[go: up one dir, main page]

JP2017092168A - Semiconductor module and power converter - Google Patents

Semiconductor module and power converter Download PDF

Info

Publication number
JP2017092168A
JP2017092168A JP2015218316A JP2015218316A JP2017092168A JP 2017092168 A JP2017092168 A JP 2017092168A JP 2015218316 A JP2015218316 A JP 2015218316A JP 2015218316 A JP2015218316 A JP 2015218316A JP 2017092168 A JP2017092168 A JP 2017092168A
Authority
JP
Japan
Prior art keywords
semiconductor chip
sintered
wiring layer
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015218316A
Other languages
Japanese (ja)
Inventor
俊章 守田
Toshiaki Morita
俊章 守田
玄也 能川
Genya Nokawa
玄也 能川
雄亮 保田
Yusuke Yasuda
雄亮 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015218316A priority Critical patent/JP2017092168A/en
Publication of JP2017092168A publication Critical patent/JP2017092168A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor module which bonds a semiconductor chip and a wiring layer with higher heat resistance and higher durability, and a power converter.SOLUTION: A semiconductor module 200 comprises: an insulation substrate 210; a wiring layer 212 formed on the insulation substrate; a semiconductor chip 100 arranged so as to be superposed on the wiring layer, and having a terminal electrically connected to the wiring layer; and a metallic sintered bonding layer 214 fixing and electrically connecting between the wiring layer and the semiconductor chip, and the wiring layer has a groove part at the inside of the outer edge of the overlapping semiconductor chip in plan view.SELECTED DRAWING: Figure 3

Description

本発明は、半導体モジュール及び電力変換装置に関し、例えば、モータを使用する設備などに適用して好適なものである。   The present invention relates to a semiconductor module and a power conversion device, and is suitable for application to equipment using a motor, for example.

インバータ等の電力変換装置においては、用いられるスイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等を使用したパワー半導体モジュールが用いられている。このような半導体モジュールにおいて使用される半導体チップは、それぞれ数100Aの大電流を扱うものであるため、各々の半導体チップは大きな発熱を伴ってスイッチング動作を行うこととなる。   In power converters such as inverters, power semiconductor modules using IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), etc. are used as switching elements. Since the semiconductor chips used in such a semiconductor module each handle a large current of several hundreds A, each semiconductor chip performs a switching operation with a large amount of heat generation.

特許文献1には、金属基板と半導体素子の接合部における接合材の厚みが半導体素子の中心から外周部にいくほど厚くなるようにした構成が開示されている。   Patent Document 1 discloses a configuration in which the thickness of the bonding material at the bonding portion between the metal substrate and the semiconductor element is increased from the center of the semiconductor element to the outer peripheral portion.

特開2015−015335号公報JP2015-015335A

近年、半導体モジュールの更なる小型化が求められており、発熱密度が更に上昇する傾向にある。耐熱性を確保するために、半導体チップと配線層の接合には従来は融点が300℃程度、鉛含有率85%以上の高鉛はんだが用いられていた。しかし半導体装置の鉛フリー化が進み、鉛フリーのはんだ材として、Sn−Cu系はんだ、Sn−Ag系はんだ、Sn−Sb系はんだ等が知られているが、これらは融点が200℃程度であり、耐熱性に関しては不十分な材料であった。   In recent years, further miniaturization of semiconductor modules has been demanded, and the heat generation density tends to further increase. In order to ensure heat resistance, high lead solder having a melting point of about 300 ° C. and a lead content of 85% or more has been conventionally used for joining the semiconductor chip and the wiring layer. However, as lead-free soldering of semiconductor devices has progressed, Sn-Cu solder, Sn-Ag solder, Sn-Sb solder, and the like are known as lead-free solder materials, but these have a melting point of about 200 ° C. Yes, the material was insufficient in terms of heat resistance.

これに対して、銀や銅のナノ粒子の低温焼成機能を利用した焼結接合がこれらに代わる材料として知られている。粒径が100nm以下の銀ナノ粒子では、構成原子数が少なくなり粒子の体積に対する表面積比は急激に増大し、融点や焼結温度がバルクの状態に比較して大幅に低下する。この低温焼成機能を利用して銀粒子同士を焼結させて接合することで、接合後はバルク銀へと変化すると同時に接合界面では金属結合により接合されているため、非常に高い耐熱性と高放熱性を有する。   On the other hand, sintered joining using the low-temperature firing function of silver or copper nanoparticles is known as an alternative material. In silver nanoparticles having a particle size of 100 nm or less, the number of constituent atoms is decreased, the surface area ratio to the volume of the particles is rapidly increased, and the melting point and sintering temperature are greatly reduced as compared with the bulk state. By using this low-temperature firing function to sinter silver particles together, they change into bulk silver after bonding, and at the same time are bonded by metal bonds at the bonding interface, so they have extremely high heat resistance and high resistance. Has heat dissipation.

このような焼結接合法では、加圧プロセスを経て接合層の焼結密度を向上させるため、加圧の際、接合材が半導体チップ外にはみ出してしまうことがある。この接合材がはみ出した部位には圧力が加わらないため、焼結性は脆い状態となり、この脆い部分が剥がれ落ちると、例えばゲートとエミッタ間の短絡の原因となり、製造歩留りを低減させるおそれがあった。   In such a sintered joining method, the sintered density of the joining layer is improved through a pressurizing process, and thus the joining material sometimes protrudes outside the semiconductor chip during pressurization. Since no pressure is applied to the part where the bonding material protrudes, the sinterability becomes brittle, and if this brittle part peels off, it may cause a short circuit between the gate and the emitter, for example, which may reduce the manufacturing yield. It was.

一方で半導体チップの動作温度が高くなると、半導体チップの熱膨張率と配線材料の熱膨張率とに差があるために、これらの間の半導体チップの接合部には応力が加わり、更に、スイッチング動作(通電のONとOFFの動作)を繰り返すうちに熱疲労が生じるため、使用により接合部が破壊してしまうおそれもあった。   On the other hand, when the operating temperature of the semiconductor chip is increased, there is a difference between the coefficient of thermal expansion of the semiconductor chip and the coefficient of thermal expansion of the wiring material. Thermal fatigue occurs while repeating the operation (ON / OFF operation), and there is a possibility that the joint may be destroyed by use.

本発明は以上の点を考慮してなされたもので、半導体チップと配線層とをより高い耐熱性、及びより高い耐久性で接合する半導体モジュール及び電力変換装置を提供しようとするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor module and a power conversion device that join a semiconductor chip and a wiring layer with higher heat resistance and higher durability.

かかる課題を解決するため本発明の半導体モジュールは、絶縁基板と、前記絶縁基板上に形成された配線層と、前記配線層に重ねて配置され、前記配線層と電気的に接続される一端子を有する半導体チップと、前記配線層と前記半導体チップとの間を固定すると共に、電気的に接続する金属の焼結接合層と、を備え、前記配線層は、平面視において、重畳する前記半導体チップの外縁より内側に溝部を有していることを特徴とする半導体モジュールである。   In order to solve such a problem, a semiconductor module according to the present invention includes an insulating substrate, a wiring layer formed on the insulating substrate, and a terminal that is disposed on the wiring layer and is electrically connected to the wiring layer. And a metal sintered bonding layer that fixes and electrically connects between the wiring layer and the semiconductor chip, and the wiring layer overlaps in plan view A semiconductor module having a groove inside an outer edge of a chip.

また、本発明の電力変換装置は、本発明の半導体モジュールを複数備え、前記複数の半導体モジュールのうち、いずれか2つのゲートに異なるタイミングの波形信号が入力されることを特徴とする電力変換装置である。   Moreover, the power converter device of this invention is equipped with two or more semiconductor modules of this invention, The waveform signal of a different timing is input into any two gates among these semiconductor modules, The power converter device characterized by the above-mentioned. It is.

本発明によれば、半導体モジュール及び電力変換装置において、半導体チップと配線層とをより高い耐熱性、及びより高い耐久性で接合することができる。   According to the present invention, in a semiconductor module and a power conversion device, a semiconductor chip and a wiring layer can be bonded with higher heat resistance and higher durability.

本発明の一実施の形態に係る半導体モジュールを示す平面図である。It is a top view which shows the semiconductor module which concerns on one embodiment of this invention. 図1の半導体モジュールのA−A断面を示す図である。It is a figure which shows the AA cross section of the semiconductor module of FIG. 半導体チップとその周辺について示す断面図である。It is sectional drawing shown about a semiconductor chip and its periphery. 半導体チップに重畳する配線層及び焼結接合層について説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the wiring layer and sintered joining layer which overlap with a semiconductor chip. 半導体チップに重畳する配線層及び焼結接合層について説明するための平面概略図である。It is a plane schematic diagram for demonstrating the wiring layer and sintered joining layer which overlap with a semiconductor chip. 配線層の溝部が、アクティブエリアの内側に形成されている例について、図5と同様の視野により示す図である。FIG. 6 is a view showing an example in which the groove portion of the wiring layer is formed inside the active area, with the same field of view as FIG. 5. 焼結接合層の第1の形成例及び比較サンプルのパワーサイクル試験結果を示すグラフである。It is a graph which shows the power cycle test result of the 1st example of formation of a sintered joining layer, and a comparative sample. 本実施の形態の半導体モジュールを使用した電力変換装置の実施の形態について示す回路図である。It is a circuit diagram shown about embodiment of the power converter device using the semiconductor module of this Embodiment.

以下図面について、本発明の一実施の形態を詳述する。以下の説明において、同様の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following description, similar elements are denoted by the same reference numerals, and redundant description is omitted.

(1)本実施の形態における半導体モジュール200の構成
図1及び2は、本発明の一実施の形態に係る半導体モジュール200を示す図であり、図1は平面図、図2は図1のA−A断面を示す図である。これらの図に示されるように半導体モジュール200は、セラミックスからなる絶縁基板210上に形成された配線層212にCuの焼結金属からなる焼結接合層214を介して半導体チップ100が取り付けられ、半導体チップ100上の端子に取り付けられたボンディングワイヤ207は、絶縁基板210上に形成された別の配線層212に接続されている。また、絶縁基板210に形成された配線層205は、はんだ層204を介して支持部材201に接合される。支持部材201上には、絶縁基板210を囲むようにケース202が取り付けられ、そのケース202に取り付けられた外部端子216には、半導体チップ100上の別の端子と電気的に接続するワイヤ208が接続されている。絶縁基板210は、半導体チップ100等を含めて、ケース202内で封止材206により封止されている。
(1) Configuration of Semiconductor Module 200 in the Present Embodiment FIGS. 1 and 2 are diagrams showing a semiconductor module 200 according to an embodiment of the present invention. FIG. 1 is a plan view, and FIG. It is a figure which shows -A cross section. As shown in these drawings, in the semiconductor module 200, the semiconductor chip 100 is attached to the wiring layer 212 formed on the insulating substrate 210 made of ceramics via the sintered bonding layer 214 made of a sintered metal of Cu, Bonding wires 207 attached to terminals on the semiconductor chip 100 are connected to another wiring layer 212 formed on the insulating substrate 210. Further, the wiring layer 205 formed on the insulating substrate 210 is bonded to the support member 201 via the solder layer 204. A case 202 is attached to the support member 201 so as to surround the insulating substrate 210, and a wire 208 electrically connected to another terminal on the semiconductor chip 100 is connected to the external terminal 216 attached to the case 202. It is connected. The insulating substrate 210 is sealed with a sealing material 206 in the case 202 including the semiconductor chip 100 and the like.

ここで絶縁基板210はセラミックスに限らず、樹脂等その他の絶縁材料からなる基板を用いることができる。また、配線層212及び205は銅配線であることとするが、他の導電材料を用いることとしてもよい。図1では、半導体モジュール200に8つの半導体チップ100が描かれているが、半導体モジュール200に用いられる半導体チップ100の数は1つであっても、複数であってもよい。また、焼結接合層214の焼結金属をCuとしたが、Ag等の他の金属であってもよい。   Here, the insulating substrate 210 is not limited to ceramics, and a substrate made of another insulating material such as a resin can be used. The wiring layers 212 and 205 are copper wirings, but other conductive materials may be used. In FIG. 1, eight semiconductor chips 100 are depicted in the semiconductor module 200, but the number of semiconductor chips 100 used in the semiconductor module 200 may be one or plural. In addition, although the sintered metal of the sintered bonding layer 214 is Cu, other metals such as Ag may be used.

図3は半導体チップ100とその周辺について示す断面図である。本実施の形態において、半導体チップ100は12mm×12mmのIGBTチップとするが、他のサイズの半導体チップであっても、MOSFET等他の構成の半導体チップであってもよい。半導体チップ100のコレクタ電極102は、絶縁基板210上の配線層212と焼結接合層214で接合されている。半導体チップ100のエミッタ電極101は、ボンディングワイヤ207でセラミックス絶縁基板210上の別の配線層212と結線されている。   FIG. 3 is a cross-sectional view showing the semiconductor chip 100 and its periphery. In the present embodiment, the semiconductor chip 100 is a 12 mm × 12 mm IGBT chip, but it may be a semiconductor chip of another size or a semiconductor chip of another configuration such as a MOSFET. The collector electrode 102 of the semiconductor chip 100 is bonded to the wiring layer 212 on the insulating substrate 210 by the sintered bonding layer 214. The emitter electrode 101 of the semiconductor chip 100 is connected to another wiring layer 212 on the ceramic insulating substrate 210 by a bonding wire 207.

図4及び5は、それぞれ半導体チップ100に重畳する配線層212及び焼結接合層214について説明するための断面概略図及び平面概略図である。これらの図に示されるように、配線層212は、平面視における半導体チップ100の外縁より内側に溝部217を有しており(図5)、溝部217には焼結接合層214が配置される(図6)。このような構成とすることにより、半導体チップ100を加圧するプロセスで配線上に半導体チップ100を焼結接合した際に起こる、焼結接合層214のはみ出しを抑止することができる。このため、焼結接合層214のはみ出しにより、はみ出し部分が剥がれ落ち、例えばゲートとエミッタ間が短絡する等の不良を防止することができる。また、溝部217に形成された焼結接合層214は、他の部分より密度が低くなるため、スイッチング動作の繰り返しによる熱ひずみを吸収することができると共に、より厚い焼結接合層214となるため、クラックが発生しにくくなると共に、クラックが発生したとしても進展を抑えることができる。   FIGS. 4 and 5 are a schematic cross-sectional view and a schematic plan view for explaining the wiring layer 212 and the sintered bonding layer 214 that overlap the semiconductor chip 100, respectively. As shown in these drawings, the wiring layer 212 has a groove 217 inside the outer edge of the semiconductor chip 100 in a plan view (FIG. 5), and the sintered bonding layer 214 is disposed in the groove 217. (FIG. 6). With such a configuration, it is possible to suppress the protrusion of the sintered bonding layer 214 that occurs when the semiconductor chip 100 is sintered and bonded onto the wiring in the process of pressurizing the semiconductor chip 100. For this reason, the protruding portion of the sintered bonding layer 214 is peeled off, and defects such as a short circuit between the gate and the emitter can be prevented. In addition, since the sintered bonding layer 214 formed in the groove 217 has a lower density than the other portions, it can absorb thermal strain due to repeated switching operations, and becomes a thicker sintered bonding layer 214. Further, cracks are less likely to occur, and progress can be suppressed even if cracks occur.

ここで更に溝部217は、半導体チップ100のアクティブエリア109よりも外側に形成されているとしてもよい。このようにアクティブエリア109の外側に形成することにより、アクティブエリア109内の焼結接合層214はより密度の高い、つまり導電性の高いエリアとなるため、半導体チップ100を流れる電流の抵抗を抑えることができると共に、アクティブエリア109の外側では、より密度が低い焼結接合層214となるため、スイッチング動作の繰り返しによる熱ひずみを吸収することができると共に、より厚い焼結接合層214となるため、クラックが発生しにくくなると共に、クラックが発生したとしても進展を抑えることができる。   Here, the groove 217 may be formed outside the active area 109 of the semiconductor chip 100. By forming the outer surface of the active area 109 in this way, the sintered bonding layer 214 in the active area 109 becomes an area having a higher density, that is, a higher conductivity. Therefore, resistance of a current flowing through the semiconductor chip 100 is suppressed. In addition, since the sintered bonding layer 214 has a lower density outside the active area 109, it can absorb the thermal strain due to repeated switching operations, and the thicker sintered bonding layer 214. Further, cracks are less likely to occur, and progress can be suppressed even if cracks occur.

しかしながら、溝部217は、アクティブエリア109の内側に形成されていてもよく、特に、溝部217における焼結接合層214の密度が十分である場合や、半導体チップ100のコレクタ電極102と配線層212との接合が全体として十分な密度である場合等により半導体チップ100のコレクタ電極102と配線層212との導電性に与える影響が小さい場合等には、図6に示されるように、アクティブエリア109の内側に形成されていてもよい。図6の溝部217は、アクティブエリア109の外側を囲う溝部の他、アクティブエリア109を縦横に横切る溝部を有している。ここで、配線層212に設ける溝部217の形成方法には、例えばプレス加工、エッチング加工、切削などを用いることができる。   However, the groove portion 217 may be formed inside the active area 109. In particular, when the density of the sintered bonding layer 214 in the groove portion 217 is sufficient, the collector electrode 102 of the semiconductor chip 100, the wiring layer 212, and the like. As shown in FIG. 6, the active area 109 has a small influence on the conductivity between the collector electrode 102 and the wiring layer 212 of the semiconductor chip 100 due to, for example, the case where the junction of the active area 109 has a sufficient density. It may be formed inside. The groove part 217 in FIG. 6 has a groove part that vertically and horizontally crosses the active area 109 in addition to a groove part that surrounds the outside of the active area 109. Here, as a method for forming the groove 217 provided in the wiring layer 212, for example, pressing, etching, cutting, or the like can be used.

半導体チップ100に重畳する焼結接合層214において、アクティブエリア109に重畳する焼結接合層214の焼結密度は、アクティブエリア109でない領域に重畳する焼結接合層214の焼結密度より高くすることが望ましく、10パーセント以上高くすることが更に望ましい。シミュレーション解析により、10%以上とすると熱応力耐性が約2倍向上し、この結果、パワーサイクル耐性が従来はんだの10倍以上向上することを確認した。   In the sintered bonding layer 214 that overlaps the semiconductor chip 100, the sintered density of the sintered bonding layer 214 that overlaps the active area 109 is higher than the sintered density of the sintered bonding layer 214 that overlaps the region other than the active area 109. It is desirable to increase it by 10% or more. As a result of simulation analysis, it was confirmed that when it is 10% or more, the thermal stress resistance is improved about twice, and as a result, the power cycle resistance is improved more than 10 times that of the conventional solder.

(2)焼結接合層の形成に用いる接合材料及び接合方法
焼結接合層を形成するための接合材料、接合方法としては公知の材料及び方法を適用することが可能である。例えば、接合材料として、平均粒径が1nm〜5μmの酸化銅粒子と有機溶剤とを含む材料を用いることができる。この接合材料を用いて水素雰囲気下で接合を行うことで部材間を接合することができる。特に、Cu、Ni電極に対しても優れた接合強度が得ることができる。この接合では、酸化銅粒子前駆体が還元され、その際に平均粒径が100nm以下の銅粒子が生成され、銅粒子同士が相互に融合することで接合が行なわれるという現象を利用している。平均粒径が100nm以下の銅粒子が生成され、銅粒子同士が相互に融合し、接合に至る機構は、(1)生成した100nm以下の銅粒子が相手電極表面に薄膜層を形成、(2)この層は相手の金属電極板(Cu、Ni等)の結晶成長方向と同一方向に結晶成長しており、(3)さらに薄膜層形成に寄与しなかった銅粒子同士の融合によって焼結層、すなわち接合層を形成し、接合が達成される。前駆体の酸化銅粒子は酸化第一銅、酸化第二銅のどちらでも良い。酸化銅からなる金属酸化物粒子は還元時に酸素のみを発生するために、接合後における残渣も残りにくく、体積減少率も非常に小さい。ここで用いる酸化銅粒子の粒径を平均粒径が1nm以上5μm以下としたのは、平均粒径が5μmより大きくなると、接合中に粒径が100nm以下の金属銅粒子が生成されにくくなり、これにより粒子間の隙間が多くなり、緻密な接合層を得ることが困難になるためである。また、1nm以上としたのは、平均粒子が1nm以下の酸化第二銅粒子前駆体を実際に作製することが困難なためである。後述する第1の形成例における接合プロセスは(1)60℃の熱を約10分間加え、同時に圧力を水素雰囲気中で加える、(2)加圧は加えたまま温度を300℃に上昇させ、15分間保持するプロセスとしたが、これ以外の接合プロセスを用いることもできる。
(2) Joining material and joining method used for forming sintered joining layer Known materials and methods can be applied as joining materials and joining methods for forming the sintered joining layer. For example, as the bonding material, a material containing copper oxide particles having an average particle diameter of 1 nm to 5 μm and an organic solvent can be used. By using this bonding material and bonding in a hydrogen atmosphere, the members can be bonded. In particular, excellent bonding strength can be obtained for Cu and Ni electrodes. In this joining, the copper oxide particle precursor is reduced, copper particles having an average particle size of 100 nm or less are generated at that time, and the phenomenon that joining is performed by the fusion of the copper particles to each other is utilized. . The copper particles having an average particle size of 100 nm or less are generated, the copper particles are fused with each other, and the mechanism of joining is as follows: (1) The generated copper particles of 100 nm or less form a thin film layer on the surface of the counterpart electrode; ) This layer is grown in the same direction as the crystal growth direction of the counterpart metal electrode plate (Cu, Ni, etc.). (3) Further, the sintered layer is formed by the fusion of copper particles that did not contribute to the formation of the thin film layer. That is, a bonding layer is formed and bonding is achieved. The precursor copper oxide particles may be cuprous oxide or cupric oxide. Since metal oxide particles made of copper oxide generate only oxygen during reduction, the residue after joining hardly remains, and the volume reduction rate is very small. The average particle size of the copper oxide particles used here is 1 nm or more and 5 μm or less. When the average particle size is larger than 5 μm, metal copper particles having a particle size of 100 nm or less are less likely to be generated during bonding. This is because the gaps between the particles increase, and it becomes difficult to obtain a dense bonding layer. The reason why the thickness is 1 nm or more is that it is difficult to actually produce a cupric oxide particle precursor having an average particle size of 1 nm or less. In the bonding process in the first formation example described later, (1) heat at 60 ° C. is applied for about 10 minutes, and pressure is simultaneously applied in a hydrogen atmosphere. (2) The temperature is increased to 300 ° C. while applying pressure, Although the process is held for 15 minutes, other bonding processes can be used.

接合材料は、塗布部分を開口したメタルマスクを用いて必要部分にのみ塗布を行う方法、ディスペンサを用いて必要部分に塗布する方法、シリコーンやフッ素等を含む撥水性の樹脂を必要な部分のみ開口したメタルマスクやメッシュ状マスクで塗布したり、感光性のある撥水性樹脂を基板あるいは電子部品上に塗布し、露光および現像することにより接合材料を塗布する部分を除去し、接合用ペーストをその開口部に塗布する方法や、さらには撥水性樹脂を基板あるいは電子部品に塗布後、接合材料を塗布する部分をレーザーにより除去した後、接合用ペーストをその開口部に塗布する方法などにより塗布することができる。これらの塗布方法は、接合する電極の面積、形状に応じて組み合わせて用いることができる。   The bonding material is a method of applying only to the required part using a metal mask with an opening of the application part, a method of applying to the required part using a dispenser, and opening only a required part of a water-repellent resin containing silicone or fluorine. By applying a coated metal mask or mesh mask, or by applying a photosensitive water-repellent resin on a substrate or electronic component, and then exposing and developing to remove the portion where the bonding material is to be applied. After applying the water-repellent resin to the substrate or the electronic component after removing the water-repellent resin on the substrate or the electronic component, the portion to which the bonding material is applied is removed by a laser, and then the bonding paste is applied to the opening. be able to. These coating methods can be used in combination according to the area and shape of the electrodes to be joined.

なお、接合時において、金属粒子前駆体から粒径が100nm以下の金属粒子を生成し、接合層における有機物を排出しながら粒径が100nm以下の金属粒子の融着による金属結合を行うために、熱と0.01〜5MPaの圧力を加えることが好ましい。接合時の雰囲気は水素、ギ酸を含んだ還元雰囲気、非酸化雰囲気でもよい。接合時の加熱還元によって純金属超微粒子を生成させ、この純金属超粒子同士は相互に融合してバルクになる。バルクになった後の溶融温度は通常のバルクの状態での金属の溶融温度と同じであり、純金属超微粒子は低温の加熱で溶融し、溶融後はバルクの状態での溶融温度に加熱されるまで再溶融しないという特徴を有する。これは、純金属超微粒子を用いた場合に低い温度で接合を行うことができ、接合後は溶融温度が向上することから、その後、他の電子部品を接合している際に接合部が再溶融しないというメリットをもたらす。なお、焼結接合層としては、焼結銅の他にも焼結銀も適用が可能であるが、焼結銅を用いることがより好ましい。これは、焼結銀よりも焼結銅の方が空孔拡散が少なく温度上昇に起因するボイド発生が抑制されるためである。上述の接合材、接合方法を半導体チップの電極の接合に用いることにより、優れた接合信頼性を得ることが可能となる。   At the time of bonding, in order to generate metal particles having a particle size of 100 nm or less from the metal particle precursor, and to perform metal bonding by fusion of metal particles having a particle size of 100 nm or less while discharging organic substances in the bonding layer, It is preferable to apply heat and a pressure of 0.01 to 5 MPa. The atmosphere during bonding may be a reducing atmosphere containing hydrogen or formic acid, or a non-oxidizing atmosphere. Pure metal ultrafine particles are generated by heat reduction at the time of joining, and these pure metal ultraparticles are fused together to become a bulk. The melting temperature after becoming bulk is the same as the melting temperature of metals in the normal bulk state, and the ultrafine metal particles are melted by low-temperature heating, and after melting, they are heated to the melting temperature in the bulk state. It does not re-melt until This is because when pure metal ultrafine particles are used, bonding can be performed at a low temperature, and the melting temperature is improved after bonding. The advantage of not melting. As the sintered bonding layer, sintered silver can be applied in addition to sintered copper, but it is more preferable to use sintered copper. This is because sintered copper has less vacancy diffusion than sintered silver, and void generation due to temperature rise is suppressed. By using the bonding material and the bonding method described above for bonding the electrodes of the semiconductor chip, it is possible to obtain excellent bonding reliability.

(3)焼結接合層の第1の形成例
本実施の形態における焼結接合層214の第1の形成例では、焼結接合層214は、88wt%の酸化第二銅粒子(接合後は純銅化)と12wt%のジエチレングリコールモノブチルエーテルを混合した接合材料を用いて形成した。焼結接合層214の厚さは80μmである。溝部217は20マイクロメートルの深さで形成しており、焼結接合層214で埋められている。
(3) First Formation Example of Sintered Joining Layer In the first formation example of the sintered joining layer 214 in the present embodiment, the sintered joining layer 214 is composed of 88 wt% cupric oxide particles (after joining). It was formed using a bonding material in which pure copper) and 12 wt% diethylene glycol monobutyl ether were mixed. The thickness of the sintered bonding layer 214 is 80 μm. The groove 217 is formed with a depth of 20 micrometers and is filled with the sintered bonding layer 214.

第1の形成例の焼結接合層214の形成方法を説明する。絶縁基板210の配線層212上の接合箇所にメタルマスクによって接合材料を印刷し、その上に半導体チップ100を配置する。次に、0.01MPaで加圧状態にし、水素中で温度を300℃に上昇させて15分間保持する。なお、本形成例では圧力を加えたままとしたが、300℃保持時では加圧は必須ではない。以上のプロセスにより、半導体チップ100のコレクタ電極102と、溝部217を形成した配線層212とを焼結接合層214で接合した。この形成方法では、焼結接合層214の平坦部焼結密度は約80%(空隙率20%)、溝部217の焼結密度は約50%(空隙率50%)であった。   A method for forming the sintered bonding layer 214 of the first formation example will be described. A bonding material is printed by a metal mask on a bonding portion on the wiring layer 212 of the insulating substrate 210, and the semiconductor chip 100 is disposed thereon. Next, the pressure is increased to 0.01 MPa, and the temperature is increased to 300 ° C. in hydrogen and held for 15 minutes. In addition, although the pressure was kept applied in this formation example, pressurization is not essential when the temperature is maintained at 300 ° C. Through the above process, the collector electrode 102 of the semiconductor chip 100 and the wiring layer 212 in which the groove 217 is formed are joined by the sintered joining layer 214. In this forming method, the sintered density of the flat portion of the sintered bonding layer 214 was about 80% (porosity 20%), and the sintered density of the groove portion 217 was about 50% (porosity 50%).

本形成例で作製した半導体モジュール200に対してパワーサイクル試験を実施した。パワーサイクル試験とは、半導体チップ100に所定の電流を所定時間流し、半導体チップ100自体を発熱させ、所定の温度Tjmax(本試験では175℃)に上昇させた後、電流をオフし、所定の温度に冷却(本試験では室温)後、再び通電するという半導体チップ100自体の発熱、冷却を繰り返す試験であり、半導体モジュール200における重要な信頼性試験の一つである。   A power cycle test was performed on the semiconductor module 200 manufactured in this example. In the power cycle test, a predetermined current is passed through the semiconductor chip 100 for a predetermined time to cause the semiconductor chip 100 to generate heat, and after raising the temperature to a predetermined temperature Tjmax (175 ° C. in this test), the current is turned off, This is a test in which heat generation and cooling of the semiconductor chip 100 are repeated in which power is supplied again after cooling to temperature (room temperature in this test), and is one of important reliability tests in the semiconductor module 200.

図7はパワーサイクル試験結果を示すグラフである。符号502は第1の形成例についての試験結果を示している。グラフの横軸は発熱、冷却のサイクル数、縦軸はTjmax値の推移を示している。Tjmax値は175℃と設定としているが、半導体チップ100のチップ下接合部、チップ上接合部に損傷が生じ、さらに損傷が進展するとその値が上昇する。本試験では設定されたTjmax値からの上昇割合が設定値の15%上昇時を寿命と判断した。比較のために、溝部217を設けない構造で同一条件で形成した比較サンプルを作製し、同様にパワーサイクル試験を実施した結果を符号501に併せて示す。Tjmaxは150℃である。   FIG. 7 is a graph showing the power cycle test results. Reference numeral 502 indicates a test result for the first formation example. The horizontal axis of the graph shows the number of cycles of heat generation and cooling, and the vertical axis shows the transition of the Tjmax value. Although the Tjmax value is set to 175 ° C., damage occurs in the lower chip joint and the upper chip joint of the semiconductor chip 100, and the value increases as the damage further progresses. In this test, the lifetime was determined when the rate of increase from the set Tjmax value increased by 15% of the set value. For comparison, a comparative sample formed under the same conditions with a structure in which the groove 217 is not provided is produced, and the result of performing the power cycle test in the same manner is also indicated by reference numeral 501. Tjmax is 150 ° C.

図7において、比較サンプル501では約1万回でゲートとエミッタ間で短絡不良を生じ、試験継続不能となった。目標サイクル試験回数は10万回以上であり、目標の1/10程度の結果となった。この原因は、比較サンプル501では焼結層のはみ出しが多く、これが剥がれ落ちたため、配線間の短絡の要因となったと考えられる。一方、第1の形成例502の半導体モジュール200では、サイクル寿命は約50万回と、大幅な信頼性向上を示すことができた。第1の形成例502の半導体モジュール200では、焼結接合層214端部に集中する熱ひずみが小さくなっており、接合部の長寿命化を図ることができる。   In FIG. 7, in the comparative sample 501, a short circuit failure occurred between the gate and the emitter about 10,000 times, and the test could not be continued. The target cycle test number was 100,000 times or more, which was about 1/10 of the target. This is probably because the comparative sample 501 had a large amount of protrusion of the sintered layer, which peeled off and caused a short circuit between the wirings. On the other hand, in the semiconductor module 200 of the first formation example 502, the cycle life was about 500,000 times, which showed a significant improvement in reliability. In the semiconductor module 200 of the first formation example 502, the thermal strain concentrated on the end of the sintered bonding layer 214 is reduced, and the life of the bonded portion can be extended.

(4)焼結接合層の第2の形成例
第2の形成例では、接合時の予備乾燥条件を調整することによって焼結接合層214を形成した例を説明する。絶縁基板210の配線層212上の接合箇所にメタルマスクによって接合材料を印刷し、その上に半導体チップ100を配置する。この状態で大気中60℃の熱を約20分間加える。次に、0.1MPaで加圧状態にし、水素中で温度を昇温速度5℃/minで300℃に上昇させて15分間保持する。以上のプロセスにより、半導体チップ100と配線層212を焼結接合層214を介して接合した。
(4) Second Formation Example of Sintered Joining Layer In the second formation example, an example will be described in which the sintered joining layer 214 is formed by adjusting predrying conditions during joining. A bonding material is printed by a metal mask on a bonding portion on the wiring layer 212 of the insulating substrate 210, and the semiconductor chip 100 is disposed thereon. In this state, heat at 60 ° C. in the atmosphere is applied for about 20 minutes. Next, the pressure is increased to 0.1 MPa, the temperature is increased in hydrogen to 300 ° C. at a rate of temperature increase of 5 ° C./min, and held for 15 minutes. Through the above process, the semiconductor chip 100 and the wiring layer 212 were bonded via the sintered bonding layer 214.

この結果、焼結接合層214の平坦部焼結密度は約90%(空隙率10%)、焼結接合層214の溝部217の焼結密度は約80%(空隙率20%)であった。接合材を塗布後、長時間予備乾燥したため、加圧が小さい溝部217でも高い密度で焼結が進行した。   As a result, the flat portion sintered density of the sintered bonding layer 214 was about 90% (porosity 10%), and the sintered density of the groove portion 217 of the sintered bonding layer 214 was about 80% (porosity 20%). . After applying the bonding material, it was pre-dried for a long time, so that the sintering proceeded at a high density even in the groove portion 217 having a small pressure.

第2の形成例で作製した半導体モジュール200に対してパワーサイクル試験を実施した結果、サイクル寿命は約70万回と、大幅な信頼性向上を図ることができた。第1の形成例に比べて寿命が向上した。溝部217の焼結密度を上昇させたため、半導体素子へのダメージ低減の効果があったものと考えられる。   As a result of conducting a power cycle test on the semiconductor module 200 manufactured in the second formation example, the cycle life was about 700,000 times, and a significant improvement in reliability could be achieved. The lifetime was improved compared to the first example. Since the sintered density of the groove part 217 was increased, it is considered that there was an effect of reducing damage to the semiconductor element.

(5)本実施の形態の効果
本実施の形態の半導体モジュール200は、絶縁基板210と、絶縁基板210上に形成された配線層212と、配線層212に重ねて配置され、配線層212と電気的に接続される一端子102を有する半導体チップ100と、配線層212と半導体チップ100との間を固定すると共に電気的に接続する金属の焼結接合層214と、を備え、配線層212は、平面視において重畳する半導体チップ100の外縁より内側に溝部217を有していることとしたため、半導体チップ100をはみ出して形成される焼結接合層214を発生させることなく、焼結接合層214を形成することができ、このため、焼結接合層214のはみ出しにより、はみ出し部分が剥がれ落ちることによる、例えばゲートとエミッタ間が短絡する等の不良を抑制することができる。また、溝部217の凹んだ部分には、他の部分より密度が低い焼結接合層214となるため、スイッチング動作の繰り返しによる熱ひずみを吸収することができると共に、より厚い焼結接合層214となるため、クラックが発生しにくくなると共に、クラックが発生したとしても進展を抑えることができる。したがって、焼結性が十分であると共に、耐久性のある半導体チップ100の接合部とすることができる。
(5) Effects of the present embodiment The semiconductor module 200 of the present embodiment is arranged with the insulating substrate 210, the wiring layer 212 formed on the insulating substrate 210, and the wiring layer 212. The wiring layer 212 includes a semiconductor chip 100 having one terminal 102 that is electrically connected, and a metal sintered bonding layer 214 that fixes and electrically connects the wiring layer 212 and the semiconductor chip 100. Has a groove 217 inside the outer edge of the semiconductor chip 100 that overlaps in plan view, so that the sintered bonding layer 214 is formed without protruding from the semiconductor chip 100. 214 can be formed. For this reason, the protrusion of the sintered bonding layer 214 causes the protrusion to peel off, for example, between the gate and the emitter. Such as short circuit can be suppressed. Further, since the recessed portion of the groove portion 217 becomes a sintered bonding layer 214 having a lower density than the other portions, it can absorb thermal strain due to repeated switching operation, and the thicker sintered bonding layer 214 Therefore, cracks are less likely to occur, and progress can be suppressed even if cracks occur. Therefore, the joining portion of the semiconductor chip 100 having sufficient sinterability and durability can be obtained.

また、溝部217は、平面視で半導体チップ100のアクティブエリアの外側を囲う形状とすることができ、この場合には、このようにすることにより、アクティブエリア109内の焼結接合層214はより密度の高い、つまり導電性の高いエリアとし、半導体チップ100を流れる電流の抵抗を抑えることができると共に、アクティブエリア109の外側では、より密度が低い焼結接合層214となるため、スイッチング動作の繰り返しによる熱ひずみを吸収することができる。また、より厚い焼結接合層214となるため、クラックが発生しにくくなり、例えクラックが発生したとしても進展を抑えることができる。   Further, the groove portion 217 can have a shape that surrounds the outside of the active area of the semiconductor chip 100 in plan view. In this case, the sintered bonding layer 214 in the active area 109 is further increased by doing so. The area of high density, that is, high conductivity, can suppress the resistance of the current flowing through the semiconductor chip 100, and the sintered bonding layer 214 having a lower density is formed outside the active area 109. Thermal strain due to repetition can be absorbed. Further, since the sintered joining layer 214 becomes thicker, cracks are less likely to occur, and progress can be suppressed even if cracks occur.

また、溝部217は、アクティブエリア109の外側を囲う形状の内側にも形成されることとしてもよい。また、この場合には、アクティブエリア内においても、焼結接合層214のクラックの発生を抑えると共に、クラックが発生したとしてもその進展を抑えることができる。   Moreover, the groove part 217 may be formed inside the shape surrounding the outside of the active area 109. In this case, the occurrence of cracks in the sintered bonding layer 214 can be suppressed even in the active area, and the progress can be suppressed even if a crack occurs.

また、アクティブエリア109に重畳する焼結接合層214の密度は、溝部217に重畳する焼結接合層214の密度より高くすることができる。このようにすることにより、アクティブエリア109内の焼結接合層214はより密度の高い、つまり導電性の高いエリアとし、半導体チップ100を流れる電流の抵抗を抑えることができると共に、アクティブエリア109の外側では、より密度が低い焼結接合層214となるため、スイッチング動作の繰り返しによる熱ひずみを吸収することができると共に、より厚い焼結接合層214となるため、クラックが発生しにくくなると共に、クラックが発生したとしても進展を抑えることができる。   Further, the density of the sintered bonding layer 214 overlapping the active area 109 can be made higher than the density of the sintered bonding layer 214 overlapping the groove 217. By doing so, the sintered bonding layer 214 in the active area 109 is made to have a higher density, that is, a highly conductive area, and the resistance of the current flowing through the semiconductor chip 100 can be suppressed, and the active area 109 On the outside, since the sintered bonding layer 214 has a lower density, it can absorb thermal strain due to repeated switching operations, and since it becomes a thicker sintered bonding layer 214, cracks are less likely to occur, Even if a crack occurs, the progress can be suppressed.

(6)他の実施の形態
図8は、上述の半導体モジュール200を使用した電力変換装置300の実施の形態について示す回路図である。電力変換装置300は、複数の半導体モジュール200を備えており、これらのうち少なくとも2つのゲートに異なるタイミングの波形信号が入力される。この例の回路ではインバータ装置が示されているが、インバータ装置の他、電動機その他の電力変換装置300に適用することができる。電力変換装置300に上述の実施形態の半導体モジュール200を適用することによって、高温環境の場所に搭載でき、かつ専用の冷却器を持たなくても長期的な信頼性を確保することが可能になる。
(6) Other Embodiments FIG. 8 is a circuit diagram showing an embodiment of a power conversion device 300 using the semiconductor module 200 described above. The power conversion apparatus 300 includes a plurality of semiconductor modules 200, and waveform signals with different timings are input to at least two gates among them. Although the inverter device is shown in the circuit of this example, the present invention can be applied to an electric motor and other power conversion devices 300 in addition to the inverter device. By applying the semiconductor module 200 of the above-described embodiment to the power conversion device 300, it can be mounted in a place of a high temperature environment, and long-term reliability can be ensured without having a dedicated cooler. .

また、インバータ装置及び電動機を含む電力変換装置300は、高速車両や電気自動車にその動力源として組み込むことができる。この自動車においては、動力源から車輪に至る駆動機構を簡素化できたため、ギヤーの噛込み比率の違いにより変速していた従来の自動車に比べ、変速時のショックが軽減され、スムーズな走行が可能で、振動や騒音の面でも従来よりも軽減することができる。   The power conversion device 300 including the inverter device and the electric motor can be incorporated as a power source in a high-speed vehicle or an electric vehicle. In this car, the drive mechanism from the power source to the wheels has been simplified, so the shock at the time of shifting is reduced and smooth running is possible compared to the conventional car that has been shifting due to the difference in gear engagement ratio. Thus, vibration and noise can be reduced as compared with the conventional case.

更に、上述の実施の形態の半導体モジュール200を組み込んだ電力変換装置300は、冷暖房機に組み込むことも可能である。この際、従来の交流電動機を用いた場合よりも高い効率を得ることができる。これにより、冷暖房機使用時の電力消費を低減することができる。また、室内の温度が運転開始から設定温度に到達するまでの時間を、従来の交流電動機を用いた場合よりも短縮できる。当該電力変換装置300は、他の流体を撹拌又は流動させる装置、例えば洗濯機、流体循環装置等にも組み込むことができ、同様の効果を得ることができる。本実施の形態の電力変換装置300は、複数の半導体モジュール200のうち、いずれか2つはゲートに異なるタイミングの波形信号が入力されることとしているため、上述の半導体モジュール200の同様の有利な効果を有している。   Furthermore, the power conversion device 300 in which the semiconductor module 200 of the above-described embodiment is incorporated can be incorporated in an air conditioner. In this case, higher efficiency can be obtained than when a conventional AC motor is used. Thereby, the power consumption at the time of air-conditioning machine use can be reduced. Moreover, the time until the room temperature reaches the set temperature from the start of operation can be shortened compared to the case where the conventional AC motor is used. The power conversion device 300 can be incorporated in a device that stirs or flows other fluid, such as a washing machine, a fluid circulation device, and the like, and can obtain the same effect. In the power conversion device 300 according to the present embodiment, any two of the plurality of semiconductor modules 200 are input with waveform signals having different timings to the gates. Has an effect.

本発明は、例えばモータを使用する設備などに適用することができる。   The present invention can be applied to equipment using a motor, for example.

100 半導体チップ
101 エミッタ電極
102 コレクタ電極
109 アクティブエリア
200 半導体モジュール
201 支持部材
202 ケース
204 はんだ層
205 配線層
206 封止材
207 ボンディングワイヤ
208 ワイヤ
210 絶縁基板
212 配線層
214 焼結接合層
216 外部端子
217 溝部
300 電力変換装置
501 比較サンプル
502 第1の形成例
100 Semiconductor chip 101 Emitter electrode 102 Collector electrode 109 Active area 200 Semiconductor module 201 Support member 202 Case 204 Solder layer 205 Wiring layer 206 Sealing material 207 Bonding wire 208 Wire 210 Insulating substrate 212 Wiring layer 214 Sintered bonding layer 216 External terminal 217 Groove 300 Power Converter 501 Comparative Sample 502 First Formation Example

Claims (5)

絶縁基板と、
前記絶縁基板上に形成された配線層と、
前記配線層に重ねて配置され、前記配線層と電気的に接続される一端子を有する半導体チップと、
前記配線層と前記半導体チップとの間を固定すると共に、電気的に接続する金属の焼結接合層と、を備え、
前記配線層は、平面視において、重畳する前記半導体チップの外縁より内側に溝部を有している
ことを特徴とする半導体モジュール。
An insulating substrate;
A wiring layer formed on the insulating substrate;
A semiconductor chip disposed on the wiring layer and having one terminal electrically connected to the wiring layer;
While fixing between the wiring layer and the semiconductor chip, and comprising a sintered joining layer of metal that is electrically connected,
The wiring layer has a groove on the inner side of the outer edge of the semiconductor chip that overlaps in a plan view.
請求項1に記載の半導体モジュールにおいて、
前記溝部は、平面視で前記半導体チップのアクティブエリアの外側を囲う形状である
ことを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
The groove part has a shape surrounding the outside of the active area of the semiconductor chip in plan view.
請求項2に記載の半導体モジュールにおいて、
前記溝部は、前記アクティブエリアの内側にも形成されている
ことを特徴とする半導体モジュール。
The semiconductor module according to claim 2,
The groove is also formed inside the active area. A semiconductor module, wherein:
請求項1乃至3のいずれか一項に記載の半導体モジュールにおいて、
前記アクティブエリアに重畳する前記焼結接合層の密度は、前記溝部に重畳する前記焼結接合層の密度より高い
ことを特徴とする半導体モジュール。
The semiconductor module according to any one of claims 1 to 3,
The semiconductor module according to claim 1, wherein a density of the sintered bonding layer superimposed on the active area is higher than a density of the sintered bonding layer superimposed on the groove.
請求項1乃至3のいずれか一項に記載の複数の半導体モジュールを備え、
前記複数の半導体モジュールのうち、いずれか2つのゲートに異なるタイミングの波形信号が入力される
ことを特徴とする電力変換装置。
A plurality of semiconductor modules according to any one of claims 1 to 3,
Waveform signals having different timings are input to any two gates of the plurality of semiconductor modules.
JP2015218316A 2015-11-06 2015-11-06 Semiconductor module and power converter Pending JP2017092168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015218316A JP2017092168A (en) 2015-11-06 2015-11-06 Semiconductor module and power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218316A JP2017092168A (en) 2015-11-06 2015-11-06 Semiconductor module and power converter

Publications (1)

Publication Number Publication Date
JP2017092168A true JP2017092168A (en) 2017-05-25

Family

ID=58768457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218316A Pending JP2017092168A (en) 2015-11-06 2015-11-06 Semiconductor module and power converter

Country Status (1)

Country Link
JP (1) JP2017092168A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019087920A1 (en) * 2017-10-30 2020-04-02 三菱電機株式会社 Power semiconductor device and method of manufacturing power semiconductor device
WO2020229114A1 (en) * 2019-05-16 2020-11-19 Danfoss Silicon Power Gmbh Semiconductor module
WO2023243138A1 (en) * 2022-06-14 2023-12-21 三菱重工業株式会社 Substrate for power module
DE112022006142T5 (en) 2022-03-23 2024-10-02 Minebea Power Semiconductor Device Inc. SEMICONDUCTOR DEVICE AND ELECTRICAL POWER CONVERSION DEVICE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019087920A1 (en) * 2017-10-30 2020-04-02 三菱電機株式会社 Power semiconductor device and method of manufacturing power semiconductor device
DE112018005713T5 (en) 2017-10-30 2020-07-16 Mitsubishi Electric Corporation POWER SEMICONDUCTOR UNIT AND MANUFACTURING METHOD FOR A POWER SEMICONDUCTOR UNIT
US11342281B2 (en) 2017-10-30 2022-05-24 Mitsubishi Electric Corporation Power semiconductor device and manufacturing method for power semiconductor device
US11842968B2 (en) 2017-10-30 2023-12-12 Mitsubishi Electric Corporation Power semiconductor device and substrate with dimple region
WO2020229114A1 (en) * 2019-05-16 2020-11-19 Danfoss Silicon Power Gmbh Semiconductor module
DE112022006142T5 (en) 2022-03-23 2024-10-02 Minebea Power Semiconductor Device Inc. SEMICONDUCTOR DEVICE AND ELECTRICAL POWER CONVERSION DEVICE
WO2023243138A1 (en) * 2022-06-14 2023-12-21 三菱重工業株式会社 Substrate for power module

Similar Documents

Publication Publication Date Title
CN113809032B (en) A power module, power supply circuit and chip
JP5093235B2 (en) Electronic component device and manufacturing method thereof
JP6033952B2 (en) Circuit board, in particular circuit board for a power module comprising a conductive substrate
JP2010171271A (en) Semiconductor device and method of manufacturing the same
JP5214936B2 (en) Semiconductor device
JP6206494B2 (en) Semiconductor device
JP4904767B2 (en) Semiconductor device
JP2011077193A (en) Method for manufacturing semiconductor device
CN115101498A (en) Power modules, power systems, vehicles and photovoltaic systems
JP2017092168A (en) Semiconductor module and power converter
JPWO2015114987A1 (en) Power module substrate and power module using the same
WO2017187998A1 (en) Semiconductor device
JP2016167527A (en) Semiconductor module and manufacturing method thereof
CN103972277A (en) Semiconductor device and method of manufacturing the same
WO2013145471A1 (en) Method for manufacturing power module, and power module
JP4877046B2 (en) Semiconductor device and manufacturing method thereof
JP5252024B2 (en) Semiconductor device
JP2014120639A (en) Power module semiconductor device
JP6721329B2 (en) Power semiconductor device and manufacturing method thereof
JP5018250B2 (en) Semiconductor device and manufacturing method thereof
JP2017034152A (en) Power semiconductor device
WO2016147252A1 (en) Semiconductor apparatus and manufacturing method of same
JP6619661B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2017017204A (en) Semiconductor device manufacturing method
JP6505004B2 (en) Semiconductor device, method of manufacturing the same, power module and vehicle