[go: up one dir, main page]

JP2017084681A - Method for recovering positive electrode material of used lithium ion secondary battery - Google Patents

Method for recovering positive electrode material of used lithium ion secondary battery Download PDF

Info

Publication number
JP2017084681A
JP2017084681A JP2015213562A JP2015213562A JP2017084681A JP 2017084681 A JP2017084681 A JP 2017084681A JP 2015213562 A JP2015213562 A JP 2015213562A JP 2015213562 A JP2015213562 A JP 2015213562A JP 2017084681 A JP2017084681 A JP 2017084681A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
ion secondary
lithium ion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015213562A
Other languages
Japanese (ja)
Inventor
安宏 大保
Yasuhiro Oyasu
安宏 大保
直明 北川
Naoaki Kitagawa
直明 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015213562A priority Critical patent/JP2017084681A/en
Publication of JP2017084681A publication Critical patent/JP2017084681A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering a positive electrode material of a lithium ion secondary battery, by which an active material, i.e. a positive electrode material of a used lithium ion secondary battery, and a current collector can be separated by a simple and convenient process, and the positive electrode material can be recovered inexpensively.SOLUTION: A method for recovering a positive electrode material from a used lithium ion secondary battery according to the present invention comprises the steps of: disassembling the used lithium ion secondary battery to obtain a member including the positive electrode material; performing a heat treatment on the member including the positive electrode material at a temperature of 500-600°C under an atmosphere of room air; and then immersing the object subjected to the heat treatment in water to process the same by ultrasonic waves for a given length of time.SELECTED DRAWING: None

Description

本発明は、使用済みのリチウムイオン二次電池の正極材料の回収方法に関し、より詳しくは、使用済みのリチウムイオン二次電池から、その正極材料である活物質(金属化合物)と集電体とを簡便な処理により分別し、正極材料を安価で回収することができる使用済みウムイオン二次電池の正極材料の回収方法に関する。   The present invention relates to a method for recovering a positive electrode material of a used lithium ion secondary battery, and more specifically, from a used lithium ion secondary battery, an active material (metal compound) that is the positive electrode material, a current collector, It is related with the collection | recovery method of the positive electrode material of the used um ion secondary battery which can fractionate by simple process and can collect | recover positive electrode material at low cost.

リチウムイオン二次電池は、携帯電話、ノートパソコン等のモバイル機器、自動車など幅広く使用されており、その使用量は急激に伸びている。   Lithium ion secondary batteries are widely used in mobile devices such as mobile phones, laptop computers, and automobiles, and their usage is growing rapidly.

リチウムイオン二次電池の正極材料は、LCO(コバルト酸リチウム)、LMO(マンガン酸リチウム)、NCA(ニッケル酸リチウム)など様々な正極活物質が用いられており、特性を向上させるために各メーカーで研究されている。これらのリチウムイオン二次電池は、充電・放電を繰り返し使用することができるが、その容量は充放電を繰り返すにしたがって低下してしまう、いわゆる容量の劣化が生じる。そこで、使用済みのリチウムイオン二次電池からこれらの正極材料をその状態のまま回収し、活物質の粒度、形状、結晶構造などを評価することで、容量劣化のメカニズムなどを解明することが望まれている。しかし、このような評価をするのには、使用済み電池から正極材料をその状態のまま取り出すのに適した回収方法が知られていないという問題があった。   Various positive electrode active materials such as LCO (lithium cobaltate), LMO (lithium manganate), and NCA (lithium nickelate) are used as positive electrode materials for lithium ion secondary batteries. Has been studied. These lithium ion secondary batteries can be used repeatedly for charging and discharging. However, the capacity of the lithium ion secondary battery decreases as charging and discharging are repeated, so-called capacity deterioration occurs. Therefore, it is hoped that these positive electrode materials will be recovered from used lithium ion secondary batteries as they are, and the mechanism of capacity degradation will be elucidated by evaluating the particle size, shape, crystal structure, etc. of the active material. It is rare. However, in order to make such an evaluation, there is a problem that a recovery method suitable for taking out the positive electrode material from the used battery as it is is not known.

これまで、リチウムイオン二次電池からの正極材料の回収方法について、様々な方法が検討されているが、これらは有価金属であるコバルト、ニッケル、マンガンなどの金属成分を高純度な状態に溶解・抽出することで回収し、再度原料として使用することを目的とした回収法がほとんどであった。   So far, various methods have been studied for the recovery of positive electrode materials from lithium ion secondary batteries. These include dissolving metal components such as cobalt, nickel, and manganese, which are valuable metals, in a high purity state. Most of the recovery methods were intended to be recovered by extraction and used again as a raw material.

例えば、活物質を含む二次電池の廃電池を酸素含有ガス気流中で600℃以上の温度で焙焼し、焙焼物を裁断し、裁断物を篩分けし、焙焼物から磁石で選別し酸溶解し、酸溶解物から有機溶剤で溶媒抽出することにより有価金属の正極材料を回収する技術が提案されている(特許文献1参照)。 For example, a secondary battery waste battery containing an active material is roasted at a temperature of 600 ° C. or higher in an oxygen-containing gas stream, the baked product is cut, the cut product is sieved, and the baked product is selected with a magnet and acidified. A technique for recovering a positive electrode material of a valuable metal by dissolving and extracting a solvent from an acid solution with an organic solvent has been proposed (see Patent Document 1).

しかしながら、この方法は高温での焙焼工程や、酸や、有機溶剤による抽出工程をもつため、比較的純度の高く、高収率で回収が可能であるが、工程が複雑で、コストのかかる回収方法である。 However, this method has a roasting step at a high temperature and an extraction step with an acid or an organic solvent, so that it can be recovered with a relatively high purity and a high yield, but the process is complicated and expensive. It is a collection method.

また、コバルト酸リチウムに炭素を添加し、700℃以上の温度で不活性ガス雰囲気中にて、還元焙焼することにより、焙焼物を得て、該焙焼物を水で浸出することにより、焙焼物中のリチウム成分を溶出させて、回収する方法が提案されている。(特許文献2参照) In addition, by adding carbon to lithium cobaltate and reducing and roasting in an inert gas atmosphere at a temperature of 700 ° C. or higher, a roasted product is obtained, and the roasted product is leached with water. There has been proposed a method of eluting and recovering lithium components in the pottery. (See Patent Document 2)

この方法は、コバルト酸リチウム単独での焙焼であり、リチウム二次電池の廃電池を対象としておらず、また高温での還元焙焼により、廃電池中の正極材料をそのままの状態で回収することは期待できない。 This method is roasting with lithium cobaltate alone, not intended for waste batteries of lithium secondary batteries, and recovering positive electrode materials in the waste batteries as they are by reduction roasting at high temperature. I can't expect that.

また、この方法の改良法として、コバルト酸リチウムに炭素を添加し、500℃以上1000℃以下の温度で大気雰囲気下、酸化雰囲気下、及び還元性雰囲気下で、焙焼することにより、焙焼物を得て、該焙焼物を水で浸出することにより、焙焼物中のリチウム成分を溶出させて、回収する方法が提案されている。(特許文献3参照) Further, as an improved method of this method, by adding carbon to lithium cobaltate and baking at a temperature of 500 ° C. or higher and 1000 ° C. or lower in an air atmosphere, an oxidizing atmosphere, and a reducing atmosphere, a roasted product And leaching the roasted product with water to elute and recover the lithium component in the roasted product. (See Patent Document 3)

この方法は、廃電池からリチウム成分を効率よく回収できるものの、正極材料については効率よく回収することができず、また高温での還元焙焼により、廃電池中の正極材料をそのままの状態で回収することは期待できない。 Although this method can efficiently recover the lithium component from the waste battery, it cannot efficiently recover the positive electrode material, and the positive electrode material in the waste battery is recovered as it is by reducing and baking at high temperature. I can't expect to do it.

特開平10−046266号公報Japanese Patent Laid-Open No. 10-046266 特開2004−11010号公報JP 2004-11010 A 特開2011−94228号公報JP 2011-94228 A

このように、従来様々なリチウムイオン二次電池からの正極材料の回収法においても、種々の問題があり、使用済みリチウムイオン二次電池から正極材料をそのままの状態で簡便に回収する方法が望まれていた。   As described above, there are various problems in the method for recovering the positive electrode material from various lithium ion secondary batteries, and a method for easily recovering the positive electrode material from the used lithium ion secondary battery as it is is desired. It was rare.

そこで、本発明は、使用済みリチウムイオン二次電池の正極材料である活物質と集電体とを簡便な処理により分別し、正極材料を安価で回収することができる使用済みリチウムイオン二次電池の正極材料の回収方法を提供することを目的とする。 Accordingly, the present invention provides a used lithium ion secondary battery that can separate an active material and a current collector, which are positive electrode materials of a used lithium ion secondary battery, by a simple process and recover the positive electrode material at a low cost. An object of the present invention is to provide a method for recovering the positive electrode material.

本発明者らは、上述した課題を解決すべく鋭意検討を重ねた結果、LCO(コバルト酸リチウム)、LMO(マンガン酸リチウム)、NCA(ニッケル酸リチウム)などの二次電池の電極材料を所定の焙焼条件で焙焼し、この焙焼物を水に浸漬させ、超音波で振動させることによって、簡便な操作で効率的に正極活物質を回収することにより、上述した課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined electrode materials for secondary batteries such as LCO (lithium cobaltate), LMO (lithium manganate), and NCA (lithium nickelate). It was found that the above-mentioned problems can be solved by efficiently recovering the positive electrode active material by a simple operation by roasting under the roasting conditions of the above, immersing the roasted product in water, and vibrating with ultrasonic waves. The present invention has been completed.

具体的に、以下の物を提供する。
本発明の使用済みリチウムイオン二次電池の正極材料の回収方法は、以下の1)から3)の処理工程を含むことを特徴としている。
・ 使用済みのリチウムイオン二次電池を分解し、正極材料を含む部材を得る工程。
・ 正極材料を含む部材を500℃〜600℃の温度で、大気雰囲気下で加熱処理する工程。
・ その後、加熱処理物を水に浸漬させ所定時間超音波処理する工程。
Specifically, the following items are provided.
The method for recovering the positive electrode material of the used lithium ion secondary battery of the present invention is characterized by including the following processing steps 1) to 3).
A step of disassembling a used lithium ion secondary battery to obtain a member containing a positive electrode material.
-The process of heat-processing the member containing positive electrode material at the temperature of 500 to 600 degreeC by air | atmosphere atmosphere.
-Thereafter, the step of immersing the heat-treated product in water and subjecting it to ultrasonic treatment for a predetermined time.

上記の1)から3)の工程を施すことで、使用済みリチウムイオン二次電池の正極材料活物質をそのままの状態で回収することができる。 By performing the above steps 1) to 3), the positive electrode active material of the used lithium ion secondary battery can be recovered as it is.

本発明の使用済みリチウムイオン二次電池の正極材料の回収方法によれば、500℃〜600℃の温度で大気雰囲気中で加熱処理することによりバインダー成分や導電助剤を、効率よく分離でき、従来から行われている回収方法のように、溶媒として有機溶剤を一切用いず、水のみを溶媒として使用し、超音波処理を施す、という極めて簡便な処理方法であって、当初の目的である正極活物質を、使用済み電池に含まれていたそのままの状態で効率よく回収することができるという、正極材料活物質の回収方法を提供することができ、その工業的な意義は大きい。   According to the method for recovering the positive electrode material of the used lithium ion secondary battery of the present invention, the binder component and the conductive assistant can be efficiently separated by heat treatment in the air atmosphere at a temperature of 500 ° C. to 600 ° C., It is an extremely simple treatment method that does not use any organic solvent as a solvent, and uses only water as a solvent and performs ultrasonic treatment as in the conventional recovery method, and is the original purpose. It is possible to provide a method for recovering a positive electrode material active material in which the positive electrode active material can be efficiently recovered as it is contained in a used battery, and its industrial significance is great.

本発明の使用済みリチウムイオン二次電池の正極材料の回収方法は、以下の1)から3)の処理工程を含むことを特徴としている。
・ 使用済みのリチウムイオン二次電池を分解し、正極材料を含む部材を得る工程。
・ 正極材料を含む部材を500℃〜600℃の温度で、大気雰囲気下で加熱処理する工程。
・ その後、加熱処理物を水に浸漬させ所定時間超音波処理する工程。
The method for recovering the positive electrode material of the used lithium ion secondary battery of the present invention is characterized by including the following processing steps 1) to 3).
A step of disassembling a used lithium ion secondary battery to obtain a member containing a positive electrode material.
-The process of heat-processing the member containing positive electrode material at the temperature of 500 to 600 degreeC by air | atmosphere atmosphere.
-Thereafter, the step of immersing the heat-treated product in water and subjecting it to ultrasonic treatment for a predetermined time.

本発明の使用済みリチウムイオン二次電池の正極材料の回収方法を適用するリチウムイオン二次電池の正極材料活物質は、LCO(コバルト酸リチウム)、LMO(マンガン酸リチウム)、NCA(ニッケル酸リチウム)などがあげられる。   The positive electrode material active material of the lithium ion secondary battery to which the method for recovering the positive electrode material of the used lithium ion secondary battery of the present invention is applied is LCO (lithium cobaltate), LMO (lithium manganate), NCA (lithium nickelate) ) Etc.

次に、本発明の使用済みリチウムイオン二次電池の正極材料の回収方法について、各工程について順次詳細に説明する。   Next, the method for recovering the positive electrode material of the used lithium ion secondary battery of the present invention will be described in detail for each step.

<1.使用済みの二次電池を分解し、正極材料を含む部材を得る工程>
まず、初めに使用済みリチウムイオン二次電池から正極材料を含む部材を得るために、電池本体を安全に分解する必要がある。
<1. Step of disassembling a used secondary battery to obtain a member containing a positive electrode material>
First, in order to obtain a member including a positive electrode material from a used lithium ion secondary battery, it is necessary to safely disassemble the battery body.

この工程は、安全に分解できれば特に制限はなく、公知の方法が使用できる。例えば、リチウムイオン二次電池本体は、事前に完全に放電させておくことが好ましい。そのために、電池本体を水中に浸漬し、放電させるとよい。完全に放電していることで、安全に切断することができる。具体的には、20〜30質量%濃度の塩化ナトリウム水溶液を用意し、この中に使用済み電池本体を浸漬させると放電し、これを取出し、シャー等を用いて、電池本体部分を切断し、アルミニウム、ステンレス本体及び電極端子を除去する。そこで、正極材料を含む部材、負極材料を含む部材、及びセパレータ部分を分離して、正極材料を含む部材を得る。 If this process can be decompose | disassembled safely, there will be no restriction | limiting in particular, A well-known method can be used. For example, the lithium ion secondary battery body is preferably completely discharged in advance. For this purpose, the battery body is preferably immersed in water and discharged. Since it is completely discharged, it can be safely disconnected. Specifically, a sodium chloride aqueous solution having a concentration of 20 to 30% by mass is prepared, and when a used battery body is immersed in this, it is discharged, taken out, and using a shear or the like, the battery body part is cut, Remove the aluminum and stainless steel body and electrode terminals. Therefore, the member containing the positive electrode material, the member containing the negative electrode material, and the separator portion are separated to obtain a member containing the positive electrode material.

<2.正極材料を含む部材を500℃〜600℃の温度で、大気雰囲気下で加熱処理する工程>
次に、るつぼなどに回収した正極材料を含む部材を入れバーナーや電気炉などの燃焼装置を用い、大気雰囲気下で、500℃以上600℃以下の温度で加熱処理する。
<2. Step of heat-treating member including positive electrode material at a temperature of 500 ° C. to 600 ° C. in an air atmosphere>
Next, a member containing the recovered positive electrode material is put in a crucible or the like, and heat-treated at a temperature of 500 ° C. or higher and 600 ° C. or lower in an air atmosphere using a combustion apparatus such as a burner or an electric furnace.

加熱処理時の雰囲気は、本発明の目的が、正極活物質の簡便な回収方法であることから、特に雰囲気調整が不要な大気雰囲気を選択しているが、効率よく燃焼するように酸素を追加してもよい。但し、あまり酸素付加すると安定した燃焼にならず、温度をコントロールしにくくなることに注意する必要がある。 The atmosphere at the time of the heat treatment is that the object of the present invention is a simple method for recovering the positive electrode active material, so an air atmosphere that does not require adjustment of the atmosphere is selected, but oxygen is added so as to burn efficiently. May be. However, it should be noted that if oxygen is added too much, stable combustion does not occur and it becomes difficult to control the temperature.

この加熱処理の温度を500℃〜600℃の温度範囲とするのは、回収した主に正極材料を含む部材に一緒に含まれている集電体を酸化させずに加熱処理できる温度範囲であり、また、アセチレンブラックやカーボン等の導電助剤とフッ素樹脂やフッ素ゴムなどのバインダー(結着剤)を分解、除去できる温度であることによる。   The temperature range of the heat treatment is set to a temperature range of 500 ° C. to 600 ° C., which is a temperature range in which the heat treatment can be performed without oxidizing the collected current collector included in the member mainly including the positive electrode material. Further, the temperature is such that the conductive assistant such as acetylene black and carbon and the binder (binder) such as fluororesin and fluororubber can be decomposed and removed.

具体的な加熱処理条件は、正極材料を構成している集電体とバインダーの構成により適宜調製することができる。加熱処理温度が600℃を超えると、正極材料の集電体として使用するアルミニウム箔が酸化し、脆化してしまうので、その後の工程で水中で超音波処理して正極活物質と集電体とを分離させる際、集電体のアルミニウム箔が崩れ、正極材料にアルミニウム箔の微粉末が混入する恐れがあるため好ましくない。また、500℃より低い温度で加熱処理しても正極材料に含まれる導電助剤とバインダー(結着剤)の分解、除去が不充分で、分離が困難になり正極材料の回収率が低くなってしまうため、好ましくない。 Specific heat treatment conditions can be appropriately adjusted depending on the structure of the current collector and the binder constituting the positive electrode material. When the heat treatment temperature exceeds 600 ° C., the aluminum foil used as the current collector for the positive electrode material is oxidized and embrittled, so that the positive electrode active material and the current collector are subjected to ultrasonic treatment in water in the subsequent steps. When separating the aluminum foil, the aluminum foil of the current collector collapses, and the fine powder of the aluminum foil may be mixed into the positive electrode material. In addition, even when heat treatment is performed at a temperature lower than 500 ° C., the conductive assistant and binder (binder) contained in the positive electrode material are not sufficiently decomposed and removed, making it difficult to separate and lowering the recovery rate of the positive electrode material. This is not preferable.

加熱処理装置は、処理物を大気雰囲気中で500℃〜600℃の温度範囲にコントロールして加熱処理できれば、特に制限がなく、処理量に応じて適宜選択することができる。例えば電極材料が数センチ角であれば、それを白金るつぼなどに入れ、バーナーで燃焼処理してもよい。電極材料を大量に処理する場合は、電気炉で行えば電極材料全体にムラなく燃焼処理が行える。   The heat treatment apparatus is not particularly limited as long as the heat treatment can be performed by controlling the treatment in a temperature range of 500 ° C. to 600 ° C. in an air atmosphere, and can be appropriately selected according to the treatment amount. For example, if the electrode material is several centimeters square, it may be placed in a platinum crucible and burned with a burner. When a large amount of electrode material is processed, the entire electrode material can be combusted evenly in an electric furnace.

<3.加熱処理物を水に浸漬させ所定時間超音波処理を施す工程>
最後に、加熱処理物を水に浸漬させ所定時間超音波処理する。処理量が少ない場合は、まず、ビーカーに純水を入れ、燃焼処理した焙焼物を前記純水に浸漬させ、超音波周波数50KHz程度の超音波発生装置を用いて、5〜10秒間超音波処理することで集電体から正極材料の活物質が容易に分離する。この際、撹拌を行うとより効率的に分離する。処理量が多くなれば、処理に必要な水量は焙焼物が完全に浸漬すれば良いので、処理量に合わせて水量を増やすことで調整でき、特に制限はない。超音波処理時間も特に制限はないが長時間、超音波処理することで集電体の箔が崩れ、微粉末の混入の恐れがあるため、必要以上に超音波処理することは好ましくない。
<3. Step of immersing heat-treated product in water and subjecting to ultrasonic treatment for a predetermined time>
Finally, the heat-treated product is immersed in water and subjected to ultrasonic treatment for a predetermined time. When the amount of treatment is small, first, pure water is put in a beaker, the burned roast is immersed in the pure water, and ultrasonic treatment is performed for 5 to 10 seconds using an ultrasonic generator with an ultrasonic frequency of about 50 KHz. By doing so, the active material of the positive electrode material is easily separated from the current collector. At this time, when stirring is performed, the separation is performed more efficiently. If the amount of treatment increases, the amount of water required for the treatment may be adjusted by increasing the amount of water according to the amount of treatment, as long as the roasted product is completely immersed, and there is no particular limitation. Although the ultrasonic treatment time is not particularly limited, it is not preferable to perform ultrasonic treatment more than necessary because the foil of the current collector collapses due to the ultrasonic treatment for a long time and fine powder may be mixed.

上記の処理を行うことで、正極材料活物質と集電体が水中で分離する。集電体はそのまま残り、これを取り出して、正極材料活物質の分散液が得られる。これをろ過乾燥させ、使用済みリチウムイオン二次電池本体内にあったままの状態で正極材料活物質を回収することができる。 By performing the above treatment, the positive electrode material active material and the current collector are separated in water. The current collector remains as it is and is taken out to obtain a dispersion of the positive electrode material active material. This can be filtered and dried, and the positive electrode material active material can be recovered while remaining in the used lithium ion secondary battery body.

本発明では、正極活物質の回収が目的であるので特に説明をしないが、当然のことながらリチウムを溶出した液からリチウムを回収することもできる。 In the present invention, since the purpose is to recover the positive electrode active material, no particular explanation will be given, but naturally lithium can also be recovered from a solution from which lithium is eluted.

以下、実施例を用いて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely using an Example, this invention is not limited to these Examples.

[実施例1]
先ず、市販のリチウムイオン二次電池を、20質量%塩化ナトリウム水溶液中に浸漬し、0.05V以下になるまで放電させた。その後、このリチウムイオン二次電池本体を切断し、中身の電極材料を取り出し、活物質と集電体からなる正極材料を含む部材、負極材料を含む部材、セパレーターに分け、試料として2cm角に切り出した正極材料を含む部材を用いた。
[Example 1]
First, a commercially available lithium ion secondary battery was immersed in a 20% by mass aqueous sodium chloride solution and discharged until 0.05 V or less. After that, this lithium ion secondary battery body is cut, the internal electrode material is taken out, divided into a member containing a positive electrode material consisting of an active material and a current collector, a member containing a negative electrode material, and a separator, and cut into a 2 cm square as a sample. The member containing the positive electrode material was used.

次に、切り出した試料を白金ルツボに入れ、この白金ルツボをバーナーの火にかけ、白金ルツボの色が暗赤色(500〜600℃)になったらバーナーから下ろし、焙焼物を得た。   Next, the cut-out sample was put into a platinum crucible, and this platinum crucible was set on a burner. When the color of the platinum crucible became dark red (500 to 600 ° C.), the sample was lowered from the burner to obtain a roasted product.

得られた焙焼物を100mlのビーカー内に入れ、純水を100mlビーカーに入れた後、超音波周波数50KHzの超音波装置に入れ、5秒間、超音波振動を与えた。超音波処理後、超音波装置からビーカーを取り出し、ピンセットなど使用して、ビーカー内から正極活物質が分離した集電体(アルミニウム)を取り出した。そして、純水中で分散している正極活物質を沈殿させるため、しばらく放置しておき、正極活物質の沈殿を確認後、ビーカー内からリチウムが溶出した液を分離回収した。   The obtained roasted product was put into a 100 ml beaker, pure water was put into a 100 ml beaker, and then put into an ultrasonic device having an ultrasonic frequency of 50 KHz, and subjected to ultrasonic vibration for 5 seconds. After the ultrasonic treatment, the beaker was taken out from the ultrasonic device, and the current collector (aluminum) from which the positive electrode active material was separated was taken out from the beaker using tweezers or the like. And in order to precipitate the positive electrode active material disperse | distributed in a pure water, it was left standing for a while, and after confirming precipitation of a positive electrode active material, the liquid from which lithium eluted from the inside of a beaker was separated and recovered.

更に、液を回収したビーカーを100℃に加熱した乾燥装置に入れ、乾燥し正極活物質を得ることができた。この時の正極活物質の回収率は、94.3%であった。得られた正極活物質を電子顕微鏡で観察すると、集電体アルミニウムの混入は見られず、正極活物質の粒子の変質もみられず、廃電池本体にあったままの状態で回収できたと判断できる。   Furthermore, the beaker from which the liquid was recovered was placed in a drying apparatus heated to 100 ° C. and dried to obtain a positive electrode active material. The recovery rate of the positive electrode active material at this time was 94.3%. When the obtained positive electrode active material is observed with an electron microscope, no contamination of the current collector aluminum is observed, no alteration of the particles of the positive electrode active material is observed, and it can be determined that the positive electrode active material can be recovered as it is in the waste battery body. .

[実施例2]
実施例2では、小型電気炉を用い、大気雰囲気500℃で30分間の保持時間を行った燃焼処理以外は実施例1と同様にして、正極活物質を回収した。この時の正極活物質の回収率は、95.6%であった。得られた正極活物質を電子顕微鏡で観察すると、集電体アルミニウムの混入は見られず、正極活物質の粒子の変質もみられず、廃電池本体にあったままの状態で回収できたと判断できる。
[Example 2]
In Example 2, the positive electrode active material was recovered in the same manner as in Example 1 except that a small electric furnace was used and the combustion treatment was performed for 30 minutes at 500 ° C. in the atmospheric atmosphere. The recovery rate of the positive electrode active material at this time was 95.6%. When the obtained positive electrode active material is observed with an electron microscope, no contamination of the current collector aluminum is observed, no alteration of the particles of the positive electrode active material is observed, and it can be determined that the positive electrode active material can be recovered as it is in the waste battery body. .

[比較例1]
比較例1では、バーナーで800℃に加熱した以外は実施例1と同様にして正極活物質を回収した。その結果、正極材料が脆化してしまい、集電体ごと崩れアルミニウムが混入してしまっていた。
[Comparative Example 1]
In Comparative Example 1, the positive electrode active material was recovered in the same manner as in Example 1 except that it was heated to 800 ° C. with a burner. As a result, the positive electrode material became brittle, and the current collector collapsed and aluminum was mixed.

[比較例2]
比較例2では、電気炉の加熱温度を250℃にした以外は実施例2と同様にして、正極活物質を回収した。その結果、分離処理を行っても集電体から正極活物質がほとんど分離せず残ってしまった。
[Comparative Example 2]
In Comparative Example 2, the positive electrode active material was recovered in the same manner as in Example 2 except that the heating temperature of the electric furnace was 250 ° C. As a result, even when the separation treatment was performed, the positive electrode active material was hardly separated from the current collector and remained.

本発明の活物質の回収方法は、電池に組み込まれた後の活物質の状態の把握、劣化試験後の活物質の観察や粒度の再評価ができ、劣化メカニズム解明等に適用でき、新たなリチウムイオン二次電池の開発に有効に使用できる。









The active material recovery method of the present invention can grasp the state of the active material after being incorporated in the battery, observe the active material after the deterioration test and re-evaluate the particle size, and can be applied to elucidation of the deterioration mechanism. It can be used effectively for the development of lithium ion secondary batteries.









Claims (2)

使用済みのリチウムイオン二次電池からの正極材料の回収方法であって、
以下の1)から3)の工程を含むことを特徴とする使用済みリチウムイオン二次電池からの正極材料の回収方法。
1)使用済みのリチウムイオン二次電池を分解し、正極材料を含む部材を得る工程。
2)正極材料を含む部材を500℃〜600℃の温度で、大気雰囲気下で加熱処理する工程。
3)その後、加熱処理物を水に浸漬させ所定時間超音波処理する工程。
A method of recovering positive electrode material from a used lithium ion secondary battery,
A method for recovering a positive electrode material from a used lithium ion secondary battery, comprising the following steps 1) to 3):
1) A step of decomposing a used lithium ion secondary battery to obtain a member containing a positive electrode material.
2) The process of heat-processing the member containing positive electrode material at the temperature of 500 to 600 degreeC by air | atmosphere atmosphere.
3) Thereafter, the step of immersing the heat-treated product in water and subjecting it to ultrasonic treatment for a predetermined time.
前記正極材料は、LCO(コバルト酸リチウム)、LMO(マンガン酸リチウム)、及びNCA(ニッケル酸リチウム)の群から選ばれる少なくとも一種の正極材料である請求項1に記載の使用済みリチウムイオン二次電池からの正極材料の回収方法。














2. The used lithium ion secondary according to claim 1, wherein the positive electrode material is at least one positive electrode material selected from the group consisting of LCO (lithium cobaltate), LMO (lithium manganate), and NCA (lithium nickelate). A method for recovering positive electrode material from a battery.














JP2015213562A 2015-10-30 2015-10-30 Method for recovering positive electrode material of used lithium ion secondary battery Pending JP2017084681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015213562A JP2017084681A (en) 2015-10-30 2015-10-30 Method for recovering positive electrode material of used lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213562A JP2017084681A (en) 2015-10-30 2015-10-30 Method for recovering positive electrode material of used lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2017084681A true JP2017084681A (en) 2017-05-18

Family

ID=58714300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213562A Pending JP2017084681A (en) 2015-10-30 2015-10-30 Method for recovering positive electrode material of used lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2017084681A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106997975A (en) * 2017-06-06 2017-08-01 安徽安凯汽车股份有限公司 A kind of method of waste lithium iron phosphate battery and lithium manganate battery regeneration
CN109473748A (en) * 2018-10-24 2019-03-15 北京工业大学 A kind of stripping method of waste ternary power lithium battery cathode material and current collector
CN111690813A (en) * 2020-06-22 2020-09-22 南昌航空大学 Method for leaching valuable metals in waste lithium ion batteries by using eutectic solvent
JP2021163645A (en) * 2020-03-31 2021-10-11 Jx金属株式会社 Heat treatment method for battery waste and lithium recovery method
KR20220014110A (en) * 2020-07-28 2022-02-04 주식회사 연화신소재 Separation Method of Cathode Active Material and Lithium Compound Manufacturing Method Thereof
WO2022139310A1 (en) * 2020-12-22 2022-06-30 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
CN115608755A (en) * 2022-10-13 2023-01-17 合肥国轩循环科技有限公司 Method for separating positive electrode material and current collector in waste lithium iron phosphate battery
WO2024060510A1 (en) * 2022-09-23 2024-03-28 广东邦普循环科技有限公司 Recovery method and preparation method for prussian positive electrode material
EP4439727A1 (en) 2023-03-29 2024-10-02 Toyota Jidosha Kabushiki Kaisha Production method for recycled material and production system
KR102779489B1 (en) * 2024-05-31 2025-03-12 주식회사 알에스코리아 Method for separating rare metals from disused sagger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211234A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Method for separating and recovering positive electrode active material from lithium ion battery positive electrode material
JP2015185471A (en) * 2014-03-25 2015-10-22 Jx日鉱日石金属株式会社 Method for recovering positive electrode active material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211234A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Method for separating and recovering positive electrode active material from lithium ion battery positive electrode material
JP2015185471A (en) * 2014-03-25 2015-10-22 Jx日鉱日石金属株式会社 Method for recovering positive electrode active material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106997975A (en) * 2017-06-06 2017-08-01 安徽安凯汽车股份有限公司 A kind of method of waste lithium iron phosphate battery and lithium manganate battery regeneration
CN109473748A (en) * 2018-10-24 2019-03-15 北京工业大学 A kind of stripping method of waste ternary power lithium battery cathode material and current collector
JP2021163645A (en) * 2020-03-31 2021-10-11 Jx金属株式会社 Heat treatment method for battery waste and lithium recovery method
JP7402733B2 (en) 2020-03-31 2023-12-21 Jx金属株式会社 Heat treatment method for battery waste and lithium recovery method
CN111690813A (en) * 2020-06-22 2020-09-22 南昌航空大学 Method for leaching valuable metals in waste lithium ion batteries by using eutectic solvent
KR20220014110A (en) * 2020-07-28 2022-02-04 주식회사 연화신소재 Separation Method of Cathode Active Material and Lithium Compound Manufacturing Method Thereof
KR102500820B1 (en) * 2020-07-28 2023-02-17 주식회사 연화신소재 Separation Method of Cathode Active Material and Lithium Compound Manufacturing Method Thereof
WO2022139310A1 (en) * 2020-12-22 2022-06-30 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
WO2024060510A1 (en) * 2022-09-23 2024-03-28 广东邦普循环科技有限公司 Recovery method and preparation method for prussian positive electrode material
CN115608755A (en) * 2022-10-13 2023-01-17 合肥国轩循环科技有限公司 Method for separating positive electrode material and current collector in waste lithium iron phosphate battery
EP4439727A1 (en) 2023-03-29 2024-10-02 Toyota Jidosha Kabushiki Kaisha Production method for recycled material and production system
KR102779489B1 (en) * 2024-05-31 2025-03-12 주식회사 알에스코리아 Method for separating rare metals from disused sagger

Similar Documents

Publication Publication Date Title
JP2017084681A (en) Method for recovering positive electrode material of used lithium ion secondary battery
JP5535717B2 (en) Lithium recovery method
JP5535716B2 (en) Lithium recovery method
EP3178127B1 (en) Recycling positive-electrode material of a lithium-ion battery
CN102780053B (en) A kind of method of overheated steam clean separation waste lithium ion cell anode material
EP2650961A1 (en) Method for recovering valuable material from lithium-ion secondary battery, and recovered material containing valuable material
JP2019160429A (en) Lithium recovery method
CN107978814A (en) A kind of method of Selective Separation lithium in material from waste lithium ion cell anode
CN106834703B (en) A kind of leaching method of positive electrode active material of waste lithium ion battery
JP2018172732A (en) Method for recovering lithium
CN105355996B (en) A kind of method of the separating Li from useless lithium cell cathode material and graphite and recycling
JP2019026916A (en) Method for recovering lithium from lithium ion secondary battery scrap
JP7008904B2 (en) How to separate cobalt from copper and aluminum
CN106241880B (en) A method and application of recovering high-purity manganese dioxide from waste dry batteries
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
WO2021215520A1 (en) Method for producing metal mixture solution and method for producing mixed metal salt
CN112779421A (en) Method for recycling anode material of waste lithium ion battery
US20230155202A1 (en) Battery recycling by reduction and carbonylation
JP7271833B2 (en) Lithium recovery method
CN115066509A (en) Valuable metal recovery method for recovering valuable metal from waste battery
WO2012161168A1 (en) Method for recovering valuable material from positive electrode in lithium-ion secondary battery
JPH09157769A (en) Method for recovering compound containing reutilizable rare-earth element
JP2021055159A (en) Method for leaching out manganese from lithium ion secondary battery and metal recovery method
JP2011154811A (en) Method for leaching lithium and method for recovering lithium
JP2022547698A (en) How to dispose of waste batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191025