[go: up one dir, main page]

JP2017066025A - Monolithic refractory - Google Patents

Monolithic refractory Download PDF

Info

Publication number
JP2017066025A
JP2017066025A JP2016180517A JP2016180517A JP2017066025A JP 2017066025 A JP2017066025 A JP 2017066025A JP 2016180517 A JP2016180517 A JP 2016180517A JP 2016180517 A JP2016180517 A JP 2016180517A JP 2017066025 A JP2017066025 A JP 2017066025A
Authority
JP
Japan
Prior art keywords
mass
raw material
refractory
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016180517A
Other languages
Japanese (ja)
Other versions
JP6777479B2 (en
Inventor
松井 剛
Tsuyoshi Matsui
剛 松井
厚徳 小山
Atsunori Koyama
厚徳 小山
善喬 貞富
Yoshitaka SADATOMI
善喬 貞富
翼 中道
Tsubasa Nakamichi
翼 中道
合田 広治
Koji Aida
広治 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Denka Co Ltd
Krosaki Harima Corp
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Krosaki Harima Corp, Nippon Steel and Sumitomo Metal Corp filed Critical Denka Co Ltd
Priority to PCT/JP2016/078806 priority Critical patent/WO2017057566A1/en
Priority to CA2999834A priority patent/CA2999834C/en
Priority to EP16851737.3A priority patent/EP3357895B1/en
Priority to CN201680055576.5A priority patent/CN108025985B/en
Priority to BR112018006117-4A priority patent/BR112018006117B1/en
Priority to KR1020187008028A priority patent/KR101945680B1/en
Priority to US15/763,699 priority patent/US10414695B2/en
Priority to ES16851737T priority patent/ES2785524T3/en
Publication of JP2017066025A publication Critical patent/JP2017066025A/en
Application granted granted Critical
Publication of JP6777479B2 publication Critical patent/JP6777479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/1015Refractories from grain sized mixtures containing refractory metal compounds other than those covered by C04B35/103 - C04B35/106
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/06Composite bricks or blocks, e.g. panels, modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/10Monolithic linings; Supports therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly develop the strength of a monolithic refractory without using alumina cement or by using an extremely low amount alumina cement and little CaO content and make same stronger.SOLUTION: There is provided a monolithic refractory having a content of CaSrAlO(0≤X≤0.5) of 0.5 mass% to 10 mass%, and content of polyvalent metal salt of oxycarbonic acid of 0.05 mass% to 1.0 mass% as a percentage based on 100 mass% of a refractory raw material having a particle diameter of 8 mm or less.SELECTED DRAWING: None

Description

本発明は、主に製鋼処理装置に使用される不定形耐火物に関する。   The present invention relates to an irregular refractory mainly used in a steelmaking processing apparatus.

製鋼処理装置においては、溶鋼やスラグと接触する耐火物として、アルミナ−マグネシア質、アルミナ−スピネル質の不定形耐火物が多用されており,その不定形耐火物の結合材には一般的にアルミナセメントが用いられている。これらの不定形耐火物は、水と混練した後に流し込み施工法によって所定の形状が付与され、養生中に結合材のアルミナセメントからCa2+イオンとAl(OH) イオンが溶出し析出して水和物を形成し、構造体として必要な強度が発現する。また、アルミナセメントから溶出するCa2+イオンとAl(OH) イオンは超微粉を凝集させるので、この凝集作用によっても強度が発現する。一般のアルミナセメントは、CaO・Al、CaO・2Alを主な成分とし、一部のアルミナセメントは12CaO・7AlやAl等も含有しており、CaO・Al、CaO・2Al及び12CaO・7AlからCa2+イオンとAl(OH) イオンが溶出する。 In steelmaking processing equipment, amorphous refractories of alumina-magnesia and alumina-spinel are commonly used as refractories that come into contact with molten steel and slag. Cement is used. These irregular-shaped refractories are given a predetermined shape by pouring construction after being kneaded with water, and Ca 2+ ions and Al (OH) 4 ions are eluted and precipitated from the alumina cement of the binder during curing. A hydrate is formed, and the strength required as a structure is developed. Further, since Ca 2+ ions and Al (OH) 4 ions eluted from the alumina cement agglomerate the ultrafine powder, strength is also exhibited by this aggregating action. General alumina cement contains CaO · Al 2 O 3 and CaO · 2Al 2 O 3 as main components, and some alumina cements contain 12CaO · 7Al 2 O 3 and Al 2 O 3 as well. · Al 2 O 3, CaO · 2Al 2 O 3 and 12CaO · 7Al 2 O 3 from Ca 2+ ions and Al (OH) 4 - ions are eluted.

このように、アルミナセメントは不定形耐火物に強度を付与するために重要な原料であるが、アルミナセメントはCaOの含有率が高いので、不定形耐火物中の他の原料及び製鋼処理で発生するスラグと反応して低融物を形成するために、不定形耐火物のスラグに対する耐食性を低下させる欠点がある。   As described above, alumina cement is an important raw material for imparting strength to the amorphous refractory, but since alumina cement has a high CaO content, it is generated by other raw materials in the amorphous refractory and steelmaking treatment. In order to react with the slag which forms and to form a low melt, there exists a fault which reduces the corrosion resistance with respect to the slag of an amorphous refractory.

そこで、特許文献1に示されているアルミナセメントを使用しないでマグネシアとオキシカルボン酸の多価金属塩の反応によって硬化する不定形耐火物や、特許文献2に示されているCaSr1−XAlを結合材として使用する不定形耐火物が提案されている。 Therefore, an amorphous refractory that is cured by the reaction of magnesia and a polyvalent metal salt of oxycarboxylic acid without using the alumina cement shown in Patent Document 1, or Ca X Sr 1- 1 shown in Patent Document 2. An amorphous refractory using X Al 2 O 4 as a binder has been proposed.

特開平11−130550号広報JP 11-130550 A 特開2008−290934号広報JP 2008-290934 A

上記特許文献1に示されているマグネシアとオキシカルボン酸の多価金属塩の反応によって硬化する不定形耐火物は、マグネシア原料から溶出するMg2+イオンとオキシカルボン酸の多価金属塩が反応してゲル化することで結合部が生成される。そのため、十分な硬化状態を得るためには、非常に細かく活性なマグネシア原料を使用しなければならない。非常に細かく活性なマグネシア原料を使用しない場合、Mg2+イオンの溶出速度が遅いために、不定形耐火物は強度発現が非常に遅く、かつ、低強度になる。一方で非常に細かく活性なマグネシア原料は、空気中の炭酸ガスによる炭酸化や、水蒸気による水酸化が発生して不活性になることがあり、保管状況によってマグネシア原料がこのように不活性化すると、不定形耐火物は強度発現が非常に遅く、かつ、低強度になる。 The amorphous refractory cured by the reaction of magnesia and oxycarboxylic acid polyvalent metal salt disclosed in Patent Document 1 reacts with Mg 2+ ions eluted from magnesia raw material and oxycarboxylic acid polyvalent metal salt. The bonded portion is generated by gelation. Therefore, in order to obtain a sufficient cured state, a very fine and active magnesia raw material must be used. When a very fine and active magnesia raw material is not used, the elution rate of Mg 2+ ions is slow, so that the strength of the amorphous refractory is very slow and the strength is low. On the other hand, a very finely active magnesia raw material may become inactive due to carbonation due to carbon dioxide in the air or hydroxylation due to water vapor, and if the magnesia raw material is inactivated in this way depending on storage conditions The amorphous refractory has very slow strength and low strength.

また、上記特許文献2に示されているCaSr1−XAlを結合材として使用する不定形耐火物は、従来のアルミナセメントを使用した不定形耐火物と比べると水和物の生成が遅いために強度発現が遅く、かつ、低強度である。CaSr1−XAlからは、Ca2+イオン及びAl(OH) イオンに加えSr2+イオンが溶出するので、超微粉の量を増やして凝集によって強度を高めることは可能であるが、超微粉の量を増やすと高温で焼結が進むために、不定形耐火物は耐熱スポーリング性が低下し、使用中の亀裂剥離の発生が多くなる。 In addition, the amorphous refractory using Ca X Sr 1-X Al 2 O 4 shown in Patent Document 2 as a binder is more hydrated than the conventional refractory using alumina cement. Since the production of is slow, the development of strength is slow and the strength is low. Since Ca X Sr 1-X Al 2 O 4 elutes Sr 2+ ions in addition to Ca 2+ ions and Al (OH) 4 ions, it is possible to increase the amount of ultrafine powder and increase the strength by aggregation. However, when the amount of ultrafine powder is increased, sintering proceeds at a high temperature, so that the heat resistant spalling property of the amorphous refractory decreases, and the occurrence of crack peeling during use increases.

そこで、本発明が解決しようとする課題は、アルミナセメントを使用していない、あるいは、アルミナセメントの使用量が非常に少なく、CaO含有量が少ない不定形耐火物の強度発現を早くし、かつ、高強度にすることにある。   Therefore, the problem to be solved by the present invention is that alumina cement is not used, or the amount of alumina cement used is very small, the strength expression of the amorphous refractory with low CaO content is accelerated, and There is to make it high strength.

かかる課題を解決するため、本発明の要旨とするところは、
(1)粒径8mm以下の耐火原料100質量%に占める割合で、CaSr1−XAl(但し、0≦X≦0.5)の含有量が0.5質量%以上10質量%以下、オキシカルボン酸の多価金属塩の含有量が0.05質量%以上1.0質量%以下である不定形耐火物、
(2)前記オキシカルボン酸の多価金属塩の含有量が0.1質量%以上1.0質量%以下である請求項1に記載の不定形耐火物、
(3)粒径8mm以下の耐火原料100質量%に占める割合で、CaSr1−XAl(但し、0≦X≦0.5)とCaSr1−YAl(但し、0≦Y≦0.5)と12(CaO)(SrO)1−Z・7Al(但し、0≦Z≦0.5)の合計の含有量が10質量%以下である請求項1又は2に記載の不定形耐火物、
(4)前記耐火原料100質量%に占める割合で、粒径0.1mm以下のマグネシア原料の含有量が3質量%以上12質量%以下である(1)から(3)のいずれかに記載の不定形耐火物、
(5)前記耐火原料100質量%に占める割合で、粒径0.1mm以下のスピネル原料の含有量が5質量%以上25質量%以下である(1)から又は(3)のいずれかに記載の不定形耐火物、
(6)前記耐火原料100質量%に占める割合で、粒径0.1mm超8mm以下のアルミナ原料及びスピネル原料の少なくとも1種の合計の含有量が55質量%以上75質量%以下である(1)から(5)のいずれかに記載の不定形耐火物、
にある。
In order to solve this problem, the gist of the present invention is as follows:
(1) The content of Ca X Sr 1-X Al 2 O 4 (however, 0 ≦ X ≦ 0.5) is 0.5% by mass or more and 10% in proportion to 100% by mass of the refractory raw material having a particle size of 8 mm or less. An amorphous refractory having a content of a polyvalent metal salt of oxycarboxylic acid of 0.05% by mass or more and 1.0% by mass or less,
(2) The amorphous refractory according to claim 1, wherein the content of the polyvalent metal salt of the oxycarboxylic acid is 0.1% by mass or more and 1.0% by mass or less.
(3) Ca X Sr 1-X Al 2 O 4 (provided that 0 ≦ X ≦ 0.5) and Ca Y Sr 1-Y Al 4 O 7 in a proportion of 100% by mass of the refractory raw material having a particle size of 8 mm or less. (However, 0 ≦ Y ≦ 0.5) and 12 (CaO) Z (SrO) 1-Z · 7Al 2 O 3 (provided that 0 ≦ Z ≦ 0.5) is 10% by mass or less. The amorphous refractory according to claim 1 or 2,
(4) The content of the magnesia raw material having a particle size of 0.1 mm or less in a proportion of 100% by mass of the refractory raw material is 3% by mass or more and 12% by mass or less, according to any one of (1) to (3) Irregular refractories,
(5) The content of the spinel raw material having a particle diameter of 0.1 mm or less in a proportion of 100% by mass of the refractory raw material is 5% by mass or more and 25% by mass or less. Of irregular refractories,
(6) The total content of at least one of an alumina raw material and a spinel raw material having a particle size of more than 0.1 mm and not more than 8 mm is 55% by mass or more and 75% by mass or less (100% by mass). ) To (5),
It is in.

本発明によれば、結合材としてCaSr1−XAlとオキシカルボン酸の多価金属塩を組み合わせて使用することで、従来のマグネシアとオキシカルボン酸の多価金属塩を組み合わせて使用するものよりも硬化が早く、かつ、高強度の不定形耐火物を得ることができ、長期保管した場合の経時変化が非常に小さくなる。また、CaSr1−XAlを単独で使用するよりも遥かに硬化が早く、かつ、高強度の不定形耐火物を得ることができる。すなわち本発明によれば、アルミナセメントを使用していない、あるいは、アルミナセメントの使用量が非常に少なく、CaO含有量が少ない不定形耐火物の強度発現を早くし、かつ、高強度にすることが可能であり、長期保管時の経時変化を小さくすることができる。 According to the present invention, by using a combination of Ca X Sr 1-X Al 2 O 4 and a polyvalent metal salt of oxycarboxylic acid as a binder, a conventional magnesia and a polyvalent metal salt of oxycarboxylic acid are combined. It is possible to obtain a high-strength amorphous refractory that cures faster than those used in the past, and the change with time when stored for a long period of time is very small. Further, it is possible to obtain an amorphous refractory having a high strength and a much faster curing than using Ca X Sr 1-X Al 2 O 4 alone. That is, according to the present invention, alumina cement is not used, or the amount of alumina cement used is very small, and the strength development of the amorphous refractory with low CaO content is accelerated and made high strength. The change with time during long-term storage can be reduced.

本発明は、主に、アルミナ−マグネシア質不定形耐火物、アルミナ−スピネル質不定形耐火物に適用することができる。   The present invention is mainly applicable to alumina-magnesia amorphous refractories and alumina-spinel amorphous refractories.

本発明によるアルミナ−マグネシア質不定形耐火物は、典型的には、アルミナ原料、マグネシア原料及び超微粉シリカからなる主原料と、CaSr1−XAl(但し、0≦X≦0.5)及びオキシカルボン酸の多価金属塩からなる結合材と、通常の不定形耐火物に使用される混和材と混和剤によって構成される。ただし、乾燥時のマグネシアの消化に問題がない場合、熱間強度が重視される場合等は、超微粉シリカを使用しないことがある。また、耐食性を高める目的で、アルミナ原料とマグネシア原料の一部をスピネル原料に置き換えて使用することができる。 The alumina-magnesia amorphous refractory according to the present invention typically includes a main raw material composed of an alumina raw material, a magnesia raw material and ultrafine silica, and Ca X Sr 1-X Al 2 O 4 (where 0 ≦ X ≦ 0.5) and a binder composed of a polyvalent metal salt of oxycarboxylic acid, and an admixture and an admixture used for ordinary amorphous refractories. However, when there is no problem in digestion of magnesia at the time of drying, or when the hot strength is important, ultrafine silica may not be used. Further, for the purpose of enhancing the corrosion resistance, a part of the alumina raw material and the magnesia raw material can be replaced with a spinel raw material.

本発明によるアルミナ−スピネル質不定形耐火物は、典型的には、アルミナ原料及びスピネル原料からなる主原料と、CaSr1−XAl(但し、0≦X≦0.5)及びオキシカルボン酸の多価金属塩からなる結合材と、通常の不定形耐火物に使用される混和材と混和剤によって構成される。また、耐食性あるいは耐熱スポーリング性を高める目的で、アルミナ原料とスピネル原料の一部をマグネシア原料に置き換えて使用することができる。 The alumina-spinel amorphous refractory according to the present invention typically includes a main raw material composed of an alumina raw material and a spinel raw material, and Ca X Sr 1-X Al 2 O 4 (where 0 ≦ X ≦ 0.5). And a binder composed of a polyvalent metal salt of oxycarboxylic acid, and an admixture and an admixture used for ordinary amorphous refractories. Further, for the purpose of improving the corrosion resistance or heat spalling resistance, a part of the alumina raw material and the spinel raw material can be replaced with a magnesia raw material.

ここで、混和材とは、通常の不定形耐火物で使用されている有機繊維、Al粉末、メタルファイバー等をいい、混和剤とは、通常の不定形耐火物で使用されている減水剤、AE剤、消泡剤、硬化調整剤、流動性調整剤、マグネシアの消化防止剤、爆裂防止剤等をいう。そして本発明においては、上記混和材を除く不定形耐火物の原料全体を耐火原料という。   Here, the admixture refers to organic fibers, Al powder, metal fibers, etc. that are used in ordinary amorphous refractories, and the admixture is a water reducing agent that is used in ordinary irregular refractories, An AE agent, an antifoaming agent, a curing modifier, a fluidity modifier, a magnesia digestion inhibitor, an explosion inhibitor, and the like. And in this invention, the whole raw material of the amorphous refractory except the said admixture is called a refractory raw material.

本発明の不定形耐火物は、結合材として、CaSr1−XAl(但し、0≦X≦0.5)と一緒にオキシカルボン酸の多価金属塩を使用する。水と混練した不定形耐火物中のCaSr1−XAlは、Sr2+イオン、Ca2+イオン、Al(OH) イオンを溶出し、オキシカルボン酸の多価金属塩はこれらの溶出イオンと反応してゲル化し、強度が発現する。CaSr1−XAlのみの使用では、水和物の生成が遅いために強度発現が遅く、かつ、低強度になるが、オキシカルボン酸の多価金属塩を併用すると、オキシカルボン酸の多価金属塩のゲル化による結合部の形成が加わるので、強度発現が早く、かつ、高強度になる。 The amorphous refractory of the present invention uses a polyvalent metal salt of oxycarboxylic acid together with Ca X Sr 1-X Al 2 O 4 (where 0 ≦ X ≦ 0.5) as a binder. Ca X Sr 1-X Al 2 O 4 in the amorphous refractory kneaded with water elutes Sr 2+ ions, Ca 2+ ions, Al (OH) 4 ions, and the polyvalent metal salt of oxycarboxylic acid is It reacts with these eluted ions to gel and develop strength. When only Ca X Sr 1-X Al 2 O 4 is used, the formation of hydrates is slow, resulting in slow strength and low strength. However, when a polyvalent metal salt of oxycarboxylic acid is used in combination, Since the formation of the bonding portion by the gelation of the polyvalent metal salt of carboxylic acid is added, the strength is quickly developed and the strength is increased.

本発明によれば、従来の非常に細かく活性なマグネシア原料とオキシカルボン酸の多価金属塩の組み合わせによって結合部を生成する方法よりも強度発現が早く、かつ、高強度になる。これは、マグネシア原料からのMg2+イオン溶出量よりもCaSr1−XAlからのSr2+イオン、Ca2+イオン、Al(OH) イオンの溶出量が多いこと、更に、マグネシア原料を使用するよりもCaSr1−XAlを使用すると混練水が高pHになるためであると考えられる。MgOと水との反応は、MgO+HO→Mg(OH)であり,Mg(OH)の水100g(25℃)への溶解量が約1mgで、溶解した水のpHは約10.5である。これに対し、CaSr1−XAl中のSrOと水との反応は、SrO+HO→Sr(OH)であり,Sr(OH)の水100g(25℃)への溶解量は約1gで、溶解した水のpHは約13.5である。このように、Sr(OH)は水への溶解量が多く、すなわちCaSr1−XAlからのSr2+イオンの溶出量が多く、溶解すると混練水が高pHになると推定される。オキシカルボン酸の多価金属塩はpHが高くなるとゲル化が進み、例えば、オキシカルボン酸の多価金属塩の一つである塩基性乳酸アルミニウムはpHが10以上になると、ゲル化が進むと報告されている。CaSr1−XAlを使用する方法は、従来のマグネシア原料を使用する方法よりもイオンの溶出量が多く、かつ、高pHになるので、オキシカルボン酸の多価金属塩のゲル化が早く、多くのゲルが生成すると推定される。 According to the present invention, the strength development is faster and the strength is higher than that of the conventional method of generating a bond by a combination of a very fine active magnesia raw material and a polyvalent metal salt of oxycarboxylic acid. This is because the elution amount of Sr 2+ ions, Ca 2+ ions and Al (OH) 4 ions from Ca X Sr 1-X Al 2 O 4 is larger than the elution amount of Mg 2+ ions from the magnesia raw material, It is considered that the kneaded water has a higher pH when Ca X Sr 1-X Al 2 O 4 is used than when the magnesia raw material is used. The reaction of MgO and water is MgO + H 2 O → Mg (OH) 2 , the amount of Mg (OH) 2 dissolved in 100 g of water (25 ° C.) is about 1 mg, and the pH of the dissolved water is about 10. 5. On the other hand, the reaction between SrO and water in Ca X Sr 1-X Al 2 O 4 is SrO + H 2 O → Sr (OH) 2 , and Sr (OH) 2 into 100 g of water (25 ° C.). The dissolved amount is about 1 g, and the pH of the dissolved water is about 13.5. Thus, Sr (OH) 2 has a large amount of dissolution in water, that is, a large amount of Sr 2+ ions are eluted from Ca X Sr 1-X Al 2 O 4. Is done. When the pH of the polyvalent metal salt of oxycarboxylic acid increases, gelation proceeds. For example, when the basic aluminum lactate that is one of the polyvalent metal salts of oxycarboxylic acid has a pH of 10 or more, gelation proceeds. It has been reported. The method using Ca X Sr 1-X Al 2 O 4 has a higher ion elution amount and a higher pH than the conventional method using a magnesia raw material. It is estimated that gelation is fast and many gels are formed.

また、従来のマグネシア原料とオキシカルボン酸の多価金属塩の組み合わせはオキシカルボン酸の多価金属塩のゲル生成のみによって強度が発現するのに対して、CaSr1−XAlとオキシカルボン酸の多価金属塩の組み合わせは、オキシカルボン酸の多価金属塩のゲル生成とCaSr1−XAlの水和物生成が同時に起こり、複合化した更に高強度な結合部が生成すると推定される。このことも、本発明は従来よりも強度発現が早く、かつ、高強度になる要因として考えられる。 Further, the combination of the conventional magnesia raw material and the polyvalent metal salt of oxycarboxylic acid exhibits strength only by gel formation of the polyvalent metal salt of oxycarboxylic acid, whereas Ca X Sr 1-X Al 2 O 4 The combination of polyvalent metal salt of oxycarboxylic acid and gel formation of oxycarboxylic acid polyvalent metal salt and hydrate formation of Ca X Sr 1-X Al 2 O 4 occur at the same time, resulting in higher strength It is estimated that a simple coupling part is generated. This is also considered as a factor in the present invention that the strength expression is faster than the conventional one and the strength becomes higher.

更に、従来のマグネシア原料とオキシカルボン酸の多価金属塩の組み合わせによって結合部を生成する方法は、前述のようにマグネシアからのMg2+イオン溶出量が少ないので、結合部の生成を早くし、生成量を多くするためには非常に細かい活性なマグネシア原料を使用する必要がある。しかし、非常に細かく活性なマグネシア原料は、空気中の炭酸ガスによる炭酸化や、水蒸気による水酸化が発生して不活性になることがあり、保管状況によってマグネシア原料がこのように不活性化すると、不定形耐火物は強度発現が非常に遅く、かつ、低強度になるが、本発明のCaSr1−XAlの使用では、このような経時変化による劣化が少ない。 Furthermore, the conventional method of generating a bond by combining a magnesia raw material and a polyvalent metal salt of oxycarboxylic acid has a small amount of Mg 2+ ion elution from magnesia as described above. In order to increase the production amount, it is necessary to use a very fine active magnesia raw material. However, very fine and active magnesia raw materials may become inactive due to carbonation by carbon dioxide in the air or hydroxylation by water vapor, and if the magnesia raw material is inactivated in this way depending on storage conditions The amorphous refractory has very slow strength and low strength, but the use of the Ca X Sr 1-X Al 2 O 4 of the present invention causes little deterioration due to such a change with time.

従来のマグネシア原料とオキシカルボン酸の多価金属塩の組み合わせから、同じアルカリ土類金属の酸化物であるストロンチア(SrO)原料とオキシカルボン酸の多価金属塩を組み合わせて使用する方法を類推することができるが、単にこの組み合わせを適用すると、不定形耐火物は水と混練すると短時間で流動性が低下して施工が困難になる。これは、ストロンチアは水と激しく発熱しながら反応して多量のSr2+イオンを急速に溶出するので、オキシカルボン酸の多価金属塩のゲル化も急速に進むためだと考えられる。本発明者らは、ストロンチアをCaSr1−XAlの複合酸化物として使用すると、Sr2+イオンの溶出速度が抑制され、したがって、オキシカルボン酸の多価金属塩のゲル化速度も抑制されて不定形耐火物の施工に適した硬化速度に制御することができ、前述のように高強度になることを見出した。 By analogy with a conventional combination of magnesia raw material and polyvalent metal salt of oxycarboxylic acid, a combination of strontia (SrO) raw material, which is an oxide of the same alkaline earth metal, and polyvalent metal salt of oxycarboxylic acid is used. However, if this combination is simply applied, when the amorphous refractory is kneaded with water, the fluidity decreases in a short time, making the construction difficult. This is thought to be because strontia reacts with water while generating intense heat and elutes a large amount of Sr 2+ ions rapidly, so that gelation of polyvalent metal salts of oxycarboxylic acid proceeds rapidly. When the present inventors use strontia as a complex oxide of Ca X Sr 1-X Al 2 O 4 , the elution rate of Sr 2+ ions is suppressed, and thus the gelation rate of the polyvalent metal salt of oxycarboxylic acid It was also found that the curing rate can be controlled to be suitable for the construction of the irregular refractory, and the strength becomes high as described above.

アルミナセメントとオキシカルボン酸の多価金属塩の組み合わせでも、アルミナセメントから溶出するCa2+イオン、Al(OH) イオンによってオキシカルボン酸の多価金属塩がゲル化して強度発現するが、CaSr1−XAlとオキシカルボン酸の多価金属塩の組み合わせの方が強度発現は早く、かつ、高強度になる。これは、アルミナセメント中のCaOと水との反応は、CaO+HO→Ca(OH)であり,Ca(OH)の水100g(25℃)への溶解量が0.14gでpHが約12.4なので、CaSr1−XAlの方が、イオン溶出量が多く、混練水が高pHになるためであると考えられる。また、アルミナセメントを使用すると不定形耐火物中のCaO量が多くなって耐食性が低下するので、厳しい条件での使用にはCaSr1−XAlと一緒にオキシカルボン酸の多価金属塩を使用する本発明の不定形耐火物が適している。 Even when a combination of an alumina cement and a polyvalent metal salt of oxycarboxylic acid is used, the polyvalent metal salt of oxycarboxylic acid is gelled by Ca 2+ ions and Al (OH) 4 ions eluted from the alumina cement, but the strength is expressed. The combination of X Sr 1-X Al 2 O 4 and the polyvalent metal salt of oxycarboxylic acid exhibits faster strength and higher strength. This is because the reaction between CaO and water in alumina cement is CaO + H 2 O → Ca (OH) 2 , and the dissolution amount of Ca (OH) 2 in 100 g of water (25 ° C.) is 0.14 g and the pH is Since it is about 12.4, it is considered that Ca X Sr 1-X Al 2 O 4 has a higher ion elution amount and the kneaded water has a higher pH. In addition, when alumina cement is used, the amount of CaO in the amorphous refractory increases and the corrosion resistance decreases. Therefore, when used under severe conditions, a large amount of oxycarboxylic acid is used together with Ca X Sr 1-X Al 2 O 4. The amorphous refractory of the present invention using a valent metal salt is suitable.

本発明の不定形耐火物において、CaSr1−XAlの使用量は、粒径8mm以下の耐火原料100質量%に占める割合で0.5質量%以上10質量%以下とする。0.5質量%未満では、不定形耐火物の硬化が遅く、強度が不十分である。また、10質量%より多くなると不定形耐火物の硬化が早くなり過ぎ、高温で焼結しやすくなって耐熱スポーリング性が低下する。また、CaSr1−XAlのXの値については0≦X≦0.5とする。これはXが0.5より多くなるとCaO含有量が多くなり、不定形耐火物の耐食性が低下するからである。Xはできるだけ小さい方が、不定形耐火物中のCaO量が少ないので、不定形耐火物の耐食性が高くなり、0であってもよい。 In the amorphous refractory of the present invention, the amount of Ca X Sr 1-X Al 2 O 4 used is 0.5% by mass or more and 10% by mass or less as a proportion of 100% by mass of the refractory raw material having a particle size of 8 mm or less. . If it is less than 0.5% by mass, curing of the irregular refractory is slow and the strength is insufficient. On the other hand, if it exceeds 10% by mass, the amorphous refractory is hardened too quickly, and is easily sintered at a high temperature, so that the heat-resistant spalling property is lowered. Also, the value of X in Ca X Sr 1-X Al 2 O 4 and 0 ≦ X ≦ 0.5. This is because when X exceeds 0.5, the CaO content increases and the corrosion resistance of the amorphous refractory decreases. As X is as small as possible, the amount of CaO in the amorphous refractory is small, so the corrosion resistance of the amorphous refractory is increased and may be zero.

また、本発明の不定形耐火物においては、CaSr1−XAlと同じCaO−SrO−Al系の固溶体であるCaSr1−YAl(但し、0≦Y≦0.5)及び12(CaO)(SrO)1−Z・7Al(但し、0≦Z≦0.5)を使用することができるが、CaSr1−XAlとCaSr1−YAlと12(CaO)(SrO)1−Z・7Alの合計の使用量が粒径8mm以下の耐火原料100質量%に占める割合で10質量%以下にすることが好ましい。10質量%より多くなると高温で焼結しやすくなって耐熱スポーリング性が低下する。YとZの値については0≦Y≦0.5、0≦Z≦0.5とするが、これはCaSr1−XAlと同じくYとZが0.5より多くなるとCaO含有量が多くなり、不定形耐火物の耐食性が低下するからである。CaSr1−YAlを使用するとCaSr1−XAlよりも不定形耐火物の硬化が遅くなり、12(CaO)(SrO)1−Z・7Alを使用すると硬化が早くなるので、組み合わせて使用することで不定形耐火物の硬化時間を調整し易くなる。 In addition, in the amorphous refractory of the present invention, Ca Y Sr 1-Y Al 4 O 7, which is the same CaO—SrO—Al 2 O 4 solid solution as Ca X Sr 1-X Al 2 O 4 (however, 0 ≦ Y ≦ 0.5) and 12 (CaO) Z (SrO) 1-Z · 7Al 2 O 3 (where 0 ≦ Z ≦ 0.5) can be used, but Ca X Sr 1-X occupying the Al 2 O 4 and Ca Y Sr 1-Y Al 4 O 7 and 12 (CaO) Z (SrO) 1-Z · 7Al 2 O 3 the total amount of 100 mass% of the refractory material grain size 8mm of The ratio is preferably 10% by mass or less. When it exceeds 10 mass%, it will become easy to sinter at high temperature and heat spalling property will fall. The values of Y and Z are 0 ≦ Y ≦ 0.5 and 0 ≦ Z ≦ 0.5. This is similar to Ca X Sr 1-X Al 2 O 4 when Y and Z are more than 0.5. This is because the CaO content increases and the corrosion resistance of the amorphous refractory decreases. Ca Y Sr 1-Y Al 4 Using O 7 than Ca X Sr 1-X Al 2 O 4 becomes slow curing of monolithic refractories, 12 (CaO) Z (SrO ) 1-Z · 7Al 2 O When 3 is used, curing is accelerated, and it becomes easy to adjust the curing time of the amorphous refractory by using in combination.

なお、本発明の不定形耐火物においては、必要に応じてCaSr1−XAl、CaSr1−YAl、12(CaO)(SrO)1−Z・7Alに加えてアルミナセメントを使用することができるが、アルミナセメントに含まれるCaOは不定形耐火物の耐食性を低下させるので、CaSr1−XAl、CaSr1−YAl、12(CaO)(SrO)1−Z・7Al、アルミナセメントに含まれるCaOの合計が粒径8mm以下の耐火原料100質量%に占める割合で0.5質量以下にすることが好ましい。 In the amorphous refractory of the present invention, Ca X Sr 1-X Al 2 O 4 , Ca Y Sr 1-Y Al 4 O 7 , 12 (CaO) Z (SrO) 1-Z. Alumina cement can be used in addition to 7Al 2 O 3 , but CaO contained in the alumina cement reduces the corrosion resistance of the amorphous refractory, so Ca X Sr 1-X Al 2 O 4 , Ca Y Sr 1 -Y Al 4 O 7, 12 ( CaO) Z (SrO) 1-Z · 7Al 2 O 3, 0.5 total CaO contained in the alumina cement is a proportion of 100 mass% of the refractory material grain size 8mm It is preferable to make it not more than mass.

CaSr1−XAlの製造方法としては、石灰石(主にCaCO)、生石灰(主にCaO)、精製アルミナ(α−Al、Al(OH))やボーキサイト(Al原料)、ストロンチアン鉱(SrCO)や天青石(SrSO)を原料とし、目的とする組成のモル比となるように原料を配合し、電気炉、反射炉、平炉、縦型炉又はシャフトキルンやロータリーキルンで、1100℃以上、好ましくは1300℃以上、さらに好ましくは1500℃以上の高温で溶融あるいは焼成する方法が挙げられる。原料中のCaO、Al及びSrOの合計が98質量%以上の高純度のものが好ましい。ボーキサイトや天青石に含まれているTiO、MgO、Fe等の不純物は高温での物性を低下させる懸念があり、極力少量であることが好ましい。 As a method for producing Ca X Sr 1-X Al 2 O 4 , limestone (mainly CaCO 3 ), quick lime (mainly CaO), purified alumina (α-Al 2 O 3 , Al (OH) 3 ), bauxite ( Al 2 O 3 raw material), strontium ore (SrCO 3 ) and celestite (SrSO 4 ) are used as raw materials, and the raw materials are blended so as to achieve a molar ratio of the desired composition. Examples of the method include melting or firing at a high temperature of 1100 ° C. or higher, preferably 1300 ° C. or higher, more preferably 1500 ° C. or higher in a mold furnace, a shaft kiln, or a rotary kiln. A high-purity material in which the total of CaO, Al 2 O 3 and SrO in the raw material is 98% by mass or more is preferable. Impurities such as TiO 2 , MgO, Fe 2 O 3 and the like contained in bauxite and celestite may cause a decrease in physical properties at high temperatures, and are preferably as small as possible.

これらの温度や溶融・焼成時間は炉の容積や加熱能力等の仕様によって変わるものであり、実際には溶融・焼成後試料の生成相をX線回折で確認し、目的のCaSr1−XAlの生成有無を確認することが重要である。 These temperatures and melting / firing times vary depending on specifications such as the furnace volume and heating capacity. Actually, the produced phase of the sample after melting / firing is confirmed by X-ray diffraction, and the target Ca X Sr 1− It is important to check whether X Al 2 O 4 is generated.

溶融あるいは焼成前に、これらの原料は粉砕機で50%平均径が0.5〜100μm程度まで粉砕されていることが好ましい。これよりも粗大な粒子を含むと、未反応の部分が多数残り、本発明の本来の効果が発揮されにくくなる場合があるためである。また、溶融又は焼成後、冷却し、粉砕機にて1〜20μm程度の粒度に整粒化することが好ましい。この粒度は、レーザー回折法やレーザー散乱法、あるいは沈降天秤法などの粒度分析機器による測定結果であって、50%平均径を表す。   Prior to melting or firing, these raw materials are preferably pulverized by a pulverizer to a 50% average diameter of about 0.5 to 100 μm. When coarser particles are included, a large number of unreacted portions remain, and the original effect of the present invention may not be exhibited. Moreover, it is preferable to cool after melt | dissolution or baking, and to size-control to a particle size of about 1-20 micrometers with a grinder. This particle size is a result of measurement by a particle size analyzer such as a laser diffraction method, a laser scattering method, or a sedimentation balance method, and represents a 50% average diameter.

原料の混合には、アイリッヒミキサー、ロータリードラム、コーンブレンダー、V型ブレンダー、オムニミキサー、ナウターミキサー、パン型ミキサー等の混合機で均一化することができる。   The raw materials can be mixed using a mixer such as an Eirich mixer, a rotary drum, a cone blender, a V-type blender, an omni mixer, a nauter mixer, or a pan-type mixer.

粉砕機としては、振動ミル、チューブミル、ボールミル、ローラーミル等の工業用粉砕機を用いることができる。また、不定形耐火物に使用される原料の一部を同時に粉砕して使用することもできる。例えば、CaSr1−XAlと仮焼アルミナを同時に粉砕して使用すると、不定形耐火物中でCaSr1−XAlと仮焼アルミナが均一に分散するので、不定形耐火物を少ない水で混練しても流動性が良くなり、強度が高くなる。 As the pulverizer, an industrial pulverizer such as a vibration mill, a tube mill, a ball mill, or a roller mill can be used. Moreover, a part of raw material used for an amorphous refractory material can also be grind | pulverized simultaneously and used. For example, if Ca X Sr 1-X Al 2 O 4 and calcined alumina are ground and used simultaneously, Ca X Sr 1-X Al 2 O 4 and calcined alumina are uniformly dispersed in the amorphous refractory. Even if the amorphous refractory is kneaded with a small amount of water, the fluidity is improved and the strength is increased.

CaSr1−YAl及び12(CaO)(SrO)1−Z・7Alは、CaSr1−XAlと同様の方法で、目的とする組成のモル比となるように原料を配合して作製することができる。また,CaSr1−XAl相だけではなく、CaSr1−YAl相あるいは12(CaO)(SrO)1−Z・7Al相と共存するように原料を配合して同様の方法で作製することができる。 Ca Y Sr 1-Y Al 4 O 7 and 12 (CaO) Z (SrO) 1-Z · 7Al 2 O 3 is in the same manner as Ca X Sr 1-X Al 2 O 4, of the desired composition It can be prepared by blending raw materials so as to have a molar ratio. Further, not only the Ca X Sr 1-X Al 2 O 4 phase but also the Ca Y Sr 1-Y Al 4 O 7 phase or the 12 (CaO) Z (SrO) 1-Z · 7Al 2 O 3 phase so as to coexist. The raw materials can be blended in the same manner.

本発明の不定形耐火物において、オキシカルボン酸の多価金属塩の使用量は、8mm以下の耐火原料100質量%に占める割合で0.05質量%以上1.0質量%以下とする。0.05質量%未満では不定形耐火物の硬化が遅く強度が不十分であり、1.0質量%より多くなるとゲルの収縮によって発生すると考えられる不定形耐火物の養生時と乾燥時の収縮が大きくなり、容積安定性が悪くなる。短時間で型枠や中子の脱枠を実施する場合、あるいは、低温で施工する場合、硬化を早めるためにオキシカルボン酸の多価金属塩の使用量は、8mm以下の耐火原料100質量%に占める割合で0.1質量%以上1.0質量%以下が好ましい。   In the amorphous refractory according to the present invention, the amount of the polyvalent metal salt of oxycarboxylic acid used is 0.05% by mass or more and 1.0% by mass or less as a proportion of 100% by mass of the refractory raw material of 8 mm or less. If it is less than 0.05% by mass, the amorphous refractory is hardened slowly and has insufficient strength. If it exceeds 1.0% by mass, the shrinkage during curing and drying of the amorphous refractory considered to be caused by gel shrinkage is considered. Becomes larger and the volume stability becomes worse. When removing the formwork and core in a short time, or when constructing at a low temperature, the amount of polyvalent metal salt of oxycarboxylic acid used is 100% by mass of a refractory raw material of 8 mm or less in order to accelerate curing. It is preferably 0.1% by mass or more and 1.0% by mass or less as a percentage of the total.

オキシカルボン酸の多価金属塩としては、グリコール酸、乳酸、ヒドロアクリル酸、オキシ酪酸、グリセリン酸、リンゴ酸、酒石酸、クエン酸等の脂肪族オキシカルボン酸のアルミニウム塩、鉄塩、クロム塩、ジルコニウム塩、チタン塩等の正塩及び塩基性塩を使用することができる。例えば、一般に市販されている乳酸アルミニウム、塩基性乳酸アルミニウム、グリコール酸アルミニウム、乳酸・グリコール酸アルミニウム、塩基性乳酸・グリコール酸アルミニウム等である。   Examples of the polyvalent metal salt of oxycarboxylic acid include glycolic acid, lactic acid, hydroacrylic acid, oxybutyric acid, glyceric acid, malic acid, tartaric acid, citric acid and other aliphatic oxycarboxylic acid aluminum salts, iron salts, chromium salts, Normal salts and basic salts such as zirconium salts and titanium salts can be used. Examples thereof include commercially available aluminum lactate, basic aluminum lactate, aluminum glycolate, lactic acid / aluminum glycolate, and basic lactic acid / aluminum glycolate.

本発明のアルミナ−マグネシア質不定形耐火物は、粒径8mm以下の耐火原料100質量%に占める割合で、CaSr1−XAl(但し、0≦X≦0.5)を0.5質量%以上10質量%以下、オキシカルボン酸の多価金属塩を0.05質量%以上1.0質量%以下含むとともに、さらに、粒径0.1mm以下のマグネシア原料を3質量%以上12質量%以下含むことが好ましい。このように調整すると、強度発現の時間が適切であり、高強度で、耐食性と耐スラグ浸潤性が高く、かつ、耐熱スポーリング性が高い不定形耐火物を得ることができる。 The alumina-magnesia amorphous refractory of the present invention is composed of Ca X Sr 1-X Al 2 O 4 (where 0 ≦ X ≦ 0.5) in a proportion of 100% by mass of the refractory raw material having a particle size of 8 mm or less. 0.5% by mass or more and 10% by mass or less, 0.05% by mass or more and 1.0% by mass or less of a polyvalent metal salt of oxycarboxylic acid, and 3% by mass of magnesia raw material having a particle size of 0.1 mm or less The content is preferably 12% by mass or less. By adjusting in this way, it is possible to obtain an amorphous refractory having an appropriate strength development time, high strength, high corrosion resistance and high slag infiltration resistance, and high heat resistance spalling properties.

また、本発明のアルミナ−スピネル質不定形耐火物は、粒径8mm以下の耐火原料100質量%に占める割合で、CaSr1−XAl(但し、0≦X≦0.5)を0.5質量%以上10質量%以下、オキシカルボン酸の多価金属塩を0.05質量%以上1.0質量%以下含むとともに、さらに、粒径0.1mm以下のスピネル原料を5質量%以上25質量%以下含むことが好ましい。このように調整すると、強度発現の時間が適切であり、高強度で、耐食性と耐スラグ浸潤性が高く、かつ、耐熱スポーリング性が高い不定形耐火物を得ることができる。 Further, the alumina-spinel amorphous refractory according to the present invention is a proportion of 100% by mass of the refractory raw material having a particle size of 8 mm or less, and Ca X Sr 1-X Al 2 O 4 (where 0 ≦ X ≦ 0.5 ) In an amount of 0.5% by mass to 10% by mass and 0.05% by mass to 1.0% by mass of a polyvalent metal salt of oxycarboxylic acid. It is preferable to contain from 25% by mass to 25% by mass. By adjusting in this way, it is possible to obtain an amorphous refractory having an appropriate strength development time, high strength, high corrosion resistance and high slag infiltration resistance, and high heat resistance spalling properties.

本発明の不定形耐火物において、骨材となる粒径0.1mm超8mm以下の耐火原料は、アルミナ原料及びスピネル原料の少なくとも1種を主として構成できる。典型的には、粒径8mm以下の耐火原料100質量%に占める割合で、粒径0.1mm超8mm以下のアルミナ原料及びスピネル原料の少なくとも1種の合計の含有量で55質量%以上75質量%以下である。   In the amorphous refractory of the present invention, the refractory raw material having a particle size of more than 0.1 mm and not more than 8 mm, which serves as an aggregate, can mainly constitute at least one of an alumina raw material and a spinel raw material. Typically, it is a proportion of 100% by mass of the refractory raw material having a particle size of 8 mm or less, and the total content of at least one of alumina raw material and spinel raw material having a particle size of more than 0.1 mm and 8 mm or less is 55% by mass to 75% by mass. % Or less.

以上の本発明の不定形耐火物に好適に使用できる耐火原料(主原料)を例示すると、以下のとおりである。   Examples of the refractory raw material (main raw material) that can be suitably used for the above-described amorphous refractory according to the present invention are as follows.

アルミナ原料としては、電融あるいは焼結によって製造され粒度調整された原料と、仮焼アルミナと呼ばれているバイヤー法で製造された原料を使用する。電融あるいは焼結によって製造され粒度調整されたアルミナ原料は、Al含有量が90質量%以上、好ましくは99質量%以上のものを使用する。仮焼アルミナは、reactive aluminaあるいはcalcined aluminaと呼ばれている原料である。 As the alumina raw material, a raw material manufactured by electromelting or sintering and having a particle size adjusted, and a raw material manufactured by a Bayer method called calcined alumina are used. The alumina raw material produced by electromelting or sintering and adjusted in particle size has an Al 2 O 3 content of 90% by mass or more, preferably 99% by mass or more. Calcinated alumina is a raw material called reactive alumina or calcined alumina.

スピネル原料としては、MgO−Al系の化合物で、化学組成がMgO・Alの化学量論組成及びMgOあるいはAlが過剰に固溶した非化学量論組成の化合物であり、電融あるいは焼結によって製造され粒度調整された原料を使用する。スピネルとアルミナが複合した原料を使用することもできる。 As the spinel raw material, a MgO—Al 2 O 3 based compound having a chemical composition of MgO · Al 2 O 3 and a non-stoichiometric composition in which MgO or Al 2 O 3 is excessively dissolved in solid solution A raw material that is manufactured by electromelting or sintering and whose particle size is adjusted is used. A raw material in which spinel and alumina are combined can also be used.

マグネシア原料としては、電融あるいは焼結によって製造され粒度調整された原料を使用する。乾燥時にマグネシア原料が消化して体積膨張による亀裂が発生しないように、耐消化性が高いマグネシア原料を使用することが好ましい。耐消化性が高いマグネシア原料とは、不純物であるCaOとSiOとでCaO/SiOが低いもの、破砕面を持たないもの、表面コーティングされたもの等である。マグネシア原料は使用中にアルミナ原料と反応してスピネルを生成するので、細かいマグネシア原料を使用すると生成するスピネルが微細になって耐食性と耐スラグ浸潤性が高まり、粗いマグネシア原料を使用すると体積膨張を示すスピネル生成の速度が遅くなって不定形耐火物が継続した残存膨張性を示して亀裂が少なくなる。 As the magnesia raw material, a raw material which is manufactured by electromelting or sintering and whose particle size is adjusted is used. It is preferable to use a magnesia raw material having high digestion resistance so that the magnesia raw material is digested during drying and cracks due to volume expansion do not occur. The digestion resistant high magnesia raw material, those CaO and low CaO / SiO 2 in the SiO 2 which is an impurity, having no fractured plane, it is like those surface coating. The magnesia raw material reacts with the alumina raw material during use to produce spinel, so if the fine magnesia raw material is used, the generated spinel becomes finer and corrosion resistance and slag infiltration resistance increase, and if the coarse magnesia raw material is used, volume expansion occurs. The rate of spinel formation shown is slowed down, and the irregular refractory exhibits continued residual expansivity, resulting in fewer cracks.

超微粉シリカは、シリカフラワー、シリカヒューム、ヒュームドシリカ、マイクロシリカ、蒸発シリカ、あるいは、シリカダスト等と呼ばれる粒径が1μm以下の非晶質のSiO質原料で、Si、Fe−Si、ZrO等の製造時に発生するSiOガスが空気中で酸化して生成したものが一般的である。超微粉シリカは、アルミナ−マグネシア質不定形耐火物において、マグネシア原料の消化防止、スピネル生成による膨張の低減、使用時のクリープ性の付与等の目的で、粒径8mm以下の耐火材料100質量%に占める割合で、2質量%以下の範囲で使用することが好ましい。 Ultrafine silica is an amorphous SiO 2 raw material having a particle size of 1 μm or less called silica flour, silica fume, fumed silica, micro silica, evaporated silica, or silica dust, and is composed of Si, Fe—Si, In general, the SiO gas generated during the production of ZrO 2 or the like is generated by oxidation in air. Ultra fine silica is an alumina-magnesia amorphous refractory, and is 100% by mass of a refractory material having a particle diameter of 8 mm or less for the purpose of preventing digestion of magnesia raw material, reducing expansion due to spinel formation, and imparting creep properties during use. It is preferable to use in the range of 2 mass% or less.

また、本発明の不定形耐火物の耐火原料としては、使用済の耐火れんが、あるいは不定形耐火物を再利用した、いわゆるリサイクル原料を使用することもできる。このリサイクル原料としては、アルミナ−スピネル質、あるいは、アルミナ−マグネシア質の使用済の耐火れんがや、不定形耐火物を再利用することが好ましい。   In addition, as the refractory raw material of the amorphous refractory of the present invention, used refractory bricks or so-called recycled raw materials obtained by reusing the irregular refractory can be used. As this recycling raw material, it is preferable to reuse used refractory bricks or amorphous refractories of alumina-spinel or alumina-magnesia.

さらに、本発明の不定形耐火物では、亀裂の伸展を防いで亀裂や剥離の発生を少なくする、あるいは、緻密で大きな骨材によって耐食性を高める目的で、粒径が8mmより大きい耐火原料を使用することも可能である。ただし、その使用量は、粒径8mm以下の耐火原料100質量%に対して外掛けで40質量%以下にすることが好ましい。   Furthermore, the amorphous refractory material of the present invention uses a refractory raw material having a particle size larger than 8 mm for the purpose of preventing crack extension and reducing the occurrence of cracks and peeling, or increasing the corrosion resistance with a dense and large aggregate. It is also possible to do. However, the amount used is preferably 40% by mass or less as an outer shell with respect to 100% by mass of the refractory raw material having a particle size of 8 mm or less.

また、本発明の不定形耐火物では、その他の耐火原料として、ジルコニア、ムライト、アルミナ−ジルコニア、ジルコニア−ムライト、クロミア等を使用することも可能であるが、これらの使用量は、粒径8mm以下の耐火原料100質量%に占める割合で、10質量%以下にすることが好ましい。   In addition, in the amorphous refractory of the present invention, zirconia, mullite, alumina-zirconia, zirconia-mullite, chromia, etc. can be used as other refractory raw materials. It is preferable to make it into 10 mass% or less by the ratio which occupies for 100 mass% of the following refractory raw materials.

以上説明した本発明の不定形耐火物は、流し込み施工、湿式吹き付け施工に好適に使用することができる。   The amorphous refractory of the present invention described above can be suitably used for casting construction and wet spraying construction.

表1は、本発明の実施例1〜29と比較例1〜5の原料構成と評価結果を示す。   Table 1 shows the raw material structures and evaluation results of Examples 1 to 29 and Comparative Examples 1 to 5 of the present invention.

Figure 2017066025
Figure 2017066025

耐火原料としては、Al含有量が99.5質量%で粒径範囲が8−0.1mmと0.1mm以下の焼結アルミナ、MgO含有量が27質量%で粒径範囲が8−0.1mmと0.1mm以下の焼結スピネル、平均粒径が1.5μmの仮焼アルミナ、MgO含有量が95.2質量%で粒径範囲が0.1mm以下の焼結マグネシア、MgO含有量が97.7質量%でBET比表面積が144m2/gの活性マグネシア、SiO含有量が98質量%で平均粒径が0.2μmのシリカフラワー、CaO含有量が25質量%のアルミナセメント、CaSr1−XAl、CaSr1−YAl、12(CaO)(SrO)1−Z・7Al3、オキシカルボン酸の多価金属塩、及び混和剤としてポリカルボン酸系の減水剤と硬化調整剤を合計で0.2質量%を使用した。 As a refractory raw material, sintered alumina having an Al 2 O 3 content of 99.5% by mass and a particle size range of 8-0.1 mm and 0.1 mm or less, an MgO content of 27% by mass and a particle size range of 8 -Sintered spinel of 0.1 mm and 0.1 mm or less, calcined alumina with an average particle size of 1.5 μm, sintered magnesia with a MgO content of 95.2 mass% and a particle size range of 0.1 mm or less, MgO Active magnesia with a content of 97.7% by mass and a BET specific surface area of 144 m 2 / g, silica flour with a SiO 2 content of 98% by mass and an average particle size of 0.2 μm, alumina with a CaO content of 25% by mass cement, Ca X Sr 1-X Al 2 O 4, Ca Y Sr 1-Y Al 4 O 7, 12 (CaO) Z (SrO) 1-Z · 7Al 2 O 3, polyvalent metal salt of hydroxycarboxylic acid, And polycarboxylic acids as admixtures The water reducing agent and the curing modifier was used 0.2 wt% in total.

CaSr1−XAl、CaSr1−YAl、12(CaO)(SrO)1−Z・7Alは、それぞれ次に示す方法で作製した。原料として、純度99質量%のCaCOと、純度98質量%のSrCOと、純度99質量%の高純度α−アルミナを使用した。表1の化学組成(Xの値、Yの値、Zの値)になるように各原料を天秤で秤量し、乳鉢で混合粉砕した原料に対して、外掛けで1質量%の水を加えて造粒成形した後、シリコニット電気炉中1400℃で48時間の加熱処理、その後、常温まで降温し空気中で放冷後、ボールミルにて粉砕したものをそれぞれCaSr1−XAl、CaSr1−YAl、12(CaO)(SrO)1−Z・7Alとして使用した。 Ca X Sr 1-X Al 2 O 4, Ca Y Sr 1-Y Al 4 O 7, 12 (CaO) Z (SrO) 1-Z · 7Al 2 O 3 was prepared by the following method, respectively. As raw materials, CaCO 3 having a purity of 99% by mass, SrCO 3 having a purity of 98% by mass, and high-purity α-alumina having a purity of 99% by mass were used. Each raw material was weighed with a balance so as to have the chemical composition shown in Table 1 (X value, Y value, Z value), and 1% by mass of water was added to the raw material mixed and ground in a mortar. After granulating and forming, heat treatment at 1400 ° C. for 48 hours in a siliconit electric furnace, then cooling to room temperature, allowing to cool in air, and then pulverizing with a ball mill, respectively, Ca X Sr 1-X Al 2 O 4, was used as a Ca Y Sr 1-Y Al 4 O 7, 12 (CaO) Z (SrO) 1-Z · 7Al 2 O 3.

また、オキシカルボン酸の多価金属塩は、オキシカルボン酸の多価金属塩Aとして塩基性乳酸アルミニウム、オキシカルボン酸の多価金属塩Bとして塩基性乳酸・グリコール酸アルミニウムを使用した。   As the polyvalent metal salt of oxycarboxylic acid, basic aluminum lactate was used as polyvalent metal salt A of oxycarboxylic acid, and basic lactic acid / aluminum glycolate was used as polyvalent metal salt B of oxycarboxylic acid.

表1中の「硬化時間」は、適切な流動性が得られる水分量で混練した材料を20℃で養生した場合の硬化時間が3時間以上8時間以内であり、製鋼処理装置への施工として適切なものに○印を付けている。また、2時間以上3時間未満と少し短いか、あるいは、8時間より長く12時間以内と少し長いものは△印を付け、2時間未満と非常に短いか、あるいは、12時間より長いものには×印を付けている。   “Hardening time” in Table 1 is a setting time of 3 hours or more and 8 hours or less when a material kneaded with an amount of water capable of obtaining appropriate fluidity is cured at 20 ° C. Appropriate items are marked with a circle. In addition, if it is a little shorter than 2 hours and less than 3 hours, or a little longer than 8 hours and within 12 hours, it is marked with △, and if it is very short as less than 2 hours or longer than 12 hours, X mark.

「経時変化」は、紙袋内で90日間保管した材料の硬化時間を前項の「硬化時間」と同じ条件で測定し,硬化時間の変化が15%以内であったものに○印、15%より大きく30%以内であったものに△印、30%より大きかったものに×印を付けている。   “Change over time” is the measurement of the curing time of materials stored in a paper bag for 90 days under the same conditions as “curing time” in the previous section. A mark which is larger than 30% is marked with Δ, and a mark which is larger than 30% is marked with X.

「乾燥収縮」は、適切な流動性が得られる水分量で混練した材料を40×40×160mmの形状に鋳込み、20℃で24時間養生後に110℃で24時間乾燥した試験片の養生後から乾燥後の長手方向の収縮率が0.1%以内と小さかったものに○印を付けている。また、0.1%より大きいが0.2%以内であったものに△印を付け、0.2%より大きかったものに×印を付けている。   “Drying shrinkage” refers to a test piece that has been kneaded in a 40 × 40 × 160 mm shape with a water content that provides adequate fluidity, cured at 20 ° C. for 24 hours, and then dried at 110 ° C. for 24 hours. A circle with a small shrinkage ratio in the longitudinal direction after drying of 0.1% or less is marked. Also, a mark larger than 0.1% but within 0.2% is marked with Δ, and a mark larger than 0.2% is marked with X.

「曲げ強度」は、「乾燥収縮」を測定した110℃乾燥後の試験片の3点曲げ強度を測定し、8MPa以上と高強度であったものに○印を付けている。また、5MPa以上で8MPa未満であったものは△印、5MPaよりも低強度であったものには×印を付けている。   “Bending strength” is a three-point bending strength of a test piece after drying at 110 ° C. where “drying shrinkage” was measured. In addition, those with 5 MPa or more and less than 8 MPa are marked with Δ, and those with lower strength than 5 MPa are marked with X.

「回転浸食スポール」は、適切な流動性が得られる水分量で混練した材料を鋳込んで作製した試験片を20℃で24時間養生、110℃で24時間乾燥後に、スラグ回転浸食試験装置を用いて、[試験片を1650℃に加熱してから転炉スラグを投入し1時間保持した後、スラグを排出し30分間空冷]の操作を5回繰り返し、溶損とスポーリングによる亀裂発生を評価した。溶損と亀裂の発生がいずれも軽微であったものは○印、いずれかが軽微であり、もう一方も極端に悪くない場合は△印、いずれも軽微ではない場合は×印を付けている。   “Rotating erosion spall” is a test piece prepared by casting a material kneaded with an amount of water that gives an appropriate fluidity, cured at 20 ° C. for 24 hours, dried at 110 ° C. for 24 hours, Using, after the test piece was heated to 1650 ° C., the converter slag was charged and held for 1 hour, and then the slag was discharged and air-cooled for 30 minutes. evaluated. ○ mark indicates that melting and cracking were both minor, ○ indicates that either is minor, and the other is not extremely bad, and Δ indicates that neither is minor. .

「総合評価」は、各評価がいずれも○の非常に良好なものは◎印、△が1個で残りが〇の良好なものは○印、△が2個で残りが○のものは△印、それ以外は×印を付けている。◎、○、△、×の順に評価が悪いことを示している。   "Comprehensive evaluation" means that each evaluation is very good with a mark of ◎, △ is one and the remaining is a good mark with ○, and △ is two and the rest is △ Mark, otherwise it is marked with x. It shows that evaluation is bad in the order of ○, ○, Δ, ×.

表1の実施例1〜29は本発明の実施例であり、硬化時間、乾燥収縮、曲げ強度、回転浸食スポールの総合評価が良好な不定形耐火物が得られた。   Examples 1 to 29 in Table 1 are examples of the present invention, and an amorphous refractory having good overall evaluation of curing time, drying shrinkage, bending strength, and rotational erosion spall was obtained.

なお、実施例11〜15のうち、「CaSr1−XAl(但し、0≦X≦0.5)とCaSr1−YAl(但し、0≦Y≦0.5)と12(CaO)(SrO)1−Z・7Al(但し、0≦Z≦0.5)の合計」の好ましい範囲(10質量%以下)である実施例11〜14は総合評価が◎であるが、範囲から外れた実施例15は良好な不定形耐火物が得られるが、総合評価が〇で少し劣る。 In Examples 11 to 15, “Ca X Sr 1-X Al 2 O 4 (provided that 0 ≦ X ≦ 0.5) and Ca Y Sr 1-Y Al 4 O 7 (provided that 0 ≦ Y ≦ 0.5) and 12 (CaO) Z (SrO) 1-Z · 7Al 2 O 3 (however, 0 ≦ Z ≦ 0.5) ”in a preferred range (10 mass% or less) The overall evaluation of 14 is ◎. However, in Example 15 out of the range, a good amorphous refractory can be obtained, but the overall evaluation is a little inferior.

なお、実施例16〜20のうち、「粒径0.1mm以下のマグネシア原料」の好ましい範囲(3〜12質量%)である実施例17〜19は総合評価が◎であるが、範囲から外れた実施例16,20は良好な不定形耐火物が得られるが、総合評価が〇で少し劣る。   Of Examples 16 to 20, Examples 17 to 19 which are a preferable range (3 to 12% by mass) of “magnesia raw material having a particle size of 0.1 mm or less” have an overall evaluation of ◎, but are out of the range. In Examples 16 and 20, a good amorphous refractory can be obtained, but the overall evaluation is a little inferior.

また、実施例21〜25のうち、「粒径0.1mm以下のスピネル原料」の好ましい範囲(5〜25質量%)である実施例22〜24は総合評価が◎であるが、範囲から外れた実施例21,25は良好な不定形耐火物が得られるが、総合評価が〇で少し劣る。   In addition, among Examples 21 to 25, Examples 22 to 24, which are preferable ranges (5 to 25% by mass) of “spinel raw material having a particle size of 0.1 mm or less”, have an overall evaluation of ◎, but are out of the range. In Examples 21 and 25, a good amorphous refractory was obtained, but the overall evaluation was a little inferior.

実施例26は、アルミナセメントを併用した例であり、良好な不定形耐火物が得られるが、総合評価が△で少し劣る。実施例29は、本発明の範囲内であるがオキシカルボン酸の使用量が少ない例であり、良好な不定形耐火物が得られるが、硬化時間が少し長く、強度が少し低く,総合評価が△で少し劣る。   Example 26 is an example in which alumina cement is used in combination, and a good amorphous refractory can be obtained, but the overall evaluation is slightly inferior with Δ. Example 29 is an example in which the amount of oxycarboxylic acid used is within the scope of the present invention, and a good amorphous refractory is obtained, but the curing time is slightly longer, the strength is slightly lower, and the overall evaluation is △ is a little inferior.

表1の比較例1は、従来の活性なマグネシアとオキシカルボン酸の多価金属塩を組み合わせて使用する例であり、硬化がやや遅く、経時変化が非常に大きく、強度がやや低く、回転浸食スポールでの亀裂がやや多い。   Comparative Example 1 in Table 1 is an example in which a conventional active magnesia and a polyvalent metal salt of oxycarboxylic acid are used in combination. Curing is somewhat slow, change with time is very large, strength is slightly low, and rotational erosion There are a few cracks in the spall.

比較例2は、CaSr1−XAlの使用量が本発明の範囲より少ない例であり、硬化がやや遅く、経時変化がやや大きく、強度が低く、回転浸食スポールでの亀裂がやや多い。 Comparative Example 2 is an example in which the amount of Ca X Sr 1-X Al 2 O 4 used is less than the range of the present invention, the curing is slightly slow, the change over time is slightly large, the strength is low, and cracks occur in the rotary erosion spall. Slightly more.

比較例3は、CaSr1−XAlの使用量が本発明の範囲より多い例であり、硬化時間がやや短く、養生収縮がやや大きく、回転浸食スポールでの亀裂が多い。 Comparative Example 3 is an example in which the amount of Ca X Sr 1-X Al 2 O 4 used is larger than the range of the present invention, the curing time is slightly short, the curing shrinkage is slightly large, and there are many cracks in the rotating erosion spall.

比較例4は、CaSr1−XAlのXの値が本発明の範囲より大きい例であり、養生収縮がやや大きく、回転浸食スポールでの耐食性が悪い。 Comparative Example 4 is an example in which the value of X of Ca X Sr 1-X Al 2 O 4 is larger than the range of the present invention, the curing shrinkage is somewhat large, and the corrosion resistance at the rotary erosion spall is poor.

比較例5は、オキシカルボン酸の多価金属塩の使用量が本発明の範囲より少ない例であり、硬化時間が非常に長く、強度が非常に低い。   In Comparative Example 5, the amount of polyvalent metal salt of oxycarboxylic acid used is less than the range of the present invention, the curing time is very long, and the strength is very low.

比較例6は、オキシカルボン酸の多価金属塩の使用量が本発明の範囲より多い例であり、硬化時間がやや短く、乾燥収縮が非常に大きい。   Comparative Example 6 is an example in which the amount of the polyvalent metal salt of oxycarboxylic acid used is larger than the range of the present invention, the curing time is somewhat short, and the drying shrinkage is very large.

Claims (6)

粒径8mm以下の耐火原料100質量%に占める割合で、CaSr1−XAl(但し、0≦X≦0.5)の含有量が0.5質量%以上10質量%以下、オキシカルボン酸の多価金属塩の含有量が0.05質量%以上1.0質量%以下である不定形耐火物。 The ratio of Ca X Sr 1-X Al 2 O 4 (where 0 ≦ X ≦ 0.5) is 0.5% by mass or more and 10% by mass or less in a proportion of 100% by mass of the refractory raw material having a particle size of 8 mm or less. An amorphous refractory having an oxycarboxylic acid polyvalent metal salt content of 0.05% by mass or more and 1.0% by mass or less. 前記オキシカルボン酸の多価金属塩の含有量が0.1質量%以上1.0質量%以下である請求項1に記載の不定形耐火物。   The amorphous refractory according to claim 1, wherein the content of the oxycarboxylic acid polyvalent metal salt is 0.1% by mass or more and 1.0% by mass or less. 粒径8mm以下の耐火原料100質量%に占める割合で、CaSr1−XAl(但し、0≦X≦0.5)とCaSr1−YAl(但し、0≦Y≦0.5)と12(CaO)(SrO)1−Z・7Al(但し、0≦Z≦0.5)の合計の含有量が10質量%以下である請求項1又は2に記載の不定形耐火物。 Ca X Sr 1-X Al 2 O 4 (provided that 0 ≦ X ≦ 0.5) and Ca Y Sr 1-Y Al 4 O 7 (provided that the proportion is 100% by mass of the refractory raw material having a particle size of 8 mm or less. 0 ≦ Y ≦ 0.5) and 12 (CaO) Z (SrO) 1-Z · 7Al 2 O 3 (where 0 ≦ Z ≦ 0.5) is 10% by mass or less. The amorphous refractory according to 1 or 2. 前記耐火原料100質量%に占める割合で、粒径0.1mm以下のマグネシア原料の含有量が3質量%以上12質量%以下である請求項1から3のいずれかに記載の不定形耐火物。   The amorphous refractory according to any one of claims 1 to 3, wherein the content of the magnesia raw material having a particle size of 0.1 mm or less is 3% by mass or more and 12% by mass or less in a proportion of 100% by mass of the refractory raw material. 前記耐火原料100質量%に占める割合で、粒径0.1mm以下のスピネル原料の含有量が5質量%以上25質量%以下である請求項1から3のいずれかに記載の不定形耐火物。   The amorphous refractory according to any one of claims 1 to 3, wherein a content of the spinel raw material having a particle size of 0.1 mm or less is 5% by mass or more and 25% by mass or less in a proportion of 100% by mass of the refractory raw material. 前記耐火原料100質量%に占める割合で、粒径0.1mm超8mm以下のアルミナ原料及びスピネル原料の少なくとも1種の合計の含有量が55質量%以上75質量%以下である請求項1から5のいずれかに記載の不定形耐火物。   The total content of at least one of an alumina raw material and a spinel raw material having a particle size of more than 0.1 mm and not more than 8 mm in a proportion of 100% by mass of the refractory raw material is 55% by mass to 75% by mass. The irregular refractory according to any one of the above.
JP2016180517A 2015-09-29 2016-09-15 Amorphous refractory Active JP6777479B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2999834A CA2999834C (en) 2015-09-29 2016-09-29 Monolithic refractory
EP16851737.3A EP3357895B1 (en) 2015-09-29 2016-09-29 Monolithic refractory
CN201680055576.5A CN108025985B (en) 2015-09-29 2016-09-29 Unshaped refractory
BR112018006117-4A BR112018006117B1 (en) 2015-09-29 2016-09-29 MONOLITHIC REFRACTORY
PCT/JP2016/078806 WO2017057566A1 (en) 2015-09-29 2016-09-29 Monolithic refractory
KR1020187008028A KR101945680B1 (en) 2015-09-29 2016-09-29 Amorphous refractory
US15/763,699 US10414695B2 (en) 2015-09-29 2016-09-29 Monolithic refractory
ES16851737T ES2785524T3 (en) 2015-09-29 2016-09-29 Monolithic refractory material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015191739 2015-09-29
JP2015191739 2015-09-29

Publications (2)

Publication Number Publication Date
JP2017066025A true JP2017066025A (en) 2017-04-06
JP6777479B2 JP6777479B2 (en) 2020-10-28

Family

ID=58491613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180517A Active JP6777479B2 (en) 2015-09-29 2016-09-15 Amorphous refractory

Country Status (8)

Country Link
US (1) US10414695B2 (en)
EP (1) EP3357895B1 (en)
JP (1) JP6777479B2 (en)
KR (1) KR101945680B1 (en)
CN (1) CN108025985B (en)
BR (1) BR112018006117B1 (en)
CA (1) CA2999834C (en)
ES (1) ES2785524T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022065401A (en) * 2020-10-15 2022-04-27 Jfeスチール株式会社 Castable refractory and molten steel pot using it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194495B (en) * 2020-10-21 2022-09-13 江西博丰耐火材料有限公司 Steel ladle wall integral castable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120843A (en) * 2008-10-24 2010-06-03 Nippon Steel Corp Binder for monolithic refractory, and monolithic refractory
WO2011136365A1 (en) * 2010-04-28 2011-11-03 新日本製鐵株式会社 Binder for unshaped refractory, unshaped refractory, and method for working unshaped refractory

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2556418B2 (en) 1992-07-14 1996-11-20 大光炉材株式会社 Irregular refractory material
JP2640620B2 (en) * 1993-12-29 1997-08-13 多木化学株式会社 Irregular refractories
JPH10291868A (en) 1997-04-16 1998-11-04 Kurosaki Refract Co Ltd Castable refractory material having specific matrix and its wet spray executing method
JPH11130550A (en) 1997-11-01 1999-05-18 Kawasaki Refract Co Ltd Castable refractory
JPH11240773A (en) 1998-02-27 1999-09-07 Kawasaki Refract Co Ltd Castable refractory
JP2000319073A (en) 1999-05-07 2000-11-21 Asahi Glass Co Ltd Amorphous refractory and waste melting furnace
WO2001068555A1 (en) 2000-03-14 2001-09-20 Krosakiharima Coporation Monolithic refractory for waste pyrolysis furnace and waste pyrolysis furnace using the same
JP4102065B2 (en) 2001-12-28 2008-06-18 黒崎播磨株式会社 Refractory for casting construction
JP5384025B2 (en) 2007-04-27 2014-01-08 新日鐵住金株式会社 Bonding agent for amorphous refractory and amorphous refractory
EP2272811B1 (en) 2008-04-25 2017-04-26 Nippon Steel & Sumitomo Metal Corporation Binder for monolithic refractory and monolithic refractory
WO2013146712A1 (en) * 2012-03-30 2013-10-03 電気化学工業株式会社 Rapidly hardening cement
JP6499464B2 (en) * 2015-02-06 2019-04-10 新日鐵住金株式会社 Insulated refractory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120843A (en) * 2008-10-24 2010-06-03 Nippon Steel Corp Binder for monolithic refractory, and monolithic refractory
WO2011136365A1 (en) * 2010-04-28 2011-11-03 新日本製鐵株式会社 Binder for unshaped refractory, unshaped refractory, and method for working unshaped refractory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022065401A (en) * 2020-10-15 2022-04-27 Jfeスチール株式会社 Castable refractory and molten steel pot using it
JP7636728B2 (en) 2020-10-15 2025-02-27 Jfeスチール株式会社 Castable refractory and molten steel ladle using same

Also Published As

Publication number Publication date
EP3357895B1 (en) 2020-04-01
CA2999834A1 (en) 2017-04-06
CN108025985A (en) 2018-05-11
CA2999834C (en) 2020-08-25
US20180282231A1 (en) 2018-10-04
EP3357895A4 (en) 2019-04-17
CN108025985B (en) 2020-09-15
BR112018006117B1 (en) 2022-08-09
US10414695B2 (en) 2019-09-17
KR20180044339A (en) 2018-05-02
ES2785524T3 (en) 2020-10-07
JP6777479B2 (en) 2020-10-28
EP3357895A1 (en) 2018-08-08
KR101945680B1 (en) 2019-02-07
BR112018006117A2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
JP5290125B2 (en) Bonding agent for amorphous refractory and amorphous refractory
JP5384025B2 (en) Bonding agent for amorphous refractory and amorphous refractory
CN102958867B (en) The constructional method of unsetting refractory body binding agent, unsetting refractory body and unsetting refractory body
KR102646057B1 (en) Fire Resistant Magnesia Cement
JP2017066025A (en) Monolithic refractory
CN103073206B (en) Aluminate cement containing magnesium-aluminate spinel and preparation method thereof
JP2005154180A (en) Alumina cement composition and amorphous refractory
JP5995315B2 (en) Irregular refractory
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
KR101175878B1 (en) Binder for monolithic refractory and monolithic refractory
WO2015132848A1 (en) Castable refractory
WO2017057566A1 (en) Monolithic refractory
JP4459882B2 (en) Alumina cement composition and amorphous refractory using the same
JPH07330449A (en) Alumina-spinel monolithic refractory
JPH08259301A (en) Alumina cement composition and monolithic refractory using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6777479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250