[go: up one dir, main page]

JP2017075860A - Resistance measuring device and inspection device - Google Patents

Resistance measuring device and inspection device Download PDF

Info

Publication number
JP2017075860A
JP2017075860A JP2015203524A JP2015203524A JP2017075860A JP 2017075860 A JP2017075860 A JP 2017075860A JP 2015203524 A JP2015203524 A JP 2015203524A JP 2015203524 A JP2015203524 A JP 2015203524A JP 2017075860 A JP2017075860 A JP 2017075860A
Authority
JP
Japan
Prior art keywords
voltage
current
value
high potential
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015203524A
Other languages
Japanese (ja)
Other versions
JP6545598B2 (en
Inventor
和浩 伴
Kazuhiro Ban
和浩 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2015203524A priority Critical patent/JP6545598B2/en
Publication of JP2017075860A publication Critical patent/JP2017075860A/en
Application granted granted Critical
Publication of JP6545598B2 publication Critical patent/JP6545598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure a resistance value of a measuring object while suppressing an excessive voltage rise in a high potential electrode of a current output unit.SOLUTION: A resistance measuring device comprises: a current output unit 2 which outputs measurement current I to a measuring object 61; a voltage measuring unit 3 which measures voltage V of the measuring object 61; a processing unit 6 which performs resistance measuring processing for measuring a resistance value R of the measuring object 61 on the basis of a current value Ia of the measurement current I and a voltage value Va of the voltage V; a protection circuit 4 including a Zener diode, connected between high potential electrodes Hc and Hp, and for suppressing a rise in voltage of the high potential electrode Hc by passing a part of the measurement current I from the high potential electrode Hc to the high potential electrode Hp as bypass current Iby when voltage of the high potential voltage Hp with respect to the high potential voltage Hc rises beyond Zener voltage of the Zener diode; and a current detecting unit 5 which detects the bypass current Iby. The processing unit 6 performs error processing when a current value Ib of the detected bypass current Iby becomes not less than a threshold current value.SELECTED DRAWING: Figure 1

Description

本発明は、測定対象に接続される一対の電流供給端子および一対の電圧検出端子を有して測定対象の抵抗値を四端子法で測定する抵抗測定装置および検査装置に関するものである。   The present invention relates to a resistance measuring apparatus and an inspection apparatus that have a pair of current supply terminals and a pair of voltage detection terminals connected to a measurement object and measure the resistance value of the measurement object by a four-terminal method.

この種の抵抗測定装置の一例として、下記の特許文献1に開示されたいくつかの抵抗測定装置が知られている。このうちの背景技術として開示された抵抗測定装置は、測定対象の抵抗値を四端子法で測定する抵抗測定装置についての基本的な構成を備えている。図2を参照して、この抵抗測定装置51について説明する。抵抗測定装置51は、一対の電流供給端子(高電位極Hc、低電位極Lc)に接続されてこの電流供給端子間に測定電流(例えば、直流定電流)を出力可能な電流出力部2と、一対の電圧検出端子(高電位極Hp、低電位極Lp)に接続されてこの電圧検出端子間に発生する電圧を測定可能な電圧測定部3とを備えている。   As an example of this type of resistance measuring device, several resistance measuring devices disclosed in Patent Document 1 below are known. Among these, the resistance measuring device disclosed as the background art has a basic configuration of a resistance measuring device that measures a resistance value of a measurement object by a four-terminal method. The resistance measuring device 51 will be described with reference to FIG. The resistance measuring device 51 is connected to a pair of current supply terminals (high potential electrode Hc, low potential electrode Lc), and a current output unit 2 capable of outputting a measurement current (for example, DC constant current) between the current supply terminals. And a voltage measuring unit 3 connected to a pair of voltage detection terminals (high potential electrode Hp, low potential electrode Lp) and capable of measuring a voltage generated between the voltage detection terminals.

この抵抗測定装置51では、一例として、電流供給端子である低電位極Lcが装置内の基準電位(グランドGの電位)に規定された状態で、電流供給端子である高電位極Hcが測定対象61の一方の端子62aに接触され(プロービングされ)、かつ電流供給端子である低電位極Lcが測定対象61の他方の端子62bに接触される(プロービングされる)。また、電圧検出端子である高電位極Hpが測定対象61の一方の端子62aに接触され(プロービングされ)、かつ電圧検出端子である低電位極Lpが測定対象61の他方の端子62bに接触される(プロービングされる)。また、抵抗測定装置51では、このプロービング状態において、電流出力部2が測定電流Iを出力し、電圧測定部3が、測定電流Iが流れることによって測定対象61の両端間に発生する両端間電圧Vの電圧値Vaを測定する。したがって、この抵抗測定装置51によれば、電流出力部2および電圧測定部3に加えて不図示の演算部を設けることにより、この演算部が測定電流Iの電流値Iaと電圧測定部3で測定された電圧値Vaとに基づいて測定対象61の抵抗値R(=Va/Ia)を算出(測定)することが可能になっている。   In this resistance measuring device 51, as an example, the high potential electrode Hc, which is a current supply terminal, is measured in a state where the low potential electrode Lc, which is a current supply terminal, is defined as a reference potential (the potential of the ground G) in the device. One terminal 62a of 61 is contacted (probed), and the low potential electrode Lc which is a current supply terminal is contacted (probed) to the other terminal 62b of the measuring object 61. Further, the high potential electrode Hp that is a voltage detection terminal is brought into contact (probing) with one terminal 62 a of the measurement object 61, and the low potential electrode Lp that is a voltage detection terminal is brought into contact with the other terminal 62 b of the measurement object 61. (Probed). Further, in the resistance measuring device 51, in this probing state, the current output unit 2 outputs the measurement current I, and the voltage measurement unit 3 generates the voltage between both ends of the measurement object 61 caused by the measurement current I flowing. The voltage value Va of V is measured. Therefore, according to the resistance measuring device 51, by providing a calculation unit (not shown) in addition to the current output unit 2 and the voltage measurement unit 3, the calculation unit is configured so that the current value Ia of the measurement current I and the voltage measurement unit 3 Based on the measured voltage value Va, the resistance value R (= Va / Ia) of the measuring object 61 can be calculated (measured).

特開2010−2199号公報(第2頁、第2図)JP 2010-2199 A (second page, FIG. 2)

ところで、高電位極Hc,Hpを新たな測定対象61に移動してプロービングする動作を繰り返しながら、この抵抗測定装置51にこの新たな測定対象61の抵抗値Rを測定させる場合に、測定電流Iの供給状態において、高電位極Hcと測定対象61の一方の端子62aとの間の接触状態が不安定になり、これに起因して高電位極Hcと一方の端子62aとの間の接触抵抗R1の抵抗値が変化することがある。この際に、電流出力部2は、定電流源として構成されていた場合には、接触抵抗R1の抵抗値が変化した場合においても測定電流の電流値を一定に維持するように動作する。このため、電流出力部2は、接触抵抗R1の抵抗値が減少したときには高電位極Hcの電圧を低下させ、接触抵抗R1の抵抗値が増加したときには高電位極Hcの電圧を、電流出力部2の開放上限電圧を上限として上昇させる。   By the way, when the resistance measuring device 51 measures the resistance value R of the new measuring object 61 while repeating the operation of moving and probing the high potential electrodes Hc, Hp to the new measuring object 61, the measurement current I In this supply state, the contact state between the high potential electrode Hc and the one terminal 62a of the measuring object 61 becomes unstable, resulting in the contact resistance between the high potential electrode Hc and the one terminal 62a. The resistance value of R1 may change. At this time, if the current output unit 2 is configured as a constant current source, the current output unit 2 operates so as to maintain the current value of the measurement current constant even when the resistance value of the contact resistance R1 changes. For this reason, the current output unit 2 reduces the voltage of the high potential electrode Hc when the resistance value of the contact resistance R1 decreases, and supplies the voltage of the high potential electrode Hc when the resistance value of the contact resistance R1 increases. The upper limit of the open upper limit voltage of 2 is increased.

しかしながら、開放上限電圧以下の電圧であったとしても、高電位極Hcの電圧が高くなり過ぎると、一方の端子62aにおける高電位極Hcの接触部位に電気的ストレスを与え、これによってこの接触部位に痕跡を残すおそれがある。この不具合の発生を回避するため、本願出願人は、図2において破線で示すように、高電位極Hcの電圧が高くなり過ぎるのを回避するための保護回路4を、高電位極Hcと高電位極Hpとの間に配設する構成を採用している。   However, even if the voltage is equal to or lower than the open upper limit voltage, if the voltage of the high potential electrode Hc becomes too high, an electrical stress is applied to the contact portion of the high potential electrode Hc in one terminal 62a. May leave traces. In order to avoid the occurrence of this problem, the applicant of the present application, as shown by a broken line in FIG. 2, sets the protection circuit 4 for preventing the voltage of the high potential electrode Hc from becoming too high. The structure arrange | positioned between the electric potential poles Hp is employ | adopted.

この保護回路4は、高電位極Hc側の電圧が予め規定された電圧以上になったときにオフ状態からオン状態に移行して、高電位極Hc側から高電位極Hp側に電流を流す(電流をバイパスする)ことで、電流出力部2に対して高電位極Hcの電圧を低下させる機能を有している。この保護回路4は、図2に示すように、一例として、2つのツェナーダイオードを互いに逆極性で直列に接続することで構成することができる。この構成の保護回路4は、各高電位極Hc,Hp間の電圧差がツェナーダイオードのツェナー電圧を超えたときにオフ状態からオン状態に移行して、高電位極Hc側から高電位極Hp側に電流を流すことで、高電位極Hcの電圧をツェナー電圧に抑制することができる結果、一方の端子62aに電気的ストレスが加わるのを回避する。   The protection circuit 4 shifts from the off state to the on state when the voltage on the high potential electrode Hc side becomes equal to or higher than a predetermined voltage, and causes a current to flow from the high potential electrode Hc side to the high potential electrode Hp side. (Bypassing the current), the current output unit 2 has a function of lowering the voltage of the high potential electrode Hc. As shown in FIG. 2, the protection circuit 4 can be configured, for example, by connecting two Zener diodes in series with opposite polarities. The protection circuit 4 having this configuration shifts from the off state to the on state when the voltage difference between the high potential electrodes Hc and Hp exceeds the Zener voltage of the Zener diode, and from the high potential electrode Hc side to the high potential electrode Hp. By flowing the current to the side, the voltage of the high potential electrode Hc can be suppressed to the Zener voltage, and as a result, electrical stress is not applied to the one terminal 62a.

ところが、この保護回路4を備えた抵抗測定装置51には、以下のような改善すべき課題が存在している。すなわち、この抵抗測定装置51では、保護回路4が作動した際に、高電位極Hc側から高電位極Hp側に電流が流れることから、高電位極Hpと一方の端子62aとの間の接触抵抗R2での電圧降下がこの電流の分だけ増加する。このため、この電流による接触抵抗R2での電圧降下が予め規定された電圧値以上となったときには、電圧測定部3において測定される両端間電圧Vの電圧値Vaに含まれる測定誤差が許容し得ない範囲内となることがあり、この状態において測定された抵抗値Rも許容し得ない測定誤差が含まれた状態になる。したがって、この抵抗測定装置51には、この状態において測定された抵抗値Rを測定対象61の最終的な抵抗値Rとして測定することがあり、この点を改善すべきとする課題が存在している。   However, the resistance measuring device 51 provided with the protection circuit 4 has the following problems to be improved. That is, in this resistance measuring device 51, when the protection circuit 4 is activated, a current flows from the high potential electrode Hc side to the high potential electrode Hp side, so that the contact between the high potential electrode Hp and the one terminal 62a. The voltage drop across the resistor R2 increases by this current. For this reason, when the voltage drop at the contact resistance R2 due to this current exceeds a predetermined voltage value, a measurement error included in the voltage value Va of the voltage V between both ends measured by the voltage measuring unit 3 is allowed. In some cases, the resistance value R measured in this state also includes an unacceptable measurement error. Therefore, the resistance measuring device 51 sometimes measures the resistance value R measured in this state as the final resistance value R of the measuring object 61, and there is a problem that this point should be improved. Yes.

本発明は、かかる課題を改善するためになされたものであり、電流出力部の高電位極の過大な電圧上昇を抑制しつつ、測定対象の抵抗値を正確に測定し得る抵抗測定装置および検査装置を提供することを主目的とする。   The present invention has been made in order to improve such a problem, and a resistance measuring device and an inspection capable of accurately measuring a resistance value of a measurement target while suppressing an excessive voltage increase of a high potential electrode of a current output unit. The main purpose is to provide a device.

上記目的を達成すべく請求項1記載の抵抗測定装置は、一対の電流供給端子を介して測定対象に測定電流を出力する電流出力部と、前記測定電流が流れることによって前記測定対象に生じる両端間電圧を一対の電圧検出端子を介して測定する電圧測定部と、前記測定電流の電流値および前記両端間電圧の電圧値に基づいて前記測定対象の抵抗値を四端子法で測定する抵抗測定処理を実行する処理部とを備えている抵抗測定装置であって、ツェナーダイオードを含んで構成されると共に前記一対の電流供給端子のうちの高電位側供給端子と前記一対の電圧検出端子のうちの高電位側検出端子との間に接続されて、前記高電位側検出端子に対する前記高電位側供給端子の電圧が前記ツェナーダイオードのツェナー電圧を超えて上昇したときに、前記測定電流の一部を当該高電位側供給端子から当該高電位側検出端子にバイパス電流として流すことで当該高電位側供給端子の電圧の上昇を抑制する保護回路と、前記バイパス電流を検出する電流検出部とを備え、前記処理部は、前記電流検出部で検出された前記バイパス電流の電流値が予め規定された閾値電流値以上となったときに予め規定されているエラー処理を実行する。   In order to achieve the above object, the resistance measuring device according to claim 1 includes a current output unit that outputs a measurement current to a measurement object via a pair of current supply terminals, and both ends generated in the measurement object when the measurement current flows. A voltage measurement unit that measures an inter-voltage via a pair of voltage detection terminals, and a resistance measurement that measures the resistance value of the measurement object by a four-terminal method based on the current value of the measurement current and the voltage value of the voltage between both ends A resistance measuring device including a processing unit that performs processing, including a Zener diode, and a high-potential side supply terminal of the pair of current supply terminals and the pair of voltage detection terminals Connected to the high potential side detection terminal, and when the voltage of the high potential side supply terminal with respect to the high potential side detection terminal rises above the Zener voltage of the Zener diode, A protection circuit that suppresses a rise in the voltage of the high potential side supply terminal by causing a part of the measurement current to flow as a bypass current from the high potential side supply terminal to the high potential side detection terminal, and a current that detects the bypass current A detection unit, and the processing unit executes a predetermined error process when a current value of the bypass current detected by the current detection unit becomes equal to or greater than a predetermined threshold current value.

請求項2記載の抵抗測定装置は、請求項1記載の抵抗測定装置において、前記処理部は、前記エラー処理において、前記抵抗測定処理を再度実行する。   The resistance measurement device according to claim 2 is the resistance measurement device according to claim 1, wherein the processing unit again executes the resistance measurement processing in the error processing.

請求項3記載の抵抗測定装置は、請求項1または2記載の抵抗測定装置において、前記処理部は、前記エラー処理において、前記バイパス電流の前記電流値が前記閾値電流値以上となった旨を出力する。   The resistance measuring device according to claim 3 is the resistance measuring device according to claim 1 or 2, wherein the processing unit indicates that the current value of the bypass current is equal to or greater than the threshold current value in the error processing. Output.

請求項4記載の抵抗測定装置は、請求項1から3のいずれかに記載の抵抗測定装置において、前記電圧測定部によって測定されている前記一対の電圧検出端子間の電圧値と前記電流出力部の開放上限電圧未満に予め規定された基準電圧値とを比較して、当該一対の電圧検出端子間の電圧値が当該基準電圧値を上回っているときに電圧制限信号を出力する電圧監視部を備え、前記電流出力部は、前記電圧制限信号を入力したときには、前記一対の電流供給端子間の電圧を前記開放上限電圧未満の電圧値に予め規定された制限電圧に制限する電圧制限機能を備えている。   The resistance measurement device according to claim 4 is the resistance measurement device according to any one of claims 1 to 3, wherein the voltage value between the pair of voltage detection terminals measured by the voltage measurement unit and the current output unit. A voltage monitoring unit that compares a reference voltage value defined in advance below the open upper limit voltage and outputs a voltage limit signal when the voltage value between the pair of voltage detection terminals exceeds the reference voltage value. And the current output unit has a voltage limiting function for limiting the voltage between the pair of current supply terminals to a limit voltage that is defined in advance to a voltage value less than the open upper limit voltage when the voltage limit signal is input. ing.

請求項5記載の検査装置は、請求項1から4のいずれかに記載の抵抗測定装置を備え、前記処理部は、前記バイパス電流の前記電流値が前記閾値電流値未満のときに実行した前記抵抗測定処理において測定された前記抵抗値に基づいて前記測定対象を検査する。   The inspection device according to claim 5 includes the resistance measurement device according to any one of claims 1 to 4, wherein the processing unit is executed when the current value of the bypass current is less than the threshold current value. The measurement object is inspected based on the resistance value measured in the resistance measurement process.

請求項1,2記載の抵抗測定装置および請求項5記載の検査装置では、一対の電流供給端子のうちの高電位側供給端子と一対の電圧検出端子のうちの高電位側検出端子との間に接続された保護回路に流れるバイパス電流を検出する電流検出部を備え、処理部が、バイパス電流の電流値が閾値電流値以上となったときにエラー処理を実行する。具体的には、エラー処理において、例えば、抵抗測定処理を再度実行する。   In the resistance measuring device according to claim 1 and the inspection device according to claim 5, between the high potential side supply terminal of the pair of current supply terminals and the high potential side detection terminal of the pair of voltage detection terminals. And a current detector that detects a bypass current flowing in the protection circuit connected to the processor, and the processor executes error processing when the current value of the bypass current becomes equal to or greater than the threshold current value. Specifically, in the error process, for example, the resistance measurement process is executed again.

したがって、この抵抗測定装置および検査装置によれば、電流出力部の高電位極の過大な電圧上昇を抑制しつつ、抵抗測定処理を再度実行したときに、閾値電流値以上の電流値のバイパス電流が流れないときには、正確な抵抗値を測定することができる。なお、エラー処理において、例えば、バイパス電流の電流値が閾値電流値以上のときに実行した抵抗測定処理で測定した正確でない抵抗値の表示部への表示を停止した状態で抵抗測定処理を再度実行するようにすることもでき、この場合には、正確ではない抵抗値の表示を回避して正確な抵抗値の表示を行うことができる。また、この検査装置によれば、測定された正確な抵抗値に基づいて、高い精度で測定対象、ひいては回路基板を検査することができる。   Therefore, according to the resistance measurement device and the inspection device, when the resistance measurement process is performed again while suppressing an excessive voltage increase at the high potential electrode of the current output unit, a bypass current having a current value equal to or greater than the threshold current value is obtained. When the current does not flow, an accurate resistance value can be measured. In error processing, for example, the resistance measurement process is executed again in a state where display of the inaccurate resistance value measured in the resistance measurement process executed when the current value of the bypass current is equal to or greater than the threshold current value is stopped. In this case, an accurate resistance value can be displayed by avoiding an inaccurate display of the resistance value. Further, according to this inspection apparatus, it is possible to inspect the measurement object, and thus the circuit board, with high accuracy based on the measured accurate resistance value.

請求項3記載の抵抗測定装置および請求項5記載の検査装置によれば、バイパス電流の電流値が閾値電流値以上となった旨が出力されるため、この旨を抵抗測定装置および検査装置の使用者に報知することができる。   According to the resistance measuring device according to claim 3 and the inspection device according to claim 5, since the fact that the current value of the bypass current is equal to or greater than the threshold current value is output, this is indicated by the resistance measuring device and the inspection device. The user can be notified.

請求項4記載の抵抗測定装置および請求項5記載の検査装置によれば、一対の電圧検出端子間の電圧の電圧値が基準電圧値を上回っているときに、電圧監視部が電圧制限信号を出力すると共に、電流出力部がこの電圧制限信号を入力して、一対の電流供給端子間の電圧を制限電圧に制限するため、保護回路が作動している状態(バイパス電流が流れている状態)において高電位側検出端子と測定対象の端子との間の接触状態が不安定となった場合であっても、測定対象に印加される電圧を制限電圧以下(例えば、測定対象に印加し得る上限の電圧値未満の電圧値以下)に制限することができ、この結果、高電位側検出端子および測定対象の端子への電気的ストレスの印加を回避することができる。   According to the resistance measuring device according to claim 4 and the inspection device according to claim 5, when the voltage value of the voltage between the pair of voltage detection terminals exceeds the reference voltage value, the voltage monitoring unit outputs the voltage limiting signal. In addition to outputting, the current output unit inputs this voltage limit signal, and the voltage between the pair of current supply terminals is limited to the limit voltage, so that the protection circuit is operating (the bypass current is flowing) Even when the contact state between the high potential side detection terminal and the measurement target terminal becomes unstable, the voltage applied to the measurement target is less than the limit voltage (for example, the upper limit that can be applied to the measurement target). Or less), and as a result, application of electrical stress to the high potential side detection terminal and the measurement target terminal can be avoided.

抵抗測定装置1の構成図である。1 is a configuration diagram of a resistance measuring device 1. FIG. 抵抗測定装置51の構成図である。It is a block diagram of the resistance measuring apparatus 51.

以下、抵抗測定装置および検査装置の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of a resistance measuring device and an inspection device will be described with reference to the accompanying drawings.

まず、図1に示す抵抗測定装置としての抵抗測定装置1の構成について説明する。   First, the configuration of the resistance measuring apparatus 1 as the resistance measuring apparatus shown in FIG. 1 will be described.

抵抗測定装置1は、電流出力部2、電圧測定部3、保護回路4、電流検出部5、処理部6、出力部7、電圧監視部8、一対の電流供給端子(高電位極Hcおよび低電位極Lc)、および一対の電圧検出端子(高電位極Hpおよび低電位極Lp)を備え、測定対象61(回路基板のスルーホールや抵抗素子などの実装部品)の抵抗値Rを測定可能に構成されている。   The resistance measuring apparatus 1 includes a current output unit 2, a voltage measurement unit 3, a protection circuit 4, a current detection unit 5, a processing unit 6, an output unit 7, a voltage monitoring unit 8, a pair of current supply terminals (a high potential electrode Hc and a low potential electrode). Potential electrode Lc) and a pair of voltage detection terminals (high potential electrode Hp and low potential electrode Lp), and the resistance value R of the measuring object 61 (a mounted component such as a through-hole or a resistance element of a circuit board) can be measured. It is configured.

電流出力部2は、一例として定電流源(直流定電流源)で構成されて、直流定電流(電流値Iaは既知)である測定電流Iを生成して、不図示の一対の出力端子間から出力する。本例では、例えば、一対の出力端子のうちの一方の出力端子(高電位側端子)は、一対の電流供給端子のうちの可動式のプローブとして構成された一方の電流供給端子(高電位側供給端子としての高電位極Hc)に配線ケーブルを介して接続され、一対の出力端子のうちの他方の出力端子(低電位側端子)は、一対の電流供給端子のうちの固定式のプローブとして構成された他方の電流供給端子(低電位極Lc)に配線ケーブルを介して接続されている。また、この低電位極Lcは、抵抗測定装置1における基準電位(グランドGの電位)に規定されている。この構成により、この電流出力部2は、生成した測定電流Iを一対の電流供給端子(高電位極Hcおよび低電位極Lc)から出力可能に構成されている。   The current output unit 2 includes a constant current source (DC constant current source) as an example, generates a measurement current I that is a DC constant current (current value Ia is known), and a pair of output terminals (not shown). Output from. In this example, for example, one output terminal (high potential side terminal) of the pair of output terminals is one current supply terminal (high potential side) configured as a movable probe of the pair of current supply terminals. A high-potential pole Hc) as a supply terminal via a wiring cable, and the other output terminal (low-potential side terminal) of the pair of output terminals is a fixed probe of the pair of current supply terminals. The other configured current supply terminal (low potential electrode Lc) is connected via a wiring cable. The low potential electrode Lc is defined as the reference potential (the potential of the ground G) in the resistance measuring device 1. With this configuration, the current output unit 2 is configured to be able to output the generated measurement current I from a pair of current supply terminals (the high potential electrode Hc and the low potential electrode Lc).

また、直流定電流源で構成されている電流出力部2は、一対の電流供給端子(高電位極Hcおよび低電位極Lc)間の抵抗値に応じて出力電圧を変更する(抵抗値が低いときには出力電圧を低下させ、抵抗値が高いときには出力電圧を上昇させる)ことで測定電流Iの電流値を一定に維持する。したがって、例えば、一対の電流供給端子間がオープン状態となったときのようにこの抵抗値が極端に大きくなった状態においては、出力電圧は上限電圧としての直流定電流源の開放上限電圧まで上昇する。   Further, the current output unit 2 configured by a DC constant current source changes the output voltage according to the resistance value between the pair of current supply terminals (the high potential electrode Hc and the low potential electrode Lc) (the resistance value is low). The output voltage is sometimes lowered, and when the resistance value is high, the output voltage is raised) to maintain the current value of the measurement current I constant. Therefore, for example, when the resistance value is extremely large, such as when the pair of current supply terminals is in an open state, the output voltage rises to the open upper limit voltage of the DC constant current source as the upper limit voltage. To do.

また、電流出力部2は、電圧監視部8から後述する電圧制限信号Scを入力しているときには、出力電圧(一対の電流供給端子間の電圧)を開放上限電圧未満の電圧値に予め規定された制限電圧に制限する電圧制限機能を備えている。この制限電圧は、例えば、測定対象61に印加し得る上限の電圧値未満の電圧値に規定されている。なお、電流出力部2は、電圧監視部8からの電圧制限信号Scの出力(電圧制限信号Scの入力)が停止したときには、この電圧制限機能を停止させて、出力電圧(一対の電流供給端子間の電圧)を開放上限電圧まで上昇させ得る状態に移行する。   In addition, when the voltage output signal (described later) is input from the voltage monitoring unit 8, the current output unit 2 preliminarily defines the output voltage (voltage between the pair of current supply terminals) to a voltage value less than the open upper limit voltage. It has a voltage limiting function to limit to the limited voltage. The limit voltage is defined, for example, as a voltage value less than the upper limit voltage value that can be applied to the measurement object 61. When the output of the voltage limiting signal Sc from the voltage monitoring unit 8 (input of the voltage limiting signal Sc) is stopped, the current output unit 2 stops this voltage limiting function and outputs the output voltage (a pair of current supply terminals). The voltage shifts to a state where the voltage can be increased to the open upper limit voltage.

電圧測定部3は、例えば、不図示の一対の検出端子のうちの一方の検出端子(高電位側端子)が一対の電圧検出端子のうちの可動式のプローブとして構成された一方の電圧検出端子(高電位側検出端子としての高電位極Hp)に配線ケーブルを介して接続され、一対の検出端子のうちの他方の検出端子(低電位側端子)が一対の電圧検出端子のうちの固定式のプローブとして構成された他方の電圧検出端子(低電位極Lp)に配線ケーブルを介して接続されている。この構成により、この電圧測定部3は、一対の電圧検出端子(高電位極Hpおよび低電位極Lp)間に生じている電圧Vの電圧値Vaを測定して処理部6に出力する。また、電圧測定部3は、一対の電圧検出端子間の電圧Vを入力してこの電圧Vの電圧値Vaと同じ電圧値の端子間検出電圧Vdを出力する不図示の差動アンプ(ゲインが1倍の差動アンプ)を備え、この端子間検出電圧Vdを電圧監視部8に出力する。   The voltage measuring unit 3 is, for example, one voltage detection terminal in which one detection terminal (high potential side terminal) of a pair of detection terminals (not shown) is configured as a movable probe of the pair of voltage detection terminals. (High potential electrode Hp as a high potential side detection terminal) is connected via a wiring cable, and the other detection terminal (low potential side terminal) of the pair of detection terminals is a fixed type of the pair of voltage detection terminals. Is connected to the other voltage detection terminal (low potential electrode Lp) configured as a probe via a wiring cable. With this configuration, the voltage measuring unit 3 measures the voltage value Va of the voltage V generated between the pair of voltage detection terminals (the high potential electrode Hp and the low potential electrode Lp) and outputs the voltage value Va to the processing unit 6. The voltage measuring unit 3 receives a voltage V between a pair of voltage detection terminals and outputs a terminal-to-terminal detection voltage Vd having the same voltage value as the voltage value Va of the voltage V (gain is not shown). The inter-terminal detection voltage Vd is output to the voltage monitoring unit 8.

保護回路4は、高電位極Hcと高電位極Hpとの間に接続されて、高電位極Hc側の電圧の過剰な上昇を抑制する。つまり、保護回路4は、高電位極Hc側の電圧が過剰な高電圧となることを抑制する。具体的には、保護回路4は、ツェナーダイオードを含んで構成されて、高電位極Hpに対する高電位極Hcの電圧がツェナーダイオードのツェナー電圧を超えて上昇したときに、測定電流Iの一部を高電位極Hc側から高電位極Hp側にバイパス電流Ibyとして流すことで高電位極Hcの電圧(電流出力部2の出力電圧)の上昇を抑制する。また、このツェナー電圧は、上記した電流出力部2の開放上限電圧よりも低くなるように(例えば、開放上限電圧の30%〜60%程度に)規定されている。   The protection circuit 4 is connected between the high potential electrode Hc and the high potential electrode Hp, and suppresses an excessive increase in the voltage on the high potential electrode Hc side. That is, the protection circuit 4 suppresses the voltage on the high potential electrode Hc side from becoming an excessively high voltage. Specifically, the protection circuit 4 includes a Zener diode, and when the voltage of the high potential electrode Hc with respect to the high potential electrode Hp exceeds the Zener voltage of the Zener diode, a part of the measurement current I is included. Is caused to flow as a bypass current Iby from the high potential electrode Hc side to the high potential electrode Hp side, thereby suppressing an increase in the voltage of the high potential electrode Hc (the output voltage of the current output unit 2). The Zener voltage is defined to be lower than the open upper limit voltage of the current output unit 2 (for example, about 30% to 60% of the open upper limit voltage).

本例では一例として、保護回路4は、2つのツェナーダイオード(一例として、ツェナー電圧が同じツェナーダイオード)を互いに逆極性で直列に接続することで構成されている。また、本例の保護回路4では、2つのツェナーダイオードのアノード端子同士を接続する構成を採用しているが、カソード端子同士を接続する構成を採用することもできる。また、保護回路4は、この2つのツェナーダイオードを逆極性で直列に接続する構成では、実際には、高電位極Hpに対する高電位極Hcの電圧がツェナーダイオードのツェナー電圧にツェナーダイオードの順方向電圧を加えた電圧を超えて上昇したときに、測定電流Iの一部を高電位極Hc側から高電位極Hp側にバイパス電流Ibyとして流すように動作するが、ここでは、発明の理解を容易にするため、ツェナーダイオードの順方向電圧は無視するものとする。   In this example, as an example, the protection circuit 4 is configured by connecting two Zener diodes (for example, Zener diodes having the same Zener voltage) in series with opposite polarities. Further, in the protection circuit 4 of this example, the configuration in which the anode terminals of the two Zener diodes are connected to each other is adopted, but the configuration in which the cathode terminals are connected to each other can also be adopted. In the configuration in which the two Zener diodes are connected in series with opposite polarities, the protection circuit 4 actually has the voltage of the high potential electrode Hc with respect to the high potential electrode Hp changed to the Zener voltage of the Zener diode in the forward direction of the Zener diode. When the voltage rises above the applied voltage, it operates so that a part of the measurement current I flows as a bypass current Iby from the high potential electrode Hc side to the high potential electrode Hp side. For simplicity, the forward voltage of the Zener diode is ignored.

電流検出部5は、電流計で構成されると共に電圧測定部3の一方の検出端子と高電位極Hpとを接続する配線ケーブルにおける保護回路4との接続点P1と高電位極Hpとの間に配設されて、保護回路4に流れるバイパス電流Ibyを検出すると共に、このバイパス電流Ibyの電流値Ibに比例して電圧値が変化する検出信号S1を出力する。なお、電流検出部5は、図示はしないが、保護回路4と直列に接続された状態で、高電位極Hcと高電位極Hpとの間に接続(配設)される構成であってもよい。   The current detection unit 5 is composed of an ammeter and is connected between the connection point P1 of the protection circuit 4 and the high potential electrode Hp in the wiring cable that connects one detection terminal of the voltage measurement unit 3 and the high potential electrode Hp. The bypass current Iby flowing through the protection circuit 4 is detected, and a detection signal S1 whose voltage value changes in proportion to the current value Ib of the bypass current Iby is output. Although not shown, the current detection unit 5 may be connected (arranged) between the high potential electrode Hc and the high potential electrode Hp in a state of being connected in series with the protection circuit 4. Good.

処理部6は、一例として、例えば、A/D変換器およびコンピュータで構成されて、測定電流Iの電流値Iaと、電圧測定部3で測定された電圧Vの電圧値Vaに基づいて、一対の電圧検出端子(高電位極Hpおよび低電位極Lp)間に接続されている測定対象61の抵抗値Rを算出(測定)する抵抗測定処理を実行する。また、処理部6は、電流検出部5から出力される検出信号S1の電圧値に基づいて保護回路4に流れるバイパス電流Ibyの電流値Ibを検出すると共に、検出したバイパス電流Ibyの電流値Ibが予め規定された閾値電流値(例えば、数mA〜十数mA程度の範囲の内の一例として10mA)以上であるか否かを判別する判別処理を実行する。また、処理部6は、判別処理においてバイパス電流Ibyの電流値Ibが閾値電流値以上であると判別したときには後述するエラー処理を実行する。また、処理部6は、抵抗測定処理において算出した抵抗値Rや判別処理での判別結果などを出力部7に出力する出力処理を実行する。   For example, the processing unit 6 is configured by an A / D converter and a computer, for example, and based on the current value Ia of the measurement current I and the voltage value Va of the voltage V measured by the voltage measurement unit 3. A resistance measurement process for calculating (measuring) the resistance value R of the measuring object 61 connected between the voltage detection terminals (the high potential electrode Hp and the low potential electrode Lp) is executed. The processing unit 6 detects the current value Ib of the bypass current Iby flowing through the protection circuit 4 based on the voltage value of the detection signal S1 output from the current detection unit 5, and also detects the current value Ib of the detected bypass current Iby. Is determined to determine whether or not is equal to or greater than a predetermined threshold current value (for example, 10 mA as an example within a range of about several mA to several tens of mA). In addition, when the processing unit 6 determines that the current value Ib of the bypass current Iby is greater than or equal to the threshold current value in the determination process, the processing unit 6 performs error processing described later. In addition, the processing unit 6 executes output processing for outputting the resistance value R calculated in the resistance measurement processing, the determination result in the determination processing, and the like to the output unit 7.

出力部7は、一例として液晶ディスプレイ装置などの表示装置で構成されて、処理部6から出力された抵抗値Rや判別結果などを画面上に表示させる。   The output unit 7 is configured by a display device such as a liquid crystal display device as an example, and displays the resistance value R and the determination result output from the processing unit 6 on the screen.

電圧監視部8は、一例として、基準電圧出力回路8aおよび比較回路8bを備えている。基準電圧出力回路8aは、例えば出力電圧を変更可能な電源装置で構成されて、予め設定された基準電圧値Vrの基準電圧Vr(発明の理解を容易にするため、基準電圧値Vrと同じ符号を使用するものとする)を出力する。比較回路8bは、例えばコンパレータなどで構成されて、電圧測定部3から出力されている端子間検出電圧Vdの電圧値と基準電圧値Vrとを比較しつつ、端子間検出電圧Vdの電圧値が基準電圧値Vrを上回っているときには電圧制限信号Scを出力し、端子間検出電圧Vdの電圧値が基準電圧値Vr以下となっているときには電圧制限信号Scの出力を停止する。この基準電圧値Vrについては、電流出力部2の開放上限電圧未満の任意の電圧値であって、測定対象61に印加し得る上限の電圧値未満の電圧値に規定されている。この構成により、電圧監視部8は、電圧測定部3によって測定されている一対の電圧検出端子間の電圧値が基準電圧値Vrを上回っているときに電圧制限信号Scを出力し、一対の電圧検出端子間の電圧値が基準電圧値Vr以下のときに電圧制限信号Scを出力を停止する。なお、電圧測定部3が端子間検出電圧Vdを出力しない構成のときには、電圧監視部8は、端子間検出電圧Vdを入力する構成に代えて、一対の電圧検出端子間の電圧値Vaを直接検出する構成を採用することもできる。   As an example, the voltage monitoring unit 8 includes a reference voltage output circuit 8a and a comparison circuit 8b. The reference voltage output circuit 8a is composed of, for example, a power supply device that can change the output voltage, and a reference voltage Vr of a preset reference voltage value Vr (the same sign as the reference voltage value Vr for easy understanding of the invention). Is used). The comparison circuit 8b is configured by a comparator, for example, and compares the voltage value of the inter-terminal detection voltage Vd output from the voltage measurement unit 3 with the reference voltage value Vr, while the voltage value of the inter-terminal detection voltage Vd is When the voltage value exceeds the reference voltage value Vr, the voltage limit signal Sc is output. When the voltage value of the inter-terminal detection voltage Vd is equal to or lower than the reference voltage value Vr, the output of the voltage limit signal Sc is stopped. The reference voltage value Vr is defined as an arbitrary voltage value less than the open upper limit voltage of the current output unit 2 and less than the upper limit voltage value that can be applied to the measurement target 61. With this configuration, the voltage monitoring unit 8 outputs the voltage limit signal Sc when the voltage value between the pair of voltage detection terminals measured by the voltage measurement unit 3 exceeds the reference voltage value Vr, and the pair of voltage When the voltage value between the detection terminals is equal to or lower than the reference voltage value Vr, the output of the voltage limiting signal Sc is stopped. When the voltage measurement unit 3 does not output the inter-terminal detection voltage Vd, the voltage monitoring unit 8 directly outputs the voltage value Va between the pair of voltage detection terminals instead of the configuration in which the inter-terminal detection voltage Vd is input. A configuration for detection can also be adopted.

次に、抵抗測定装置1の動作について説明する。   Next, the operation of the resistance measuring apparatus 1 will be described.

この抵抗測定装置1では、他方の電流供給端子(低電位極Lc)および他方の電圧検出端子(低電位極Lp)は、固定式のプローブであるため、図1に示すように、測定対象61の他方の端子62b(同図中の下側の端子)に対して、接触抵抗の抵抗値が無視できる程度に小さな状態で予めプロービングされているものとする。   In the resistance measuring apparatus 1, the other current supply terminal (low potential electrode Lc) and the other voltage detection terminal (low potential electrode Lp) are fixed probes. Therefore, as shown in FIG. It is assumed that the other terminal 62b (the lower terminal in the figure) is previously probed in such a small state that the resistance value of the contact resistance can be ignored.

この状態において、この抵抗測定装置1では、可動式のプローブとして構成された一方の電流供給端子(高電位極Hc)および一方の電圧検出端子(高電位極Hp)が、不図示の移動機構などにより、測定対象61の一方の端子62a(同図中の上側の端子)に移動させられると共に、この一方の端子62aにプロービングされる。なお、電流検出部5は、保護回路4に流れるバイパス電流Iby(つまり、高電位極Hcと高電位極Hpとの間に流れる電流)を連続的に検出して、検出信号S1を処理部6に出力している。   In this state, in the resistance measuring apparatus 1, one current supply terminal (high potential pole Hc) and one voltage detection terminal (high potential pole Hp) configured as a movable probe have a moving mechanism (not shown) or the like. By this, it is moved to one terminal 62a (the upper terminal in the figure) of the measuring object 61 and is probed to this one terminal 62a. The current detection unit 5 continuously detects the bypass current Iby flowing in the protection circuit 4 (that is, the current flowing between the high potential electrode Hc and the high potential electrode Hp), and outputs the detection signal S1 to the processing unit 6. Is output.

電流出力部2は、高電位極Hcおよび高電位極Hpの一方の端子62aへのプロービングが完了したタイミング(プロービングの完了タイミング)に合わせて、高電位極Hcおよび低電位極Lc間に測定電流Iを一定の電流出力期間だけ(つまり、パルス状に)出力する。電圧測定部3は、電流出力部2が測定電流Iを出力している電流出力期間において、高電位極Hpおよび低電位極Lp間に生じている電圧Vの電圧値Vaを測定すると共に、測定した電圧値Vaを処理部6に出力する。また、電圧測定部3は、測定した電圧値Vaと同じ電圧値の端子間検出電圧Vdを電圧監視部8に出力する。電圧監視部8は、この端子間検出電圧Vdの電圧値と基準電圧値Vrとの比較を実行する。   The current output unit 2 measures the current measured between the high potential electrode Hc and the low potential electrode Lc in accordance with the timing (probing completion timing) when the probing of the high potential electrode Hc and the high potential electrode Hp to the one terminal 62a is completed. I is output only during a constant current output period (that is, in a pulse form). The voltage measuring unit 3 measures and measures the voltage value Va of the voltage V generated between the high potential electrode Hp and the low potential electrode Lp in the current output period in which the current output unit 2 outputs the measurement current I. The obtained voltage value Va is output to the processing unit 6. Further, the voltage measuring unit 3 outputs the inter-terminal detection voltage Vd having the same voltage value as the measured voltage value Va to the voltage monitoring unit 8. The voltage monitoring unit 8 compares the voltage value of the inter-terminal detection voltage Vd with the reference voltage value Vr.

処理部6は、上記の電流出力期間において、電流検出部5から出力されている検出信号S1を入力しつつ判別処理を実行する。この判別処理では、処理部6は、電流出力期間よりも十分に短いサンプリング周期で検出信号S1をサンプリングしつつ、その瞬時値を示す電圧データ(バイパス電流Ibyの電流値Iaの瞬時値を示すデータでもある)に変換する。また、処理部6は、この電圧データで示されるバイパス電流Ibyの電流値Ibと閾値電流値とを比較して、この電流値Ib(ピーク値)が閾値電流値以上になったか否かを判別する。   The processing unit 6 performs the determination process while inputting the detection signal S1 output from the current detection unit 5 in the current output period. In this determination process, the processing unit 6 samples the detection signal S1 at a sampling period sufficiently shorter than the current output period, and displays voltage data indicating the instantaneous value (data indicating the instantaneous value of the current value Ia of the bypass current Iby). But also). The processing unit 6 compares the current value Ib of the bypass current Iby indicated by the voltage data with the threshold current value, and determines whether or not the current value Ib (peak value) is equal to or greater than the threshold current value. To do.

また、処理部6は、上記の電流出力期間において、判別処理と並行して、抵抗値測定処理を実行する。この抵抗値測定処理では、処理部6は、電圧測定部3から出力されている電圧値Vaと、測定電流Iの電流値Iaとに基づいて、一対の電圧検出端子(高電位極Hpおよび低電位極Lp)間の抵抗値R(=Va/Ia)を算出(測定)する。   In addition, the processing unit 6 performs a resistance value measurement process in parallel with the determination process in the current output period. In this resistance value measurement process, the processing unit 6 is configured to generate a pair of voltage detection terminals (a high potential electrode Hp and a low potential) based on the voltage value Va output from the voltage measurement unit 3 and the current value Ia of the measurement current I. A resistance value R (= Va / Ia) between the potential electrodes Lp) is calculated (measured).

処理部6は、上記の電流出力期間の終了後に、上記の判別処理において電流値Ibが閾値電流値以上ではないと判別したときには、抵抗値測定処理で算出した上記の抵抗値Rを測定対象61の最終的な抵抗値として測定(特定)する。   When the processing unit 6 determines that the current value Ib is not equal to or greater than the threshold current value in the determination process after the end of the current output period, the processing unit 6 uses the resistance value R calculated in the resistance value measurement process as the measurement target 61. Measure (specify) as the final resistance value.

ここで、電流出力期間においてバイパス電流Ibyの電流値Ibが閾値電流値以上にならなかったとき(つまり、バイパス電流Ibyが殆ど流れなかったとき)には、高電位極Hpに対する高電位極Hcの電圧が保護回路4を構成するツェナーダイオードのツェナー電圧を超える状態にならなかった(つまり、電流出力部2の出力電圧が電流出力部2の開放上限電圧よりも常に低い状態であった)ことになる。これは、電流出力期間において、高電位極Hcと測定対象61の一方の端子62aとの間の接触状態が、その接触抵抗R1の抵抗値が十分に小さい状態で安定していたことと、これに起因して電流出力部2の出力電圧の電圧値が測定対象61に印加し得る上限の電圧値未満に維持されていたことを示している。また、電流出力期間においてバイパス電流Ibyが殆ど流れなかったということは、電圧測定部3は、電流出力期間において、高電位極Hpと一方の端子62aとの間の接触抵抗R2にバイパス電流Ibyが流れた際に生じる電圧降下の影響を受けることなく、電圧Vの電圧値Va(つまり、測定対象61の両端間電圧の電圧値)を正確に測定できたことになる。このため、処理部6は、上記したように、抵抗値測定処理で算出した上記の抵抗値Rを測定対象61の最終的な抵抗値として測定する。   Here, when the current value Ib of the bypass current Iby does not exceed the threshold current value in the current output period (that is, when the bypass current Iby hardly flows), the high potential electrode Hc with respect to the high potential electrode Hp. The voltage did not exceed the Zener voltage of the Zener diode constituting the protection circuit 4 (that is, the output voltage of the current output unit 2 was always lower than the open upper limit voltage of the current output unit 2). Become. This is because, in the current output period, the contact state between the high potential electrode Hc and one terminal 62a of the measurement object 61 was stable with the resistance value of the contact resistance R1 being sufficiently small, This indicates that the voltage value of the output voltage of the current output unit 2 is maintained below the upper limit voltage value that can be applied to the measurement target 61 due to the above. In addition, the fact that the bypass current Iby hardly flows during the current output period means that the voltage measuring unit 3 causes the bypass current Iby to be generated in the contact resistance R2 between the high potential electrode Hp and the one terminal 62a during the current output period. The voltage value Va of the voltage V (that is, the voltage value of the voltage between both ends of the measurement target 61) can be accurately measured without being affected by the voltage drop that occurs when flowing. Therefore, the processing unit 6 measures the resistance value R calculated in the resistance value measurement process as the final resistance value of the measurement object 61 as described above.

また、処理部6は、出力処理を実行してこの抵抗値Rを出力部7に出力する。出力部7は、この抵抗値Rを画面上に表示する。この後、抵抗測定装置1では、可動式のプローブとして構成された一方の電流供給端子(高電位極Hc)および一方の電圧検出端子(高電位極Hp)が、不図示の移動機構などによって次の測定対象の一方の端子に移動させられてプロービングされて、処理部6が、この測定対象の抵抗値の測定を開始する。   The processing unit 6 executes an output process and outputs the resistance value R to the output unit 7. The output unit 7 displays this resistance value R on the screen. Thereafter, in the resistance measuring apparatus 1, one current supply terminal (high potential pole Hc) and one voltage detection terminal (high potential pole Hp) configured as a movable probe are connected to each other by a moving mechanism (not shown). The probe is moved to one terminal of the measurement object and probing, and the processing unit 6 starts measuring the resistance value of the measurement object.

一方、処理部6は、上記の電流出力期間の終了後に、上記の判別処理において電流値Ibが閾値電流値以上であると判別したときには、予め規定されているエラー処理を実行する。このエラー処理では、処理部6は、上記の抵抗値測定処理で算出した上記の抵抗値Rを測定対象61の最終的な抵抗値として測定(特定)せずに、つまり上記の抵抗値Rを出力部7に出力することなく、バイパス電流Ibyの電流値Ibが閾値電流値以上になった旨を示す情報を出力部7に出力する出力処理を実行する。出力部7は、この電流値Ibが閾値電流値以上になった旨を示す文字や記号などを画面上に表示する。   On the other hand, when the processing unit 6 determines that the current value Ib is greater than or equal to the threshold current value in the determination process after the end of the current output period, the processing unit 6 executes a predetermined error process. In this error process, the processing unit 6 does not measure (specify) the resistance value R calculated in the resistance value measurement process as the final resistance value of the measurement object 61, that is, the resistance value R is calculated. Without outputting to the output unit 7, an output process for outputting information indicating that the current value Ib of the bypass current Iby is equal to or greater than the threshold current value to the output unit 7 is executed. The output unit 7 displays characters, symbols, and the like indicating that the current value Ib is equal to or greater than the threshold current value on the screen.

ここで、電流出力期間においてバイパス電流Ibyの電流値Ibが閾値電流値以上になったとき(つまり、バイパス電流Ibyが流れたとき)には、高電位極Hcと測定対象61の一方の端子62aとの間の接触状態が不安定となったこと(例えば、チャタリングが発生したこと)に起因して、両者間の接触抵抗R1の抵抗値が増加する方向に変化し、その結果として電流出力部2の出力電圧が上昇して、高電位極Hpに対する高電位極Hcの電圧が保護回路4を構成するツェナーダイオードのツェナー電圧を超える状態になった結果、保護回路4が作動して、高電位極Hpに対する高電位極Hcの電圧をツェナー電圧にクランプ(維持)したことになる。   Here, when the current value Ib of the bypass current Iby becomes equal to or greater than the threshold current value in the current output period (that is, when the bypass current Iby flows), the high potential electrode Hc and one terminal 62a of the measurement target 61 are used. The contact state between the two becomes unstable (for example, chattering has occurred), so that the resistance value of the contact resistance R1 between the two changes in an increasing direction, and as a result, the current output unit As a result of the rise of the output voltage of 2 and the voltage of the high potential electrode Hc with respect to the high potential electrode Hp exceeding the Zener voltage of the Zener diode constituting the protection circuit 4, the protection circuit 4 is activated and the high potential This means that the voltage of the high potential electrode Hc with respect to the electrode Hp is clamped (maintained) to the Zener voltage.

この抵抗測定装置1では、このようにして保護回路4が作動することにより、電流出力部2の出力電圧がツェナー電圧を超えて上昇する事態(ひいては、電流出力部2の開放上限電圧よりも高くなる事態)を防止することができ、これにより、高電位極Hcの電圧が過剰に上昇する(つまり高くなり過ぎる)ことに起因した一方の端子62aにおける高電位極Hcの接触部位への電気的ストレスの印加(また、この電気的ストレスの印加による痕跡等の不具合の発生)を回避することが可能になっている。   In the resistance measuring device 1, the protection circuit 4 operates in this manner, and thus the output voltage of the current output unit 2 rises above the zener voltage (and thus higher than the open upper limit voltage of the current output unit 2). This can prevent a situation in which the voltage of the high potential electrode Hc is excessively increased (that is, becomes too high), and the electrical connection to the contact portion of the high potential electrode Hc at one terminal 62a is caused. The application of stress (and the occurrence of defects such as traces due to the application of electrical stress) can be avoided.

この場合、電流出力期間においてバイパス電流Ibyが流れたということは、電圧測定部3は、電流出力期間において、高電位極Hpと一方の端子62aとの間の接触抵抗R2にバイパス電流Ibyが流れた際に生じる電圧降下の影響を受けた状態で電圧Vの電圧値Vaを測定したこと(つまり、測定対象61の両端間電圧の電圧値を正確に測定することができなかったこと)になる。このため、処理部6は、上記したように、抵抗値測定処理で算出した上記の抵抗値Rを測定対象61の最終的な抵抗値として測定(特定)することはしない。したがって、処理部6は、上記の抵抗値Rを出力部7にも出力しない。この抵抗測定装置1では、このようにして、不正確である可能性の高い電圧Vの電圧値Vaに基づいて算出された抵抗値R(この抵抗値Rについても不正確である可能性が高い)を測定対象61の最終的な抵抗値とするという不具合の発生が回避される。   In this case, the fact that the bypass current Iby flows during the current output period means that the voltage measuring unit 3 causes the bypass current Iby to flow through the contact resistance R2 between the high potential electrode Hp and the one terminal 62a during the current output period. That is, the voltage value Va of the voltage V is measured under the influence of the voltage drop that occurs during the measurement (that is, the voltage value of the voltage across the measurement object 61 cannot be measured accurately). . Therefore, the processing unit 6 does not measure (specify) the resistance value R calculated in the resistance value measurement process as the final resistance value of the measurement target 61 as described above. Therefore, the processing unit 6 does not output the resistance value R to the output unit 7. In the resistance measuring apparatus 1, the resistance value R calculated based on the voltage value Va of the voltage V that is highly likely to be inaccurate (the resistance value R is also likely to be inaccurate). ) Is avoided as the final resistance value of the measuring object 61.

また、処理部6は、このエラー処理において、電流出力部2に対して測定電流Iを電流出力期間(先の電流出力期間と同じ長さの期間)だけ、再度出力させると共に、電圧測定部3に対してこの新たな電流出力期間において、電圧Vの電圧値Vaを測定させる。また、処理部6は、この新たな電流出力期間において、上記の判別処理および上記の抵抗測定処理を並行して再度実行する。このため、この新たな電流出力期間においてバイパス電流Ibyの電流値Ibが閾値電流値以上にならなかったとき(つまり、バイパス電流Ibyが殆ど流れなかったとき)には、この抵抗測定装置1では、処理部6が、高電位極Hcと測定対象61の一方の端子62aとの間の接触状態がその接触抵抗R1の抵抗値が十分に小さい状態で安定しているこの電流出力期間において測定された電圧Vの電圧値Va(つまり、正確に測定された測定対象61の両端間電圧の電圧値)に基づいて、正確な抵抗値Rを測定(算出)して、測定対象61の最終的な抵抗値として測定することが可能になっている。   Further, in this error processing, the processing unit 6 causes the current output unit 2 to output the measurement current I again during the current output period (period having the same length as the previous current output period), and the voltage measurement unit 3 In this new current output period, the voltage value Va of the voltage V is measured. In addition, in the new current output period, the processing unit 6 again executes the determination process and the resistance measurement process in parallel. Therefore, when the current value Ib of the bypass current Iby does not exceed the threshold current value in this new current output period (that is, when the bypass current Iby hardly flows), the resistance measuring device 1 The processing unit 6 was measured in this current output period in which the contact state between the high-potential electrode Hc and one terminal 62a of the measurement object 61 is stable with a sufficiently small resistance value of the contact resistance R1. An accurate resistance value R is measured (calculated) based on the voltage value Va of the voltage V (that is, the voltage value of the voltage across the measuring object 61 that is accurately measured), and the final resistance of the measuring object 61 is measured. It can be measured as a value.

なお、上記のようにしてバイパス電流Ibyが流れている状態において、高電位極Hpと測定対象61の一方の端子62aとの間の接触状態が不安定となったとき(例えば、チャタリングが発生したとき)には、高電位極Hpと測定対象61の一方の端子62aとの間の接触抵抗R2の抵抗値が増加する方向に変化し、その結果として一対の電圧検出端子(高電位極Hpおよび低電位極Lp)間の電圧が上昇するという好ましくない状態に移行しようとすることがある。このような場合には、この抵抗測定装置1では、電圧監視部8が、端子間検出電圧Vdの電圧値と基準電圧値Vrとを比較して、端子間検出電圧Vdの電圧値が基準電圧値Vrを上回っているとき(つまり、一対の電圧検出端子間の電圧Vの電圧値Vaが基準電圧値Vrを上回っているとき)に電圧制限信号Scを出力をする。また、電流出力部2は、電圧監視部8から電圧制限信号Scを入力しているときには、電圧制限機能を作動させて、出力電圧を制限電圧に制限する。したがって、この抵抗測定装置1では、バイパス電流Ibyが流れている状態において高電位極Hpと一方の端子62aとの間の接触状態が不安定となった場合であっても、測定対象61に印加される電圧が制限電圧以下(測定対象61に印加し得る上限の電圧値未満の電圧値以下)に制限される。   In the state where the bypass current Iby flows as described above, when the contact state between the high potential electrode Hp and one terminal 62a of the measurement target 61 becomes unstable (for example, chattering has occurred). ), The resistance value of the contact resistance R2 between the high potential electrode Hp and the one terminal 62a of the measuring object 61 changes in the increasing direction, and as a result, a pair of voltage detection terminals (the high potential electrode Hp and There may be a case where an attempt is made to shift to an undesirable state in which the voltage between the low potential electrodes Lp) increases. In such a case, in the resistance measuring apparatus 1, the voltage monitoring unit 8 compares the voltage value of the inter-terminal detection voltage Vd with the reference voltage value Vr, and the voltage value of the inter-terminal detection voltage Vd is the reference voltage. When the value Vr is exceeded (that is, when the voltage value Va of the voltage V between the pair of voltage detection terminals exceeds the reference voltage value Vr), the voltage limiting signal Sc is output. Further, when the voltage limiting signal Sc is input from the voltage monitoring unit 8, the current output unit 2 operates the voltage limiting function to limit the output voltage to the limiting voltage. Therefore, in this resistance measuring apparatus 1, even when the contact state between the high potential electrode Hp and the one terminal 62a becomes unstable in a state where the bypass current Iby flows, the resistance measuring device 1 is applied to the measurement object 61. The voltage to be applied is limited to a limit voltage or less (a voltage value less than an upper limit voltage value that can be applied to the measurement object 61).

このように、この抵抗測定装置1では、高電位極Hcと高電位極Hpとの間に接続された保護回路4に流れるバイパス電流Ibyを検出する電流検出部5を備え、処理部6が、判別処理においてバイパス電流Ibyの電流値Ibが閾値電流値以上であると判別したときにエラー処理を実行する。   As described above, the resistance measurement apparatus 1 includes the current detection unit 5 that detects the bypass current Iby flowing in the protection circuit 4 connected between the high potential electrode Hc and the high potential electrode Hp, and the processing unit 6 includes: Error processing is executed when it is determined in the determination process that the current value Ib of the bypass current Iby is greater than or equal to the threshold current value.

したがって、この抵抗測定装置1によれば、電流出力部2の高電位極Hcの過大な電圧上昇を抑制しつつ、処理部6がエラー処理において、例えば、新たな電流出力期間を開始して再度抵抗測定処理を実行することにより、この電流出力期間において閾値電流値以上の電流値Ibのバイパス電流Ibyが流れないときには正確な抵抗値Rを測定することができる。また、この抵抗測定装置1によれば、処理部6がエラー処理において、例えば、このバイパス電流Ibyの電流値Ibが閾値電流値以上であると判別された電流出力期間において実行した抵抗測定処理で測定した抵抗値Rの出力を停止することにより、正確ではない抵抗値Rの表示を回避して正確な抵抗値Rの表示を行うことができる。   Therefore, according to this resistance measuring apparatus 1, the processing unit 6 starts a new current output period, for example, again in error processing while suppressing an excessive voltage rise of the high potential electrode Hc of the current output unit 2. By executing the resistance measurement process, an accurate resistance value R can be measured when the bypass current Iby having a current value Ib greater than or equal to the threshold current value does not flow during this current output period. In addition, according to the resistance measuring apparatus 1, the processing unit 6 performs error processing, for example, resistance measurement processing executed in a current output period in which it is determined that the current value Ib of the bypass current Iby is equal to or greater than the threshold current value. By stopping the output of the measured resistance value R, it is possible to avoid the display of the inaccurate resistance value R and display the accurate resistance value R.

また、エラー処理での処理部6の動作については、この構成に限定されず、例えば、抵抗値Rの出力を停止すると共に、エラー処理を実行した旨(バイパス電流Ibyの電流値Ibが閾値電流値以上となったこと)を示すエラー表示を出力部7に表示させる構成を採用したり、抵抗値Rの出力を停止することなく、不正確である可能性の高い抵抗値Rと共にこの旨を示すエラー表示を出力部7に表示させる構成を採用したりすることもできる。この構成によれば、このエラー表示により、バイパス電流Ibyの電流値Ibが閾値電流値以上となったことを抵抗測定装置1の使用者に報知することができる。   The operation of the processing unit 6 in error processing is not limited to this configuration. For example, the output of the resistance value R is stopped and the error processing is executed (the current value Ib of the bypass current Iby is a threshold current). This is to be described together with the resistance value R, which is likely to be inaccurate without adopting a configuration in which an error display indicating that the value has exceeded the value is displayed on the output unit 7 or without stopping the output of the resistance value R. It is also possible to employ a configuration in which an error display is displayed on the output unit 7. According to this configuration, the error display can notify the user of the resistance measuring device 1 that the current value Ib of the bypass current Iby is equal to or greater than the threshold current value.

また、この抵抗測定装置1によれば、一対の電圧検出端子間の電圧Vの電圧値Vaが基準電圧値Vrを上回っているときに、電圧監視部8が電圧制限信号Scを出力すると共に、電流出力部2がこの電圧制限信号Scを入力して、出力電圧(一対の電流供給端子間の電圧)を制限電圧に制限するため、保護回路4が作動している状態(バイパス電流Ibyが流れている状態)において高電位極Hpと一方の端子62aとの間の接触状態が不安定となった場合であっても、測定対象61に印加される電圧を制限電圧以下(測定対象61に印加し得る上限の電圧値未満の電圧値以下)に制限することができ、この結果、高電位極Hpおよび端子62aへの電気的ストレスの印加を回避することができる。   Further, according to the resistance measuring apparatus 1, when the voltage value Va of the voltage V between the pair of voltage detection terminals exceeds the reference voltage value Vr, the voltage monitoring unit 8 outputs the voltage limiting signal Sc, Since the current output unit 2 receives the voltage limit signal Sc and limits the output voltage (voltage between the pair of current supply terminals) to the limit voltage, the protection circuit 4 is in operation (bypass current Iby flows). Even when the contact state between the high potential electrode Hp and the one terminal 62a becomes unstable, the voltage applied to the measuring object 61 is less than the limit voltage (applied to the measuring object 61). The voltage can be limited to a voltage value less than the upper limit voltage value), and as a result, application of electrical stress to the high potential electrode Hp and the terminal 62a can be avoided.

なお、この抵抗測定装置1では、保護回路4が作動している状態において高電位極Hpと一方の端子62aとの間の接触状態が不安定となった場合であっても、測定対象61に印加される電圧を制限電圧以下に制限する好ましい構成(電圧監視部8を備える構成)を採用しているが、バイパス電流Ibyを検出する電流検出部5を備えて、処理部6が判別処理においてバイパス電流Ibyの電流値Ibが閾値電流値以上であると判別したときにエラー処理を実行する構成で十分なときには、電圧監視部8を備えない構成とすることもできる。   In the resistance measuring apparatus 1, even when the contact state between the high potential electrode Hp and the one terminal 62a becomes unstable in a state where the protective circuit 4 is operating, A preferred configuration (configuration including the voltage monitoring unit 8) that limits the applied voltage to a limit voltage or less is adopted, but the current detection unit 5 that detects the bypass current Iby is provided, and the processing unit 6 performs the discrimination process. When it is sufficient to perform error processing when it is determined that the current value Ib of the bypass current Iby is greater than or equal to the threshold current value, the voltage monitoring unit 8 may be omitted.

また、この抵抗測定装置1では、処理部6がエラー処理において、電流出力部2に対して測定電流Iを電流出力期間(先の電流出力期間と同じ長さの期間)だけ、再度出力させると共に、電圧測定部3に対してこの新たな電流出力期間において、電圧Vの電圧値Vaを測定させる好ましい構成を採用しているが、この新たな電流出力期間での処理を実行することなく、抵抗測定動作を停止させる構成を採用することもできる。   In the resistance measuring apparatus 1, the processing unit 6 causes the current output unit 2 to output the measurement current I again during the current output period (a period having the same length as the previous current output period) in the error process. In this new current output period, the voltage measurement unit 3 adopts a preferable configuration for measuring the voltage value Va of the voltage V. However, the resistance measurement without executing the process in the new current output period. A configuration in which the measurement operation is stopped may be employed.

また、上記の処理部6では、A/D変換器およびコンピュータで構成して、バイパス電流Ibyのピーク値を検出するようにしているが、この構成に代えて、閾値電流値を示す基準電圧と検出信号S1の電圧値とを比較して検出信号S1の電圧値が基準電圧以上のときにパルス信号を出力するコンパレータと、このコンパレータから出力されるパルス信号をレベル信号に変換してコンピュータに出力する自己保持回路とを有する構成とすることもできる。   The processing unit 6 includes an A / D converter and a computer to detect the peak value of the bypass current Iby. Instead of this configuration, a reference voltage indicating a threshold current value and Comparing the voltage value of the detection signal S1 and outputting a pulse signal when the voltage value of the detection signal S1 is equal to or higher than the reference voltage, and converting the pulse signal output from the comparator into a level signal and outputting it to the computer The self-holding circuit can also be configured.

また、上記の抵抗測定装置1の構成に加えて、処理部6が、バイパス電流Ibyの電流値Ibが閾値電流値未満のときに実行した抵抗測定処理で測定した測定対象61の正確な抵抗値Rに基づいて、測定対象61を検査する検査処理を実行する構成とすることもできる。この構成においては、抵抗測定装置1は、回路基板に配設された測定対象61を検査する(つまり、回路基板を検査する)検査装置として機能する。この場合、処理部6は、検査処理では、例えば、抵抗測定処理で測定した測定対象61の抵抗値Rと、予め規定されたこの測定対象61の抵抗値Rについての判定範囲(例えば、測定対象61が正常であるときに取り得る抵抗値の範囲)とを比較して、測定した抵抗値Rが判定範囲に含まれているときには良品であり、含まれていないときには不良品であると判別することで、測定対象61を検査して、この検査の結果を出力部7に出力する。   Further, in addition to the configuration of the resistance measuring apparatus 1 described above, the accurate resistance value of the measurement object 61 measured by the processing unit 6 in the resistance measurement process executed when the current value Ib of the bypass current Iby is less than the threshold current value. Based on R, it is also possible to adopt a configuration in which an inspection process for inspecting the measurement object 61 is executed. In this configuration, the resistance measuring device 1 functions as an inspection device that inspects the measurement object 61 arranged on the circuit board (that is, inspects the circuit board). In this case, the processing unit 6 in the inspection process, for example, the resistance value R of the measurement object 61 measured in the resistance measurement process and the predetermined determination range (for example, the measurement object) of the resistance value R of the measurement object 61 When the measured resistance value R is included in the determination range, it is determined to be a non-defective product, and when it is not included, it is determined to be a defective product. Thus, the measurement object 61 is inspected, and the result of the inspection is output to the output unit 7.

このようにして検査装置として機能する抵抗測定装置1(つまり、検査装置)によれば、電流出力部2の高電位極Hcの過大な電圧上昇を抑制しつつ、測定された正確な抵抗値Rに基づいて、高い精度で測定対象61、ひいては回路基板を検査することが可能となる。また、処理部6がエラー処理において、バイパス電流Ibyの電流値Ibが閾値電流値以上であると判別された電流出力期間において実行した抵抗測定処理で測定した抵抗値Rに基づく検査を停止する構成とすることにより、正確ではない検査結果の表示を回避することができる。   In this way, according to the resistance measuring device 1 functioning as an inspection device (that is, the inspection device), an accurate resistance value R measured while suppressing an excessive voltage increase of the high potential electrode Hc of the current output unit 2. Based on the above, it becomes possible to inspect the measuring object 61 and the circuit board with high accuracy. In addition, the processing unit 6 stops the inspection based on the resistance value R measured in the resistance measurement process performed in the current output period in which it is determined that the current value Ib of the bypass current Iby is equal to or greater than the threshold current value in the error process. By doing so, the display of inaccurate inspection results can be avoided.

1 抵抗測定装置
2 電流出力部
3 電圧測定部
4 保護回路
5 電流検出部
6 処理部
61 測定対象
Hc,Hp 高電位極
I 測定電流
Iby バイパス電流
Lc,Lp 低電位極
DESCRIPTION OF SYMBOLS 1 Resistance measuring device 2 Current output part 3 Voltage measurement part 4 Protection circuit 5 Current detection part 6 Processing part 61 Measurement object Hc, Hp High potential electrode I Measurement current Iby Bypass current Lc, Lp Low potential electrode

Claims (5)

一対の電流供給端子を介して測定対象に測定電流を出力する電流出力部と、前記測定電流が流れることによって前記測定対象に生じる両端間電圧を一対の電圧検出端子を介して測定する電圧測定部と、前記測定電流の電流値および前記両端間電圧の電圧値に基づいて前記測定対象の抵抗値を四端子法で測定する抵抗測定処理を実行する処理部とを備えている抵抗測定装置であって、
ツェナーダイオードを含んで構成されると共に前記一対の電流供給端子のうちの高電位側供給端子と前記一対の電圧検出端子のうちの高電位側検出端子との間に接続されて、前記高電位側検出端子に対する前記高電位側供給端子の電圧が前記ツェナーダイオードのツェナー電圧を超えて上昇したときに、前記測定電流の一部を当該高電位側供給端子から当該高電位側検出端子にバイパス電流として流すことで当該高電位側供給端子の電圧の上昇を抑制する保護回路と、
前記バイパス電流を検出する電流検出部とを備え、
前記処理部は、前記電流検出部で検出された前記バイパス電流の電流値が予め規定された閾値電流値以上となったときに予め規定されているエラー処理を実行する抵抗測定装置。
A current output unit that outputs a measurement current to a measurement target via a pair of current supply terminals, and a voltage measurement unit that measures a voltage across the measurement target when the measurement current flows via a pair of voltage detection terminals And a processing unit that executes a resistance measurement process for measuring the resistance value of the measurement object by a four-terminal method based on the current value of the measurement current and the voltage value of the voltage between both ends. And
A zener diode is included and connected between a high potential side supply terminal of the pair of current supply terminals and a high potential side detection terminal of the pair of voltage detection terminals, and the high potential side When the voltage of the high potential side supply terminal with respect to the detection terminal rises above the Zener voltage of the Zener diode, a part of the measurement current is bypassed from the high potential side supply terminal to the high potential side detection terminal. A protection circuit that suppresses a rise in the voltage of the high potential side supply terminal by flowing,
A current detection unit for detecting the bypass current;
The resistance measurement device that performs a predetermined error process when the current value of the bypass current detected by the current detection unit is equal to or greater than a predetermined threshold current value.
前記処理部は、前記エラー処理において、前記抵抗測定処理を再度実行する請求項1記載の抵抗測定装置。   The resistance measurement apparatus according to claim 1, wherein the processing unit performs the resistance measurement process again in the error process. 前記処理部は、前記エラー処理において、前記バイパス電流の前記電流値が前記閾値電流値以上となった旨を出力する請求項1または2記載の抵抗測定装置。   The resistance measuring device according to claim 1, wherein the processing unit outputs that the current value of the bypass current is equal to or greater than the threshold current value in the error processing. 前記電圧測定部によって測定されている前記一対の電圧検出端子間の電圧値と前記電流出力部の開放上限電圧未満に予め規定された基準電圧値とを比較して、当該一対の電圧検出端子間の電圧値が当該基準電圧値を上回っているときに電圧制限信号を出力する電圧監視部を備え、
前記電流出力部は、前記電圧制限信号を入力したときには、前記一対の電流供給端子間の電圧を前記開放上限電圧未満の電圧値に予め規定された制限電圧に制限する電圧制限機能を備えている請求項1から3のいずれかに記載の抵抗測定装置。
Comparing the voltage value between the pair of voltage detection terminals measured by the voltage measurement unit with a reference voltage value defined in advance below the open upper limit voltage of the current output unit, between the pair of voltage detection terminals A voltage monitoring unit that outputs a voltage limit signal when the voltage value of the voltage exceeds the reference voltage value,
The current output unit includes a voltage limiting function that limits a voltage between the pair of current supply terminals to a limit voltage defined in advance to a voltage value lower than the open upper limit voltage when the voltage limit signal is input. The resistance measuring apparatus according to claim 1.
請求項1から4のいずれかに記載の抵抗測定装置を備え、前記処理部は、前記バイパス電流の前記電流値が前記閾値電流値未満のときに実行した前記抵抗測定処理において測定された前記抵抗値に基づいて前記測定対象を検査する検査装置。   5. The resistance measurement device according to claim 1, wherein the processing unit measures the resistance measured in the resistance measurement process executed when the current value of the bypass current is less than the threshold current value. An inspection apparatus that inspects the measurement object based on a value.
JP2015203524A 2015-10-15 2015-10-15 Resistance measuring device and inspection device Expired - Fee Related JP6545598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203524A JP6545598B2 (en) 2015-10-15 2015-10-15 Resistance measuring device and inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203524A JP6545598B2 (en) 2015-10-15 2015-10-15 Resistance measuring device and inspection device

Publications (2)

Publication Number Publication Date
JP2017075860A true JP2017075860A (en) 2017-04-20
JP6545598B2 JP6545598B2 (en) 2019-07-17

Family

ID=58551054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203524A Expired - Fee Related JP6545598B2 (en) 2015-10-15 2015-10-15 Resistance measuring device and inspection device

Country Status (1)

Country Link
JP (1) JP6545598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557376A (en) * 2017-09-27 2019-04-02 日本电产理德股份有限公司 Resistance measurement device, base board checking device and resistance measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557376A (en) * 2017-09-27 2019-04-02 日本电产理德股份有限公司 Resistance measurement device, base board checking device and resistance measurement method
KR20190036472A (en) * 2017-09-27 2019-04-04 니혼덴산리드가부시키가이샤 Resistance measurement apparatus, substrate inspection apparatus, and resistance measurement method
TWI793179B (en) * 2017-09-27 2023-02-21 日商日本電產理德股份有限公司 Resistance measuring device, substrate inspection device, and resistance measuring method
KR102680359B1 (en) * 2017-09-27 2024-07-01 니덱 어드밴스 테크놀로지 가부시키가이샤 Resistance measurement apparatus, substrate inspection apparatus, and resistance measurement method

Also Published As

Publication number Publication date
JP6545598B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
KR102247989B1 (en) Resistance measuring apparatus, substrate test apparatus, test method and method of maintaining jig for test
CN101363895B (en) Method and system for detecting DC loop fault
JP5431105B2 (en) Four-terminal resistance measuring device
CN110726921B (en) IGBT module service life monitoring method
JP5638293B2 (en) Four-terminal impedance measuring device
JP5897393B2 (en) Resistance measuring device
JP4865516B2 (en) measuring device
JP2007333465A (en) Inspection device
CN204903685U (en) Simple and convenient direct current earth fault seeks device
US20140107961A1 (en) Testing method and testing system for semiconductor element
JP6545598B2 (en) Resistance measuring device and inspection device
JP2016099276A (en) Insulation resistance measuring device
US20130163633A1 (en) Thermocouple welding test apparatus
CN105044549B (en) A kind of direct current grounding trouble shooting method with self compensation electric current
JP6219073B2 (en) Insulation inspection equipment
JP5791347B2 (en) Resistance measuring device
KR101462139B1 (en) Apparatus for monitoring breakage of electrode bar and Method for the same
JP5546986B2 (en) Insulation inspection equipment
JP2011027453A (en) Semiconductor test apparatus and semiconductor test method
KR101240400B1 (en) Multimeter having bypass circuit for ac signal input in a dc measurement mode
CN115902567B (en) High-voltage transistor test circuit and system
JP6608234B2 (en) Contact determination device and measurement device
JP6400347B2 (en) Inspection device
JP2013117423A (en) Apparatus and method for inspecting circuit boards
WO2025138088A1 (en) Tester with self-test functions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190619

R150 Certificate of patent or registration of utility model

Ref document number: 6545598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees