JP2017067377A - Condenser - Google Patents
Condenser Download PDFInfo
- Publication number
- JP2017067377A JP2017067377A JP2015194053A JP2015194053A JP2017067377A JP 2017067377 A JP2017067377 A JP 2017067377A JP 2015194053 A JP2015194053 A JP 2015194053A JP 2015194053 A JP2015194053 A JP 2015194053A JP 2017067377 A JP2017067377 A JP 2017067377A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- condenser
- mixed gas
- gas cooler
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、タービン排気ガスと冷却水を直接接触させて蒸気を凝縮する直接接触式の復
水器に関する。
The present invention relates to a direct contact type condenser that condenses steam by bringing turbine exhaust gas and cooling water into direct contact with each other.
地熱発電プラントにおけるタービン排気ガスには、水蒸気とともに大量の不凝縮ガスが
含まれる混合気体となっており、その不凝縮ガス量は火力・原子力プラントの3000〜
5000倍程度になる場合がある。そのため地熱発電プラント向けの復水器においては、
空気抽出器(エゼクタなど)の負荷を低減して発電効率を高めるために、この不凝縮ガス
を効率よく冷却して、少ない随伴蒸気で排出することが求められる。
Turbine exhaust gas in a geothermal power plant is a mixed gas containing a large amount of noncondensable gas along with water vapor, and the amount of noncondensable gas is 3000 to 3000 of a thermal power / nuclear power plant.
It may be about 5000 times. Therefore, in condensers for geothermal power plants,
In order to reduce the load on the air extractor (such as an ejector) and increase the power generation efficiency, it is required to efficiently cool the non-condensable gas and discharge it with a small amount of accompanying steam.
そこで、地熱発電プラント向けの復水器では、上述した不凝縮ガスの冷却を行うより効
率よく行うためにガスクーラが設けられているものがある。ガスクーラは、復水器本体胴
で水蒸気を凝縮した後の混合気体を導入し、スプレー等で残存する水蒸気をさらに冷却、
凝縮するものである(例えば、特許文献1参照。)。
Therefore, some condensers for geothermal power plants are provided with a gas cooler to perform the above-described cooling of the non-condensable gas more efficiently. The gas cooler introduces the mixed gas after the water vapor is condensed in the condenser main body, and further cools the remaining water vapor by spraying,
It is condensed (for example, refer to Patent Document 1).
しかしながら、ガスクーラ内での混合気体は冷却されるにつれ流速が小さくなり、混合
気体の攪拌効果による冷却効果が低下するおそれがある。そこで本発明は、蒸気と不凝縮
ガスの混合気体を効率よく冷却することができるガスクーラを備えた復水器の提供を目的
とする。
However, as the mixed gas in the gas cooler is cooled, the flow velocity decreases, and the cooling effect due to the stirring effect of the mixed gas may be reduced. Then, this invention aims at provision of the condenser provided with the gas cooler which can cool the mixed gas of a vapor | steam and a noncondensable gas efficiently.
上記目的を達成するために、本発明の復水器は、排気ダクトから混合気体を内部に導入
し、混合気体中の蒸気を凝縮する復水器本体胴と、前記復水器本体胴の側面に接続され、
前記復水器本体胴で蒸気が凝縮された混合気体を導入するガスクーラとを備え、前記ガス
クーラは、混合気体流れの下流方向につれて流路断面積が小さく形成されているとともに
、流路内に混合気体を冷却する冷却装置を設けたことを特徴とする。
In order to achieve the above object, a condenser according to the present invention includes a condenser main body cylinder that introduces a mixed gas from an exhaust duct and condenses vapor in the mixed gas, and a side surface of the condenser main body cylinder. Connected to
A gas cooler for introducing a mixed gas in which steam is condensed in the condenser main body, and the gas cooler has a channel cross-sectional area that decreases in the downstream direction of the mixed gas flow, and is mixed in the channel. A cooling device for cooling the gas is provided.
以下、本発明の実施形態を説明する。 Embodiments of the present invention will be described below.
(第1の実施形態)
以下、本発明の第1の実施形態に係る復水器について図1を参照して説明する。図1は
、本発明の第1の実施形態に係る復水器を示す概略横断面図である。図2は、本発明の第
1の実施形態に係る復水器のガスクーラを示し、(a)は概略上面断面図、(b)は概略
横断面図である。
(First embodiment)
Hereinafter, a condenser according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view showing a condenser according to a first embodiment of the present invention. FIG. 2 shows a gas cooler of a condenser according to the first embodiment of the present invention, in which (a) is a schematic top sectional view and (b) is a schematic transverse sectional view.
図1に示すように、復水器1は、復水器本体胴2と、排気ダクト3と、ガスクーラ4と
から構成される。復水器1は、地熱向けの直接接触式復水器であり、タービン後方から排
出された蒸気を水平方向に取り込む軸流排気型を適用することができる。
As shown in FIG. 1, the condenser 1 includes a condenser main body 2, an exhaust duct 3, and a
復水器本体胴2の側面上方に排気ダクト3が接続される。排気ダクト3は、タービン(
図示せず)から排気された蒸気(混合気体)を復水器本体胴2に導入する。復水器本体胴
2は、スプレーやトレイ等の蒸気凝縮用の機器(図示せず)を有し、下部にホットウエル
を形成し、凝縮した蒸気を底部から排出する。
An exhaust duct 3 is connected to the upper side of the condenser main body 2. The exhaust duct 3 is a turbine (
Vapor (mixed gas) exhausted from (not shown) is introduced into the condenser main body 2. The condenser main body 2 has a steam condensing device (not shown) such as a spray or a tray, forms a hot well in the lower part, and discharges the condensed steam from the bottom.
図2に示すように、ガスクーラ4は、ガスクーラ出口5と、流路形成部材6と、冷却装
置としてのスプレーノズル7を有する。ガスクーラ4は、復水器本体胴2側面のうち、排
気ダクト3と反対側の面に長筒形状の一端が接続され、排気ダクト3と反対方向に流路が
延伸される。ガスクーラ4の流路端部にはガスクーラ出口5が設けられ、冷却後の気体を
排出する。
As shown in FIG. 2, the
ガスクーラ4の流路は、流路形成部材6によって、混合気体の流れ下流方向につれて流
路断面積が小さくなるように形成される。または、流路形成部材6によって流路を狭める
だけでなく、ガスクーラ4の筐体自体を流れ方向下流につれて狭める形としてもよい。
The flow path of the
スプレーノズル7は、ガスクーラ4の流路内部の上面に設けられ、ガスクーラ4の流路
内部に冷却水を噴霧する冷却装置である。
The
地熱発電プラントの運転中において、タービンから排出された混合気体は、排気ダクト
3から復水器本体胴2に導入される。復水器本体胴2内部おいて、スプレー方式ではスプ
レーによって噴霧された冷却水を混合気体に接触させて蒸気を凝縮させ、トレイ方式では
多孔板トレイから落下する冷却水に混合気体に接触させて蒸気を凝縮させる。凝縮した蒸
気は落下して、復水器本体胴2下部のホットウエルより底部より外部に排出される。
During the operation of the geothermal power plant, the mixed gas discharged from the turbine is introduced into the condenser main body 2 from the exhaust duct 3. In the condenser main body 2, in the spray method, the cooling water sprayed by the spray is brought into contact with the mixed gas to condense the vapor, and in the tray method, the cooling water falling from the perforated plate tray is brought into contact with the mixed gas. Condenses the vapor. The condensed steam falls and is discharged from the bottom to the outside through the hot well at the bottom of the condenser main body 2.
復水器本体胴2で冷却された混合気体は、ガスクーラ4内に導入される。ここで一般に
、混合気体は蒸気と不凝縮ガスの混合気体が冷却されて体積が小さくなるため、流路面積
を一定とした従来のガスクーラでは、ガスクーラ出口付近では流速が小さくなる。流速が
小さくなると、混合気体とスプレーノズル7からの冷却水との攪拌効果が低くなり、冷却
が不十分になるおそれがある。
The mixed gas cooled in the condenser main body 2 is introduced into the
そこで本実施形態では、ガスクーラ出口5に向かって蒸気流路面積が狭くすることで、
流速が小さくなることを抑制して混合気体をガスクーラ出口5まで流すことができ、攪拌
効果の低下による冷却効果の低下を抑制することができる。
Therefore, in this embodiment, by reducing the steam flow path area toward the
It is possible to flow the mixed gas to the
(第2の実施形態)
以下、本発明の第2の実施形態に係る復水器について図3を参照して説明する。図3は
、本発明の第1の実施形態に係る復水器のガスクーラを示し、(a)は概略上面断面図、
(b)は概略横断面図である。本実施形態のガスクーラ4は、混合気体の流れ方向に対し
て垂直方向にバッフル8を交互に設置して、混合気体の流れを蛇行させる構成とする。さ
らに、冷却装置をスプレーノズル7に代えてトレイ9から冷却水を落下させて冷却する構
成とすることができる。
(Second Embodiment)
Hereinafter, a condenser according to a second embodiment of the present invention will be described with reference to FIG. FIG. 3 shows a gas cooler of a condenser according to the first embodiment of the present invention, (a) is a schematic top sectional view,
(B) is a schematic cross-sectional view. The
混合気体は、蒸気と不凝縮ガスの混合気体が冷却されて体積が小さくなるため、ガスク
ーラ出口5に向かって流速が小さくなり、混合気体によるトレイ9からの冷却水との攪拌
効果が低くなり、冷却が不十分になるおそれがある。そこで本実施形態では、混合気体を
ガスクーラ出口5に向かって蛇行して流すことによって流路を長くし、蛇行しない場合と
比較して冷却水との接触時間を長くする。
Since the mixed gas of the vapor and the non-condensable gas is cooled and the volume is reduced, the flow velocity is reduced toward the
本実施形態によれば、混合気体流路にバッフル8を設置して流れを蛇行させることによ
って、混合気体と冷却水との接触時間を長くし冷却効果を向上させることができる。
According to this embodiment, by installing the
(第3の実施形態)
以下、本発明の第3の実施形態に係る復水器について図4を参照して説明する。図4は
、本発明の第1の実施形態に係る復水器のガスクーラを示し、(a)は概略上面断面図、
(b)は概略横断面図である。本実施形態では、ガスクーラ4の流路において、混合気体
の流れ方向に対して垂直にバッフル8を交互に設置するとともに、流れ下流方向につれて
バッフル8の設置間隔を狭くする構成とする。
(Third embodiment)
Hereinafter, a condenser according to a third embodiment of the present invention will be described with reference to FIG. FIG. 4 shows the gas cooler of the condenser according to the first embodiment of the present invention, (a) is a schematic top sectional view,
(B) is a schematic cross-sectional view. In this embodiment, in the flow path of the
本実施形態によれば、バッフル8によって混合気体を蛇行して流すことによって流路を
長くし、冷却水との接触時間を長くすることができる。さらに、バッフル8の間隔を流れ
方向下流に向かって短くすることで、混合気体は流速の低下が抑制され、混合気体と冷却
水の攪拌効果による冷却効果も持続させることができる。
According to the present embodiment, the flow path can be lengthened by meandering the mixed gas by the
(第4の実施形態)
以下、本発明の第4の実施形態に係る復水器について図5を参照して説明する。図5は
、本発明の第1の実施形態に係る復水器のガスクーラを示し、(a)は概略上面断面図、
(b)は概略横断面図である。本実施形態は、流路形成部材6によってガスクーラ4の混
合気体の流れ方向下流側につれて蒸気の流路面積を小さくするとともに、流れ方向に対し
て垂直にバッフル8を交互に設置する構成とする。
(Fourth embodiment)
Hereinafter, a condenser according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a gas cooler of a condenser according to the first embodiment of the present invention, (a) is a schematic top sectional view,
(B) is a schematic cross-sectional view. In the present embodiment, the flow
本実施形態によれば、バッフル8によって混合気体を蛇行して流すことによって流路を
長くし、冷却水との接触時間を長くすることができる。さらに、流路形成部材6によって
流路断面積を流れ方向下流に向かって短くすることで、混合気体は流速の低下が抑制され
、混合気体と冷却水の攪拌効果による冷却効果も持続させることができる。
According to the present embodiment, the flow path can be lengthened by meandering the mixed gas by the
(第5の実施形態)
以下、本発明の第5の実施形態に係る復水器について図6を参照して説明する。図6は
、本発明の第1の実施形態に係る復水器のガスクーラを示し、(a)は概略上面断面図、
(b)は概略横断面図である。本実施形態では、ガスクーラ4において、混合気体の流れ
方向下流側につれて、トレイ9、スプレー7、充填材10の3種類の冷却装置を設ける構
成とする。
(Fifth embodiment)
Hereinafter, a condenser according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 6 shows a gas cooler of a condenser according to the first embodiment of the present invention, (a) is a schematic top sectional view,
(B) is a schematic cross-sectional view. In the present embodiment, the
蒸気と不凝縮ガスの混合気体は、ガスクーラ出口に向かって蒸気流量が少なくなる。そ
こで、混合気体量に応じてトレイ9、スプレー7、充填材10の3種類の冷却方式から最
適な冷却方法を選択して配置する。通常、蒸気と不凝縮ガスの混合気体が冷却されて体積
が小さくなるためガスクーラ出口付近では流速が小さくなり、冷却が十分に行われない。
In the mixed gas of steam and non-condensable gas, the steam flow rate decreases toward the gas cooler outlet. Therefore, the optimum cooling method is selected and arranged from the three types of cooling methods of the
本実施形態では、ガスクーラ出口5に向かって、前方にトレイ9を配置し、後方にスプ
レー7を配置する。混合気体は、トレイ9による冷却によって流速が低下するが、微細な
水滴による冷却効果を有するスプレー7による冷却によって、低下した流速でも高い冷却
効果を得ることができる。さらに後方で充填材10を配置することによって、濡れ壁効果
を用いた冷却により、流速が小さくても高い冷却効果を得ることができる。
In this embodiment, toward the gas
(第6の実施形態)
以下、本発明の第6の実施形態に係る復水器について図7を参照して説明する。図6は
、本発明の第1の実施形態に係る復水器のガスクーラの概略横断面図である。本実施形態
では、ガスクーラ4内部をトレイ9によって流路後方の端部を残して上下に仕切ることで
、流路はガスクーラ4下部を通って端部で折り返し、ガスクーラ4上部を通って復水器本
体胴2方向へ戻す構成とする。
(Sixth embodiment)
Hereinafter, a condenser according to a sixth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a schematic cross-sectional view of the gas cooler of the condenser according to the first embodiment of the present invention. In the present embodiment, the interior of the
ガスクーラ出口5は、ガスクーラ4上部のうち復水器本体胴2近傍に設けられる。さら
に、ガスクーラ4上面にスプレー7が設けられ、スプレー7で噴射した冷却水をスプレー
7下に溜め、トレイ9から落下させる。
The gas
混合気体は、ガスクーラ4下部から導入されて、端部で折り返してガスクーラ4上部を
通ってガスクーラ出口5から排出される。混合気体は、ガスクーラ4下部のトレイ9によ
る冷却と、ガスクーラ4上部のスプレー7による冷却の、2回の冷却によって、混合気体
と冷却水との接触時間を長くし、効率良く熱交換を行うことができる。
The mixed gas is introduced from the lower part of the
通常、蒸気と不凝縮ガスの混合気体が冷却されて体積が小さくなるため、ガスクーラ出
口付近では流速が小さくなり、冷却が十分に行われないため、冷却水が冷たいままガスク
ーラ4外に排出される場合がある。本実施形態では、冷却水を2段階にわけ、上部ではス
プレー7による冷却、下部ではトレイ9による冷却を行うことで冷却水を再利用し、冷却
効果を高めることができる。
Usually, since the mixed gas of steam and non-condensable gas is cooled and the volume is reduced, the flow velocity is reduced in the vicinity of the gas cooler outlet, and cooling is not sufficiently performed. There is a case. In the present embodiment, the cooling water is divided into two stages, the cooling water is reused by cooling with the
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したも
のであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様
々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、
置き換え、変更を行うことができる。
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions can be made without departing from the spirit of the invention.
Can be replaced or changed.
1・・・復水器、2・・・復水器本体胴、3・・・排気ダクト、4・・・ガスクーラ、5
・・・ガスクーラ出口、6・・・流路形成部材、7・・・スプレー、8・・・バッフル、
9・・・トレイ、10・・・充填材
DESCRIPTION OF SYMBOLS 1 ... Condenser, 2 ... Condenser main body, 3 ... Exhaust duct, 4 ... Gas cooler, 5
... gas cooler outlet, 6 ... flow path forming member, 7 ... spray, 8 ... baffle,
9 ... Tray, 10 ... Filler
Claims (6)
前記復水器本体胴の側面に接続され、前記復水器本体胴で蒸気が凝縮された混合気体を導
入するガスクーラとを備え、
前記ガスクーラは、混合気体流れの下流方向につれて流路断面積が小さく形成されている
とともに、流路内に混合気体を冷却する冷却装置を設けたことを特徴とする復水器。 A condenser body body that introduces the mixed gas from the exhaust duct and condenses the vapor in the mixed gas;
A gas cooler that is connected to a side surface of the condenser main body and that introduces a mixed gas in which steam is condensed in the condenser main body;
The gas cooler has a channel cross-sectional area that decreases in the downstream direction of the mixed gas flow, and is provided with a cooling device that cools the mixed gas in the channel.
ことを特徴とする請求項1に記載の復水器。 2. The condenser according to claim 1, wherein a baffle for meandering a flow direction of the mixed gas is provided in a flow path of the gas cooler.
とする請求項2記載の復水器。 The condenser according to claim 2, wherein the baffle is provided with a narrower interval in the downstream direction of the mixed gas flow.
項1乃至請求項3の何れか一項に記載の復水器。 The condenser according to any one of claims 1 to 3, wherein a tray is provided in front of the flow path of the gas cooler and a spray is provided in the rear of the flow path.
載の復水器。 The condenser according to claim 4, wherein a filler is further provided behind the flow path of the spray.
前記復水器本体胴の側面に接続され、前記復水器本体胴で蒸気が凝縮された混合気体を導
入するガスクーラとを備え、
前記ガスクーラ内をトレイによって流路後方の端部を残して上下に仕切り、ガスクーラ上
面にスプレーを設けられ、前記スプレーで噴射した冷却水を前記トレイから落下させるこ
とを特徴とする復水器。 A condenser body body that introduces the mixed gas from the exhaust duct and condenses the vapor in the mixed gas;
A gas cooler that is connected to a side surface of the condenser main body and that introduces a mixed gas in which steam is condensed in the condenser main body;
A condenser, wherein the inside of the gas cooler is divided into upper and lower portions by leaving a rear end of the flow path by a tray, spray is provided on the upper surface of the gas cooler, and cooling water sprayed by the spray is dropped from the tray.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015194053A JP2017067377A (en) | 2015-09-30 | 2015-09-30 | Condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015194053A JP2017067377A (en) | 2015-09-30 | 2015-09-30 | Condenser |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017067377A true JP2017067377A (en) | 2017-04-06 |
Family
ID=58494446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015194053A Pending JP2017067377A (en) | 2015-09-30 | 2015-09-30 | Condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017067377A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020026932A (en) * | 2018-08-13 | 2020-02-20 | 株式会社東芝 | Direct contact type condenser and power generation plant |
CN117062421A (en) * | 2023-10-13 | 2023-11-14 | 深圳基本半导体有限公司 | Liquid cooling type pin fin heat radiation structure |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53150555U (en) * | 1977-05-04 | 1978-11-27 | ||
JPS6096889A (en) * | 1983-10-31 | 1985-05-30 | Mitsubishi Heavy Ind Ltd | Condenser of steam and cooling water directly contacting type |
JPH0262263U (en) * | 1988-10-25 | 1990-05-09 | ||
JP2007163136A (en) * | 1997-03-25 | 2007-06-28 | Midwest Research Inst | Method and apparatus for high-efficiency direct contact condensation |
JP2013204870A (en) * | 2012-03-27 | 2013-10-07 | Toshiba Corp | Direct contact type condenser |
JP2014219160A (en) * | 2013-05-09 | 2014-11-20 | 株式会社東芝 | Direct contact type condenser |
JP2015114019A (en) * | 2013-12-10 | 2015-06-22 | 三菱日立パワーシステムズ株式会社 | Condenser, condensate system, and power generation facility |
-
2015
- 2015-09-30 JP JP2015194053A patent/JP2017067377A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53150555U (en) * | 1977-05-04 | 1978-11-27 | ||
JPS6096889A (en) * | 1983-10-31 | 1985-05-30 | Mitsubishi Heavy Ind Ltd | Condenser of steam and cooling water directly contacting type |
JPH0262263U (en) * | 1988-10-25 | 1990-05-09 | ||
JP2007163136A (en) * | 1997-03-25 | 2007-06-28 | Midwest Research Inst | Method and apparatus for high-efficiency direct contact condensation |
JP2013204870A (en) * | 2012-03-27 | 2013-10-07 | Toshiba Corp | Direct contact type condenser |
JP2014219160A (en) * | 2013-05-09 | 2014-11-20 | 株式会社東芝 | Direct contact type condenser |
JP2015114019A (en) * | 2013-12-10 | 2015-06-22 | 三菱日立パワーシステムズ株式会社 | Condenser, condensate system, and power generation facility |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020026932A (en) * | 2018-08-13 | 2020-02-20 | 株式会社東芝 | Direct contact type condenser and power generation plant |
JP7002420B2 (en) | 2018-08-13 | 2022-01-20 | 株式会社東芝 | Direct contact condenser and power plant |
CN117062421A (en) * | 2023-10-13 | 2023-11-14 | 深圳基本半导体有限公司 | Liquid cooling type pin fin heat radiation structure |
CN117062421B (en) * | 2023-10-13 | 2024-01-02 | 深圳基本半导体有限公司 | A liquid-cooled pin-fin heat dissipation structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5404175B2 (en) | Direct contact condenser | |
JP2015230117A (en) | Air-cooled steam condensing device | |
JP2017067377A (en) | Condenser | |
JP6289817B2 (en) | Direct contact condenser | |
US10605533B2 (en) | Deaerator | |
JP2007198701A (en) | Multi-effect water freshener evaporator | |
JP2018035999A (en) | Direct contact type condenser and power generating system | |
JP2009052867A (en) | Multi-stage pressure condenser | |
RU2549277C1 (en) | Steam and water heater | |
JP2012193883A (en) | Direct contact condenser | |
JP6262040B2 (en) | Condenser and turbine equipment | |
JP7002420B2 (en) | Direct contact condenser and power plant | |
JP2016057050A (en) | Steam condenser | |
JP2015114019A (en) | Condenser, condensate system, and power generation facility | |
US10502492B2 (en) | Condenser for condensing steam from a steam turbine | |
JP2013088096A (en) | Direct contact type condenser | |
JP2015101966A (en) | Gas facility, gas turbine plant, and combined cycle plant | |
CN201255009Y (en) | Hydrophobic recovering box for steam turbine | |
JP7596320B2 (en) | Direct Contact Condenser | |
KR20110035551A (en) | condenser | |
JP2012117740A (en) | Directl-contact condenser | |
JP5495861B2 (en) | Moisture separator heater | |
JP2013204870A (en) | Direct contact type condenser | |
JP5517839B2 (en) | Steam dryer and boiling water nuclear plant | |
JP6190231B2 (en) | Condenser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20170220 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20171128 Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20171128 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180219 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190329 |