JP2017085903A - Culture apparatus for underwater creatures that live in sandy soil - Google Patents
Culture apparatus for underwater creatures that live in sandy soil Download PDFInfo
- Publication number
- JP2017085903A JP2017085903A JP2015215722A JP2015215722A JP2017085903A JP 2017085903 A JP2017085903 A JP 2017085903A JP 2015215722 A JP2015215722 A JP 2015215722A JP 2015215722 A JP2015215722 A JP 2015215722A JP 2017085903 A JP2017085903 A JP 2017085903A
- Authority
- JP
- Japan
- Prior art keywords
- water
- aquaculture
- water supply
- sand layer
- supply pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002689 soil Substances 0.000 title abstract 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 263
- 238000009360 aquaculture Methods 0.000 claims description 125
- 244000144974 aquaculture Species 0.000 claims description 125
- 239000004576 sand Substances 0.000 abstract description 139
- 241000238424 Crustacea Species 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 139
- 241000238557 Decapoda Species 0.000 description 91
- 238000012360 testing method Methods 0.000 description 33
- 238000009395 breeding Methods 0.000 description 30
- 230000001488 breeding effect Effects 0.000 description 30
- 239000000356 contaminant Substances 0.000 description 30
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- 239000011347 resin Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000013535 sea water Substances 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000003344 environmental pollutant Substances 0.000 description 7
- 235000013305 food Nutrition 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 231100000719 pollutant Toxicity 0.000 description 7
- 239000013505 freshwater Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 230000037396 body weight Effects 0.000 description 5
- 238000009313 farming Methods 0.000 description 5
- 238000013019 agitation Methods 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000000366 juvenile effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 241000251468 Actinopterygii Species 0.000 description 3
- 241000237519 Bivalvia Species 0.000 description 3
- 206010013647 Drowning Diseases 0.000 description 3
- 235000020639 clam Nutrition 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 235000019688 fish Nutrition 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 235000013372 meat Nutrition 0.000 description 3
- 230000000384 rearing effect Effects 0.000 description 3
- 235000015170 shellfish Nutrition 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000251730 Chondrichthyes Species 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 230000000422 nocturnal effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 241000269908 Platichthys flesus Species 0.000 description 1
- 241000269978 Pleuronectiformes Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000269959 Xiphias gladius Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 etc. can be used Chemical compound 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 208000024386 fungal infectious disease Diseases 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000021335 sword fish Nutrition 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Landscapes
- Farming Of Fish And Shellfish (AREA)
Abstract
Description
本発明は、砂地生息水中生物の養殖装置に関する。 The present invention relates to an aquaculture apparatus for sandy inhabited aquatic organisms.
クルマエビ類は、多くの国々で食用に供されている代表的な砂地生息性甲殻類である。特に、クルマエビ(Marsupenaeus japonicus)は、砂地生息性甲殻類の代表的な種であり、日本国では高級食材として広く用いられている。クルマエビは、夜行性であり、日中は砂中に潜り込み、夜間の限られた時間帯に索餌のために砂上に出て活動する。 Shrimp is a typical sandy habitat shellfish that is used for food in many countries. In particular, prawn (Marsupenaaeus japiconicus) is a representative species of sandy inhabiting crustaceans, and is widely used as a high-class food in Japan. The prawns are nocturnal, dive into the sand during the day, and move out onto the sand for feeding during a limited time during the night.
クルマエビの養殖技術は、約50年前に成立した。日本国などの生育に不適な冬期のある地域では、通常、水温が上昇する4・5月ころから種苗を投入して養殖を開始し、約6ヶ月かけて成長させた後、9月末から年末にかけて出荷する。水温低下で成長が止まる冬季は飼育を行わず、この期間に養殖池または養殖水槽から水を抜き、清掃作業を行う。冬季でもクルマエビが成長可能な水温を保つことができる温暖な地域では、市場で品薄になる冬季に出荷できるよう養殖して、11月頃から5月頃まで出荷し、種苗を生産している5月から7月の間に養殖池または養殖水槽の清掃作業を行う。 The prawn aquaculture technology was established about 50 years ago. In areas such as Japan where there are unsuitable winter seasons, seedlings are usually introduced from around April and May when the water temperature rises, and after about 6 months of growth, the plants are grown for about 6 months before the end of September. To ship. During winter, when growth stops due to a drop in water temperature, no breeding is performed, and during this period, water is drained from the aquaculture pond or aquaculture tank and cleaning is performed. In warm regions where the shrimp can grow even in winter, it is cultivated so that it can be shipped in the winter when the market is in short supply, and it is shipped from around November to around May. During the month of July, clean up the aquaculture pond or aquaculture tank.
クルマエビの養殖方法は、大きく分けて2種類の方法がある。
第一の方法は「瀬戸内式」と呼ばれ、海岸に築堤した池で潮汐の干満を利用して池水の入れ替えを行う方法である。池底に約10〜20cmの厚さの砂層を作り水深2m位に海水を張り、1日1回程度の換水を行って、残餌、排泄物、脱皮殻などの汚染物を排水と共に排出する。大潮の干潮時には水門を開けて排水し、池の掃除をする。水の入れ替えのため、潮位と池の高さを調整し、最適な水位が維持できるようにする。水門には、エビの流出と他の水棲生物の侵入を防ぐフィルターを設置する。瀬戸内式は、台風や高潮などの被害や天候などの影響を受けやすいが、種苗の稚エビを低密度で放養し飼育する、比較的人手を必要としない養殖方法である。
The shrimp farming method is roughly divided into two types.
The first method is called the “Setouchi type”, and is a method of replacing pond water using tides in a pond built on the coast. A sand layer with a thickness of about 10 to 20 cm is formed on the bottom of the pond, seawater is applied at a depth of about 2 m, water is changed once a day, and pollutants such as residual food, excrement and molting shells are discharged together with drainage. . When the tide is at low tide, open the sluice to drain and clean the pond. Adjust the tide level and pond height to replace the water so that the optimal water level can be maintained. A filter will be installed at the sluice to prevent shrimp spills and other aquatic life. The Setouchi-style is a culture method that is susceptible to damage from typhoons and storm surges and the weather, but that raises and raises young seedlings of seedlings at a low density and requires relatively little labor.
第二の方法は「かけ流し式」と呼ばれ、陸上に設けた池や水槽の底に砂を敷き、ポンプで汲み上げた新鮮な海水をかけ流して換水して、汚染物を排出しながら飼育する方法である。堤防などを建設する必要がなく、供給する海水をフィルターでろ過することにより、水質を良好に維持することが可能で、飼育密度を比較的高くすることができる。かけ流し式は、ポンプを稼働する電気代やフィルター代などのランニングコストが嵩み、また、沈殿した汚染物や砂中に埋もれた汚染物を完全に排出することができない。 The second method is called “pour-off type”, where sand is placed on the bottom of ponds and aquariums on land, fresh sea water pumped up by pumps is used to replace water, and rearing while discharging pollutants It is a method to do. There is no need to construct a dike, etc., and by filtering the supplied seawater with a filter, it is possible to maintain a good water quality and raise the breeding density relatively high. The flow-through method has a high running cost such as electricity and filter for operating the pump, and cannot completely discharge the settled contaminants or the contaminants buried in the sand.
上記した従来の養殖方法のほかに、水槽の底から10〜15cm離してメッシュなどで二重底を設け、この二重底の上に砂層を敷き、海水を砂層の上から下に向けて、常時排水することによって汚染物を排出する、いわゆる流水式と呼ばれる方法がある。流水式は、1日数回中央の排水装置から大量に排水し、この大量の排水とともに滞積した汚染物を排出する。流水式は、瀬戸内式、かけ流し式と比べて、狭い面積で高い生産量を挙げることができるが、換水率を1日3〜4回と高くするため大容量のポンプが必要でありランニングコストが高い。 In addition to the conventional aquaculture method described above, 10-15 cm away from the bottom of the aquarium, a double bottom is provided with a mesh or the like, a sand layer is laid on this double bottom, and seawater is directed from the top to the bottom of the sand layer, There is a so-called flowing water method in which pollutants are discharged by always draining. The flowing water type drains a large amount of water from the central drainage device several times a day, and discharges the accumulated pollutant together with this large amount of drainage. The flowing water type can increase the production volume in a small area compared to the Setouchi type and the pouring type, but it requires a large capacity pump to increase the water conversion rate 3-4 times a day, and the running cost Is expensive.
上記したように、従来のクルマエビの養殖装置の最も深刻な問題点は、クルマエビの生育環境である砂層が汚染物により汚染されることである。砂層中に残された汚染物は、微生物によって分解されアンモニアや硫化水素等の有害物質となる。クルマエビは、汚染された領域を避けて汚染の少ない領域に集中するが、クルマエビが集中することで糞等が溜まり短期間で汚染が進行する。このことが繰り返されて汚染の少ない領域は徐々に減少し、クルマエビの生息域は養殖槽の一部のみとなり、養殖槽内での実際の飼育密度は、養殖槽の面積から算出される飼育密度よりも高くなる。クルマエビの飼育密度が高くなり、生育環境が劣悪となると、ストレスが増大してクルマエビの成長速度が低下し、また、クルマエビ同士が相互に傷つけあい品質が低下する。また、不衛生な環境により細菌症、真菌症、ウイルス症等の病害を発生させ、クルマエビの斃死をひき起こし、生産量が減少する。
生産量を増やすためにクルマエビの飼育密度を高くすると、生育環境がより一層悪化して、病害が発生しやすくなり、斃死するクルマエビが増加して生産性が低下してしまう。
また、飼育密度を抑え適切に管理してクルマエビを生産した場合も、養殖池または養殖水槽の砂層には汚染物が蓄積し、場合によってはヘドロ化して固化する。そのため、次年度の種苗投入前までに飼育海水を完全に排出して、砂層を掘り起こして日光や空気にさらして清浄な海水で洗浄する、または新しい砂に入れ替えるといった清浄化作業が必要である。
As described above, the most serious problem of the conventional prawn aquaculture apparatus is that the sand layer, which is the prawn growth environment, is contaminated with contaminants. Contaminants left in the sand layer are decomposed by microorganisms and become harmful substances such as ammonia and hydrogen sulfide. The prawns concentrate on areas where there is little contamination while avoiding the contaminated areas. However, as the prawns concentrate, the contamination progresses in a short period of time. By repeating this, the area with less pollution gradually decreases, and the prawn habitat becomes only a part of the aquaculture tank, and the actual breeding density in the aquaculture tank is the breeding density calculated from the area of the aquaculture tank Higher than. If the breeding density of the prawns becomes high and the growth environment becomes inferior, the stress increases and the growth rate of the prawns decreases, and the prawns are damaged by each other and the quality is lowered. In addition, the unsanitary environment causes diseases such as bacteriosis, mycosis and virosis, causing drowning of prawns and reducing production.
If the breeding density of the prawn is increased in order to increase the production amount, the growth environment is further deteriorated, the disease is likely to occur, the drowning prawn is increased, and the productivity is lowered.
In addition, even when prawns are produced by controlling the breeding density and managing them appropriately, contaminants accumulate in the sand layer of the aquaculture pond or aquaculture tank, and in some cases become sludge and solidify. Therefore, it is necessary to clean up the seawater by completely discharging the breeding seawater before the seeds are introduced in the next fiscal year, digging up the sand layer, exposing it to sunlight and air, washing it with clean seawater, or replacing it with new sand.
クルマエビは、1980年代後半には年間3000トンを超える量が養殖されていたが、近年は年1600トン前後と低迷している。これは、上記したように、クルマエビ養殖の難しさ、病害を受けやすく生産性が低いこと、人手を要し作業負担が大きいこと等が原因である。
このような問題を抱える従来のクルマエビ養殖方法に対して、汚染物を砂層から効率的に除去する養殖装置ないし養殖方法がいくつか提案されている。
例えば、特許文献1には、中央部に排出口を設け、排出口の周囲は表面がコンクリートの給餌領域とし、その周囲に砂層の生育領域を設け、砂層内に水の吹出し口を設けて残餌による汚染から生育領域を分離するとともに、生育砂中に汚染物等が蓄積することを防止した養殖水槽が開示されている。
特許文献2には、水層を遮光性のハウスで覆い水面で100ルクス以下の明るさにして、水槽では有益細菌を増殖させて透視度を50cm以下とし、水槽底に夜行性のクルマエビが潜る砂層を設けない生育方法が開示されている。
特許文献3には、外部環境から遮断した飼育槽の砂層下方に注水部を設け、強アルカリ海水を供給して病原体の繁殖を防止した養殖システムが開示されている。
特許文献4には、通水性多孔質体の上に砂床を設けて、該多孔質体の下から外部海水を供給し、円形水槽の周壁に沿って設けられた環状の浄化槽を通して供給し、循環機構を2段に増強して強制的に水をかき混ぜて旋回流を強化し、水中の汚物を円形水槽底部の中央部に設けられた排水管方向に移動させる養殖装置が開示されている。
In the late 1980s, prawns were cultivated in an amount exceeding 3000 tons per year, but in recent years they are stagnant at around 1600 tons. As described above, this is due to the difficulty of carcass shrimp culture, low disease productivity due to disease, and the high work load that requires manpower.
In contrast to the conventional prawn aquaculture method having such problems, several aquaculture apparatuses or aquaculture methods for efficiently removing contaminants from the sand layer have been proposed.
For example, in
In Patent Document 2, the water layer is covered with a light-shielding house, the brightness is 100 lux or less on the water surface, beneficial bacteria are propagated in the aquarium so that the transparency is 50 cm or less, and nocturnal prawns lurk at the bottom of the aquarium. A growing method without a sand layer is disclosed.
Patent Document 3 discloses an aquaculture system in which a water injection section is provided below a sand layer of a breeding tank that is blocked from the external environment, and strong alkaline seawater is supplied to prevent pathogen propagation.
In
本発明は、甲殻類等の砂地生息水中生物の生息環境である砂層の全面を常時清潔に保ち、高品質の砂地生息水中生物を、速い成長速度で、高密度で生産できる養殖装置を提供する。 The present invention provides an aquaculture device capable of always producing a high-quality sandy inhabited aquatic organism at a high growth rate at a high density while keeping the entire surface of the sand layer, which is a habitat for sandy aquatic organisms such as crustaceans, clean at all times. .
本発明者らは、砂地生息水中生物の養殖に関する本質的な問題点を把握するため、鋭意検討を重ねて本発明に至った。すなわち、本発明者らは、生育環境劣化の主な原因が、従来の養殖装置、養殖方法では除去することが難しい砂層中に閉じ込められて残存する汚染物であることを突き止め、砂層中に捕捉されている汚染物を水層に効率的に放出して、砂層全面を清浄な状態に保ち、良好な生育環境を維持することができる養殖装置を開発した。 In order to grasp the essential problems regarding the cultivation of sandy inhabited aquatic organisms, the present inventors have intensively studied to arrive at the present invention. That is, the present inventors have determined that the main cause of the deterioration of the growth environment is contaminants that remain trapped in the sand layer that is difficult to remove with conventional aquaculture devices and methods, and are trapped in the sand layer. We have developed an aquaculture device that can efficiently release the contaminated material into the water layer, keep the entire sand layer clean and maintain a good growth environment.
具体的な構成は以下のとおりである。
1.養殖槽と、
前記養殖槽の底部に一定の間隔で配設される給水配管と、
を有し、
前記給水配管が、側面に一定のピッチで噴出口を備えることを特徴とする砂地生息水中生物の養殖装置。
2.前記噴出口のピッチが、前記給水配管の間隔より小さいことを特徴とする1.に記載の養殖装置。
3.前記給水配管が、閉鎖端を有さないことを特徴とする1.または2.に記載の養殖装置。
4.前記給水配管の噴出口が、隣接する給水配管の噴出口と対向しないことを特徴とする1.〜3.のいずれかに記載の養殖装置。
5.前記噴出口が、噴出口中心を通る法線を中心として左右に15度以上の方向に水を噴出することを特徴とする1.〜4.のいずれかに記載の養殖装置。
6.前記養殖槽の中央部から排水することを特徴とする1.〜5.のいずれかに記載の養殖装置。
7.前記養殖槽の内壁周辺に設置される旋回流発生装置を有することを特徴とする1.〜6.のいずれかに記載の養殖装置。
The specific configuration is as follows.
1. An aquaculture tank,
Water supply pipes arranged at regular intervals at the bottom of the aquaculture tank;
Have
The aquaculture apparatus for sandy inhabited aquatic organisms, wherein the water supply pipe is provided with spouts on a side surface at a constant pitch.
2. 1. The pitch of the said jet nozzle is smaller than the space | interval of the said water supply piping. The aquaculture device described in 1.
3. The water supply pipe does not have a closed end. Or 2. The aquaculture device described in 1.
4). The jet outlet of the water supply pipe does not face the jet outlet of the adjacent water supply pipe. ~ 3. An aquaculture device according to any one of the above.
5. The spout spouts water in a direction of 15 degrees or more left and right around a normal passing through the spout center. ~ 4. An aquaculture device according to any one of the above.
6). 1. It drains from the center part of the aquaculture tank. ~ 5. An aquaculture device according to any one of the above.
7). 1. It has a swirl flow generator installed around the inner wall of the aquaculture tank. ~ 6. An aquaculture device according to any one of the above.
本発明の養殖装置は、養殖槽の底面全面に均一に噴出口を配置することにより、砂層中の残餌、排泄物、脱皮殻などの汚染物を、砂層全面から水層中へ効率的に放出し、水中に浮遊している汚染物を養殖槽から排出して、硫化水素等の有毒物質の発生を抑えることができる。砂層全面を清潔に保ち、水層から汚染物を排出して、砂層全体を清潔に保つことができる。
本発明の養殖装置により、砂層全面を清潔な状態に保つことができ、砂層全面を砂地生息水中生物の生息域として利用することができる。砂地生息水中生物は、部分的に集中せず、砂層全面に均一に分布して、少ない給餌量で速い成長速度が達成される。本発明の養殖装置により、低い斃死率と高い養殖密度でクルマエビを生産でき、単位面積あたりの生産量を大幅に高めることができる。本発明の養殖装置は、砂地生息水中生物に与えるストレスが少なく、高品質の砂地生息水中生物を生産することができる。
本発明の養殖装置は、砂層中に残留する汚染物が少ないため、養殖終了後の砂層の清掃、交換の頻度を少なくすることができ、場合によっては砂層の清掃、交換が不要である。砂層の清浄化にかかる時間が短く、場合によっては清浄化することなく、次の養殖を始めることができ、養殖装置の稼働時間を高めることができ、年間の生産量を大幅に高めることができる。
The aquaculture apparatus of the present invention efficiently disposes contaminants such as residual food, excrement, and molting shells in the sand layer from the entire surface of the sand layer into the water layer by arranging the spout uniformly over the entire bottom surface of the aquaculture tank. Pollutants that are released and suspended in water can be discharged from the aquaculture tank, and generation of toxic substances such as hydrogen sulfide can be suppressed. The entire sand layer can be kept clean, the contaminants can be discharged from the water layer, and the entire sand layer can be kept clean.
With the aquaculture device of the present invention, the entire sand layer can be kept clean, and the entire sand layer can be used as a habitat for sandy aquatic organisms. Sandy inhabited aquatic organisms are not partly concentrated and are evenly distributed over the entire sand layer, and a fast growth rate is achieved with a small amount of feeding. With the aquaculture device of the present invention, prawns can be produced with a low mortality rate and a high aquaculture density, and the production amount per unit area can be greatly increased. The aquaculture apparatus of the present invention can produce high-quality sandy inhabited aquatic organisms with little stress on the sandy inhabited aquatic organisms.
Since the aquaculture apparatus of the present invention has few contaminants remaining in the sand layer, it is possible to reduce the frequency of cleaning and replacement of the sand layer after completion of the culture, and in some cases, it is not necessary to clean and replace the sand layer. The time required to clean the sand layer is short, and in some cases, without further cleaning, the next aquaculture can be started, the operating time of the aquaculture equipment can be increased, and the annual production can be greatly increased. .
噴出口のピッチを、給水配管の間隔より小さくすることにより、砂層全面に均一に水を供給することができる。
給水配管に閉鎖端を設けないことにより、閉鎖端を設けた場合と比べて圧力損失が小さくなり、給水配管の各噴出口から噴出する水の勢いを均一にすることができる。
噴出した水は、砂層内を通り、砂上に流出するが、砂層に厚みムラや浄化不良が発生することがある。その原因の一つが、砂層内での水流の挙動であることを解明し、配管と噴出口の位置、および形状を特定した。隣接する給水配管の噴出口同士が対向しないように配管することにより、隣り合う給水配管の噴出口から噴出する水が衝突せず、砂層の各部を透過する上向水流の流速のバラツキが小さくなり、砂層に厚みムラが生じない。
噴出口から、噴出口中心を通る法線を中心として左右に15度以上の方向に水を噴出することにより、広角に水を噴出することができ、砂層の広域に水を供給することができる。
養殖槽の中央部から排水することにより、養殖槽の各部分から排水装置までの距離を短くすることができ、砂層全面から水層に放出される汚染物を、効率的に排出することができる。
旋回流発生装置により旋回流を発生させ、砂層を緩く撹拌することにより、上向水流により砂層表面に運ばれた汚染物や、砂層内に埋もれている汚染物が、水層に放出されやすい。また、旋回流による砂層の緩い撹拌は、自然の波や潮の満ち干きによる砂の撹拌と同様に作用し、クルマエビ等の生息環境をより自然環境下に近づけ、クルマエビ等のストレスを低減することができる。この際、養殖槽の中央部から排水することにより、旋回流により養殖槽の中央部に集めた汚染物を、より効率的に排出することができる。
By making the pitch of the spouts smaller than the interval between the water supply pipes, water can be uniformly supplied to the entire surface of the sand layer.
By not providing the closed end in the water supply pipe, the pressure loss is reduced as compared with the case where the closed end is provided, and the momentum of the water ejected from each outlet of the water supply pipe can be made uniform.
The jetted water passes through the sand layer and flows out onto the sand, but thickness unevenness and poor purification may occur in the sand layer. It was clarified that one of the causes was the behavior of the water flow in the sand layer, and the positions and shapes of the pipes and jet nozzles were identified. By piping so that the outlets of the adjacent water supply pipes do not face each other, the water jetted from the outlets of the adjacent water supply pipes does not collide, and variation in the flow velocity of the upward water flow that passes through each part of the sand layer is reduced. The thickness of the sand layer does not vary.
By ejecting water in the direction of 15 degrees or more to the left and right around the normal line passing through the center of the ejection port from the ejection port, water can be ejected at a wide angle and water can be supplied to a wide area of the sand layer. .
By draining from the center of the aquaculture tank, the distance from each part of the aquaculture tank to the drainage device can be shortened, and contaminants released from the entire sand layer to the water layer can be efficiently discharged. .
By generating a swirl flow with the swirl flow generator and gently stirring the sand layer, contaminants carried on the surface of the sand layer by the upward water flow and pollutants buried in the sand layer are easily released into the water layer. In addition, the gentle agitation of the sand layer by swirling flow works in the same way as the agitation of sand by natural waves and tides, making the habitat such as prawns closer to the natural environment and reducing the stress of prawns. be able to. At this time, the waste collected from the central part of the culture tank by the swirling flow can be discharged more efficiently by draining from the central part of the culture tank.
本発明の養殖装置は、砂層全面から汚染物を水層に放出して、砂層を清浄な状態に保つことができ、砂地に生息する砂地生息水中生物の養殖に好適に利用することができる。本発明の養殖装置で養殖することのできる砂地生息水中生物としては、例えば、クルマエビ、ガザミ、シャコ等の甲殻類、アサリ、シジミ、ハマグリ等の貝類、ヒラメ、カレイ等の魚類等を挙げることができる。 The aquaculture apparatus of the present invention can release contaminants from the entire surface of the sand layer to the water layer to keep the sand layer in a clean state, and can be suitably used for aquaculture of sandy inhabited aquatic organisms that inhabit the sandy land. Examples of the sandy inhabited aquatic organisms that can be cultivated with the aquaculture device of the present invention include shellfish such as prawns, crabs, and clams, shellfish such as clams, swordfish, clams, and fish such as flounder and flatfish. it can.
本発明の養殖装置の一実施形態の模式図を図1に示す。
一実施形態である養殖装置100は、養殖槽10の底部に一定の間隔で配設される10本の給水配管20を有し、各給水配管20が、側面に一定のピッチで11個の噴出口21を備える。また、養殖槽10の中央部に排水装置30を有する。
図1においてII方向から見た養殖装置100内部の模式図を図2に示す。また、図1においてIII方向からみた給水配管20に備えられた噴出口21からの水の流れの模式図を図3に示す。
養殖装置100は、給水配管20側面の噴出口21から、給水配管20の側方に水を噴出する。給水配管20は、砂層11底部に埋設されており、噴出口21から側方に噴出した水は、砂層11内を進みながら次第に拡散する。噴出口21から噴出した水は、養殖槽10の底面に遮られて下方へ進行できないため、全体的には上向きの水流(以下、上向水流という。)に変化し、砂層11を下から上に透過する。砂層11に上向水流が透過することにより、砂層11を形成する砂粒子の充填度合いが緩まり、砂層11に捕捉されていた残餌、糞、脱皮殻などの汚染物を砂層11上方の水層12に放出することができる。
The schematic diagram of one Embodiment of the culture apparatus of this invention is shown in FIG.
An
FIG. 2 shows a schematic diagram of the inside of the
The
給水配管20上方の砂層11の厚さは、養殖する砂地生息水中生物の種類等により適宜選択されるが、クルマエビを養殖する場合は、10〜40cmの範囲が好ましい。給水配管上方の砂層11が10cmより薄いと、砂層11底部に給水配管20を配置した場合にクルマエビが潜り込む砂床として厚さが不十分となり、また上向水流や養殖槽内での水流により砂が流されて厚みムラが生じやすい。給水配管上方の砂層11が40cmより厚いと、汚染物を捕捉する砂層11が厚くなり、砂層11から汚染物を放出させるという効果が弱まる。また、砂層11の透水抵抗が増加して、上向水流を発生するために給水配管20に高い圧力で水を供給する強力なポンプが必要となり高コストとなる。
砂層11を構成する砂は、養殖する砂地生息水中生物の種類に応じて選択することができる。例えば、クルマエビを養殖する場合は、川砂、海砂等を使用することができ、粒径の中央値が0.5〜1.5mm、0.2mm以下の砂が20〜50%含まれる砂が好ましい。
水層12の深さ(水深)は、養殖する砂地生息水中生物の種類や必要な水量等に応じて、適宜設定すればよい。
The thickness of the
The sand which comprises the
What is necessary is just to set the depth (water depth) of the
養殖槽10は、コンクリート、繊維強化プラスチック(FRP)、樹脂シート等で形成された水槽、または、海岸等に築堤した養殖池を用いることができる。水が漏れにくく、また、強度が強く、大量の砂と水とを収容することができるため、コンクリート製の水槽が好ましい。養殖槽10は、外部からの有害ウイルスや有害生物の侵入を防ぐために、外部環境から遮断されていることが好ましい。養殖槽10の形状は、例えば、四角形、六角形、八角形等の多角形、これら多角形の角部を曲面にした形状、円形や楕円形等を挙げることができる。
The
給水配管20は、養殖槽10の底部に一定の間隔で、養殖槽10の底面全面にほぼ均一に分布するように配設する。給水配管20は、樹脂製であることが、錆びないため好ましい。また、曲げることができない剛直なもの、曲げることができる柔軟なもののいずれを用いることができるが、内部に水圧がかかっていない状態でも、砂層11の重みで潰れない剛直なものが好ましい。給水配管20は、例えば、同心四角状、同心円状等に配設することができる。また、一本の給水配管20を正弦波状、矩形波状、渦巻状等に配設することができる。一例として、円形の養殖槽10に同心円状に給水配管20を配設した養殖装置101を図4に示す。図4において、図1と同一の部材には同一の符号を付す。隣接する給水配管20の間隔は、5cm以上100cm以下の範囲で配設することが好ましく、10cm以上50cm以下であることがより好ましい。隣接する給水配管20の間隔が5cmより小さいと、給水配管20の本数が多くなり設置作業が煩雑となり、また、クルマエビ等が潜り込める領域が少なくなる。隣接する給水配管20の間隔が100cmより大きいと、噴出口21から噴出する水が隣接する給水配管20の近傍に届きにくくなる。
図5に、各給水配管20の端部を連通管22で接続した養殖装置102を示す。図5において、図1と同一の部材には同一の符号を付す。給水配管20が、閉鎖端を有さず端部が連通管22で接続していると、給水配管20中の圧力損失が小さくなり、給水配管20の各噴出口21から水をより均一に噴出することができる。
The
FIG. 5 shows an
図1におけるIV部分の拡大図を図6に示す。
給水配管20は、側面に一定のピッチ(b)で噴出口21を備える。噴出口21のピッチ(b)は、給水配管20の間隔(a)より小さいことが好ましい。噴出口21のピッチ(b)を給水配管20の間隔(a)より小さくすることで、砂層11の広域に均一に水を供給することできる。
ここで、図6に示す給水配管20は、隣り合う二本の給水配管20a、20bの噴出口21a、21bが対向している。この際、それぞれの噴出口21a、21bから噴出する水の勢いが強すぎると、この二本の給水配管20a、20bの中間付近で衝突する。衝突した水は、上方に強く流れるため、衝突箇所における上向水流は、他の地点における上向水流よりも強くなり、衝突箇所上方の砂が流れて砂層11に厚みムラが生じ、クルマエビ等が潜り込める領域が少なくなる場合がある。
An enlarged view of the IV portion in FIG. 1 is shown in FIG.
The
Here, in the
図7に、隣り合う二本の給水配管20c、20dの噴出口21c、21dが対向しない給水配管20の拡大図を示す。給水配管20cの噴出口21cと、隣接する給水配管20dの噴出口21dとが対向しないとは、給水配管20cの噴出口21cの中心を通る給水配管壁の法線と、隣接する給水配管20dの噴出口21dの中心を通る給水配管壁の法線との距離(b’)が、噴出口21c、21dのピッチ(b)の0.2倍以上であることを意味する。給水配管20cの噴出口21cの中心を通る給水配管壁の法線と、隣接する給水配管20dの噴出口21dの中心を通る給水配管壁の法線との距離(b’)は、噴出口21c、21dのピッチ(b)の0.3倍以上であることがより好ましく、0.4倍以上であることがさらに好ましく、0.5倍であることが最も好ましい。
給水配管20cの噴出口21cの中心を通る給水配管壁の法線と、隣接する給水配管20dの噴出口21dの中心を通る給水配管壁の法線との距離(b’)が、噴出口21c、21dのピッチ(b)の0.5倍のときに、それぞれの噴出口21c、21dから隣接する給水配管20c、21dの近傍まで水を噴出すると、砂層11の各部分における上向水流の勢いが均一となるため、砂層に厚みムラが発生しにくい。
In FIG. 7, the enlarged view of the
The distance (b ′) between the normal line of the water supply pipe wall passing through the center of the
噴出口21の開口形状は特に制限されず、円形、楕円形、長円形、四角形等を挙げることができる。噴出口21の最大径は0.5mm以上5mm以下が好ましく、1mm以上3mm以下がより好ましい。噴出口21の最大径が0.5mmより小さいと、異物等によって詰りやすくなる。また、必要量の水を噴出させる場合に、流速が速くなり過ぎて、噴出口21近傍の砂が流れ、砂層11に厚みムラが生じて、クルマエビ等の潜り込むことができる砂床面積が減る場合がある。また、砂層11内に強い水流が流れるとクルマエビ等にストレスを与えてしまう。噴出口21の最大径が5mmより大きいと、必要量の水を噴出させる場合、水流が弱くなり噴出口21から離れた領域まで水が届きにくくなる場合がある。
The opening shape of the
水は、給水配管20側面に設けられた噴出口21から給水配管20の側方に噴出する。なお、本発明において、側方とは、水平方向を中心として上下にそれぞれ30度以内、すなわち水平方向を中心として60度以内の方向を意味する。水平方向を中心として上下に30度以内の方向に水を噴出することにより、水平方向でより遠くに水を到達させることができる。
上方に噴出する水は、砂粒子の隙間を広げて砂層11を膨張させ、砂層11内を進みながら次第に拡散する。一方、下方に噴出する水は、養殖槽10の底面に衝突して渦流となり、衝突箇所周辺の砂を流してしまい、また、衝突して流速を失い遠くまで届かない。そのため、水の噴出方向は、水平方向から上方であることが、水平方向から下方であることよりも好ましい。具体的には、上方に30度から下方に20度までの範囲であることが好ましく、上方に20度から下方に10度までの範囲がより好ましく、上方に15度から下方に5度までの範囲がさらに好ましく、上方に10度から水平方向までの範囲であることが特に好ましく、水平方向に噴出することが最も好ましい。
Water is ejected to the side of the
The water ejected upward widens the gap between the sand particles, expands the
噴出口21が、水平面内で給水配管20の法線を中心として左右に15度以上の方向、すなわち30度以上の広角で水を噴出すると、砂層11の広域に水を供給することができる。水平面内で給水配管20の法線を中心として左右に15度以上の方向に水を噴出する方法としては、噴出口21を給水配管20の内側で狭く外側で広くなるようにして扇型に水を噴出する(図8)、複数個の独立した細孔211で噴出口21を形成し、各細孔211から異なる方向に水を噴出する(図9)等の方法を挙げることができる。加工性や、給水配管20の強度等の点から、噴出可能な角度は、給水配管20の法線を中心として左右に約60度までである。ここで、噴出口21が複数個の独立した細孔211から形成される場合、噴出口21の中心とは、複数個の細孔211位置の中心部を意味する。
Water can be supplied to the wide area of the
噴出口21から噴出する際の水の流速は、2.5cm/秒以上100cm/秒以下が好ましく5cm/秒以上70cm/秒以下であることがより好ましく、10cm/秒以上50cm/秒以下であることがさらに好ましい。流速が2.5cm/秒より遅いと、噴出口21から噴出した水が遠くまで届かない。流速が100cm/秒より速いと、噴出口21近傍の砂が流され、砂層11がクルマエビ等が潜り込むのに必要な厚さ以下となる場合がある。また、強い水流はクルマエビ等にストレスを与える。
The flow rate of water when ejected from the
養殖装置100は、砂層11全面を下から上へ透過する上向水流を生成する。上向水流は、砂層11を形成する砂粒子の充填度合いを緩め、砂層11に捕捉されていた残餌、糞、脱皮殻等の汚染物を砂層11上方の水層12に放出する。水層12に放出された汚染物は、排水装置30により系外に排出される。排水装置30は、複数個設置してもよい。また、排水装置30には、クルマエビ等の流出を防止するためのフィルタ31を設置する。養殖槽10の中央部に排水装置30を設けることにより、養殖槽10の各部分から排水装置までの距離を短くすることができ、砂層11全面から水層12に放出される汚染物を、効率的に排出することができる。
The
排水装置30は、排水ポンプ、所定水位以上の水を排水する円筒状排水装置や排水溝等を挙げることができる。また、バルブ、水位センサ等を用いて間欠的に排水してもよい。図1、2に示す一実施態様である養殖装置100は、排水装置30として、養殖槽10の中央部に円筒状排水装置を有する。円筒状排水装置は、排水口に接続されて砂の流出を防止するパイプ32と、パイプ32を取り囲み、クルマエビ等の流出を防ぐ円筒状のフィルタ31とからなる。図1、2に示す円筒状排水装置は、外部出口33の高さにより水位を調整しているが、パイプ32の上部開口端からオーバーフローで排水して水位を調整することもできる。また、フィルタ31の上面と上部側面を開口部を有さない領域とし、パイプ32上部開口端の高さをフィルタ31の開口を有さない領域以上の高さとして、サイフォンの原理で排水することもできる。水位の調節が容易であるため、外部出口33の高さで水位を調整することが好ましい。円筒状排水装置は、任意の箇所に設置することができ、駆動源が不要で低コストであり、また、外部出口33やパイプ32の高さにより、水位を調整することができる。
Examples of the
旋回流発生装置40を養殖槽10の内壁周辺に設置することにより、水層12に旋回流を発生させることができる。水層12に旋回流を発生させる旋回流発生装置40としては、循環ポンプ、水車式循環装置等を挙げることができる。旋回流発生装置40として循環ポンプを使用することが、旋回流の流速を調整しやすく、また、水中に酸素を供給することができるため好ましい。この際、養殖槽10は、旋回流が円滑に流れるように角部を有さないことが好ましく、円形、楕円形、または多角形の角部を曲面に加工した形状が好ましい。また、養殖槽10が、多角形の角部を曲面に加工した形状である場合には、旋回流発生装置40の放水口を辺の長さの2分の1以下の長さ、かつ、隣接する壁面の一方寄りに、一定間隔で2個以上設置すれば、効率的に旋回流を生成することができる。図10に、角部を曲面に加工した四角形状の養殖槽10の対向する二辺に、旋回流発生装置40として放水口が辺の長さの2分の1以下である循環ポンプを、隣接する壁面の一方寄りに設置した養殖装置103を示す。なお、図10において、図1と同一の部材には同一の符号を付す。
By installing the swirl
深さ方向での旋回流の流速は、浅い部分で速く、深くなるほど、すなわち砂層11に近づくほど遅くなる。旋回流の流速は、砂層11表面の砂粒子を緩く撹拌する程度が好ましく、クルマエビ等の甲殻類を養殖する場合、その水深にもよるが、水層12表面における旋回流の流速は5〜30cm/秒程度である。
適切な流速の旋回流は、砂層11の表面を緩く撹拌して、上向水流によって砂層11表面に運ばれた汚染物や、砂層11内に埋もれている汚染物を、水層12に放出しやすくする。また、適度な砂層11表面の撹拌は、波や潮の満ち引きによる砂の撹拌と同様に作用し、クルマエビ等の生息環境をより自然環境下に近づけ、クルマエビ等のストレスを低減する。それに対し、旋回流の流速が速すぎると、砂層11表面の砂粒子が巻き上がり、砂層11に厚みムラが生じて養殖対象のクルマエビ等の潜り込める領域を狭めてしまう場合がある。また、流速が速すぎるとクルマエビ等にストレスを与える。
旋回流により、水中に浮遊する汚染物を養殖槽10の中央部に集めることができる。この際、養殖槽10中央部から排水すると、養殖槽10中央部に集まった汚染物をより効率的に排出することができる。なお、排水装置30のフィルタ31を通過できない脱皮殻等の大型の汚染物は、フィルタ31付近に集まったところを、網等で適宜すくい取り廃棄すればよい。なお、旋回流の流速が速すぎると、水層12に放出されて浮遊している汚染物を、養殖水槽10中央部に集束させずに全体に拡散させてしまうため、上記したように、砂層11表面の砂粒子を緩く撹拌する程度が好ましい。
The flow velocity of the swirling flow in the depth direction is faster in the shallow part and becomes slower as it gets deeper, that is, as it approaches the
The swirling flow having an appropriate flow velocity gently agitates the surface of the
Due to the swirling flow, contaminants floating in the water can be collected in the central portion of the
給水配管20からの水供給量は、通常、1日当たり砂層1m2に0.5〜5m3(0.5m3/1m2・日以上5m3/1m2・日以下)の範囲である。砂層11中の汚染物を水層12へ放出する能力は、上向水流の速さと広がり方によって決まるので、水供給量が0.5m3/1m2・日より少ないと、砂層11の浄化効果が弱くなる。水供給量が5m3/1m2・日より多いと、砂層11が流動して不安定となり、養殖対象の砂地生息水中生物にストレスを与える。
Water supply from the
養殖に必要な新鮮水の総給水量は、養殖槽10に貯留されている水の量と換水率で決まる。新鮮水の総給水量が、給水配管20からの水供給量より多い場合は、給水配管20から新鮮水を給水し、余剰の新鮮水は養殖槽10か旋回流発生装置40に直接供給する。新鮮水の総給水量が、給水配管20からの水供給量より少ない場合は、新鮮水に養殖槽10内の水を加えて給水配管20から給水する。
The total amount of fresh water required for aquaculture is determined by the amount of water stored in the
次に、本発明を実施例に基づいて説明するが、本発明はこれらのみに限定されるものではない。
「養殖装置」
縦8m、横8m、高さ1.2mのコンクリート製角型水槽を養殖槽とした。養殖槽は、中央部に口径100mmの排水口と、この排水口を同心円状に取り囲む口径200mmのパイプ取付溝を有する。口径200mmの樹脂製パイプを、樹脂製パイプの上面が養殖槽底面から20cmの高さになるようパイプ取付溝に嵌合した。クルマエビの流出を防ぐフィルタとして、縦3mm、横3mmの網目を有する円筒状の樹脂製ネットを、樹脂製パイプの外周に高さ120cmとなるように取り付けた。排水口の外部出口には、養殖槽内の水が一定の高さ(1m)に達すると自動で養殖槽外部へ排水するように、口径100mmの樹脂製パイプを養殖槽底面から1mの高さになるよう設置した。
給水本管として、直径50mmの樹脂製パイプを、養殖槽の一壁面の中央部に上方から下方へ向けて設置し、養殖槽底面で養殖槽壁面に沿って左右に4mずつ分岐した。養殖槽底面で分岐した給水本管には、給水配管を接続する接続穴が20cm間隔で計40ヶ所形成されている。この接続穴に、両側面に直径1.0mmの噴出口が20cmピッチで形成されている樹脂製ホースからなる長さ8mの給水配管を接続して、養殖槽の底面全面に給水配管を20cm間隔で設置した。給水配管の噴出口は、上方に10度から水平方向の範囲であり、また、隣り合う二本の給水配管の噴出口は対向している。
Next, although this invention is demonstrated based on an Example, this invention is not limited only to these.
"Aquaculture equipment"
A concrete square water tank with a length of 8 m, a width of 8 m, and a height of 1.2 m was used as a culture tank. The aquaculture tank has a drain port having a diameter of 100 mm and a pipe mounting groove having a diameter of 200 mm surrounding the drain port concentrically at the center. A resin pipe having a diameter of 200 mm was fitted into the pipe mounting groove so that the upper surface of the resin pipe was 20 cm high from the bottom of the culture tank. As a filter for preventing the outflow of prawns, a cylindrical resin net having a mesh of 3 mm in length and 3 mm in width was attached to the outer periphery of the resin pipe so as to have a height of 120 cm. At the outlet of the drain outlet, a resin pipe with a diameter of 100 mm is 1 m from the bottom of the culture tank so that when the water in the culture tank reaches a certain height (1 m), it automatically drains to the outside of the culture tank. It was installed to become.
As a water supply main pipe, a resin pipe having a diameter of 50 mm was installed from the upper side to the lower side at the center of one wall surface of the culture tank, and branched by 4 m left and right along the culture tank wall surface at the bottom of the culture tank. A total of 40 connecting holes for connecting the water supply pipes are formed at intervals of 20 cm in the water supply main branched from the bottom of the aquaculture tank. An 8m long water supply pipe consisting of a resin hose with 1.0mm diameter jets formed at 20cm pitch on both sides is connected to this connection hole. Installed in. The spout of the water supply pipe is in the range from 10 degrees upward to the horizontal direction, and the spouts of the two adjacent water supply pipes face each other.
川砂を15cmの高さで敷き詰めて砂層を形成した。排出口に嵌合した樹脂製パイプは、砂層表面から5cmだけ突出しており、排水口から砂の流出を防ぐことができる。上記したように、水は、養殖槽底面から1mまで溜まるので、水深は85cm(=100cm−15cm)となる。この給水本管にろ過海水を送水すると、砂層の全面から水が湧き上がり、各給水配管に設けられた噴出口から噴出した水が、砂層全面で上向水流を形成していることが確認できた。
循環ポンプとして0.25kwの水中ポンプ1台を、養殖水槽壁面に砂層から30cmの高さに吊るし、排水口が水面と平行になるように設置した。また、循環ポンプの吸水口に、クルマエビの吸い込みを防止する樹脂製ネットと酸素供給用チューブとを取り付けた。循環ポンプを稼働すると、養殖槽内の水は、水層表面における流速が20cm/秒で旋回した。
River sand was spread at a height of 15 cm to form a sand layer. The resin pipe fitted into the discharge port protrudes by 5 cm from the surface of the sand layer, and can prevent the sand from flowing out from the drain port. As described above, water accumulates up to 1 m from the bottom of the culture tank, so the water depth is 85 cm (= 100 cm-15 cm). When filtered seawater is sent to this water supply main, it can be confirmed that the water rises from the entire surface of the sand layer, and the water spouted from the spout provided in each water supply pipe forms an upward water flow over the entire surface of the sand layer. It was.
One 0.25 kw submersible pump as a circulation pump was hung on the wall surface of the aquaculture tank at a height of 30 cm from the sand layer, and the drain outlet was installed in parallel with the water surface. In addition, a resin net and an oxygen supply tube for preventing the inhalation of prawns were attached to the water inlet of the circulation pump. When the circulation pump was operated, the water in the culture tank swirled at a flow velocity of 20 cm / second on the surface of the water layer.
「実施例1」
養殖槽の総給水量を換水率2回転/日とし、総給水量の全てを給水配管から連続的に供給した。給水配管からの水供給量は1.7m3/m2・日、噴出口からの水の噴出速度は50cm/秒と算出できる。
水中の溶存酸素量を7±1mg/Lで維持し、体重5.6g前後のクルマエビを3200尾収容して飼育を開始した。
給餌飼料は、株式会社ヒガシマル製クルマエビ用配合飼料を用い、1日1回、日没後に投与した。日々の給餌量は飼料メーカーが推奨する給餌率を基礎として、収容尾数と体重から適正量を算出した。また、樹脂製ネットの網目を通過できない脱皮殻等の大型の汚染物は、適宜取り除いた。
飼育期間中は、毎日、潜水作業により斃死、脱皮状況、残餌などを観察した。また、毎日朝夕の二回、飼育水の水温、溶存酸素量、pHを、ポータブル溶存酸素・pH計(東亜ディーケーケー株式会社製、装置名:DM−32P)で測定した。
飼育開始から14週後、全てのクルマエビを取上げて飼育を終了した。
"Example 1"
The total amount of water supplied to the aquaculture tank was set to 2 rotations / day, and the total amount of water supplied was continuously supplied from the water supply pipe. The amount of water supplied from the water supply pipe can be calculated to be 1.7 m 3 / m 2 · day, and the jetting speed of water from the jet outlet can be calculated as 50 cm / sec.
The amount of dissolved oxygen in water was maintained at 7 ± 1 mg / L, and 3200 prawns with a body weight of around 5.6 g were housed to start breeding.
As the feed, Higashimaru Co., Ltd., a prawn mixed feed was used, and was administered once a day after sunset. The daily feeding amount was calculated based on the feeding rate recommended by the feed manufacturer, and the appropriate amount was calculated from the number of accommodated cattle and body weight. Also, large contaminants such as the molting shell that cannot pass through the mesh of the resin net were removed as appropriate.
During the breeding period, we observed drowning, molting, and residual food by diving every day. Further, twice daily in the morning and evening, the temperature of the breeding water, the amount of dissolved oxygen, and pH were measured with a portable dissolved oxygen / pH meter (manufactured by Toa DKK Corporation, device name: DM-32P).
14 weeks after the start of the breeding, all the prawns were picked up and the breeding was terminated.
「比較例1」
従来の養殖方法であるかけ流し式(換水率は0.5回/日)とした以外は上記実施例1と同条件でクルマエビを飼育した。
以下、本発明の養殖装置で飼育した実施例1を試験区、従来のかけ流し式で飼育した比較例1を対照区と記す。
“Comparative Example 1”
The prawns were reared under the same conditions as in Example 1 except that the flow-through method (conversion rate was 0.5 times / day), which is a conventional aquaculture method.
Hereinafter, Example 1 bred with the culture device of the present invention is referred to as a test group, and Comparative Example 1 bred with a conventional pouring type is referred to as a control group.
「硫化物濃度測定」
4週間毎に、養殖槽中央部と、養殖槽の外壁から約1mの壁周辺部における砂中の硫化物濃度を気体濃度測定器(株式会社ガステック製、ヘドロテック−S用検知管、気体採取器Model 801)を用いて測定した。
「クルマエビの検量」
2週間毎に、飼育クルマエビの中から無作為に100尾を取り上げて重量を秤り、重量を尾数で除して平均体重を算出した。
"Sulphide concentration measurement"
Every 4 weeks, the concentration of sulfide in the sand at the center of the aquaculture tank and the wall around 1 m from the outer wall of the aquaculture tank was measured using a gas concentration meter (Gastec Co., Ltd., Hedrotech-S detector tube, gas Measurement was performed using a collector Model 801).
“Shrimp Calibration”
Every two weeks, 100 pigs were randomly picked from domestic prawns, weighed, and the average body weight was calculated by dividing the weight by the number of fish.
「硫化物濃度の測定結果」
試験期間中の硫化物濃度を表1に示す。
“Measurement results of sulfide concentration”
Table 1 shows the sulfide concentration during the test period.
試験区では、養殖槽中央部の砂は、4週目まで硫化物が検知されず、12週目に最も高い21.2mg/gが検知された。また、養殖槽の壁周辺部では、8週目まで硫化物は検知されず、12週目でも0.2mg/gという微量であった。
それに対し、対照区では、養殖槽中央部の砂は、4週目の時点で試験区の12週目とほぼ同じ22.2mg/gの硫化物が検知され、その後も上昇を続けて12週間後には50.8mg/gとなった。また、養殖槽の壁周辺部では、4週目に1.4mg/gの硫化物が検知され、その後も飼育の経過に従って砂中の硫化物濃度は上昇し、12週後には10.0mg/gとなった。
硫化物は、試験区、対照区ともに養殖槽の壁周辺部より中央部において高濃度で検知された。これは、循環ポンプが生成する旋回流により、汚染物が養殖槽中央部に集積したためである。
試験区は、養殖12週後でも、排水口周辺を除けば、硫化物が殆ど蓄積していない。硫化物が少ないことは他の汚染物質も少ないことを示しているので、養殖終了後の洗浄作業で除去すべき汚染物は排水口周辺に集中している。そのため、本発明の養殖装置は、養殖終了後の砂層等の洗浄を、排水口周辺のみで行えばよく、洗浄作業を著しく簡略化、さらには省略することができる。
In the test area, no sulfide was detected until the 4th week, and the highest 21.2 mg / g was detected at the 12th week. Further, in the peripheral part of the wall of the culture tank, sulfide was not detected until the 8th week, and it was a trace amount of 0.2 mg / g even at the 12th week.
In contrast, in the control plot, the sand in the center of the aquaculture tank detected 22.2 mg / g of sulfide at the 4th week, which was almost the same as the 12th week in the test plot, and continued to rise for 12 weeks. Later, it was 50.8 mg / g. In addition, 1.4 mg / g of sulfide was detected in the periphery of the aquaculture tank wall at the 4th week, and the sulfide concentration in the sand increased as the breeding progressed thereafter. After 12 weeks, 10.0 mg / g g.
Sulfide was detected at a higher concentration in the center than in the periphery of the aquaculture tank wall in both the test and control areas. This is because contaminants accumulate in the center of the culture tank due to the swirling flow generated by the circulation pump.
In the test area, even after 12 weeks of cultivation, there is almost no accumulation of sulfides except around the drainage port. Less sulfide means less other pollutants, so the contaminants to be removed in the cleaning operation after the cultivation is concentrated around the drain. Therefore, the aquaculture apparatus of the present invention only needs to clean the sand layer and the like after completion of the aquaculture only around the drain outlet, and the cleaning operation can be greatly simplified and further omitted.
「クルマエビの生育状態」
表2に平均体重の推移を、表3に増肉量の推移を示す。増肉量とは、2週経過前後の平均体重の差、すなわち2週間の間の体重増加量である。
Table 2 shows the transition of the average body weight, and Table 3 shows the transition of the increased amount of meat. The increased amount of weight is the difference in average body weight before and after the passage of two weeks, that is, the amount of weight gain during two weeks.
表2から、試験区のクルマエビの平均体重は、対照区のクルマエビの平均体重を飼育期間を通して上まわっていた。また、表3から、何れの期間でも試験区のクルマエビの方が対照区より高い増肉量を示し、成長が早いことが確認できた。 From Table 2, the average weight of the shrimp in the test group exceeded the average weight of the control shrimp throughout the breeding period. Moreover, from Table 3, it was confirmed that the shrimp in the test group showed a higher thickness than the control group in any period, and the growth was fast.
表4に、飼育試験結果のまとめを示す。なお、給餌率と増肉計数は、飼育期間中に与えた飼料量(F)、飼育日数(D=95日)と、試験開始時と終了時の収容尾数と平均体重とから、以下の式で表される。
給餌率=F/[D×{(Nf+N0)/2}×{(Wf+W0)/2}]×100
増肉係数=F/[{(Nf+N0)/2}×(Wf−W0)]
Feeding rate = F / [D × {(N f + N 0 ) / 2} × {(W f + W 0 ) / 2}] × 100
Thickening factor = F / [{(N f + N 0 ) / 2} × (W f −W 0 )]
試験区のクルマエビの給餌率は、1.8%であり、対照区の給餌率2.0%より低かった。給餌率が低いことは、少ない飼料でより高い増肉が得られたことを意味する。このことは試験区のクルマエビの増肉係数が対照区のクルマエビのそれより優れることとも一致する。すなわち、試験区が、対照区と比較してクルマエビにとって成長に適した環境であったことが確認できた。 The feeding rate of the prawns in the test group was 1.8%, which was lower than the feeding rate of 2.0% in the control group. A low feeding rate means that higher meat gain was obtained with less feed. This is consistent with the fact that the growth coefficient of the shrimp in the test group is superior to that of the control shrimp. That is, it was confirmed that the test plot was an environment suitable for growth for the prawns compared to the control plot.
一般的なクルマエビ養殖現場の生産量は1m2あたり500g前後であるが、本実施例の試験区では飼育終了時の収容密度が1292g/m2と、一般的なクルマエビ養殖生産量の約2.6倍のクルマエビを飼育できた。対照区でも1072g/m2という高い収容密度であったが、これは、上記したように約5.6gにまで成長した稚エビで養殖を開始したためである。
上記したように、本発明の養殖装置を用いた試験区では、砂層が清潔に維持されているため、出荷終了後に砂層の洗浄作業を著しく簡略化、さらには省略することができる。砂層の洗浄作業が不要な場合、養殖終了後に直ちに次の稚エビを収容することができる。養殖期間を6カ月とすると、養殖終了後に直ちに次の養殖を開始することで、年に2回の生産が可能となる。本発明の養殖装置は、1292g/m2の密度でクルマエビを収容することができるため、約2.6kg/1m2・年の生産量が期待でき、従来と比較して5倍以上の生産性を有している。
The production volume at a typical prawn aquaculture site is around 500 g per 1 m 2 , but in the test area of this example, the accommodation density at the end of the breeding is 1292 g / m 2, which is about 2. I was able to raise six times as many prawns. Even in the control group, the housing density was as high as 1072 g / m 2 , because the cultivation was started with juvenile shrimp that had grown to about 5.6 g as described above.
As described above, in the test area using the culture apparatus of the present invention, since the sand layer is kept clean, the sand layer cleaning operation can be significantly simplified and further omitted after the shipment is completed. If cleaning of the sand layer is unnecessary, the next juvenile shrimp can be accommodated immediately after the cultivation. If the aquaculture period is 6 months, production can be performed twice a year by starting the next aquaculture immediately after the end of the aquaculture. Since the aquaculture apparatus of the present invention can accommodate prawns at a density of 1292 g / m 2 , it can be expected to produce about 2.6 kg / 1 m 2 · years, which is more than five times more productive than the conventional one. have.
「クルマエビの姿形」
試験区と対照区で養殖されたクルマエビのヒゲ(第二触覚)の長短を調査した。全長より長いヒゲを有する個体は試験区で約8割、対照区で約4割であった。ヒゲの長さが頭胸部より短い個体は試験区では見当らず、対照区では約3割であった。
一般に、クルマエビを高密度で養殖するとヒゲが短くなる。これは、クルマエビを高密度で飼育すると密度ストレスを受け、互いに攻撃し合うためである。試験区は、対照区よりもヒゲの長いクルマエビが多く、同一の大きさの養殖槽を用いたにも関わらず、試験区の方が、対照区よりもクルマエビの飼育密度が低かった。試験区と対照区とで飼育密度に違いが生じた理由は、以下のように推測される。
試験区は、砂中の硫化物の発生を砂層全面にわたって抑制できており、クルマエビは、砂層全面に分散して生活すると考えられ、養殖槽の面積から算出した飼育密度でクルマエビを飼育できた。
それに対し、対照区は、硫化物濃度の高い領域が存在する。硫化物の蓄積した砂は、嫌気的環境下にあり、酸素濃度が低く生活域として適さない。クルマエビは、硫化物濃度が高い領域にはほとんど潜砂せず、硫化物濃度が低い領域に集中するため、実際の飼育密度は、養殖槽の面積から算出した飼育密度よりも高くなった。
"Shark prawns"
The length of the shrimp beard (second tactile sensation) cultivated in the test plot and the control plot was investigated. About 80% of the individuals had beards longer than the full length in the test group and about 40% in the control group. Individuals whose beard length was shorter than the head and chest were not found in the test group, and about 30% in the control group.
In general, when prawns are cultured at high density, beards become shorter. This is because when prawns are raised at high density, they receive density stress and attack each other. The test plot had more long-skinned prawns than the control plot, and despite the use of the same sized aquaculture tank, the test plot had a lower shrimp breeding density than the control plot. The reason for the difference in breeding density between the test plot and the control plot is estimated as follows.
In the test area, the occurrence of sulfide in the sand was suppressed over the entire sand layer, and it was considered that the shrimp lived dispersed over the entire sand layer, and the shrimp could be reared at a rearing density calculated from the area of the aquaculture tank.
In contrast, the control group has a region with a high sulfide concentration. Sand with accumulated sulfides is in an anaerobic environment and has a low oxygen concentration and is not suitable as a living area. The prawns do not submerge in areas where the sulfide concentration is high, but concentrate in areas where the sulfide concentration is low, so the actual breeding density was higher than the breeding density calculated from the area of the aquaculture tank.
本発明の養殖装置でクルマエビを養殖すると、少ない給餌率で速い成長速度が達成され、著しく高い歩留まりと養殖密度でクルマエビを生産できる。また、養殖と、次の養殖との間の期間を短くでき、養殖装置の稼働率を高くすることができる。さらに、クルマエビは、姿形も評価の対象とされ、ヒゲが長いほど高値で取引されるが、本発明の養殖装置により、ヒゲが長く市場で高値で取引されるクルマエビを生産することができる。 When prawns are cultured with the aquaculture apparatus of the present invention, a fast growth rate is achieved with a low feeding rate, and prawns can be produced with a significantly high yield and aquaculture density. Moreover, the period between aquaculture and the following aquaculture can be shortened, and the operation rate of a culture apparatus can be made high. Further, the shape of the prawn is also subject to evaluation, and the longer the beard is traded at a higher price, the cultured apparatus of the present invention makes it possible to produce the prawn that has a long beard and is traded at a high price in the market.
100 養殖装置
10 養殖槽
11 砂層
12 水層
20 給水配管
20a〜20d 給水配管
21 噴出口
21a〜21d 噴出口
211 細孔
22 連通管
30 排水装置
31 フィルタ
32 パイプ
33 外部出口
40 旋回流発生装置
101〜103 養殖装置
DESCRIPTION OF
101-103 aquaculture equipment
図7に、隣り合う二本の給水配管20c、20dの噴出口21c、21dが対向しない給水配管20の拡大図を示す。給水配管20cの噴出口21cと、隣接する給水配管20dの噴出口21dとが対向しないとは、給水配管20cの噴出口21cの中心を通る給水配管壁の法線と、隣接する給水配管20dの噴出口21dの中心を通る給水配管壁の法線との距離(b’)が、噴出口21c、21dのピッチ(b)の0.2倍以上であることを意味する。給水配管20cの噴出口21cの中心を通る給水配管壁の法線と、隣接する給水配管20dの噴出口21dの中心を通る給水配管壁の法線との距離(b’)は、噴出口21c、21dのピッチ(b)の0.3倍以上であることがより好ましく、0.4倍以上であることがさらに好ましく、0.5倍であることが最も好ましい。
給水配管20cの噴出口21cの中心を通る給水配管壁の法線と、隣接する給水配管20dの噴出口21dの中心を通る給水配管壁の法線との距離(b’)が、噴出口21c、21dのピッチ(b)の0.5倍のときに、それぞれの噴出口21c、21dから隣接する給水配管20c、20dの近傍まで水を噴出すると、砂層11の各部分における上向水流の勢いが均一となるため、砂層に厚みムラが発生しにくい。
In FIG. 7, the enlarged view of the
The distance (b ′) between the normal line of the water supply pipe wall passing through the center of the
表4に、飼育試験結果のまとめを示す。なお、給餌率と増肉係数は、飼育期間中に与えた飼料量(F)、飼育日数(D=95日)と、試験開始時と終了時の収容尾数と平均体重とから、以下の式で表される。
給餌率=F/[D×{(Nf+N0)/2}×{(Wf+W0)/2}]×100
増肉係数=F/[{(Nf+N0)/2}×(Wf−W0)]
Feeding rate = F / [D × {(N f + N 0 ) / 2} × {(W f + W 0 ) / 2}] × 100
Thickening factor = F / [{(N f + N 0 ) / 2} × (W f −W 0 )]
「クルマエビの姿形」
試験区と対照区で養殖されたクルマエビのヒゲ(第二触角)の長短を調査した。全長より長いヒゲを有する個体は試験区で約8割、対照区で約4割であった。ヒゲの長さが頭胸部より短い個体は試験区では見当らず、対照区では約3割であった。
一般に、クルマエビを高密度で養殖するとヒゲが短くなる。これは、クルマエビを高密度で飼育すると密度ストレスを受け、互いに攻撃し合うためである。試験区は、対照区よりもヒゲの長いクルマエビが多く、同一の大きさの養殖槽を用いたにも関わらず、試験区の方が、対照区よりもクルマエビの飼育密度が低かった。試験区と対照区とで飼育密度に違いが生じた理由は、以下のように推測される。
試験区は、砂中の硫化物の発生を砂層全面にわたって抑制できており、クルマエビは、砂層全面に分散して生活すると考えられ、養殖槽の面積から算出した飼育密度でクルマエビを飼育できた。
それに対し、対照区は、硫化物濃度の高い領域が存在する。硫化物の蓄積した砂は、嫌気的環境下にあり、酸素濃度が低く生活域として適さない。クルマエビは、硫化物濃度が高い領域にはほとんど潜砂せず、硫化物濃度が低い領域に集中するため、実際の飼育密度は、養殖槽の面積から算出した飼育密度よりも高くなった。
"Shark prawns"
To investigate the length of the beard of farmed prawns (second touch corner) in the control group and the test group. About 80% of the individuals had beards longer than the full length in the test group and about 40% in the control group. Individuals whose beard length was shorter than the head and chest were not found in the test group, and about 30% in the control group.
In general, when prawns are cultured at high density, beards become shorter. This is because when prawns are raised at high density, they receive density stress and attack each other. The test plot had more long-skinned prawns than the control plot, and despite the use of the same sized aquaculture tank, the test plot had a lower shrimp breeding density than the control plot. The reason for the difference in breeding density between the test plot and the control plot is estimated as follows.
In the test area, the occurrence of sulfide in the sand was suppressed over the entire sand layer, and it was considered that the shrimp lived dispersed over the entire sand layer, and the shrimp could be reared at a rearing density calculated from the area of the aquaculture tank.
In contrast, the control group has a region with a high sulfide concentration. Sand with accumulated sulfides is in an anaerobic environment and has a low oxygen concentration and is not suitable as a living area. The prawns do not submerge in areas where the sulfide concentration is high, but concentrate in areas where the sulfide concentration is low, so the actual breeding density was higher than the breeding density calculated from the area of the aquaculture tank.
Claims (7)
前記養殖槽の底部に一定の間隔で配設される給水配管と、
を有し、
前記給水配管が、側面に一定のピッチで噴出口を備えることを特徴とする砂地生息水中生物の養殖装置。 An aquaculture tank,
Water supply pipes arranged at regular intervals at the bottom of the aquaculture tank;
Have
The aquaculture apparatus for sandy inhabited aquatic organisms, wherein the water supply pipe is provided with spouts on a side surface at a constant pitch.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015215722A JP5913717B1 (en) | 2015-11-02 | 2015-11-02 | Sandy aquatic life culture equipment |
CN201610391387.7A CN106614172A (en) | 2015-11-02 | 2016-06-03 | Farming apparatus for aquatic organisms living in sandy soil |
US15/174,844 US20170118963A1 (en) | 2015-11-02 | 2016-06-06 | Farming apparatus for aquatic organisms living in sandy soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015215722A JP5913717B1 (en) | 2015-11-02 | 2015-11-02 | Sandy aquatic life culture equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016033298A Division JP2017086060A (en) | 2015-11-02 | 2016-02-24 | Culture apparatus for underwater creatures that live in sandy soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5913717B1 JP5913717B1 (en) | 2016-04-27 |
JP2017085903A true JP2017085903A (en) | 2017-05-25 |
Family
ID=55808189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015215722A Active JP5913717B1 (en) | 2015-11-02 | 2015-11-02 | Sandy aquatic life culture equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5913717B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105850815B (en) * | 2016-05-23 | 2019-09-03 | 安庆师范大学 | Finless porpoise holding facility and holding method for simulating natural environment |
CN110338132B (en) * | 2019-08-16 | 2024-05-24 | 湛江市碧海湾水产科技有限公司 | Sipunculus nudus high-density culture pond |
CN116098091A (en) * | 2023-02-09 | 2023-05-12 | 成都龙兴大地农业开发有限公司 | Circular ecological breeding method for circular breeding pond |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61293325A (en) * | 1985-06-21 | 1986-12-24 | 株式会社 メツクス | Shrimp breeding water tank |
JPH08322419A (en) * | 1995-05-30 | 1996-12-10 | Suminaga Suisan Kk | Treatment of live shellfish and device therefor |
JPH11169011A (en) * | 1997-12-08 | 1999-06-29 | Kyushu Medical:Kk | Crustacean cultivation system and method |
JP2002360110A (en) * | 2001-06-05 | 2002-12-17 | Mitsui Norin Marine Products Development Co Ltd | Aquaculture equipment for sandy habitats |
JP2004208648A (en) * | 2003-01-08 | 2004-07-29 | Ybm Co Ltd | System for activating water in which fish and shellfish live |
-
2015
- 2015-11-02 JP JP2015215722A patent/JP5913717B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61293325A (en) * | 1985-06-21 | 1986-12-24 | 株式会社 メツクス | Shrimp breeding water tank |
JPH08322419A (en) * | 1995-05-30 | 1996-12-10 | Suminaga Suisan Kk | Treatment of live shellfish and device therefor |
JPH11169011A (en) * | 1997-12-08 | 1999-06-29 | Kyushu Medical:Kk | Crustacean cultivation system and method |
JP2002360110A (en) * | 2001-06-05 | 2002-12-17 | Mitsui Norin Marine Products Development Co Ltd | Aquaculture equipment for sandy habitats |
JP2004208648A (en) * | 2003-01-08 | 2004-07-29 | Ybm Co Ltd | System for activating water in which fish and shellfish live |
Also Published As
Publication number | Publication date |
---|---|
JP5913717B1 (en) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101867109B1 (en) | Device for farming benthic organisms such as bivalves | |
US7682504B2 (en) | System for growing crustaceans and other fish | |
US20170118963A1 (en) | Farming apparatus for aquatic organisms living in sandy soil | |
JP5954629B2 (en) | Water and bottom purification system for bivalve aquaculture and eutrophication waters | |
JP2016208890A (en) | Abalone culturing method and system for same | |
JP2002119169A (en) | System and method for raising fish and shellfish | |
CN109619019B (en) | High drop self-water-flowing tank type fish-farming system | |
JP5913717B1 (en) | Sandy aquatic life culture equipment | |
CN203152274U (en) | Water circulation system of adult fish culture pond | |
KR101549211B1 (en) | Indoor culture system using upwelling flow for shellfish spat | |
JP2017086060A (en) | Culture apparatus for underwater creatures that live in sandy soil | |
JPH06327375A (en) | Method for culturing aquatic organism and its apparatus therefor | |
CN210299079U (en) | Circular force-saving high-yield environment-friendly culture pond with communicating vessels for controlling water and discharging sewage in siphon mode | |
JP2006217822A (en) | Seafood culture apparatus and method | |
CN104012456A (en) | Water circulation system for fish fry culture pond | |
CN110122383A (en) | A kind of freshwater snails cultivation apparatus | |
CN206390046U (en) | A kind of sea-farming pond with high-efficient dirt exhausting function | |
JP6973832B1 (en) | Aquatic animal farming equipment and farming methods | |
CN206101319U (en) | Aquaculture integrated system | |
KR101725614B1 (en) | Cultivating Apparatus of Bivalia for the Integrated Culture in Embankment Pond | |
CN202844673U (en) | Dirty water filtration device | |
CN107897101B (en) | Shrimp and vegetable rotation ecological culture pond | |
WO2021116737A1 (en) | System and non-invasive self-cleaning method allowing continuous removal of solid waste in farming ponds for aquaculture | |
CN210328988U (en) | Fish-lotus coupling purification breeding system | |
CN203152272U (en) | Fry culture pond water circulation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160224 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5913717 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |