is 0.200 mm or more, the fatigue strength of the nitride plate part is less than that of the carburized plate part. Some cases were exceeded. This is considered that the fatigue strength was satisfied because the fatigue crack generation position was deepened and the load stress was reduced. In the nitride plate parts, nitrogen is fixed to dislocations, thereby increasing the fatigue crack initiation limit stress. Therefore, in order to make the crack generation position more than 0.200 mm, it was examined whether it could be solved by adjusting the nitrogen amount at 0.200 mm or less.
せん断端面からせん断端面法線方向への距離が0.200mm以下の範囲の窒素含有量の最低値N**と疲労き裂発生位置との関係を図4に示す。図4の×のプロットは疲労強度が浸炭処理プレート基準部品未満であったもの、○は浸炭処理プレート基準部品以上であったものを表す。図4によれば、疲労き裂発生位置はN**によって一義的に決まり、その値を質量で0.0600%以上とすれば、疲労き裂発生位置が0.200mm以上へ制御できることが判明、N**を質量で0.0600%以上とすることは疲労強度を満たすための要件のひとつであることが分かった。 FIG. 4 shows the relationship between the minimum value N ** of the nitrogen content and the fatigue crack initiation position when the distance from the shear end surface to the normal direction of the shear end surface is 0.200 mm or less. 4 indicates that the fatigue strength was less than the carburized plate reference part, and ○ indicates that the carburized plate reference part was equal to or greater. According to FIG. 4, the fatigue crack generation position is uniquely determined by N ** , and it is found that if the value is 0.0600% or more by mass, the fatigue crack generation position can be controlled to 0.200 mm or more. It has been found that setting N ** to 0.0600% or more by mass is one of the requirements for satisfying the fatigue strength.
さらに疲労強度を満足するための要件を検討した。窒化プレート部品では、せん断端面近傍の内部から疲労き裂が発生する。内部で疲労き裂が発生する場合は、発生してから自由表面に伝播して初めて疲労き裂が発生したことを確認できる。そのため、疲労き裂の伝播抵抗も、疲労強度に影響を及ぼしている可能性がある。そこで発明者は、せん断端面内のごく近傍、即ちせん断端面からせん断端面法線方向への距離が0.05mm以上、0.10mm以下の範囲の窒素平均含有量であるN*をある限定範囲に制御することで、疲労強度を改善できるのではないか、と検討した。 Furthermore, the requirements for satisfying fatigue strength were investigated. In the nitride plate part, a fatigue crack is generated from the inside in the vicinity of the shear end face. When a fatigue crack occurs inside, it can be confirmed that the fatigue crack has only occurred after it has propagated to the free surface. Therefore, the propagation resistance of fatigue cracks may also affect the fatigue strength. Therefore, the inventor made N *, which is an average nitrogen content in the vicinity of the shear end face, that is, the distance from the shear end face to the normal direction of the shear end face in the range of 0.05 mm or more and 0.10 mm or less within a certain limited range. We examined whether the fatigue strength could be improved by controlling.
以下では、N*の検討結果を述べる。 Below, the examination result of N * is described.
N**を満たしながらも疲労強度に差が生じたものについて、せん断端面から疲労き裂発生位置までの範囲で疲労破面のSEM観察を実施した。SEM観察には、疲労強度を満足した中で最も疲労強度が高い試験番号6と、N**を満足したが、わずかに疲労強度を満たさなかった試験番号20、および疲労強度が530MPaの試験番号4の窒化プレート部品を選定した。なお、疲労破断試験はそれぞれ、次の条件で行った。試験番号6で試作した窒化プレート部品については、応力振幅σaで583MPaを負荷し、1.73×106回で疲労破断させた。また、試験番号20で試作した窒化プレート部品については、応力振幅σaで534MPaを負荷し、2.65×105回で疲労破断させたものであり、試験番号4で試作した窒化プレート部品については、応力振幅σaで552MPaを負荷し、8.13×105回で疲労破断させたものである。 SEM observation of the fatigue fracture surface was performed in the range from the shear end face to the fatigue crack initiation position for those in which a difference in fatigue strength occurred while satisfying N ** . For SEM observation, the test number 6 with the highest fatigue strength among the satisfied fatigue strengths, the test number 20 that satisfied N ** but did not satisfy the fatigue strength slightly, and the test number with a fatigue strength of 530 MPa Four nitride plate parts were selected. Each fatigue fracture test was performed under the following conditions. The nitride plate part produced as a trial with test number 6 was loaded with 583 MPa at a stress amplitude σa and fatigue-ruptured at 1.73 × 10 6 times. Further, the nitride plate part prototyped with test number 20 was subjected to fatigue fracture at 2.65 × 10 5 times with a stress amplitude σa of 534 MPa, and the nitride plate part prototyped with test number 4 , 552 MPa was applied at a stress amplitude σa, and fatigue fracture was caused by 8.13 × 10 5 times.
観察結果を図5に示した。疲労き裂発生位置では、いずれもストライエーションを持った典型的な疲労破面が観察された。ところが、せん断端面から0.05mm未満では脆性的な破面形態を呈しており、いずれの試験体でも同様である。この脆性的な疲労破面は、試験番号6ではせん断端面から0.05mm未満範囲でのみ確認され、疲労強度が僅かに満足しなかった試験番号20では、0.10mmをわずかに超えた範囲まで及んでいる。また、疲労強度が試験番号6と20の中間にあたる試験番号4では、おおよそ0.075mmの位置から脆性的な疲労破面が観察された。この観察結果から、脆性的な疲労き裂伝播によって、疲労強度が決められており、特に、脆性的な疲労き裂伝播領域が0.10mmを超えない範囲に抑制することで、疲労強度を満足する可能性があると考えられる。なお、0.05mm未満の範囲では、疲労強度を満足しようがしまいが、脆性的な疲労破面が認められるため、疲労強度を満足する因子とはなり得ない。 The observation results are shown in FIG. At fatigue crack initiation positions, typical fatigue fracture surfaces with striations were observed. However, if it is less than 0.05 mm from the shear end face, it exhibits a brittle fracture surface, and the same applies to any specimen. This brittle fatigue fracture surface was confirmed only in a range of less than 0.05 mm from the shear end face in Test No. 6, and in Test No. 20 where the fatigue strength was slightly unsatisfactory, it was slightly over 0.10 mm. It extends. Further, in test number 4 where the fatigue strength was between test numbers 6 and 20, a brittle fatigue fracture surface was observed from a position of approximately 0.075 mm. From this observation result, the fatigue strength is determined by brittle fatigue crack propagation. In particular, the fatigue strength is satisfied by suppressing the brittle fatigue crack propagation region to a range not exceeding 0.10 mm. It is thought that there is a possibility. In the range of less than 0.05 mm, the fatigue strength may be satisfied, but since a brittle fatigue fracture surface is observed, it cannot be a factor satisfying the fatigue strength.
疲労き裂伝播過程においても窒素は抵抗力の役割をなすと考えられる。そこで、この領域、即ち0.05mm以上、0.10mm以下の平均的な疲労き裂伝播抵抗力と疲労強度との関係を明らかにすることを目的に、N*と疲労強度の関係を調査した。 It is thought that nitrogen plays a role of resistance also in the fatigue crack propagation process. Therefore, the relationship between N * and fatigue strength was investigated for the purpose of clarifying the relationship between the fatigue crack propagation resistance and fatigue strength in this region, that is, 0.05 mm or more and 0.10 mm or less. .
その結果を図6に示す。図6においては、N**が、N**に係る本発明の請求の範囲である0.0600%以上の要件を満たさないものを▲、N**が前記要件を満たしながらも疲労強度が満足しなかったものを×、N**が前記要件を満たし疲労強度を満足したものを○の符号を用いてプロットをしている。まず、N**が前記要件を満たさない場合、N*に関わらず疲労強度は目的を満足しておらず、これは前述の効果と一致する。一方、N*が質量で0.4000%までは、N*の増加に伴い、疲労強度が増加している。しかし、N*が1.2000%以上ではN*の増加に伴い疲労強度が低下している傾向が認められた。N*の下限値は固着による効果を発現し、脆性的な疲労き裂伝播への遷移を抑制するために必要な含有量あると考えられる。一方、N*が過度に高い場合は、固着から外れた瞬間に高い背応力を生じ、容易に疲労き裂が伝播できる状態となり、脆性的な伝播に遷移したと考えられる。 The result is shown in FIG. In FIG. 6, N ** does not satisfy the requirement of 0.0600% or more which is the claim of the present invention related to N **, and the fatigue strength is satisfied while N ** satisfies the requirement. Plots are shown using “x” for not satisfied, and “ **” for N ** satisfying the above requirements and satisfying the fatigue strength using a symbol “◯”. First, when N ** does not satisfy the above requirement, the fatigue strength does not satisfy the purpose regardless of N * , which is consistent with the above-described effect. On the other hand, when N * is up to 0.4000% by mass, the fatigue strength increases as N * increases. However, when N * was 1.2,000% or more, it was observed that the fatigue strength tended to decrease as N * increased. The lower limit value of N * expresses the effect of sticking, and is considered to be a content necessary for suppressing the transition to brittle fatigue crack propagation. On the other hand, when N * is excessively high, a high back stress is generated at the moment when it is released from the fixation, and a fatigue crack can be easily propagated.
以上の検討から、図7に示したN*、N**と疲労強度の関係を得た。図7中の◆のプロットはN**が質量で0.0600%未満であり、疲労強度を満足していない。×のプロットはN*は0.0600%以上であるが、N*が0.4000%未満あるいは1.2000%を超えるため疲労強度を満足していない。また、■のプロットはN*およびN**のいずれも満足しなかったものも疲労強度を満足していない。この結果から、N*が質量で0.4000%以上、1.2000%未満の場合に限定し、さらにN**が質量で0.0600%以上であることのいずれをも満たすことで、これまで極めて困難と思われた、浸炭プレート部品同等以上の疲労強度を有する窒化プレート部品の開発が可能であることが分かった。尚、N**の上限を特に規定する必要はないが、後述の窒化条件等から、0.7000%程度が常識的上限となる。また、N*の下限を0.4500%又は0.5000%に、N*の上限を1.1000%又は1.0000%としてもよい。また、N**の下限を0.0650%、0.0700%又は0.0800%に、N**の上限を0.5000%又は0.3000%としてもよい。 From the above examination, the relationship between N * , N ** and fatigue strength shown in FIG. 7 was obtained. In the plot of ◆ in FIG. 7, N ** is less than 0.0600% by mass and does not satisfy the fatigue strength. In the plot of x, N * is 0.0600% or more, but the fatigue strength is not satisfied because N * is less than 0.4000% or more than 1.2,000%. In the plot of ■, neither N * nor N ** satisfied the fatigue strength. From this result, it is limited to the case where N * is 0.4000% or more and less than 1.2,000% by mass, and N ** is 0.0600% or more by mass. It has been found that it is possible to develop a nitrided plate part that has a fatigue strength equal to or higher than that of the carburized plate part. Note that the upper limit of N ** is not particularly required, but about 0.7000% is a common-sense upper limit from the nitriding conditions described later. Further, the lower limit of N * may be 0.4500% or 0.5000%, and the upper limit of N * may be 1.1000% or 1.000%. Further, the lower limit of N ** may be 0.0650%, 0.0700%, or 0.0800%, and the upper limit of N ** may be 0.5000% or 0.3000%.
また、窒化プレート部品のせん断面において、ガス軟窒化処理による窒素侵入がない領域である、せん断端面から少なくとも5mm以上離れた部分の板厚方向中心部の窒素含有量が質量で0.0300%を超えて含まれる場合、窒化プレート部品の靭性が低下し、部品としての機能を果たさない。また、当該部の窒素含有量が質量で0.0007%未満すると、後述する鋼板コイルの製造工程で極めて高い製造コストとなる。以上の、疲労強度とは関わらない理由から、せん断端面から少なくとも5mm以上離れた部分の板厚方向中心部の窒素含有量が質量で0.0007%以上、0.0300%以下の要件を設けた。せん断端面から少なくとも5mm以上離れた部分の板厚方向中心部の窒素含有量の下限を質量%で好ましくは0.0010%、0.0015%又は0.0020%に、その上限を0.0200%、0.0100%又は0.0080%としてもよい。 Further, in the shearing surface of the nitride plate component, the nitrogen content in the central portion in the plate thickness direction of the portion at least 5 mm away from the shear end surface, which is a region where there is no nitrogen intrusion due to gas soft nitriding, is 0.0300% by mass. If it is included in excess, the toughness of the nitrided plate component will be reduced, and it will not function as a component. Moreover, when the nitrogen content of the said part is less than 0.0007% by mass, it will become a very high manufacturing cost in the manufacturing process of the steel plate coil mentioned later. For the above reasons not related to fatigue strength, the nitrogen content in the central portion in the thickness direction of the portion at least 5 mm away from the shear end face is set to a requirement of 0.0007% or more and 0.0300% or less by mass. . The lower limit of the nitrogen content in the central part in the thickness direction of the portion at least 5 mm away from the shear end face is preferably 0.0010%, 0.0015% or 0.0020% by mass%, and the upper limit is 0.0200%. , 0.0100% or 0.0080%.
1.2 窒素を除く鋼板成分
次に、窒素を除く鋼板成分の限定理由について述べる。窒化プレート部品は一般的に動力伝達の役割を果たすことと軽量化を両立させため、少なくとも340MPa以上の引張強度が求められる。一方、延性が低下(例えばJIS Z2241の5号試験片の全伸びが13%未満)すると、プレス成形工程において成形性に支障をきたし、工業生産に適さない。本発明では強度と延性を両立させるために、以下の成分範囲を前提とする。尚、強度調整等のために後述する範囲の選択元素を含有することは構わない。
1.2 Steel plate components excluding nitrogen Next, the reasons for limiting the steel plate components excluding nitrogen will be described. Nitride plate parts generally require a tensile strength of at least 340 MPa in order to achieve both power transmission and weight reduction. On the other hand, if the ductility is lowered (for example, the total elongation of No. 5 test piece of JIS Z2241 is less than 13%), the press formability is hindered in formability and is not suitable for industrial production. In the present invention, in order to achieve both strength and ductility, the following component ranges are assumed. It should be noted that a selection element in a range described later may be included for strength adjustment or the like.
窒素を除き、本発明の窒化プレート部品およびそれに用いられる鋼板に含まれる元素について、以下、説明する。尚、以下の成分は、窒化プレート品成形前のN含有量を含め、従来から窒化プレート部品に必要とされる強度や加工性などを発揮すべく、本発明の前提とされる要件である。 Except for nitrogen, the elements contained in the nitride plate part of the present invention and the steel plate used therein will be described below. The following components are prerequisites for the present invention in order to exhibit the strength, workability, and the like that are conventionally required for nitride plate parts, including the N content before forming the nitride plate product.
C含有量:Cが質量で0.113%を超えると、強度が高まるほか、パーライト組織を形成することで、延性が著しく低下する。なお、Cが0.025%未満となると、強度が340MPa以下となるため、そもそも窒化プレート部品の骨格部品としての機能を果たさない。なお、Cが高まると包晶域になりスラブ靭性が低下することがあるため、Cの含有量は、0.10%以下又は0.09%以下が好ましい。また、十分な強度を得るために、Cの含有量は、0.034%以上、0.040%以上又は0.045%以上である。 C content: When C exceeds 0.113% by mass, strength increases and ductility is significantly reduced by forming a pearlite structure. Note that when C is less than 0.025%, the strength is 340 MPa or less, so that the function as a skeletal component of the nitride plate component is not achieved in the first place. In addition, since it will become a peritectic region and slab toughness may fall when C increases, the content of C is preferably 0.10% or less or 0.09% or less. In order to obtain sufficient strength, the C content is 0.034% or more, 0.040% or more, or 0.045% or more.
Si含有量:固溶強化元素として強度を高める元素であるが、仕上げ圧延工程で形成するスケール斑に起因した模様が窒化プレート部品に残ることで、窒化プレート部品の耐摩耗性を低下させるため、そもそも添加は好ましくない。なお、質量で0.10%を超えた場合に模様が現れてくる。Siの含有量の下限を特に規定する必要はなく、その下限は0%である。しかし、0.01%未満では原料コストが高まるため、Siの含有量を0.01%以上としてもよい。また、耐摩耗性をより一層優れたものとするために、Siの含有量は、好ましくは0.08%以下である。 Si content: An element that increases the strength as a solid solution strengthening element, but because the pattern resulting from scale spots formed in the finish rolling process remains on the nitride plate part, the wear resistance of the nitride plate part is reduced. In the first place, addition is not preferable. A pattern appears when the mass exceeds 0.10%. There is no need to particularly define the lower limit of the Si content, and the lower limit is 0%. However, if it is less than 0.01%, the raw material cost increases, so the Si content may be 0.01% or more. In order to further improve the wear resistance, the Si content is preferably 0.08% or less.
P含有量:質量で0.020%を超えた添加では、プレス成形性を低下させ、プレート部品を製造できない場合が多発する他、スラブの靱性を低下させ鋼板の製造性をも低下させる。したがって、Pは極力低い含有量が好ましく、その下限は0%である。しかし、0.001%未満とする場合、鋼板の製造コストが極めて高くなる。したがって、P含有量を0.001%以上としてもよい。また、プレート成形性および鋼板の製造性を十分に確保するために、Pの含有量は、好ましくは0.015%以下又は0.013%以下である。 P content: Addition exceeding 0.020% by mass reduces press formability and often fails to produce plate parts, and also lowers the toughness of the slab and lowers the productivity of the steel sheet. Accordingly, P is preferably as low as possible, and its lower limit is 0%. However, when the content is less than 0.001%, the manufacturing cost of the steel sheet becomes extremely high. Therefore, the P content may be 0.001% or more. Further, in order to sufficiently ensure plate formability and manufacturability of the steel sheet, the P content is preferably 0.015% or less or 0.013% or less.
S含有量:質量で0.0200%を超えた添加では、介在物を多く含んだ鋼板が製造され、プレス成形による成形破断が顕著となる。したがって、低い添加量が好ましく、その下限は0%である。しかし、0.0001%未満では、鋼板の製造コストが極めて高くなるため、本発明による経済的効果が消失する懸念がある。したがって、S含有量は0.0001%以上としてもよい。プレス成形の向上のため、S含有量を0.0100%以下、0.0050%以下又は0.0030%以下としてもよい。 S content: When the content exceeds 0.0200% by mass, a steel sheet containing a large amount of inclusions is produced, and the forming fracture due to press forming becomes significant. Therefore, a low addition amount is preferable, and the lower limit is 0%. However, if it is less than 0.0001%, the manufacturing cost of the steel sheet becomes very high, and there is a concern that the economic effect of the present invention may be lost. Therefore, the S content may be 0.0001% or more. In order to improve press molding, the S content may be 0.0100% or less, 0.0050% or less, or 0.0030% or less.
Mn含有量:質量で0.71%未満では強度が340MPa未満となり、1.49%を超えると、鋳造偏析による影響で延性が著しく低下する。特に窒化プレート部品への性能には悪影響を及ぼさないが、Mn偏析による圧延方向に伸びた組織を形成させることを回避するため、Mn含有量を1.40%%以下、1.30%以下又は1.25%以下としてもよい。強度向上のため、Mn含有量を0.75%以上、0.80%以上又は0.85%以上としてもよい。 Mn content: If the mass is less than 0.71%, the strength is less than 340 MPa, and if it exceeds 1.49%, the ductility is significantly lowered due to the influence of casting segregation. In particular, the performance to nitride plate parts is not adversely affected, but in order to avoid forming a structure extending in the rolling direction due to Mn segregation, the Mn content is 1.40 %% or less, 1.30% or less or It may be 1.25% or less. In order to improve the strength, the Mn content may be 0.75% or more, 0.80% or more, or 0.85% or more.
Ti含有量:Tiが質量で0.091%を超えると、鋼板の引張強度が高まることで延性が著しく低下するため、0.091%以下とした。また、Tiが0.020%未満では鋼板が340MPa以上の強度を発現しないため、0.020%以上とした。Ti含有量の下限を0.025%又は0.030%に、その上限を0.075%又は0.060%としてもよい。 Ti content: When Ti exceeds 0.091% by mass, the tensile strength of the steel sheet is increased, and the ductility is remarkably lowered. Therefore, the Ti content is set to 0.091% or less. Further, if Ti is less than 0.020%, the steel sheet does not develop a strength of 340 MPa or more, so it was made 0.020% or more. The lower limit of the Ti content may be 0.025% or 0.030%, and the upper limit may be 0.075% or 0.060%.
Cr含有量:窒化プレート部品の耐摩耗性を持たせるために必要な元素であり、質量で0.130%以上を添加する必要がある。一方、0.340%超では、延性が著しく低下する。このため、Cr含有量の上限は0.340%とする。耐磨耗性の効果のため、Cr含有量を0.180%以上、0.200%以上、0.210%以上又は0.230%以上としてもよい。延性向上のため、Cr含有量を0.320%以下又は0.290%以下としてもよい。 Cr content: an element necessary for imparting wear resistance to nitride plate parts, and it is necessary to add 0.130% or more by mass. On the other hand, if it exceeds 0.340%, the ductility is significantly reduced. For this reason, the upper limit of the Cr content is set to 0.340%. For the effect of wear resistance, the Cr content may be 0.180% or more, 0.200% or more, 0.210% or more, or 0.230% or more. In order to improve ductility, the Cr content may be 0.320% or less or 0.290% or less.
Al含有量:窒化プレート部品の耐摩耗性を持たせるために最低限の必要な元素であり、0.10%以上を添加する必要がある。一方、0.35%を超えるとスラブの製造コストが非常に高くなるため、Al含有量を0.35%以下とする。耐磨耗性の向上のため、Al含有量の下限を0.14%又は0.18%としてもよい、スラブ製造コスト低減のため、その上限を0.30%又は0.25%としてもよい。 Al content: It is the minimum necessary element for imparting the wear resistance of the nitride plate parts, and it is necessary to add 0.10% or more. On the other hand, if it exceeds 0.35%, the production cost of the slab becomes very high, so the Al content is made 0.35% or less. In order to improve wear resistance, the lower limit of the Al content may be 0.14% or 0.18%. In order to reduce the slab manufacturing cost, the upper limit may be 0.30% or 0.25%. .
窒化プレート品成形前のN含有量:窒化プレート品成形前の窒素は、鋼板コイルの製造過程で粗大な窒化物を形成し、N含有量が0.0100%を超えると鋼板コイルの成形性を著しく低下させる。したがって、窒化プレート品成形前のN含有量は低いほど好ましいが、0.0007%未満とする場合、鋼板コイルの製造工程で極めて高いコストとなるため、下限を0.0007%以上とした。なお、0.005%未満の範囲では成形性に変化が無いため、工業生産上、0.005%未満が好ましい。 N content before forming nitrided plate product: Nitrogen before forming nitrided plate product forms coarse nitrides in the manufacturing process of steel plate coil, and if the N content exceeds 0.0100%, the formability of steel plate coil is reduced. Reduce significantly. Therefore, the N content before forming the nitride plate product is preferably as low as possible. However, if it is less than 0.0007%, the cost is extremely high in the manufacturing process of the steel sheet coil, so the lower limit is made 0.0007% or more. In addition, since there is no change in moldability in the range of less than 0.005%, less than 0.005% is preferable for industrial production.
ここで、窒化プレート品成形前のN含有量は、ガス軟窒化処理前のプレス成形性の指標となれば十分であるため、ガス軟窒化処理前のプレート部品からその値を測定すればよい。なお、プレート部品はガス軟窒化処理を施す前の部品であるため、せん断端面近傍には成形ひずみが残存することで測定ばらつきを生む。そのため、前述のように、任意のせん断端面からプレート部品内部方向に少なくとも5mm以上離れた部分の板厚方向中心部を原点とし、原点から板厚中心線に沿った距離が1mmまでの区間をEPMAで測定し、その区間のN含有量の平均値を求める。その平均値をガス軟窒化処理を施す前のプレート部品の任意の3箇所で測定し、各値の平均値を採用すればよい。また後述のように、鋼材の成分の取鍋分析値と前記EPMA分析値がほぼ同じ値であることから、鋼材の成分の取鍋分析値やJIS G1258の発光分光文分析方法を用いてもよい。 Here, it is sufficient that the N content before forming the nitrided plate product is an index of press formability before the gas soft nitriding treatment, and therefore, the value may be measured from the plate parts before the gas soft nitriding treatment. Since the plate part is a part before the gas soft nitriding treatment is performed, measurement distortion is caused by the molding strain remaining in the vicinity of the shear end face. Therefore, as described above, the section where the distance from the origin to the center of the plate thickness in the plate thickness direction at a distance of at least 5 mm or more from the arbitrary shear end face in the plate component internal direction is 1 mm along the plate thickness center line from the origin. The average value of N content in the section is obtained. The average value may be measured at any three locations of the plate parts before the gas soft nitriding treatment, and the average value of each value may be adopted. Further, as described later, since the ladle analysis value of the steel material component and the EPMA analysis value are substantially the same value, the ladle analysis value of the steel material component or the emission spectral statement analysis method of JIS G1258 may be used. .
さらに以下の元素を下記範囲で含有する。これらの元素は、所定の目的により、または不純物として、窒化プレート部品に含有され得る。これらの元素の含有は必須でないがトランプエレメントレベルも範囲内とする。 Further, the following elements are contained within the following range. These elements may be contained in the nitride plate component for a predetermined purpose or as an impurity. The inclusion of these elements is not essential, but the playing element level is also within the range.
Nb含有量:質量で0.020%を超えた添加では、鋼板の引張強度が高まることで延性が低下するほか、仕上げ圧延工程で、表面に疵を形成するため、0.020%以下とした。その下限は0.001%であり、これ未満に低下させることは製造上困難である。窒化プレート部品への性能には影響を及ぼさないが細粒組織としたい場合、0.005%以上添加してもよい。延性向上や表面疵防止のため、Nb含有量を0.015量%又は0.009%としてもよい。 Nb content: Addition exceeding 0.020% by mass reduces the ductility by increasing the tensile strength of the steel sheet, and also forms wrinkles on the surface in the finish rolling step, so the content was made 0.020% or less. . The lower limit is 0.001%, and it is difficult to reduce it to less than this. If the fine-grained structure is desired without affecting the performance of the nitride plate parts, 0.005% or more may be added. In order to improve ductility and prevent surface flaws, the Nb content may be 0.015% by weight or 0.009%.
Mo含有量:窒化プレート部品の表層化合物層の耐摩耗性を向上させる元素として知られ、本発明の窒化プレート部品に添加してもよいが、0.140%を超えた場合にはスラブの靭性を低下させ、製造性を損ねる。スラブの靱性向上のため、その上限を0.100%、0.050%又は0.010%としてもよい。下限は0.001%であり、これ未満に低下させることは製造上困難である。 Mo content: known as an element that improves the wear resistance of the surface compound layer of the nitride plate component, and may be added to the nitride plate component of the present invention, but if it exceeds 0.140%, the toughness of the slab Decreases the productivity. In order to improve the toughness of the slab, the upper limit may be 0.100%, 0.050%, or 0.010%. The lower limit is 0.001%, and it is difficult to reduce it to less than this.
V含有量:窒化プレート部品の表層化合物層の耐摩耗性を向上させる元素として知られ、本発明の窒化プレート部品に添加してもよいが、その下限は0.001%であり、これ未満に低下させることは製造上困難である。0.100%を超えると後述する仕上圧延工程で表面疵を造り、製造性を損ねる。表面疵の防止のため、その上限を0.050%、0.030%又は0.010%としてもよい。 V content: Known as an element that improves the wear resistance of the surface compound layer of the nitride plate component, and may be added to the nitride plate component of the present invention, but the lower limit is 0.001%, less than this It is difficult to reduce it in manufacturing. If it exceeds 0.100%, surface flaws will be produced in the finish rolling step described later, and productivity will be impaired. In order to prevent surface flaws, the upper limit may be 0.050%, 0.030%, or 0.010%.
B含有量:プレス成形工程で曲げやフランジ成形がなされる際に、成形性を向上させるため添加されていてもよいが、質量で0.0030%を超えても、その効果が飽和する。このため、B含有量は0.0030%以下とする。下限は0.0001%であり、これ未満に低下させることは製造上困難である。成形性向上のため、その上限を0.0020%、0.0010%又は0.0005%としてもよい。 B content: When bending or flange molding is performed in the press molding process, it may be added in order to improve moldability, but even if it exceeds 0.0030% by mass, the effect is saturated. For this reason, B content shall be 0.0030% or less. The lower limit is 0.0001%, and it is difficult to make it lower than this. In order to improve moldability, the upper limit may be 0.0020%, 0.0010%, or 0.0005%.
Cu含有量:Cuは他の元素と化合物を作らず、Cu粒子として析出する。ところが、このCu粒子は400℃近傍で析出するため、窒化プレート部品の性能に及ぼす影響はない。しかし、過度なCuの添加量の場合、粗圧延工程で表面に疵を形成する原因となるため、添加量は0.13%以下とする。下限は0.00%である。表面疵の防止のため、その上限を0.10%又は0.04%としてもよい。 Cu content: Cu does not form compounds with other elements, but precipitates as Cu particles. However, since the Cu particles are precipitated at around 400 ° C., there is no influence on the performance of the nitride plate component. However, in the case of an excessive amount of added Cu, it causes the formation of wrinkles on the surface in the rough rolling step, so the added amount is 0.13% or less. The lower limit is 0.00%. In order to prevent surface flaws, the upper limit may be 0.10% or 0.04%.
Ni含有量:Niはオーステナイトフォーマー元素であり、過度な添加をした場合、窒化処理中に、プレート部品最表面に形成する窒素化合物の靭性が低下する。そのため、Niは0.08%未満とする。下限は0.00%である。靱性の向上のため、その上限を0.05%又は0.03%としてもよい。 Ni content: Ni is an austenite former element, and when it is excessively added, the toughness of the nitrogen compound formed on the outermost surface of the plate part decreases during nitriding. Therefore, Ni is less than 0.08%. The lower limit is 0.00%. In order to improve toughness, the upper limit may be 0.05% or 0.03%.
W含有量:Wを含んだ溶鋼が凝固する時、極めて高硬度の共晶組織を形成し、鋳片の靭性を低下させる。製造性のため、Wの添加量は0.07%以下とする。必要に応じて、Wの上限を0.02%又は0.005%としてもよい。下限は0.00%である。 W content: When molten steel containing W solidifies, it forms a very hard eutectic structure and lowers the toughness of the slab. For manufacturability, the addition amount of W is set to 0.07% or less. If necessary, the upper limit of W may be 0.02% or 0.005%. The lower limit is 0.00%.
Co含有量:CoもWと同様に、溶鋼が凝固する時、極めて高硬度の共晶組織を形成し、鋳片の靭性を低下させる。製造性のため、Coの添加量は0.07%以下とする。必要に応じて、Wの上限を0.02%又は0.005%としてもよい。下限は0.00%である。 Co content: Co, like W, when molten steel solidifies, forms a very hard eutectic structure and lowers the toughness of the slab. For manufacturability, the amount of Co added is 0.07% or less. If necessary, the upper limit of W may be 0.02% or 0.005%. The lower limit is 0.00%.
Ca含有量:Caは、非金属介在物を微細にするため、成形性を向上させる元素である。しかし、Caの添加量が0.0070%以上では、非金属介在物の密度が増える。Caを利用する場合、その添加量は0.0070%未満とする。必要に応じて、Caの上限を0.0040%又は0.0010%としてもよい。下限は0.0000%である。 Ca content: Ca is an element that improves formability in order to make nonmetallic inclusions fine. However, when the amount of Ca added is 0.0070% or more, the density of nonmetallic inclusions increases. When using Ca, the addition amount is made less than 0.0070%. If necessary, the upper limit of Ca may be 0.0040% or 0.0010%. The lower limit is 0.0000%.
Mg含有量:Mgは、Caと同様に、非金属介在物を微細にするため、成形性を向上させる元素である。しかし、Mgの添加量が0.0050%以上では、非金属介在物の密度が増える。Mgを利用する場合、その添加量は0.0050%未満とする。必要に応じて、Mgの上限を0.0020%又は0.0008%としてもよい。下限は0.0000%である。 Mg content: Mg, like Ca, is an element that improves formability in order to make nonmetallic inclusions fine. However, when the added amount of Mg is 0.0050% or more, the density of nonmetallic inclusions increases. When using Mg, the addition amount is less than 0.0050%. If necessary, the upper limit of Mg may be 0.0020% or 0.0008%. The lower limit is 0.0000%.
REM含有量:REMは、CaおよびMgと同様に、非金属介在物を微細にするため、成形性を向上させる元素である。しかし、REMの添加量が0.0050%以上では、非金属介在物の密度が増える。REMを利用する場合、その添加量は0.0050%未満とする。必要に応じて、REMの上限を0.0020%又は0.0005%としてもよい。下限は0.0000%である。 REM content: REM, like Ca and Mg, is an element that improves formability in order to make nonmetallic inclusions fine. However, when the amount of REM added is 0.0050% or more, the density of nonmetallic inclusions increases. When REM is used, the amount added is less than 0.0050%. If necessary, the upper limit of REM may be 0.0020% or 0.0005%. The lower limit is 0.0000%.
ここで、「REM」とは、希土類元素、より具体的にはSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuをいい、REMとして上記のいずれか1種以上が窒化プレート部品に含有され得る。なお、上記のREMの含有量は、REM合計の含有量である。 Here, “REM” means a rare earth element, more specifically, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Any one or more of the above as REM may be contained in the nitride plate component. In addition, content of said REM is content of REM total.
なお、本明細書中において、不純物は、添加の意図に関係なく、鋼中に存在し、得られる厚鋼板において本来存在する必要のない成分である。「不純物」なる用語は、鋼材料を工業的に製造する際に原料としての鉱石、スクラップまたは製造環境などから混入する不可避的不純物を含む概念である。このような不純物は、本発明の効果に悪影響を与えない量で含まれ得る。 In addition, in this specification, an impurity is a component which exists in steel regardless of the intention of addition, and does not need to exist originally in the obtained thick steel plate. The term “impurities” is a concept that includes inevitable impurities that are mixed from ores, scraps, or production environments as raw materials when industrially producing steel materials. Such impurities may be included in an amount that does not adversely affect the effects of the present invention.
1.3 金属組織
次に、本発明の前提として、従来から窒化プレート部品に必要とされる強度や加工性などを発揮すべく、本実施形態に係る窒化プレート部品が備えるべき金属組織について説明する。
1.3 Metal Structure Next, as a premise of the present invention, the metal structure that the nitride plate component according to the present embodiment should have is described in order to exhibit the strength and workability that are conventionally required for the nitride plate component. .
本発明の前提として、窒化プレート部品の製造に用いる鋼板は、フェライト分率が面積率で70%以下の鋼板を用いる。フェライト分率が十分に低いと、降伏伸びによってプレス部品表面にしわ模様が発生することを防止することができるため、窒化プレート部品の金属組織において、フェライト分率を70%以下とする。フェライト分率を65%以下、60%以下又は50%以下とすることがより好ましい。 As a premise of the present invention, a steel plate used for manufacturing a nitride plate component is a steel plate having a ferrite fraction of 70% or less in area ratio. If the ferrite fraction is sufficiently low, wrinkle patterns can be prevented from occurring on the surface of the pressed part due to yield elongation. Therefore, the ferrite fraction is set to 70% or less in the metal structure of the nitride plate part. More preferably, the ferrite fraction is 65% or less, 60% or less, or 50% or less.
前述のフェライト分率とは、金属組織中のフェライト組織の面積率のことを指す。フェライト組織の面積率は、鋼板の表面から板厚1/4離れた位置又は板厚中央から採取され、鏡面研磨後ナイタール腐食を施した試験片で測定された値である。この金属組織は、光学顕微鏡にて200倍以上、1000倍以下の倍率で撮影されたものであり、それぞれの板厚の位置で3視野以上の画像を撮影すればよい。すべての画像について、それぞれ金属組織中に占めるフェライトの面積率を求め、すべての画像におけるフェライトの面積率の平均値を、鋼板のフェライト分率とする。 The above-mentioned ferrite fraction refers to the area ratio of the ferrite structure in the metal structure. The area ratio of the ferrite structure is a value measured with a test piece which is taken from a position at a quarter thickness away from the surface of the steel plate or from the center of the plate thickness and subjected to nital corrosion after mirror polishing. This metal structure is taken with an optical microscope at a magnification of 200 times or more and 1000 times or less, and an image of three or more fields of view may be taken at each plate thickness position. For all images, the area ratio of ferrite in the metal structure is obtained, and the average value of the area ratio of ferrite in all images is defined as the ferrite fraction of the steel sheet.
また、窒化プレート部品の金属組織は、フェライトとベイナイトが主体の組織である。このため、前記フェライトの面積率を満足しつつ、フェライトとベイナイトの面積率の合計を50%以上、好ましくは60%以上又は65%以上であってもよい。フェライトとベイナイト以外に、パーライト、マルテンサイト、オーステナイトなどが存在してもよい。 The metal structure of the nitride plate component is mainly composed of ferrite and bainite. For this reason, the total area ratio of ferrite and bainite may be 50% or more, preferably 60% or more or 65% or more while satisfying the area ratio of the ferrite. In addition to ferrite and bainite, pearlite, martensite, austenite, and the like may be present.
2. 窒化プレート部品の製造方法
次に、本発明に係る窒化プレート部品の製造方法について説明する。すなわち、前述したN*およびN**を目的の範囲内に制御するための、製造方法について限定範囲を明確にしていく。以下では、窒化プレート部品として、工業製品上、最低限の役割を満たす範囲として、窒素を除く鋼板成分と鋼板製造方法の限定理由を述べ、その後、窒素含有量の限定範囲に制御するために製造方法を詳細に述べていく。
2. Next, a method for manufacturing a nitride plate component according to the present invention will be described. That is, the limited range of the manufacturing method for controlling the above-described N * and N ** within the target range will be clarified. The following describes the reason for the limitation of the steel plate components and the steel plate manufacturing method excluding nitrogen as the range that satisfies the minimum role on the industrial product as nitride plate parts, and then manufactured to control the nitrogen content to the limited range. The method will be described in detail.
本発明に係る窒化プレート部品の製造方法は、
化学組成が質量%で、
C:0.025%以上、0.113%以下、
Si:0.10%以下、
Mn:0.71%以上、1.49%以下
P:0.020%以下、
S:0.0200%以下、
Ti:0.020%以上、0.091%以下、
Cr:0.130%以上、0.340%以下、
Al:0.10%以上、0.35%以下、
N:0.0007%以上、0.0100%以下、
Nb:0.001%以上0.020%以下、
Mo:0.001%以上0.140%以下、
V:0.001%以上0.100%以下、
B:0.0001%以上0.0030%以下、
Cu:0.00%以上0.13%以下、
Ni:0.00%以上0.08%未満、
W:0.00%以上0.07%以下、
Co:0.00%以上0.07%以下、
Ca:0.0000%以上0.0070%未満、
Mg:0.0000%以上0.0050%未満、
REM:0.0000%以上0.0050%未満、および
残部:Feおよび不純物を含有するスラブを、熱延仕上圧延出側温度850℃以上、960℃未満の範囲で熱間圧延を施して鋼板を得、
その後、熱延仕上圧延終了後から3秒以内に冷却を開始し、さらに熱延仕上圧延終了後から29秒以内に前記鋼板を460℃以上、630℃以下まで冷却し、
前記鋼板を巻き取ることで、金属組織中におけるフェライト組織の面積率が70%以下である鋼板コイルとなし、
さらに酸洗した当該鋼板コイルを用いた窒化プレート部品を製造する場合であって、当該鋼板コイルを巻き開いた後に、前記鋼板に塑性ひずみ量にて0.03%以上、3.00%以下範囲の曲げ・曲げ戻しを与え、
再び前記鋼板を巻き直すことなく、せん断加工とプレス成形を施してプレート部品形状とし、
アンモニアガスが30%超の体積構成比の雰囲気で、500℃以上、620℃未満の温度に調整された密閉炉内にて、60分以上の時間、前記鋼板を滞在させて窒化させる。
The method for manufacturing a nitride plate component according to the present invention includes:
Chemical composition is mass%,
C: 0.025% or more, 0.113% or less,
Si: 0.10% or less,
Mn: 0.71% or more, 1.49% or less P: 0.020% or less,
S: 0.0200% or less,
Ti: 0.020% or more, 0.091% or less,
Cr: 0.130% or more, 0.340% or less,
Al: 0.10% or more, 0.35% or less,
N: 0.0007% or more, 0.0100% or less,
Nb: 0.001% or more and 0.020% or less,
Mo: 0.001% or more and 0.140% or less,
V: 0.001% to 0.100%,
B: 0.0001% or more and 0.0030% or less,
Cu: 0.00% or more and 0.13% or less,
Ni: 0.00% or more and less than 0.08%,
W: 0.00% or more and 0.07% or less,
Co: 0.00% or more and 0.07% or less,
Ca: 0.0000% or more and less than 0.0070%,
Mg: 0.0000% or more and less than 0.0050%,
REM: 0.0000% or more and less than 0.0050%, and balance: slab containing Fe and impurities is hot rolled in a range of hot rolling finish rolling outlet temperature of 850 ° C. or more and less than 960 ° C. Get
Thereafter, cooling is started within 3 seconds after the hot rolling finish rolling is completed, and further, the steel sheet is cooled to 460 ° C. or more and 630 ° C. or less within 29 seconds after the hot rolling finish rolling is finished,
By winding up the steel sheet, the area ratio of the ferrite structure in the metal structure is a steel sheet coil of 70% or less,
Furthermore, in the case of manufacturing a nitride plate part using the pickled steel plate coil, after unrolling the steel plate coil, the steel plate has a plastic strain amount of 0.03% or more and 3.00% or less. Of bending and unbending,
Without re-rolling the steel plate again, it is subjected to shearing and press forming into a plate part shape,
In a closed furnace adjusted to a temperature of 500 ° C. or higher and lower than 620 ° C. in an atmosphere having a volume composition ratio of more than 30% ammonia gas, the steel sheet is allowed to stay for nitriding for 60 minutes or longer.
以下、本発明の前提として、従来から窒化プレート部品に必要とされる強度や加工性などを備えた鋼板コイルの製造条件について説明する。すなわち、強度と延性を両立させるために、成分の限定範囲を設けたことと同様に、鋼板コイル製造方法は、後述する鋼板表層への塑性ひずみ付与、その後の巻き直し有無、窒化条件を除き、熱延の諸条件は被窒化プレート部品の製造で悪影響を及ぼさないよう以下の条件範囲を前提とする。なお、スラブの化学組成の限定理由については、上述した窒化プレート部品の化学組成の限定理由と同様であるので、説明を省略する。 Hereinafter, as a premise of the present invention, conditions for manufacturing a steel sheet coil having strength and workability that are conventionally required for nitride plate parts will be described. That is, in order to achieve both strength and ductility, as well as providing a limited range of components, the steel sheet coil manufacturing method is applied with plastic strain to the steel sheet surface layer described below, except for subsequent rewinding, nitriding conditions, The conditions for hot rolling are based on the following condition ranges so as not to adversely affect the production of the nitrided plate parts. The reason for limiting the chemical composition of the slab is the same as the reason for limiting the chemical composition of the nitride plate component described above, and thus the description thereof is omitted.
2.1 熱間圧延・冷却
まず、スラブを、熱延仕上圧延出側温度850℃以上、960℃未満の範囲で熱間圧延を施して鋼板を得る。ここで、熱延仕上圧延出側温度が850℃超であると、高温でのスラブ変形抵抗が高まることで、仕上げ圧延時の圧延ロールの荷重が極めて高くなり、工業生産に適さない。一方、熱延仕上圧延圧延温度が960℃以下であると、結晶粒が粗大となることで、鋼板の延性が低下する。熱延仕上圧延出側温度は、好ましくは885℃以上又は895℃以上である。また、熱延仕上圧延出側温度は、好ましくは950℃未満又は940℃未満である。
2.1 Hot Rolling / Cooling First, the slab is hot-rolled in a temperature range of 850 ° C. or more and less than 960 ° C. to obtain a steel plate. Here, when the hot rolling finish rolling outlet temperature is higher than 850 ° C., the slab deformation resistance at a high temperature is increased, and the load of the rolling roll at the time of finish rolling becomes extremely high, which is not suitable for industrial production. On the other hand, if the hot rolling finish rolling temperature is 960 ° C. or less, the crystal grains become coarse, and the ductility of the steel sheet is lowered. The hot rolling finish rolling outlet temperature is preferably 885 ° C or higher or 895 ° C or higher. Further, the hot rolling finish rolling outlet temperature is preferably less than 950 ° C or less than 940 ° C.
次いで、熱延仕上圧延後から3秒以内に冷却を開始する。仕上圧延後から冷却を開始するまでの時間が3秒を超えた場合、結晶粒が粗大となることで、鋼板の延性が低下し、伸びが13%未満となる。 Next, cooling is started within 3 seconds after hot rolling finish rolling. When the time from finish rolling to the start of cooling exceeds 3 seconds, the crystal grains become coarse so that the ductility of the steel sheet is lowered and the elongation is less than 13%.
また、同冷却においては、熱延仕上圧延後から29秒以内に460℃以上、630℃以下まで鋼板を冷却する。ここで、冷却停止温度が460℃未満であると、鋼板の強度が著しく高まり、延性がさらに低下し、伸びが最悪13%未満となる。冷却停止温度は、好ましくは490℃以上、より好ましくは510℃以上である。一方で、冷却停止温度が630℃超であると、フェライト分率が70%超となり、降伏点伸びの発生を招くことからシワが発生するとともに、結晶粒が粗大となることで、鋼板の延性がさらに低下し、伸びが最悪13%未満となる。また、冷却停止温度が630℃以下であると、得られる鋼板のフェライト分率を十分に低減させることができる。冷却停止温度は、好ましくは590℃以下、より好ましくは560℃以下である。
さらに、熱間圧延終了後から冷却終了までの時間が29秒を超える場合は、結晶粒が粗大となることで、鋼板の延性がさらに低下し、最悪13%未満となる。仕上圧延後から冷却停止温度までの時間は、好ましくは25秒以下、より好ましくは22秒以下である。
その後、得られた鋼板の巻取りを行い、酸洗を行う。
In the same cooling, the steel sheet is cooled to 460 ° C. or more and 630 ° C. or less within 29 seconds after hot rolling finish rolling. Here, when the cooling stop temperature is less than 460 ° C., the strength of the steel sheet is remarkably increased, the ductility is further lowered, and the elongation is less than 13% at worst. The cooling stop temperature is preferably 490 ° C. or higher, more preferably 510 ° C. or higher. On the other hand, if the cooling stop temperature is higher than 630 ° C., the ferrite fraction is higher than 70%, which leads to the occurrence of yield point elongation, wrinkles are generated, and the crystal grains are coarsened. Is further reduced, and the elongation is less than 13% at worst. Moreover, the ferrite fraction of the steel plate obtained can fully be reduced as cooling stop temperature is 630 degrees C or less. The cooling stop temperature is preferably 590 ° C. or lower, more preferably 560 ° C. or lower.
Furthermore, when the time from the end of hot rolling to the end of cooling exceeds 29 seconds, the crystal grains become coarse, so that the ductility of the steel sheet is further reduced, and the worst is less than 13%. The time from finish rolling to the cooling stop temperature is preferably 25 seconds or less, more preferably 22 seconds or less.
Then, the obtained steel plate is wound up and pickled.
2.2 曲げ・曲げ戻しおよびせん断加工・プレス成形
次いで、本発明の主たる要件である鋼板コイルに与える塑性ひずみ量、および当該塑性ひずみ量付与後の鋼板コイルの巻き直し有無、更にガス軟窒化処理条件について、以下に説明する。
2.2 Bending / Unbending and Shearing / Press Forming Next, the amount of plastic strain applied to the steel sheet coil, which is the main requirement of the present invention, whether or not the steel sheet coil is rewound after applying the amount of plastic strain, and gas soft nitriding treatment The conditions will be described below.
酸洗した鋼板コイルについて、鋼板コイルを巻き開いた後に、鋼板に塑性ひずみ量にて0.03%以上、3.00%以下範囲の曲げ・曲げ戻しを与え、再び鋼板を巻き直すことなく、せん断加工とプレス成形を施してプレート部品形状とする。 以下では、前述した鋼板コイルを用いた窒化プレート部品の製造方法において、本発明要件であるN*およびN**を限定範囲に制御するために必要な工程とその限定範囲を詳細に述べる。 About the steel plate coil pickled, after unrolling the steel plate coil, the steel plate is subjected to bending and unbending in the range of 0.03% or more and 3.00% or less in the amount of plastic strain, without rewinding the steel plate again, Shear processing and press molding are performed to form plate parts. Below, in the manufacturing method of the nitride plate component using the steel plate coil mentioned above, a process required in order to control N * and N ** which are requirements of this invention to a limited range, and the limited range are described in detail.
前述のN*およびN**の要件を明確にしていく過程で、表2、表3の試験番号12、13、17および21はいずれも曲げ・曲げ戻しの矯正加工を施していなかったものであった。これらは例外なく、N*が下限値を満たしておらず、疲労強度を満足しなかった。一方、極めて形状が悪く、曲げ・曲げ戻しの矯正加工で強ひずみを与えた試験番号14、19、20および22はいずれもN*が高い結果であった。 In the process of clarifying the above N * and N ** requirements, the test numbers 12, 13, 17 and 21 in Tables 2 and 3 were not subjected to bending / unbending correction. there were. These were no exception, and N * did not satisfy the lower limit value, and the fatigue strength was not satisfied. On the other hand, all of the test numbers 14, 19, 20, and 22 in which the shape was extremely bad and a strong strain was applied in the straightening process of bending and unbending showed a high N * result.
そこで、前述の曲げ・曲げ戻し工程での塑性ひずみ量の影響を調査した。調査にあたっては、表1中の鋼板コイルO、QおよびTを用いて、鋼板コイルを巻開き、異なるロール径で曲げ・曲げ戻し変形をさせることで、塑性ひずみ量を変化させた。ここで、塑性ひずみの計測は、鋼板表層にあらかじめ2mm格子模様を描き、曲げ曲げ戻し変形前後での格子模様の形状変化から測定された公称ひずみであり、このひずみは永久変形によってもたらされる量であるため、これを、そのまま塑性ひずみ量として採用する。所定の塑性ひずみ量を与え、その後に、再び鋼板コイルとして巻戻したものについても試験を実施した。 Therefore, the influence of the amount of plastic strain in the aforementioned bending / unbending process was investigated. In the investigation, the steel plate coils O, Q and T in Table 1 were used to unroll the steel plate coil, and the plastic strain amount was changed by bending and unbending deformation with different roll diameters. Here, the plastic strain is measured by drawing a 2 mm grid pattern in advance on the surface of the steel sheet, and measuring the nominal strain measured from the change in shape of the grid pattern before and after bending and bending deformation. This strain is the amount caused by permanent deformation. Therefore, this is adopted as the plastic strain amount as it is. A test was also performed on a sample that was given a predetermined amount of plastic strain and then rewound as a steel plate coil.
図8にN*に及ぼす塑性ひずみ量の影響を示す。図8中のオープンシンボルはレベラー工程で所定の塑性ひずみを与えた後、そのまません断工程に移ったものである。また、ソリッドシンボルは曲げ・曲げ戻し工程で所定の塑性ひずみを与えた後、再び鋼板をコイル状に巻き直し、その鋼板コイルを再度巻開いた後に、そのまません断工程に移ったものをあらわしている。なお、図8中の各サンプルにおいては、アンモニアの体積構成比50%、温度560〜575℃、処理時間90〜150分の条件でガス軟窒化処理を行った。また、曲げ・曲げ戻し工程で所定の塑性ひずみを与えた後、そのまません断工程に移ったものは、塑性ひずみ量が3.0%を超えるとN*が質量で1.20%を超え、この結果は鋼板コイルに依存しない。一方、塑性ひずみ量が0.03%未満ではN*が質量で0.4000%未満となった。なお、塑性ひずみを与えた後、再び鋼板をコイル状に巻き直したものは、塑性ひずみ量によらず、N*は0.4000%未満となった。 FIG. 8 shows the influence of the amount of plastic strain on N * . The open symbol in FIG. 8 is obtained by applying a predetermined plastic strain in the leveler process and then moving directly to the shearing process. In addition, the solid symbol represents a state in which a predetermined plastic strain is applied in a bending / unbending process, the steel sheet is rewound into a coil shape, the steel sheet coil is rewound again, and then the process is transferred to the shearing process. . In addition, in each sample in FIG. 8, the gas soft nitriding process was performed on the conditions of volume composition ratio of ammonia 50%, temperature 560-575 degreeC, and processing time 90-150 minutes. In addition, after applying a predetermined plastic strain in the bending / bending process, and then moving to the shearing process as it is, if the amount of plastic strain exceeds 3.0%, N * exceeds 1.20% by mass. The result does not depend on the steel sheet coil. On the other hand, when the plastic strain amount was less than 0.03%, N * was less than 0.4000% by mass. In addition, after giving a plastic strain, what re-rolled the steel plate again in the coil shape became N * less than 0.4000% irrespective of the amount of plastic strain.
次にN**に及ぼす塑性ひずみの影響を、図9に示す。図9中の各サンプルについても、アンモニアの体積分率50%、温度560〜575℃、処理時間90〜150分の条件でガス軟窒化処理が行われている。図9では塑性ひずみが3.00%を超えるとN**は質量で0.0600%未満となった。曲げ・曲げ戻し工程で所定の塑性ひずみを与えた後、そのまません断工程に移ったものと、そうでないものでN**に差は認められない結果であった。これらの結果は、鋼板コイルの転位の状態に起因した現象と考えられる。すなわち、塑性ひずみが高い場合には、不動転位の頻度が高く、ガス軟窒化中では表層窒素侵入が過多となり留められる。一方、塑性ひずみが低い場合や、再び鋼板コイルを巻戻した場合は、可動転位が導入された状態となる。このとき、鋼板中の原子空孔は窒素ではなく、可動転位の上昇に消費されるため、窒素の侵入が阻害されたと考えられる。なお、可動転位か不動転位かを区別することは極めて困難であるが、転位の状態は塑性ひずみ量に固有であるため、塑性ひずみ量にて0.03%以上、3.00%以下範囲の曲げ・曲げ戻しを与えた後、再び鋼板を巻き直すことなく、せん断加工とプレス成形を施してプレート部品形状とすることを限定条件とした。 Next, the influence of plastic strain on N ** is shown in FIG. Each sample in FIG. 9 is also subjected to gas soft nitriding under the conditions that the volume fraction of ammonia is 50%, the temperature is 560 to 575 ° C., and the treatment time is 90 to 150 minutes. In FIG. 9, when the plastic strain exceeds 3.00%, N ** is less than 0.0600% by mass. There was no difference in N ** between the case where a predetermined plastic strain was applied in the bending / bending process and then the process was transferred to the shearing process, and the case where it was not. These results are thought to be due to the dislocation state of the steel sheet coil. That is, when the plastic strain is high, the frequency of stationary dislocations is high, and surface nitrogen intrusion is excessive during gas soft nitriding. On the other hand, when the plastic strain is low or when the steel sheet coil is rewound again, movable dislocation is introduced. At this time, since the atomic vacancies in the steel sheet are not nitrogen but are consumed for the increase of movable dislocations, it is considered that the penetration of nitrogen is inhibited. Although it is extremely difficult to distinguish between movable dislocations and immovable dislocations, since the dislocation state is specific to the amount of plastic strain, the amount of plastic strain ranges from 0.03% to 3.00%. After giving the bending / unbending, the limiting condition was to apply shearing and press forming into a plate part shape without rewinding the steel sheet again.
なお、塑性ひずみ量は0.05%以上、1.50%以下の範囲のN*は、塑性ひずみ量によらずほぼ一定の値となっている。工業生産上、生産管理の点で、塑性ひずみ量は0.05%以上、1.50%以下とすることが好ましい。 Note that N * in the range of 0.05% or more and 1.50% or less of the plastic strain amount is a substantially constant value regardless of the plastic strain amount. From the viewpoint of industrial management, the amount of plastic strain is preferably 0.05% or more and 1.50% or less.
ところで、鋼板の製造工程においては、降伏伸びの除去を目的としたスキンパス圧延が施される場合がある、この工程では鋼板に塑性ひずみを導入することを目的として圧延を施す。このとき、鋼板の延性を除去しないように塑性ひずみ量は極めて小さい。このようなスキンパスではロールの圧下と板長手方向の張力を調整し、所定の塑性ひずみ量を得る。すなわち、圧下直下と伸ばされる位置が一致する変形を受ける。そのため、表面近傍は強い摩擦を受け、表層近傍で特異な転位分布となる。これを利用した発明として、特許文献3には表層から50μmの転位密度分布を制御と鋼板組成を適正にし、窒素の最大侵入深さを深くすることで、疲労強度を向上させた例が開示されている。上述した、曲げ曲げ戻し工程においても、同様のメカニズムが寄与しているかを確認するため、発明者らは同文献に記載された方法で、窒化処理前の鋼板表面から板厚方向に50μm以内と、板厚方向の1/4の位置の転位密度の比を調査した。その結果を、表4中に記載している。その結果、曲げ・曲げ戻し工程においては塑性ひずみ量による転位密度比の変化は認められるが、2.0倍以上の転位密度比を得ることが出来ていない。これは、上述した曲げ曲げ戻し工程がロール圧下およびそれによる摩擦を伴わない工程であるため考えられる。 By the way, in the manufacturing process of a steel plate, skin pass rolling may be performed for the purpose of removing yield elongation. In this step, rolling is performed for the purpose of introducing plastic strain into the steel plate. At this time, the amount of plastic strain is extremely small so as not to remove the ductility of the steel sheet. In such a skin pass, the roll reduction and the tension in the longitudinal direction of the plate are adjusted to obtain a predetermined amount of plastic strain. In other words, it undergoes deformation in which the position just below the reduction and the extended position coincide. For this reason, the vicinity of the surface is subjected to strong friction, and the dislocation distribution is unique in the vicinity of the surface layer. As an invention utilizing this, Patent Document 3 discloses an example in which the fatigue strength is improved by controlling the dislocation density distribution of 50 μm from the surface layer, making the steel plate composition appropriate, and increasing the maximum penetration depth of nitrogen. ing. In order to confirm whether or not the same mechanism contributes also in the bending and bending back process described above, the inventors described that the method described in the same document is within 50 μm in the sheet thickness direction from the steel sheet surface before nitriding. The ratio of the dislocation density at the 1/4 position in the plate thickness direction was investigated. The results are listed in Table 4. As a result, in the bending and unbending processes, a change in the dislocation density ratio due to the amount of plastic strain is recognized, but a dislocation density ratio of 2.0 times or more cannot be obtained. This is considered because the above-described bending / bending return step is a step without roll reduction and friction caused thereby.
すなわち、特許文献3の転位密度の特徴が得られていないのは、圧下率0.5%以上5%以下かつ、F/T≧80000のスキンパス圧延を施していないためと考えられる。なお、上記「F」は、圧延機荷重を鋼板板幅で除した線荷重(Kg/mm)を、上記「T」は、鋼板の長手方向に付加される単位面積当たりの荷重(Kg/mm2)を、それぞれ示す。 That is, the reason why the characteristics of dislocation density in Patent Document 3 are not obtained is considered to be because the skin pass rolling with a rolling reduction of 0.5% to 5% and F / T ≧ 80000 is not performed. The “F” is a linear load (Kg / mm) obtained by dividing the rolling mill load by the steel plate width, and the “T” is a load per unit area (Kg / mm) applied in the longitudinal direction of the steel plate. 2 ) are shown respectively.
このように転位密度の比が2.0倍未満であっても十分な疲労強度を満足することから、本発明での窒化プレート部品の疲労強度の向上は、鋼板の転位密度によるものではないと言える。さらに、特許文献3に記載される技術は、最大硬化深さを制御する方法であるが、本願の発明のポイントであるN**の制御は出来ができない。これは表層近傍での転位密度が高いほど、表層近傍に多くの窒素が蓄積され、表層から深い位置へ拡散する窒素量が少なくなるためである。そのため、そもそも窒化プレート部品の疲労強度は満足できない。 Thus, even if the ratio of dislocation density is less than 2.0 times, sufficient fatigue strength is satisfied. Therefore, the improvement of the fatigue strength of the nitride plate component in the present invention is not due to the dislocation density of the steel sheet. I can say that. Furthermore, the technique described in Patent Document 3 is a method for controlling the maximum curing depth, but N ** , which is the point of the present invention, cannot be controlled. This is because the higher the dislocation density in the vicinity of the surface layer, the more nitrogen is accumulated in the vicinity of the surface layer, and the amount of nitrogen diffused from the surface layer to a deep position is reduced. Therefore, the fatigue strength of nitride plate parts is not satisfactory in the first place.
また、せん断加工とプレス成形については、特に限定されるものではなく、当業者に知られた方法により、適宜行うことができる。 Moreover, about a shearing process and press molding, it is not specifically limited, It can carry out suitably by the method known to those skilled in the art.
2.3 ガス軟窒化処理
最後に、アンモニアガスが30%超の体積構成比の雰囲気で、500℃以上、620℃未満の温度に調整された密閉炉内にて、60分以上の時間、せん断加工およびプレス成形された鋼板を滞在させて窒化させる。以上により、窒化プレート部品を得ることができる。
2.3 Gas soft nitriding treatment Finally, in an atmosphere having a volume composition ratio of more than 30% ammonia gas, shearing was performed for 60 minutes or longer in a closed furnace adjusted to a temperature of 500 ° C. or higher and lower than 620 ° C. The processed and press-formed steel sheet stays and is nitrided. Thus, a nitride plate component can be obtained.
以下、窒化プレート部品の窒素含有量を満たすガス軟窒化処理条件の限定理由を述べる。まず、アンモニアガスが30%以下の体積構成比の雰囲気でガス軟窒化処理を行った場合、プレス部品に供給される窒素が減少し、N*が質量で0.4000%以上とならないほか、N**が質量で0.0600%以上とならない。雰囲気中におけるアンモニアガスの体積構成比は、30%超であればよいが、好ましくは40%以上である。また、雰囲気中におけるアンモニアガスの体積構成比は、好ましくは65%以下、好ましくは55%以下である。 The reasons for limiting the gas soft nitriding conditions that satisfy the nitrogen content of the nitride plate parts will be described below. First, when gas soft nitriding is performed in an atmosphere with a volume composition ratio of 30% or less of ammonia gas, the nitrogen supplied to the pressed parts is reduced and N * does not exceed 0.4000% by mass. ** does not exceed 0.0600% by mass. The volume composition ratio of ammonia gas in the atmosphere may be more than 30%, but is preferably 40% or more. The volume composition ratio of ammonia gas in the atmosphere is preferably 65% or less, and preferably 55% or less.
また、処理温度が500℃未満でも、アンモニアガスの分解反応が抑制され、N*が0.4000%以上とならない。一方、処理温度が620℃以上では、表層化合物層の成長が支配的になる結果、N**が質量で0.0600%以上とならない。処理温度は、好ましくは520℃以上、より好ましくは540℃以上である。また処理温度は、好ましくは、600℃以下、より好ましくは580℃以下である。 Further, even when the treatment temperature is less than 500 ° C., the decomposition reaction of ammonia gas is suppressed, and N * does not become 0.4000% or more. On the other hand, when the processing temperature is 620 ° C. or higher, the growth of the surface compound layer becomes dominant, and as a result, N ** does not become 0.0600% or higher by mass. The treatment temperature is preferably 520 ° C. or higher, more preferably 540 ° C. or higher. The treatment temperature is preferably 600 ° C. or lower, more preferably 580 ° C. or lower.
さらに窒化処理時間は60分未満では拡散時間が短くN**が質量で0.0600%以上とならない。なお、処理時間は長時間のほうがN**を高めることが出来るが、ガス軟窒化処理コストが高まる。好ましくは270分以下の範囲とすれば、経済性とガス軟窒化プレート部品の耐久性能を両立できる。また、処理時間は、60分以上であればよいが、好ましくは90分以上である。 以上が本発明の製品の特徴と、製造方法の限定理由である。 Further, when the nitriding time is less than 60 minutes, the diffusion time is short and N ** does not become 0.0600% or more by mass. Note that N ** can be increased when the treatment time is long, but the gas soft nitriding treatment cost is increased. If it is preferably within the range of 270 minutes or less, both economic efficiency and durability of the gas soft nitriding plate part can be achieved. The treatment time may be 60 minutes or longer, but preferably 90 minutes or longer. The above is the feature of the product of the present invention and the reason for limiting the manufacturing method.
次に、本発明の実施例について説明する。なお、以下に示す実施例はあくまでも本発明の一例であって、本発明は、以下の実施例に限定されるものではない。 Next, examples of the present invention will be described. The following embodiments are merely examples of the present invention, and the present invention is not limited to the following embodiments.
表1に示したTry1〜11の成分の範囲のスラブを用いて、表4に示した製造方法で図1の形状の窒化処理プレート部品を試作した。なお、表4、5中、「Q」、「O」、「T」は、表2、3に記載される「Q」、「O」、「T」と同一の鋼板コイルであり、窒化プレート部品の製造に供した鋼板の長手方向における位置のみ異なっている。したがって、冷却停止温度(CT)が若干表2、表3に記載される温度と異なっている。試作した窒化プレート部品の疲労試験は、周波数25Hz、応力比1とし繰返し負荷を与え、107回まで破断しなかった応力振幅を疲労強度と定義した。応力値は、図3中の灰色の位置に円周方向にひずみゲージを添付し、測定された値を採用した。結果を表5に示す。なお、表4、5中の各記号は、表2、3に記載される記号と同様の意味を表す。また合否は前述の疲労強度が517MPa以上を閾値としている。
ガス軟窒化処理による窒素侵入がない領域としての表5中の「せん断端面から5mmの位置の板厚中心N量」は、せん断端面から法線方向に5mm離れた部分の板厚方向中心部を原点とし、原点から板厚中心線に沿って0.003mmの間隔で窒素含有量を3箇所測定することを、任意のせん断端面3箇所で行い、それらの測定結果の平均値を表5に記載した。この窒素含有量の測定を除き、ガス軟窒化処理による窒素侵入がない領域として、せん断端面を含む窒化プレート部品の表面から0.6mm以上離れた位置における化学組成の分析を行なっていないが、表1の使用した鋼材の成分の取鍋分析結果を0.6mm以上離れた位置における化学組成の分析結果と看做すれば、表1の鋼材の窒素含有量の取鍋分析値と、表3の窒化プレート部品の窒素含有量の分析値はほぼ同じ値である。このことから、表面から0.6mm以上離れるとガス軟窒化処理による窒素侵入がないことが確認できる。また、窒素含有量についても、窒化プレート部品に使用した鋼板の化学組成の分析結果(取鍋分析値など)を、せん断端面を含む窒化プレート部品の表面から0.6mm以上離れた位置の化学組成と看做してもよいことも確認できる。またJIS G1258の発光分光文分析方法を用いることも可能である。
A nitriding plate component having the shape of FIG. 1 was prototyped by the manufacturing method shown in Table 4 using slabs in the range of components of Try 1 to 11 shown in Table 1. In Tables 4 and 5, “Q”, “O”, and “T” are the same steel plate coils as “Q”, “O”, and “T” described in Tables 2 and 3, and are nitride plates. Only the position in the longitudinal direction of the steel sheet used for manufacturing the parts is different. Therefore, the cooling stop temperature (CT) is slightly different from the temperatures described in Tables 2 and 3. In the fatigue test of the prototyped nitride plate part, a stress amplitude which was not repeatedly broken up to 10 7 times was defined as fatigue strength by applying a repeated load with a frequency of 25 Hz and a stress ratio of 1. As the stress value, a strain gauge was attached to the gray position in FIG. 3 in the circumferential direction, and the measured value was adopted. The results are shown in Table 5. In addition, each symbol in Tables 4 and 5 represents the same meaning as the symbols described in Tables 2 and 3. The acceptance / rejection has a threshold value of the above-mentioned fatigue strength of 517 MPa or more.
The “thickness center N amount at a position 5 mm from the shear end face” in Table 5 as a region where there is no nitrogen intrusion due to gas soft nitriding is the thickness center in the part 5 mm away from the shear end face in the normal direction. Measuring the nitrogen content at three locations at 0.003 mm intervals from the origin along the thickness center line from the origin is performed at three arbitrary shear end faces, and the average value of the measurement results is shown in Table 5 did. Except for the measurement of the nitrogen content, the chemical composition was not analyzed at a position 0.6 mm or more away from the surface of the nitrided plate part including the shear end face as a region where nitrogen intrusion by gas soft nitriding was not caused. If the ladle analysis result of the steel material used in 1 is regarded as the analysis result of the chemical composition at a position separated by 0.6 mm or more, the ladle analysis value of the nitrogen content of the steel material in Table 1 and The analytical values of the nitrogen content of the nitride plate parts are almost the same. From this, it can be confirmed that there is no nitrogen intrusion due to gas soft nitriding when the distance from the surface is 0.6 mm or more. In addition, regarding the nitrogen content, the chemical composition analysis results (such as ladle analysis values) of the steel plates used for the nitride plate parts are located at a distance of 0.6 mm or more from the surface of the nitride plate parts including the shear end face. It can also be confirmed that it may be considered. It is also possible to use the emission spectral statement analysis method of JIS G1258.
疲労試験の結果、N*およびN**を満足した試験番号24〜27、31〜33、37〜39、45〜48、51および52でのみ疲労強度が浸炭プレート部品以上の結果であった。なお、試験番号23、30および36は塑性ひずみ量が0.03%未満であり、N*が質量で0.4000%未満であった。一方、塑性ひずみ量が3.00%を超えた試験番号28、34および40は例外なくN*が質量で1.2000%を超えていた。さらに、塑性ひずみ量が0.03%以上、3.00%未満であっても、ひずみ付与後にコイル巻戻しを行った試験番号29、35、41、53、54および55ではN*が質量で0.7000%未満となった。アンモニアガス比率が30%以下となる試験番号42、43はN*が質量で0.7%未満であり、N**が質量で0.0600%未満となる。処理温度が500℃未満である試験番号49ではN*が質量で0.4%未満となり、処理温度が620℃以上の試験番号50ではN**が質量で0.0600%未満となった。また、処理時間が50分の試験番号44はN**が質量で0.0600%未満となった。以上から、本発明の要件の妥当性が検証された。 As a result of the fatigue test, the fatigue strength was the result of the carburized plate parts or more only in the test numbers 24 to 27, 31 to 33, 37 to 39, 45 to 48, 51 and 52 satisfying N * and N ** . In Test Nos. 23, 30 and 36, the amount of plastic strain was less than 0.03%, and N * was less than 0.4000% by mass. On the other hand, the test numbers 28, 34 and 40 in which the plastic strain amount exceeded 3.00% had N * exceeding 1.2,000% by mass without exception. Furthermore, even if the plastic strain amount is 0.03% or more and less than 3.00%, N * is a mass in the test numbers 29, 35, 41, 53, 54 and 55 in which the coil is rewound after the strain is applied. It became less than 0.7000%. In test numbers 42 and 43 in which the ammonia gas ratio is 30% or less, N * is less than 0.7% by mass, and N ** is less than 0.0600% by mass. In test number 49 where the treatment temperature was less than 500 ° C., N * was less than 0.4% by mass, and in test number 50 where the treatment temperature was 620 ° C. or more, N ** was less than 0.0600% by mass. Further, in test number 44 with a processing time of 50 minutes, N ** was less than 0.0600% by mass. From the above, the validity of the requirements of the present invention was verified.
なお、本発明者らは、特許文献1および3に記載の方法では、N*およびN**を上述した範囲内とすることが困難であることを実験的に確認した。 In addition, the present inventors experimentally confirmed that it is difficult to make N * and N ** within the above-described range by the methods described in Patent Documents 1 and 3.
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
Claims (2)
窒素を除く化学組成が、質量%で、
C:0.025%以上、0.113%以下、
Si:0.10%以下、
Mn:0.71%以上、1.49%以下
P:0.020%以下、
S:0.0200%以下、
Ti:0.020%以上、0.091%以下、
Cr:0.130%以上、0.340%以下、
Al:0.10%以上、0.35%以下、
Nb:0.001%以上0.020%以下、
Mo:0.001%以上0.140%以下、
V:0.001%以上0.100%以下、
B:0.0001%以上0.0030%以下、
Cu:0.00%以上0.13%以下、
Ni:0.00%以上0.08%未満、
W:0.00%以上0.07%以下、
Co:0.00%以上0.07%以下、
Ca:0.0000%以上0.0070%未満、
Mg:0.0000%以上0.0050%未満、
REM:0.0000%以上0.0050%未満、および
残部:Feおよび不純物を含有し、金属組織中におけるフェライト組織の面積率が70%以下である窒化プレート部品において、
当該窒化プレート部品のせん断端面からせん断端面法線方向への距離が0.05mm以上、0.10mm以下の範囲の窒素平均含有量が質量%で0.4000%以上、1.2000%以下、かつ0.015mm以上、0.200mm以下の最低窒素含有量が0.0600%以上であり、
窒化処理による窒素侵入がない領域の窒素含有量として、当該窒化プレート部品のせん断端面からせん断端面法線方向に少なくとも5mm以上離れた部分の板厚方向中心部を原点とし、原点から板厚中心線に沿って1mm離れた位置までの区間で3乃至5箇所で窒素含有量を線上測定し、その窒素含有量の平均値が0.0007%以上、0.0300%以下である、窒化プレート部品。 A nitride plate part having a shear end face,
The chemical composition excluding nitrogen is mass%,
C: 0.025% or more, 0.113% or less,
Si: 0.10% or less,
Mn: 0.71% or more, 1.49% or less P: 0.020% or less,
S: 0.0200% or less,
Ti: 0.020% or more, 0.091% or less,
Cr: 0.130% or more, 0.340% or less,
Al: 0.10% or more, 0.35% or less,
Nb: 0.001% or more and 0.020% or less,
Mo: 0.001% or more and 0.140% or less,
V: 0.001% to 0.100%,
B: 0.0001% or more and 0.0030% or less,
Cu: 0.00% or more and 0.13% or less,
Ni: 0.00% or more and less than 0.08%,
W: 0.00% or more and 0.07% or less,
Co: 0.00% or more and 0.07% or less,
Ca: 0.0000% or more and less than 0.0070%,
Mg: 0.0000% or more and less than 0.0050%,
In the nitride plate component containing REM: 0.0000% or more and less than 0.0050%, and the balance: Fe and impurities, and the area ratio of the ferrite structure in the metal structure is 70% or less,
The nitrogen average content in the range of 0.05 mm or more and 0.10 mm or less in the distance from the shear end face to the shear end face normal direction of the nitride plate part is 0.4000% or more and 1.2000% or less in mass%, and The minimum nitrogen content of 0.015 mm or more and 0.200 mm or less is 0.0600% or more,
Nitrogen content in the region where no nitrogen intrusion occurs due to nitriding treatment, the origin is the thickness direction center of the nitride plate part at least 5 mm away from the shear end face in the normal direction of the shear end face, and the thickness center line from the origin A nitrogen plate component in which the nitrogen content is measured on a line at 3 to 5 points in a section up to a position 1 mm away along the line, and the average value of the nitrogen content is 0.0007% or more and 0.0300% or less.
C:0.025%以上、0.113%以下、
Si:0.10%以下、
Mn:0.71%以上、1.49%以下
P:0.020%以下、
S:0.0200%以下、
Ti:0.020%以上、0.091%以下、
Cr:0.130%以上、0.340%以下、
Al:0.10%以上、0.35%以下、
N:0.0007%以上、0.0100%以下、
Nb:0.001%以上0.020%以下、
Mo:0.001%以上0.140%以下、
V:0.001%以上0.100%以下、
B:0.0001%以上0.0030%以下、
Cu:0.00%以上0.13%以下、
Ni:0.00%以上0.08%未満、
W:0.00%以上0.07%以下、
Co:0.00%以上0.07%以下、
Ca:0.0000%以上0.0070%未満、
Mg:0.0000%以上0.0050%未満、
REM:0.0000%以上0.0050%未満、および
残部:Feおよび不純物を含有するスラブを、熱延仕上圧延出側温度850℃以上、960℃未満の範囲で熱間圧延を施して鋼板を得、
その後、熱延仕上圧延終了後から3秒以内に冷却を開始し、さらに熱延仕上圧延終了後から29秒以内に前記鋼板を460℃以上、630℃以下まで冷却し、
前記鋼板を巻き取ることで、金属組織中におけるフェライト組織の面積率が70%以下である鋼板コイルとなし、
さらに酸洗した当該鋼板コイルを用いた窒化プレート部品を製造する場合であって、当該鋼板コイルを巻き開いた後に、前記鋼板に塑性ひずみ量にて0.03%以上、3.00%以下範囲の曲げ・曲げ戻しを与え、
再び前記鋼板を巻き直すことなく、せん断加工とプレス成形を施してプレート部品形状とし、
アンモニアガスが30%超の体積構成比の雰囲気で、500℃以上、620℃未満の温度に調整された密閉炉内にて、60分以上の時間、前記鋼板を滞在させて窒化させる、窒化プレート部品の製造方法。 Chemical composition is mass%,
C: 0.025% or more, 0.113% or less,
Si: 0.10% or less,
Mn: 0.71% or more, 1.49% or less P: 0.020% or less,
S: 0.0200% or less,
Ti: 0.020% or more, 0.091% or less,
Cr: 0.130% or more, 0.340% or less,
Al: 0.10% or more, 0.35% or less,
N: 0.0007% or more, 0.0100% or less,
Nb: 0.001% or more and 0.020% or less,
Mo: 0.001% or more and 0.140% or less,
V: 0.001% to 0.100%,
B: 0.0001% or more and 0.0030% or less,
Cu: 0.00% or more and 0.13% or less,
Ni: 0.00% or more and less than 0.08%,
W: 0.00% or more and 0.07% or less,
Co: 0.00% or more and 0.07% or less,
Ca: 0.0000% or more and less than 0.0070%,
Mg: 0.0000% or more and less than 0.0050%,
REM: 0.0000% or more and less than 0.0050%, and balance: slab containing Fe and impurities is hot rolled in a range of hot rolling finish rolling outlet temperature of 850 ° C. or more and less than 960 ° C. Get
Thereafter, cooling is started within 3 seconds after the hot rolling finish rolling is completed, and further, the steel sheet is cooled to 460 ° C. or more and 630 ° C. or less within 29 seconds after the hot rolling finish rolling is finished,
By winding up the steel sheet, the area ratio of the ferrite structure in the metal structure is a steel sheet coil of 70% or less,
Furthermore, in the case of manufacturing a nitride plate part using the pickled steel plate coil, after unrolling the steel plate coil, the steel plate has a plastic strain amount of 0.03% or more and 3.00% or less. Of bending and unbending,
Without re-rolling the steel plate again, it is subjected to shearing and press forming into a plate part shape,
A nitride plate in which the steel sheet is allowed to stay in a closed furnace adjusted to a temperature of 500 ° C. or higher and lower than 620 ° C. for 60 minutes or longer in an atmosphere having a volume composition ratio of ammonia gas of more than 30% and nitrided. A manufacturing method for parts.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015237602 | 2015-12-04 | ||
JP2015237602 | 2015-12-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017106113A true JP2017106113A (en) | 2017-06-15 |
JP6656139B2 JP6656139B2 (en) | 2020-03-04 |
Family
ID=58797403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016235824A Active JP6656139B2 (en) | 2015-12-04 | 2016-12-05 | Nitride plate component and method of manufacturing the same |
Country Status (6)
Country | Link |
---|---|
US (1) | US10808311B2 (en) |
EP (1) | EP3369835B1 (en) |
JP (1) | JP6656139B2 (en) |
KR (1) | KR102107437B1 (en) |
CN (1) | CN108368576B (en) |
WO (1) | WO2017094876A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7436826B2 (en) | 2020-03-27 | 2024-02-22 | 日本製鉄株式会社 | Nitrided parts and manufacturing method of nitrided parts |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12017265B2 (en) * | 2019-02-26 | 2024-06-25 | Jfe Steel Corporation | Method for evaluating bending crack, system for evaluating bending crack, and method for manufacturing press-formed component |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0626560A (en) * | 1991-08-08 | 1994-02-01 | Nissan Motor Co Ltd | Hydraulic coupling with lockup |
JP2009299180A (en) * | 2008-05-13 | 2009-12-24 | Nippon Steel Corp | High strength steel having excellent delayed fracture resistance, high strength bolt, and method for producing the same |
JP2009299181A (en) * | 2008-05-13 | 2009-12-24 | Nippon Steel Corp | High strength steel having excellent delayed fracture resistance, high strength bolt, and method for producing the same |
JP2015127434A (en) * | 2013-12-27 | 2015-07-09 | 株式会社神戸製鋼所 | Case hardened steel with excellent crystal grain coarsening prevention characteristic at carburization treatment |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3619400B2 (en) | 1999-08-31 | 2005-02-09 | 新日本製鐵株式会社 | Steel plate for thick plate disk clutch and manufacturing method thereof |
JP4325245B2 (en) * | 2003-03-27 | 2009-09-02 | Jfeスチール株式会社 | Nitrided member excellent in durability fatigue characteristics and method for producing the same |
JP4462264B2 (en) * | 2006-12-28 | 2010-05-12 | Jfeスチール株式会社 | Manufacturing method of cold rolled steel sheet for nitriding treatment |
CN102089452A (en) | 2009-05-15 | 2011-06-08 | 新日本制铁株式会社 | Steel for nitrocarburizing and nitrocarburized parts |
CN102803542A (en) | 2009-06-17 | 2012-11-28 | 新日本制铁株式会社 | Steel for nitriding and nitrided steel components |
KR101294900B1 (en) | 2010-03-16 | 2013-08-08 | 신닛테츠스미킨 카부시키카이샤 | Steel for nitrocarburization, nitrocarburized components, and production method for same |
WO2013077298A1 (en) | 2011-11-21 | 2013-05-30 | 新日鐵住金株式会社 | Hot-rolled steel sheet for nitriding and cold-rolled steel sheet for nitriding with excellent fatigue strength and manufacturing method therefor, as well as automobile parts of excellent fatigue strength using same |
WO2014002288A1 (en) | 2012-06-27 | 2014-01-03 | Jfeスチール株式会社 | Steel sheet for soft nitriding and process for producing same |
JP5630523B2 (en) | 2013-04-02 | 2014-11-26 | Jfeスチール株式会社 | Steel sheet for nitriding treatment and method for producing the same |
WO2014192117A1 (en) | 2013-05-30 | 2014-12-04 | 新日鐵住金株式会社 | Soft-nitrided induction-quenched steel component |
CN106460121B (en) | 2014-06-13 | 2019-06-07 | 日本制铁株式会社 | Tufftride processing steel plate and its manufacturing method and tufftride handle steel |
-
2016
- 2016-12-02 KR KR1020187017970A patent/KR102107437B1/en active Active
- 2016-12-02 CN CN201680071139.2A patent/CN108368576B/en active Active
- 2016-12-02 US US15/781,396 patent/US10808311B2/en active Active
- 2016-12-02 WO PCT/JP2016/085876 patent/WO2017094876A1/en active Application Filing
- 2016-12-02 EP EP16870811.3A patent/EP3369835B1/en active Active
- 2016-12-05 JP JP2016235824A patent/JP6656139B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0626560A (en) * | 1991-08-08 | 1994-02-01 | Nissan Motor Co Ltd | Hydraulic coupling with lockup |
JP2009299180A (en) * | 2008-05-13 | 2009-12-24 | Nippon Steel Corp | High strength steel having excellent delayed fracture resistance, high strength bolt, and method for producing the same |
JP2009299181A (en) * | 2008-05-13 | 2009-12-24 | Nippon Steel Corp | High strength steel having excellent delayed fracture resistance, high strength bolt, and method for producing the same |
JP2015127434A (en) * | 2013-12-27 | 2015-07-09 | 株式会社神戸製鋼所 | Case hardened steel with excellent crystal grain coarsening prevention characteristic at carburization treatment |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7436826B2 (en) | 2020-03-27 | 2024-02-22 | 日本製鉄株式会社 | Nitrided parts and manufacturing method of nitrided parts |
Also Published As
Publication number | Publication date |
---|---|
KR20180086486A (en) | 2018-07-31 |
US10808311B2 (en) | 2020-10-20 |
CN108368576A (en) | 2018-08-03 |
US20180363122A1 (en) | 2018-12-20 |
EP3369835A4 (en) | 2019-04-17 |
KR102107437B1 (en) | 2020-05-07 |
JP6656139B2 (en) | 2020-03-04 |
EP3369835A1 (en) | 2018-09-05 |
CN108368576B (en) | 2020-04-14 |
EP3369835B1 (en) | 2020-07-01 |
WO2017094876A1 (en) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101540877B1 (en) | Hot-rolled steel for gaseous nitrocarburizing and manufacturing method thereof | |
RU2686713C1 (en) | Element of heat-treated steel sheet and method of its production | |
RU2686715C1 (en) | Element of heat-treated steel sheet and method of its production | |
WO2019181950A1 (en) | High-strength cold-rolled steel sheet and manufacturing method therefor | |
JP4386152B2 (en) | Shot peening projection material, finish line, manufacturing method, and shot peening projection material | |
US9777353B2 (en) | Hot-rolled steel sheet for nitriding, cold-rolled steel sheet for nitriding excellent in fatigue strength, manufacturing method thereof, and automobile part excellent in fatigue strength using the same | |
JP2010018862A (en) | High-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and workability | |
WO2023063010A1 (en) | Hot-rolled steel plate | |
JP5699877B2 (en) | High strength steel plate excellent in galling resistance and method for producing the same | |
KR20200130422A (en) | Martensitic stainless steel plate and its manufacturing method and spring member | |
JP4992277B2 (en) | Steel plate excellent in fine blanking workability and manufacturing method thereof | |
JP6728929B2 (en) | High carbon steel sheet excellent in workability and wear resistance after quenching and tempering and method for producing the same | |
JP2014201764A (en) | Steel sheet for nitriding treatment and manufacturing method therefor | |
JP5194454B2 (en) | Steel plate excellent in fine blanking workability and manufacturing method thereof | |
WO2023149374A1 (en) | Hot-rolled steel sheet | |
JP6656139B2 (en) | Nitride plate component and method of manufacturing the same | |
KR20200108067A (en) | High carbon cold rolled steel sheet and manufacturing method thereof | |
JP4280202B2 (en) | High carbon steel plate with excellent hardenability and stretch flangeability | |
KR102803157B1 (en) | Steel plate for gas softening | |
JP7303476B2 (en) | Non-oriented electrical steel sheet, motor core, method for manufacturing non-oriented electrical steel sheet, and method for manufacturing motor core | |
RU2574539C2 (en) | High-strength hot-rolled steel sheet of fine local working ability and method of its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161216 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190610 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190610 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6656139 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |