[go: up one dir, main page]

JP2017054739A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2017054739A
JP2017054739A JP2015178860A JP2015178860A JP2017054739A JP 2017054739 A JP2017054739 A JP 2017054739A JP 2015178860 A JP2015178860 A JP 2015178860A JP 2015178860 A JP2015178860 A JP 2015178860A JP 2017054739 A JP2017054739 A JP 2017054739A
Authority
JP
Japan
Prior art keywords
battery
active material
material layer
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015178860A
Other languages
Japanese (ja)
Inventor
正晴 瀬上
Masaharu Segami
正晴 瀬上
貴陽 磯部
Takaaki Isobe
貴陽 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015178860A priority Critical patent/JP2017054739A/en
Publication of JP2017054739A publication Critical patent/JP2017054739A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】電池性能を良好に保ちつつ、電流遮断機構を適切に作動させることができる二次電池を提供する。【解決手段】本発明に係る二次電池は、正極活物質層54を有する正極および負極活物質層64を有する負極を備える捲回電極体20と、電池ケースと、電池ケースの内圧が予め定められた圧力以上になると作動する電流遮断機構と、所定の温度以上でガスを発生させるガス発生剤とを備える。上記正極のうちの上記捲回電極体20の最外周に位置する部分、および、上記負極のうちの上記捲回電極体20の最外周に位置する部分のうちの少なくとも一方には、上記正極活物質層54または上記負極活物質層64が形成されない電極活物質層非形成部分90があり、該電極活物質層非形成部分90には、上記ガス発生剤が、二次電池中の該ガス発生剤の含有量が所定の量以上となるように、配置されている。【選択図】図4PROBLEM TO BE SOLVED: To provide a secondary battery capable of appropriately operating a current interruption mechanism while maintaining good battery performance. A secondary battery according to the present invention has a wound electrode body (20) including a positive electrode having a positive electrode active material layer (54) and a negative electrode having a negative electrode active material layer (64), a battery case, and the internal pressure of the battery case is predetermined. A current cutoff mechanism that operates when the pressure exceeds a predetermined pressure and a gas generating agent that generates gas at a predetermined temperature or higher are provided. At least one of a portion of the positive electrode located on the outermost periphery of the wound electrode body 20 and a portion of the negative electrode located on the outermost periphery of the wound electrode body 20 includes the positive electrode active material. There is an electrode active material layer non-forming portion 90 where the material layer 54 or the negative electrode active material layer 64 is not formed, and the gas generating agent is contained in the electrode active material layer non-forming portion 90. It is arranged so that the content of the agent is a predetermined amount or more. [Selection diagram] Fig. 4

Description

本発明は二次電池に関する。   The present invention relates to a secondary battery.

近年、リチウム二次電池、ニッケル水素電池その他の二次電池(蓄電池)は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られる二次電池は車両搭載用高出力電源として好ましく用いられている。このようなリチウム二次電池の典型的な構造の一つとして、電極体及び電解質が収容された電池ケースを密閉して成る密閉構造の二次電池(密閉型電池)が挙げられる。   In recent years, lithium secondary batteries, nickel metal hydride batteries and other secondary batteries (storage batteries) have become increasingly important as power sources for mounting on vehicles or as power sources for personal computers and portable terminals. In particular, a secondary battery that is lightweight and has a high energy density is preferably used as a high-output power source for mounting on a vehicle. One typical structure of such a lithium secondary battery is a sealed secondary battery (sealed battery) in which a battery case containing an electrode body and an electrolyte is sealed.

ところで、この種の二次電池(典型的にはリチウム二次電池)を充電処理する際、電池に通常以上の電流が供給されて過充電となることがあり得る。かかる過充電の進行を停止するために、電池内部のガス圧力(電池ケースの内圧)が所定値以上になると充電電流を遮断する電流遮断機構を備えた電池が提案されている。一般に、電池が過充電状態になると、電解液の非水溶媒等が電気分解されてガス及び熱が発生する。上記電流遮断機構は、このガスを検知して電池の充電経路を切断することで、それ以上の過充電を防止し得るようになっている。また、特許文献1には、電池の内圧上昇により作動する電流遮断機構を備えた二次電池において、電極体内にマイクロカプセルを配置し、かつ該マイクロカプセル内にシクロヘキシルベンゼン等のガス発生剤を内包させることが記載されている。かかる構成によると、過充電時に電池温度が上昇したときに、マイクロカプセル内のガス発生剤からガスが発生し、マイクロカプセルが破裂することで、電池ケースの内圧が一気に上昇する。これにより、電流遮断機構を適切なタイミングで作動させることができる。   By the way, when this type of secondary battery (typically a lithium secondary battery) is charged, an overcurrent may be supplied to the battery, resulting in overcharging. In order to stop the progress of such overcharge, a battery having a current cutoff mechanism that cuts off a charging current when a gas pressure inside the battery (internal pressure of the battery case) exceeds a predetermined value has been proposed. In general, when a battery is overcharged, a nonaqueous solvent or the like of the electrolytic solution is electrolyzed to generate gas and heat. The current interruption mechanism can prevent further overcharge by detecting this gas and cutting the charging path of the battery. Further, in Patent Document 1, in a secondary battery having a current interruption mechanism that operates by increasing the internal pressure of the battery, a microcapsule is disposed in the electrode body, and a gas generating agent such as cyclohexylbenzene is included in the microcapsule. Is described. According to such a configuration, when the battery temperature rises during overcharge, gas is generated from the gas generating agent in the microcapsule, and the microcapsule bursts, thereby increasing the internal pressure of the battery case at once. Thereby, the current interruption mechanism can be operated at an appropriate timing.

特開2013−004305号公報JP 2013-004305 A

しかしながら、一般的に、過充電状態となり電池温度が上昇したとしても、電池内の温度分布にはムラが生じ得る。このため、上記ガス発生剤が配置された場所によっては温度上昇が遅れる、或いは、ガス発生剤がガスを発生する温度まで上昇しない場合があった。また、特許文献1の技術によると、電極体内にガス発生剤(マイクロカプセル)を配置しているので、該ガス発生剤(マイクロカプセル)が電荷担体(例えばリチウムイオン)の移動の妨げとなり、電池抵抗が上昇する場合があった。
電池性能を良好に保ちつつ、電池が過充電状態となり電池温度が上昇した場合には、ガス発生剤からガスを効率よく発生させ、電流遮断機構を適切に作動させることが望ましい。本発明は、上記課題を解決するものである。
However, generally, even if the battery temperature rises due to an overcharged state, the temperature distribution in the battery may be uneven. For this reason, depending on the location where the gas generating agent is disposed, the temperature increase may be delayed or may not increase to a temperature at which the gas generating agent generates gas. According to the technique of Patent Document 1, since the gas generating agent (microcapsule) is arranged in the electrode body, the gas generating agent (microcapsule) hinders the movement of charge carriers (for example, lithium ions), and the battery Resistance sometimes increased.
When the battery is overcharged and the battery temperature rises while maintaining good battery performance, it is desirable to efficiently generate gas from the gas generating agent and to properly operate the current interruption mechanism. The present invention solves the above problems.

本発明者らが上記過充電状態の電池の温度分布について鋭意検討したところ、電池が過充電状態となった場合に、正極活物質層および負極活物質層とセパレータとが積層された捲回コア部が高温となりやすい(温度上昇しやすい)傾向にあることを見出した。   When the present inventors diligently studied the temperature distribution of the battery in the overcharged state, when the battery is in the overcharged state, the positive electrode active material layer, the negative electrode active material layer, and the wound core in which the separator is laminated It has been found that the part tends to be hot (the temperature tends to rise).

そこで、上記課題を解決すべく、本発明により、正極集電体上に正極活物質層を有する正極と、負極集電体上に負極活物質層を有する負極と、当該正極および負極を電気的に隔離するセパレータとを有する捲回電極体と、電解質と、上記電極体および電解質を収容する電池ケースと、上記電極体に電気的に接続された外部端子と、上記電池ケースの内圧が予め定められた圧力以上に上昇した場合に、上記電極体と外部端子との電気的な接続を遮断する電流遮断機構と、を備える二次電池が提供される。
かかる二次電池は、上記正極のうちの上記捲回電極体の最外周に位置する正極部分、および、上記負極のうちの上記捲回電極体の最外周に位置する負極部分のうちの少なくとも一方には、上記正極活物質層または上記負極活物質層が形成されていない電極活物質層非形成部分が有り、該電極活物質層非形成部分には、所定の温度に到達した場合にガスを発生させるガス発生剤が配置されている。ここで、該二次電池中の上記ガス発生剤の含有量は、以下の式:
X≧32.9×(P2/T2−P1/T1)×V/R
(ここで、Xは二次電池中のガス発生剤の量(g)、P1は電池構築時の電池ケースの内圧(MPa)、P2は電流遮断機構が作動する電池ケースの内圧(MPa)の設定値、T1は電池構築時の電池温度(K)、T2は電流遮断機構が作動する電池温度(K)の設定値、Vは電池ケース内の残空間の体積(cm)、R:気体定数(J/K・mol)である。)
を具備するように設定される。
Therefore, in order to solve the above problems, according to the present invention, a positive electrode having a positive electrode active material layer on a positive electrode current collector, a negative electrode having a negative electrode active material layer on a negative electrode current collector, and the positive electrode and the negative electrode are electrically connected. A wound electrode body having a separator to be isolated from each other, an electrolyte, a battery case containing the electrode body and the electrolyte, an external terminal electrically connected to the electrode body, and an internal pressure of the battery case are predetermined. A secondary battery is provided that includes a current interrupting mechanism that interrupts electrical connection between the electrode body and an external terminal when the pressure rises above a given pressure.
The secondary battery includes at least one of a positive electrode portion positioned on the outermost periphery of the wound electrode body in the positive electrode and a negative electrode portion positioned on the outermost periphery of the wound electrode body in the negative electrode. Has an electrode active material layer non-formed portion where the positive electrode active material layer or the negative electrode active material layer is not formed, and the electrode active material layer non-formed portion is filled with gas when a predetermined temperature is reached. A gas generating agent to be generated is arranged. Here, the content of the gas generating agent in the secondary battery is expressed by the following formula:
X ≧ 32.9 × (P2 / T2-P1 / T1) × V / R
(Where X is the amount (g) of the gas generating agent in the secondary battery, P1 is the internal pressure (MPa) of the battery case at the time of battery construction, and P2 is the internal pressure (MPa) of the battery case at which the current interruption mechanism operates. Set value, T1 is the battery temperature (K) at the time of battery construction, T2 is the set value of the battery temperature (K) at which the current interruption mechanism operates, V is the volume of the remaining space in the battery case (cm 3 ), R: gas Constant (J / K · mol).)
It is set to comprise.

かかる構成によると、電池が過充電状態となった場合に高温となりがちな箇所にガス発生剤が配置される。このため、上記ガス発生剤からガスを効率よく発生させることが可能であり、電池ケースの内圧を速やかに上昇させることができる。これにより、電流遮断機構を適切なタイミングで作動させることができる。
また、ガス発生剤は電極体の最外周に配置されるため、正負極活物質層間における電荷担体の移動に与える影響は少ない。このため、電池内にガス発生剤を有することによる電池性能の低下(例えば電池抵抗の上昇)を抑制することができる。
即ち、本発明によれば、通常時の電池性能を良好に保ちつつ、過充電時に電流遮断機構を適切に作動させ得る二次電池を提供することができる。
According to such a configuration, the gas generating agent is disposed at a location where the battery tends to become hot when the battery is overcharged. For this reason, gas can be efficiently generated from the gas generating agent, and the internal pressure of the battery case can be quickly increased. Thereby, the current interruption mechanism can be operated at an appropriate timing.
Further, since the gas generating agent is disposed on the outermost periphery of the electrode body, it has little influence on the movement of charge carriers between the positive and negative electrode active material layers. For this reason, it is possible to suppress deterioration in battery performance (for example, increase in battery resistance) due to the gas generating agent in the battery.
That is, according to the present invention, it is possible to provide a secondary battery that can appropriately operate the current interrupting mechanism during overcharge while maintaining good battery performance during normal operation.

一実施形態に係る二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of the secondary battery which concerns on one Embodiment. 図1中のII−II線に沿う縦断面図である。It is a longitudinal cross-sectional view which follows the II-II line | wire in FIG. 一実施形態に係る捲回電極体の構成を示す模式図である。It is a schematic diagram which shows the structure of the wound electrode body which concerns on one Embodiment. 一実施形態に係る捲回電極体の構造の一部を模式的に示す断面図である。It is sectional drawing which shows typically a part of structure of the winding electrode body which concerns on one Embodiment.

以下、適宜図面を参照しながら、本発明の一実施形態に係る二次電池として、リチウム二次電池を例として本発明を詳細に説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、リチウム二次電池は一例であり、本発明の技術思想は、その他の電荷担体(例えばナトリウムイオン)を備える他の二次電池(例えばナトリウム二次電池)にも適用される。
なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は必ずしも実際の寸法関係を反映するものではない。
Hereinafter, the present invention will be described in detail by taking a lithium secondary battery as an example as a secondary battery according to an embodiment of the present invention with reference to the drawings as appropriate. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Further, the lithium secondary battery is an example, and the technical idea of the present invention is also applied to other secondary batteries (for example, sodium secondary batteries) provided with other charge carriers (for example, sodium ions).
In the following drawings, members / parts having the same action are described with the same reference numerals, and redundant descriptions may be omitted or simplified. Further, the dimensional relationship (length, width, thickness, etc.) in each drawing does not necessarily reflect the actual dimensional relationship.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウム二次電池、ナトリウム二次電池、ニッケル水素二次電池等のいわゆる化学電池ならびに電気二重層キャパシタ等の物理電池を包含する用語である。また、本明細書において「リチウム二次電池」とは、電荷担体(支持塩、支持電解質)としてリチウムイオンを利用し、正負極間におけるリチウムイオンの移動により充放電する二次電池をいう。   In the present specification, the “secondary battery” generally refers to a battery that can be repeatedly charged and discharged, such as a so-called chemical battery such as a lithium secondary battery, a sodium secondary battery, and a nickel hydride secondary battery, and an electric double layer capacitor. It is a term encompassing the physical battery. In the present specification, the “lithium secondary battery” refers to a secondary battery that uses lithium ions as a charge carrier (supporting salt, supporting electrolyte) and is charged and discharged by the movement of lithium ions between the positive and negative electrodes.

図1は、本発明の一実施形態に係るリチウム二次電池(リチウムイオン二次電池)100を示している。このリチウム二次電池100は、図2に示すように、捲回電極体20が、図示しない電解質とともに、電池ケース(即ち外装容器)30に収容されている。   FIG. 1 shows a lithium secondary battery (lithium ion secondary battery) 100 according to an embodiment of the present invention. As shown in FIG. 2, in the lithium secondary battery 100, the wound electrode body 20 is housed in a battery case (that is, an outer container) 30 together with an electrolyte (not shown).

電池ケース30の形状は特に限定されず、例えば円筒形状、立方体形状(箱型)等であり得る。電池ケース30は、例えば、図1および図2に示すように、一端(電池の通常の使用状態における上端部に相当する。)に開口部を有する箱形(すなわち有底直方体状)のケース本体32と、該ケース本体32の開口部を封口する蓋体34とから構成されるものであり得る。図示するように、蓋体34には外部接続用の外部端子(正極端子42および負極端子44)が、それら端子の一部が蓋体34から電池100の外方に突出するように設けられている。また、蓋体34には、電池ケース内の内圧を開放するように設定された安全弁36および電解質を当該電池ケース内に注入するための注入口(図示せず)が設けられている。このような電池ケースの材質としては、例えば、軽量で熱伝導性の良い金属材料(例えばアルミニウム)が好適である。   The shape of the battery case 30 is not particularly limited, and may be, for example, a cylindrical shape or a cubic shape (box shape). The battery case 30 is, for example, as shown in FIGS. 1 and 2, a box-shaped (that is, a bottomed rectangular parallelepiped) case body having an opening at one end (corresponding to the upper end in a normal use state of the battery). 32 and a lid 34 that seals the opening of the case body 32. As shown in the figure, the lid 34 is provided with external terminals (a positive terminal 42 and a negative terminal 44) for external connection so that a part of the terminals protrudes from the lid 34 to the outside of the battery 100. Yes. Further, the lid 34 is provided with a safety valve 36 set to release the internal pressure in the battery case and an injection port (not shown) for injecting the electrolyte into the battery case. As a material of such a battery case, for example, a metal material (for example, aluminum) that is lightweight and has good thermal conductivity is suitable.

ここに開示される二次電池の電池ケース30は、該電池ケース内の圧力が予め定められた圧力以上になると充電電流を強制的に遮断する圧力作動型の電流遮断機構(CID:Current Interrupt Device)を備えている。一般に、二次電池が過充電状態になると、電解質成分(例えば非水溶媒)が電気分解されてガスが発生する。圧力式の電流遮断機構は、このガスの発生によって電池ケースの内圧が所定以上となった際に電池への充電電流を遮断し、過充電の進行を停止させるものである。この実施形態では、電流遮断機構80は、図2に示すように、正極50における電池電流の導通経路が遮断されるように、正極集電体52と正極端子42との間に電流遮断機構80が設けられている。   The battery case 30 of the secondary battery disclosed herein includes a pressure-actuated current interrupt device (CID: Current Interrupt Device) that forcibly cuts off the charging current when the pressure in the battery case exceeds a predetermined pressure. ). Generally, when a secondary battery is overcharged, an electrolyte component (for example, a non-aqueous solvent) is electrolyzed to generate gas. The pressure type current interruption mechanism cuts off the charging current to the battery and stops the progress of overcharge when the internal pressure of the battery case exceeds a predetermined level due to the generation of this gas. In this embodiment, as shown in FIG. 2, the current interruption mechanism 80 includes a current interruption mechanism 80 between the positive electrode current collector 52 and the positive electrode terminal 42 so that the battery current conduction path in the positive electrode 50 is interrupted. Is provided.

捲回電極体20は、図2および図3に示すように、長尺状の正極50と、長尺状の負極60とを、2枚の長尺状のセパレータ70を介して積層して(重ね合わせて)長手方向に捲回されている。本実施形態において、上記捲回電極体20は扁平形状である。かかる捲回電極体20は、例えば正極50、負極60およびセパレータ70を積層して捲回した後で、当該捲回体を捲回軸に対して直交する一の方向に(典型的には側面方向から)押しつぶして(プレスして)拉げさせることによって扁平形状に成形することができる。   As shown in FIGS. 2 and 3, the wound electrode body 20 is formed by laminating a long positive electrode 50 and a long negative electrode 60 with two long separators 70 ( It is wound in the longitudinal direction. In the present embodiment, the wound electrode body 20 has a flat shape. The wound electrode body 20 is formed by, for example, laminating and winding the positive electrode 50, the negative electrode 60, and the separator 70, and then winding the wound body in one direction orthogonal to the winding axis (typically, the side surface). It can be formed into a flat shape by crushing (from the direction) and pressing it.

上記正極50は、長尺状の正極集電体52と、該正極集電体52の片面または両面(ここでは両面)に長手方向に沿って形成された少なくとも正極活物質を含む正極活物質層54とを備える。上記正極集電体52としては、例えばアルミニウム箔等を好適に使用し得る。   The positive electrode 50 includes a long positive electrode current collector 52 and a positive electrode active material layer including at least a positive electrode active material formed along one side or both sides (here, both surfaces) of the positive electrode current collector 52 along the longitudinal direction. 54. As the positive electrode current collector 52, for example, an aluminum foil or the like can be suitably used.

上記正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5、LiFePO等)が挙げられる。なお、正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、アセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、PVdF等を使用し得る。 Examples of the positive electrode active material include lithium composite metal oxides such as a layered structure and a spinel structure (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiFePO 4, etc.). The positive electrode active material layer 54 can include components other than the active material, such as a conductive material and a binder. As the conductive material, carbon black such as acetylene black (AB) and other (such as graphite) carbon materials can be suitably used. As the binder, PVdF or the like can be used.

このような正極50は、例えば正極活物質と必要に応じて用いられる材料とを適当な溶媒(例えばN−メチル−2−ピロリドン)に分散させ、ペースト状(スラリー状)の組成物を調製し、該組成物の適当量を正極集電体52の表面に付与した後、乾燥することによって形成することができる。また、必要に応じて適当なプレス処理を施すことによって正極活物質層54の性状(例えば、平均厚み、活物質密度、空孔率等)を調整し得る。   Such a positive electrode 50 is prepared by, for example, dispersing a positive electrode active material and a material used as necessary in an appropriate solvent (for example, N-methyl-2-pyrrolidone) to prepare a paste-like (slurry) composition. The composition can be formed by applying an appropriate amount of the composition to the surface of the positive electrode current collector 52 and then drying it. Moreover, the properties (for example, average thickness, active material density, porosity, etc.) of the positive electrode active material layer 54 can be adjusted by performing an appropriate press treatment as necessary.

上記負極60は、長尺状の負極集電体62と、該負極集電体62の片面または両面(ここでは両面)に長手方向に沿って形成された少なくとも負極活物質を含む負極活物質層64とを備える。上記負極集電体62としては、例えば銅箔等を好適に使用し得る。   The negative electrode 60 includes a long negative electrode current collector 62 and a negative electrode active material layer including at least a negative electrode active material formed along the longitudinal direction on one or both surfaces (here, both surfaces) of the negative electrode current collector 62. 64. As the negative electrode current collector 62, for example, a copper foil or the like can be suitably used.

負極活物質としては、例えば、少なくとも一部にグラファイト構造(層状構造)を有する炭素材料、リチウム遷移金属窒化物等が挙げられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもの等の炭素材料を好適に使用し得る。なかでも特に、天然黒鉛等のグラファイト粒子を好ましく使用することができる。また、負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、スチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。   Examples of the negative electrode active material include a carbon material having a graphite structure (layered structure) at least partially, lithium transition metal nitride, and the like. Carbon materials such as so-called graphitic materials (graphite), non-graphitizable carbon materials (hard carbon), graphitizable carbon materials (soft carbon), and materials having a combination of these are preferably used. obtain. Among these, graphite particles such as natural graphite can be preferably used. Moreover, the negative electrode active material layer 64 may contain components other than the active material, such as a binder and a thickener. As the binder, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) can be used.

このような負極60は、例えば負極活物質と必要に応じて用いられる材料とを適当な溶媒(例えば水)に分散させ、ペースト状(スラリー状)の組成物を調製し、該組成物の適当量を負極集電体62の表面に付与した後、乾燥することによって形成することができる。また、必要に応じて適当なプレス処理を施すことによって負極活物質層64の性状(例えば、平均厚み、活物質密度、空孔率等)を調整し得る。   Such a negative electrode 60 is prepared by, for example, dispersing a negative electrode active material and a material used as necessary in an appropriate solvent (for example, water) to prepare a paste-like (slurry) composition. After the amount is applied to the surface of the negative electrode current collector 62, it can be formed by drying. Further, the properties (for example, average thickness, active material density, porosity, etc.) of the negative electrode active material layer 64 can be adjusted by performing an appropriate press treatment as necessary.

セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。   Examples of the separator 70 include a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer).

特に限定するものではないが、本実施態様において、上記正極50は、正極集電体52の幅方向片側の縁部に沿って正極活物質層54が形成されずに正極集電体52が露出した正極集電体露出端部53が設定される。また、上記負極60も同様に、負極集電体62の幅方向片側の縁部に沿って負極活物質層64が形成されずに負極集電体62が露出した負極集電体露出端部63が設定される。そして、図2および図3に示すように、上記捲回電極体20は、上記正極集電体露出端部53と上記負極集電体露出端部63とが捲回軸方向の両端から外方にはみ出すように重ねあわされて捲回されたものであり得る。その結果、捲回電極体20の捲回軸方向の中央部には、正極50と負極60とセパレータ70とが積層されて捲回された捲回コアが形成される。また、図2に示すように、正極50および負極60は、正極集電体露出端部53と正極端子42(例えばアルミニウム製)が正極集電板42aを介して電気的に接続され、また、負極集電体露出端部63と負極端子44(例えばニッケル製)が負極集電板44aを介して電気的に接続され得る。なお、正負極集電板42a,44aと正負極集電体露出端部53、63(典型的には正負極集電体52,62)とは、例えば、超音波溶接、抵抗溶接等によりそれぞれ接合することができる。   Although not particularly limited, in the present embodiment, the positive electrode 50 has the positive electrode current collector 52 exposed without forming the positive electrode active material layer 54 along the edge on one side in the width direction of the positive electrode current collector 52. The exposed positive electrode current collector exposed end 53 is set. Similarly, in the negative electrode 60, the negative electrode current collector exposed end portion 63 where the negative electrode current collector 62 is exposed without forming the negative electrode active material layer 64 along the edge portion on one side in the width direction of the negative electrode current collector 62. Is set. As shown in FIGS. 2 and 3, the wound electrode body 20 has the positive electrode current collector exposed end portion 53 and the negative electrode current collector exposed end portion 63 outward from both ends in the winding axis direction. It may have been rolled over and rolled up so as to protrude. As a result, a wound core in which the positive electrode 50, the negative electrode 60, and the separator 70 are laminated and wound is formed at the center of the wound electrode body 20 in the winding axis direction. Further, as shown in FIG. 2, the positive electrode 50 and the negative electrode 60 have a positive electrode current collector exposed end 53 and a positive electrode terminal 42 (for example, made of aluminum) electrically connected via a positive electrode current collector plate 42a. The negative electrode current collector exposed end 63 and the negative electrode terminal 44 (for example, made of nickel) can be electrically connected via the negative electrode current collector plate 44a. The positive and negative electrode current collector plates 42a and 44a and the positive and negative electrode current collector exposed end portions 53 and 63 (typically the positive and negative electrode current collectors 52 and 62) are respectively formed by, for example, ultrasonic welding or resistance welding. Can be joined.

また、ここで開示する二次電池100において、図3および図4に示すように、上記正極50のうちの上記捲回電極体20の最外周に位置する正極部分、および、上記負極60のうちの上記捲回電極体20の最外周に位置する負極部分のうちの少なくとも一方に、上記正極活物質層54または上記負極活物質層64が形成されていない電極活物質層非形成部分90が設定される。正極活物質層54(または負極活物質層64)が、正極集電体52(又は負極集電体62)の両面に形成された正極50(又は負極60)である場合、かかる電極活物質層非形成部分90は、正極50(または負極60)の少なくとも片面に設定されればよい。   Further, in the secondary battery 100 disclosed herein, as shown in FIGS. 3 and 4, the positive electrode portion of the positive electrode 50 located on the outermost periphery of the wound electrode body 20, and the negative electrode 60 An electrode active material layer non-formed portion 90 in which the positive electrode active material layer 54 or the negative electrode active material layer 64 is not formed is set in at least one of the negative electrode portions located on the outermost periphery of the wound electrode body 20. Is done. When the positive electrode active material layer 54 (or the negative electrode active material layer 64) is the positive electrode 50 (or the negative electrode 60) formed on both surfaces of the positive electrode current collector 52 (or the negative electrode current collector 62), the electrode active material layer The non-formed portion 90 may be set on at least one side of the positive electrode 50 (or the negative electrode 60).

上記電極活物質層非形成部分90の少なくとも一部分は、所定の温度(例えば125℃以上、典型的には130℃以上)に到達した場合にガスを発生するガス発生剤を備える(図3および図4中のガス発生剤配置部分92)。このため、ガス発生剤が配置する面積を広く確保する観点からは、正極50および負極60の両方に上記電極活物質層非形成部分90が形成される(より好ましくは正極50および負極60の両方にガス発生剤を備える)ことが好ましく、また、正極50(又は負極60)の両面に上記電極活物質層非形成部分90が形成される(より好ましくは正極50または負極60の両面にガス発生剤を備える)ことが好ましい。さらに好ましくは、上記捲回電極体20の最外周をほぼ一周するように、上記電極活物質層非形成部分90(より好ましくは、上記ガス発生剤配置部分92)が設定される。特に、過充電時の温度上昇が大きい(速やかである)ため、捲回電極体20の捲回コア(好ましくは捲回軸方向の中央付近)に該当する部分にガス発生剤を好適に配置し得る。   At least a part of the electrode active material layer non-forming portion 90 includes a gas generating agent that generates gas when a predetermined temperature (for example, 125 ° C. or higher, typically 130 ° C. or higher) is reached (FIGS. 3 and 3). 4 in the gas generant arrangement part 92). For this reason, from the viewpoint of ensuring a wide area in which the gas generating agent is disposed, the electrode active material layer non-formed portion 90 is formed on both the positive electrode 50 and the negative electrode 60 (more preferably, both of the positive electrode 50 and the negative electrode 60). It is preferable that the electrode active material layer non-formed portion 90 is formed on both surfaces of the positive electrode 50 (or the negative electrode 60) (more preferably, gas is generated on both surfaces of the positive electrode 50 or the negative electrode 60). Preferably). More preferably, the electrode active material layer non-formation portion 90 (more preferably, the gas generating agent disposition portion 92) is set so as to make one round of the outermost circumference of the wound electrode body 20. In particular, since the temperature rise during overcharge is large (rapid), a gas generating agent is suitably disposed in a portion corresponding to the winding core of the wound electrode body 20 (preferably near the center in the winding axis direction). obtain.

上記ガス発生剤としては、例えば、所定の温度以上で熱分解してガス(典型的には窒素ガス、炭酸ガス等)を発生する有機発泡剤(熱分解型発泡剤)を好ましく採用し得る。かかる有機発泡剤の例として、例えば、p,p’−オキシビスベンゼンスルホニルヒドラジド(OBSH)、アゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DPT)等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
なお、上記電極活物質層非形成部分90(ガス発生剤配置部分92)に上記有機発泡剤(熱分解型発泡剤)を配置する場合、当該有機発泡剤の分解を促進する助剤(発泡助剤)を上記電極活物質層非形成部分90(ガス発生剤配置部分92)にさらに備えてもよい。かかる助剤(発泡助剤)を備えることにより、ガス発生剤(有機発泡剤)の分解温度を低下させ、当該ガス発生剤がガスを発生し始める温度を所望の温度に調整することができる。かかる助剤(発泡助剤)は、特に限定されず、例えば、尿素、ステアリン酸亜鉛、ステアリン酸カルシウム、炭酸カルシウム、酸化亜鉛等が挙げられる。
As the gas generating agent, for example, an organic foaming agent (thermal decomposition foaming agent) that generates a gas (typically nitrogen gas, carbon dioxide gas, etc.) by thermal decomposition at a predetermined temperature or higher can be preferably used. Examples of such organic blowing agents include p, p′-oxybisbenzenesulfonyl hydrazide (OBSH), azodicarbonamide (ADCA), dinitrosopentamethylenetetramine (DPT), and the like. These may be used alone or in combination of two or more.
In the case where the organic foaming agent (thermal decomposition foaming agent) is disposed in the electrode active material layer non-forming portion 90 (gas generating agent disposing portion 92), an auxiliary agent (foaming aid) that promotes the decomposition of the organic foaming agent. An agent) may be further provided in the electrode active material layer non-forming portion 90 (gas generating agent disposing portion 92). By providing such an auxiliary agent (foaming auxiliary agent), the decomposition temperature of the gas generating agent (organic foaming agent) can be lowered, and the temperature at which the gas generating agent begins to generate gas can be adjusted to a desired temperature. Such an auxiliary agent (foaming auxiliary agent) is not particularly limited, and examples thereof include urea, zinc stearate, calcium stearate, calcium carbonate, and zinc oxide.

上記ガス発生剤(および助剤)を上記電極活物質層非形成部分90(ガス発生剤配置部分92)に配置する方法は特に限定されない。例えば、上記電極活物質層非形成部分90で露出している正極集電体52或いは負極集電体62の表面にバインダ(結着材)を塗付し、当該バインダ上にガス発生剤(および助剤)を配置すればよい。上記バインダは特に限定されず、二次電池に通常用いられるバインダ(例えば、PVdFやSBR等)を使用し得る。   The method of disposing the gas generating agent (and auxiliary agent) in the electrode active material layer non-forming portion 90 (gas generating agent disposing portion 92) is not particularly limited. For example, a binder (binder) is applied to the surface of the positive electrode current collector 52 or the negative electrode current collector 62 exposed in the electrode active material layer non-forming portion 90, and a gas generating agent (and An auxiliary agent) may be arranged. The said binder is not specifically limited, The binder (for example, PVdF, SBR, etc.) normally used for a secondary battery can be used.

上記電極活物質層非形成部分90(ガス発生剤配置部分92)に配置される上記ガス発生剤の量(g)は、二次電池中のガス発生剤の含有量(g)が、以下の式:
X≧32.9×(P2/T2−P1/T1)×V/R
を具備するように設定される。ここで、Xは二次電池中のガス発生剤の量(g)、P1は電池構築時の電池ケースの内圧(MPa)、P2は電流遮断機構が作動する電池ケースの内圧(MPa)の設定値、T1は電池構築時の電池温度(K)、T2は電流遮断機構が作動する電池温度(K)の設定値、Vは電池ケース内の残空間の体積(cm)、R:気体定数(J/K・mol)である。ここで、上記残空間の体積とは、電池ケースの内容積のうち電極体および電解質等の電池構成部材が占める体積以外の空間の体積である。上記の式を満たすガス発生剤を二次電池中に含有することで、電池が過充電状態となった場合にCIDを作動させるのに十分な量のガスを速やかに確保することができる。
The amount (g) of the gas generating agent disposed in the electrode active material layer non-forming portion 90 (gas generating agent disposing portion 92) is such that the content (g) of the gas generating agent in the secondary battery is as follows. formula:
X ≧ 32.9 × (P2 / T2-P1 / T1) × V / R
It is set to comprise. Here, X is the amount (g) of the gas generating agent in the secondary battery, P1 is the internal pressure (MPa) of the battery case at the time of battery construction, and P2 is the internal pressure (MPa) of the battery case at which the current interrupting mechanism operates. Value, T1 is the battery temperature (K) at the time of battery construction, T2 is the set value of the battery temperature (K) at which the current interrupting mechanism operates, V is the volume of the remaining space in the battery case (cm 3 ), R: gas constant (J / K · mol). Here, the volume of the remaining space is a volume of a space other than the volume occupied by battery components such as the electrode body and the electrolyte in the internal volume of the battery case. By containing the gas generating agent satisfying the above formula in the secondary battery, a sufficient amount of gas for operating the CID can be secured quickly when the battery is overcharged.

電解質の性状は特に限定されず、液状、ゲル状、固体状のものであり得る。典型的には、有機溶媒(非水溶媒)中に支持塩を含有する非水電解液を用いることができる。
非水溶媒としては、一般的なリチウム二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等が例示される。
支持塩としては、一般的なリチウム二次電池と同様のものを使用することができる。例えば、LiPF、LiBF、LiClO、LiAsF等(好ましくはLiPF)のリチウム塩を用いることができる。また、電解質中の支持塩の濃度の好適範囲は0.7mol/L〜1.3mol/L(例えば、1.1mol/L)に設定し得る。
The property of the electrolyte is not particularly limited, and may be liquid, gel, or solid. Typically, a nonaqueous electrolytic solution containing a supporting salt in an organic solvent (nonaqueous solvent) can be used.
As the non-aqueous solvent, organic solvents such as various carbonates, ethers, esters, nitriles, sulfones, and lactones that are used in an electrolytic solution of a general lithium secondary battery can be used. Specific examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like.
As the supporting salt, the same salt as that of a general lithium secondary battery can be used. For example, a lithium salt of LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 or the like (preferably LiPF 6 ) can be used. Moreover, the suitable range of the density | concentration of the supporting salt in electrolyte can be set to 0.7 mol / L-1.3 mol / L (for example, 1.1 mol / L).

なお、上記二次電池100は、上記電池ケース内に、電池の過充電時に正極活物質上で分解・重合反応を起こし、これにより、充電電流を消費して電池の充電反応を抑制し得る、及び/或いはガス(典型的には水素ガス)を発生して電池内圧を上昇し得ることが知られている過充電防止剤を備えてもよい。かかる過充電防止剤は、一般的に、上述の重合反応を起こす際に熱(重合熱)を生じ得るため、電池の過充電時の速やかな電池内温度の上昇に貢献し得る。このような過充電防止剤は、従来の二次電池に用いられるものと同様の過充電防止剤を含有させることができ、例えば、シクロヘキシルベンゼン(CHB)やビフェニル(BP)などが使用可能である。   In addition, the secondary battery 100 causes a decomposition / polymerization reaction on the positive electrode active material when the battery is overcharged in the battery case, thereby consuming a charging current and suppressing the battery charging reaction. And / or an overcharge inhibitor known to be capable of generating gas (typically hydrogen gas) to increase the internal pressure of the battery. Such an overcharge inhibitor generally can generate heat (polymerization heat) when the above-described polymerization reaction occurs, and thus can contribute to a rapid increase in the temperature in the battery when the battery is overcharged. Such an overcharge preventing agent can contain the same overcharge preventing agent as that used in conventional secondary batteries. For example, cyclohexylbenzene (CHB), biphenyl (BP), and the like can be used. .

ここで開示される二次電池は、通常時の電池性能を良好に保ちつつ、過充電時に電流遮断機構(CID)を適切に作動させることが可能な電池であり、高い電池性能と安全性とを両立し得る。したがって、当該電池は各種用途に利用可能であるが、このような性質を活かして、例えば、車両に搭載される駆動用電源として好適に用いることができる。車両の種類は特に限定されないが、例えばプラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)、電気トラック、原動機付自転車、電動アシスト自転車、電動車いす、電気鉄道等が挙げられる。したがって、本発明によれば、ここで開示されるいずれかの二次電池を、好ましくは動力源として備えた車両が提供される。車両に備えられる二次電池は、複数個が接続された組電池の形態であり得る。   The secondary battery disclosed here is a battery capable of appropriately operating a current interruption mechanism (CID) at the time of overcharging while maintaining good battery performance during normal operation, and has high battery performance and safety. Can be compatible. Therefore, although the said battery can be utilized for various uses, it can use suitably as a drive power supply mounted in a vehicle, for example using such a property. The type of vehicle is not particularly limited, and examples include plug-in hybrid vehicles (PHV), hybrid vehicles (HV), electric vehicles (EV), electric trucks, motorbikes, electric assist bicycles, electric wheelchairs, electric railways, and the like. . Therefore, according to the present invention, there is provided a vehicle equipped with any of the secondary batteries disclosed herein, preferably as a power source. The secondary battery provided in the vehicle may be in the form of an assembled battery in which a plurality of secondary batteries are connected.

以下、本発明に関するいくつかの実施例(試験例)を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Several examples (test examples) relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the specific examples.

以下の材料およびプロセスによって、例1〜6に係るリチウム二次電池を構築した。   The lithium secondary batteries according to Examples 1 to 6 were constructed by the following materials and processes.

[リチウム二次電池の構築]
正極活物質としてのLiNi1/3Co1/3Mn1/3(LNCM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、LNCM:AB:PVdF=90:8:2の質量比でN−メチルピロリドン(NMP)と混合し、ペースト状(スラリー状)の正極活物質層形成用組成物を調製した。この組成物を、長尺状のアルミニウム箔(正極集電体)の両面に帯状に塗布し、乾燥、プレスすることにより、正極を作製した。
[Construction of lithium secondary battery]
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) as a positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder are combined with LNCM: AB : PVdF = 90: 8: 2 was mixed with N-methylpyrrolidone (NMP) at a mass ratio to prepare a paste-like (slurry) positive electrode active material layer forming composition. This composition was applied to both sides of a long aluminum foil (positive electrode current collector) in a band shape, dried and pressed to produce a positive electrode.

次に、負極活物質としての、天然黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘材としてのカルボキシルメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比で水中に分散させてペースト状(スラリー状)の負極活物質層形成用組成物を調製した。この組成物を、長尺状の銅箔(負極集電体)の両面に帯状に塗布し、乾燥、プレスすることにより、負極を作製した。   Next, natural graphite (C) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener, C: SBR: CMC = 98: 1: A paste-like (slurry) negative electrode active material layer forming composition was prepared by dispersing in water at a mass ratio of 1. This composition was applied in a strip shape on both sides of a long copper foil (negative electrode current collector), dried and pressed to prepare a negative electrode.

上述の方法で作製した正極および負極を、多孔質ポリエチレン層の両面に多孔質ポリプロピレン層が形成された三層構造のセパレータ2枚(平均厚み25μm)を介して長尺方向に重ねあわせ、長尺方向に捲回した後に押しつぶして拉げることで扁平形状の捲回電極体を作製した(例1)。   The positive electrode and the negative electrode prepared by the above-described method are overlapped in the longitudinal direction via two separators (average thickness 25 μm) having a three-layer structure in which a porous polypropylene layer is formed on both sides of the porous polyethylene layer. A flat wound electrode body was produced by crushing and ablating after winding in the direction (Example 1).

次いで、上記捲回電極体と非水電解質とを、角型の電池ケース(アルミニウム製)の内部に収容し、例1にかかるリチウム二次電池を構築した。上記非水電解質としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=1:1:1の体積比で含む混合溶媒に、支持塩としてのLiPFを1mol/Lの濃度で溶解させたものを用いた。即ち、例1に係る電池は、電池内にガス発生剤を配置しなかった(表1の該当欄には「−」と記す)。 Next, the wound electrode body and the nonaqueous electrolyte were accommodated in a rectangular battery case (made of aluminum), and a lithium secondary battery according to Example 1 was constructed. As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of EC: DMC: EMC = 1: 1: 1 is used as a supporting salt. Of LiPF 6 dissolved at a concentration of 1 mol / L was used. That is, in the battery according to Example 1, no gas generating agent was disposed in the battery (indicated by “-” in the corresponding column of Table 1).

<例2>
上記正極及び負極について、捲回電極体を作製した際に該捲回電極体の最外周に位置する部分に、正極活物質層および負極活物質層を設けない電極活物質層非形成部分を設けた以外は、上記例1と同様の材料およびプロセスにて、正極および負極を作製した。そして、上記電極活物質層非形成部分にバインダとしてのポリフッ化ビニリデン(PVdF)を塗付し、該PVdF上にガス発生剤としてのp−p’オキシビスベンゼンスルホニルヒドラジド(OBSH)を配置した。そして、かかるガス発生剤を配置した正極および負極を用いたこと以外は上記例1と同様の材料およびプロセスにて、例2に係る捲回電極体を作製し、例2に係るリチウム二次電池を構築した。
ここで、リチウム二次電池内に配置したガス発生剤の量は、以下の式(I):
X≧32.9×(P2/T2−P1/T1)×V/R (I)
なお、上記式(I)中のX、P1、P2、T2、T1、V、Rは、以下に示す値を採用した(後述の例3〜6についても同様)。
Xは二次電池中のガス発生剤の量(g)である。
P1は電池構築時の電池ケースの内圧であり、ここでは0.1MPaであった。
P2はCIDが作動する電池ケースの内圧の設定値であり、ここでは0.8MPaに設定した。
T1は電池構築時の電池温度であり、ここでは298.15K(25℃)であった。
T2はCIDが作動する電池温度(K)の設定値であり、ここでは393.15K(120℃)に設定した。
Vは電池ケース内の残空間の体積(cm)であり、ここでは50cmであった。
Rは気体定数(J/K・mol)であり、8.31である。
を満たす量とした。
<Example 2>
With respect to the positive electrode and the negative electrode, when the wound electrode body is produced, an electrode active material layer non-formation part in which the positive electrode active material layer and the negative electrode active material layer are not provided is provided at the outermost part of the wound electrode body. A positive electrode and a negative electrode were produced using the same materials and processes as in Example 1 except that. And the polyvinylidene fluoride (PVdF) as a binder was apply | coated to the said electrode active material layer non-formation part, and pp 'oxybisbenzene sulfonyl hydrazide (OBSH) as a gas generating agent was arrange | positioned on this PVdF. And the wound electrode body which concerns on Example 2 is produced with the material and process similar to the said Example 1 except having used the positive electrode and negative electrode which have arrange | positioned this gas generating agent, The lithium secondary battery which concerns on Example 2 Built.
Here, the amount of the gas generating agent disposed in the lithium secondary battery is expressed by the following formula (I):
X ≧ 32.9 × (P2 / T2-P1 / T1) × V / R (I)
In addition, the value shown below was employ | adopted for X, P1, P2, T2, T1, V, and R in the said Formula (I) (it is the same also about the below-mentioned Examples 3-6).
X is the amount (g) of the gas generating agent in the secondary battery.
P1 is the internal pressure of the battery case at the time of battery construction, and was 0.1 MPa here.
P2 is a set value of the internal pressure of the battery case where the CID operates, and is set to 0.8 MPa here.
T1 is a battery temperature at the time of battery construction, and was 298.15 K (25 ° C.) here.
T2 is a set value of the battery temperature (K) at which the CID operates. Here, T2 is set to 393.15K (120 ° C.).
V is the volume (cm 3 ) of the remaining space in the battery case, and was 50 cm 3 here.
R is a gas constant (J / K · mol), which is 8.31.
It was set as the quantity which satisfy | fills.

<例3>
上記リチウム二次電池内に配置したガス発生剤(OBSH)の量を、上記式(I)を満たさない量とした以外は、上記例2と同様の材料およびプロセスにより、例3に係るリチウム二次電池を構築した。
<Example 3>
The lithium secondary battery according to Example 3 was prepared by the same material and process as in Example 2 except that the amount of the gas generating agent (OBSH) disposed in the lithium secondary battery was changed to an amount not satisfying the above formula (I). The next battery was built.

<例4>
上記例1と同様の正極および負極を準備した。そして、セパレータの一部であって、捲回電極体を構築した際に該捲回電極体の最外周に位置する部分に、ガス発生剤(OBSH)を配置した以外は、上記例1と同様の材料およびプロセスにて、例4に係るリチウム二次電池を構築した。なお、二次電池中のガス発生剤の含有量は、上記式(I)を満たす。
<Example 4>
The same positive electrode and negative electrode as in Example 1 were prepared. And it is a part of separator, Comprising: The gas generating agent (OBSH) is arrange | positioned in the part located in the outermost periphery of this winding electrode body when constructing a winding electrode body, It is the same as that of the said Example 1 A lithium secondary battery according to Example 4 was constructed using the materials and processes described above. The content of the gas generating agent in the secondary battery satisfies the above formula (I).

<例5>
ガス発生剤(OBSH)を正極活物質層形成用組成物および負極活物質層形成用組成物中に混合することで、正極活物質層および負極活物質層内にガス発生剤を配置した以外は、上記例1と同様の材料及びプロセスにより、例5に係るリチウム二次電池を構築した。なお、二次電池中のガス発生剤の含有量は、上記式(I)を満たす。
<Example 5>
A gas generating agent (OBSH) was mixed in the positive electrode active material layer forming composition and the negative electrode active material layer forming composition, so that the gas generating agent was disposed in the positive electrode active material layer and the negative electrode active material layer. A lithium secondary battery according to Example 5 was constructed using the same materials and processes as in Example 1 above. The content of the gas generating agent in the secondary battery satisfies the above formula (I).

<例6>
ガス発生剤(OBSH)を、電極体と電池ケースの蓋体との間(ここでは、正極集電板および負極集電板の表面)に配置した以外は上記例1と同様の材料およびプロセスにより、例6に係るリチウム二次電池を構築した。なお、二次電池中のガス発生剤の含有量は、上記式(I)を満たす。
<Example 6>
The gas generating agent (OBSH) is made of the same material and process as in Example 1 except that the gas generating agent (OBSH) is disposed between the electrode body and the battery case lid (here, the surface of the positive electrode current collector plate and the negative electrode current collector plate). A lithium secondary battery according to Example 6 was constructed. The content of the gas generating agent in the secondary battery satisfies the above formula (I).

<抵抗測定>
例1〜6に係るリチウム二次電池のそれぞれに対し、室温(約25℃)環境雰囲気下において、定電流定電圧(CC−CV)充電によって各電池をSOC(State of Charge)60%の充電状態に調整した。その後、25℃にて、10Cの電流値で10秒間の放電を行い、放電開始から10秒後の電圧降下量からIV抵抗を算出した。測定した抵抗値が例1の抵抗値よりも大きい電池を「×」、例1の抵抗値以下の電池を「〇」と評価した。結果を表1に示す。なお、基準とした例1は「−」と記した。
<Resistance measurement>
Each of the lithium secondary batteries according to Examples 1 to 6 is charged with 60% SOC (State of Charge) by constant current and constant voltage (CC-CV) charging in a room temperature (about 25 ° C.) environmental atmosphere. Adjusted to the condition. Thereafter, discharging was performed at 25 ° C. with a current value of 10 C for 10 seconds, and IV resistance was calculated from a voltage drop amount 10 seconds after the start of discharging. A battery having a measured resistance value larger than the resistance value of Example 1 was evaluated as “x”, and a battery having a resistance value of Example 1 or less was evaluated as “◯”. The results are shown in Table 1. In addition, the reference example 1 was described as “−”.

<過充電試験>
例1〜6に係るリチウム二次電池のそれぞれに対し、室温(約25℃)環境雰囲気下において、3Cの電流値にて10Vに達するまで充電し、CIDの作動を調べた。CIDが正常に作動した電池を「〇」、CIDが正常に作動しなかった(不作動、又は作動遅延)電池を「×」と評価した。結果を表1に示す。
<Overcharge test>
Each of the lithium secondary batteries according to Examples 1 to 6 was charged in a room temperature (about 25 ° C.) environment atmosphere to reach 10 V at a current value of 3 C, and the operation of CID was examined. A battery in which CID normally operated was evaluated as “◯”, and a battery in which CID did not operate normally (inoperative or delayed in operation) was evaluated as “x”. The results are shown in Table 1.

Figure 2017054739
Figure 2017054739

表1に示すように、例2に示す二次電池は、例1に係る二次電池と比較して電池抵抗が低かった。一方で、例5に係る二次電池は、例1に係る二次電池と比較して電池抵抗が高かった。これは、活物質層内に配置したガス発生剤が電荷担体の移動の妨げになったと考える。
また、例2に示す二次電池は、過充電時においてCIDが適切に(比較的に早期に)作動した。一方で、例1、3、4、6に係る二次電池は、CIDが適切に作動しなかった。例1に係る二次電池は電池内にガス発生剤を備えないため、また、例3に係る二次電池は電池内のガス発生剤の含有量が少ないため、ガスの発生量が不足したと考える。また、例4および例6に係る二次電池は、過充電ガス発生剤を配置した箇所の温度上昇が不十分であった、或いは、当該箇所の温度上昇が遅れたと考える。
即ち、本発明によると、電池性能を高く保ちつつ(抵抗の増大を抑制しつつ)、過充電時のガス発生量を多くする(発生剤から速やかにガスを発生させる)ことができ、電流遮断機構を適切に作動できることが確認された。
As shown in Table 1, the secondary battery shown in Example 2 had a lower battery resistance than the secondary battery according to Example 1. On the other hand, the secondary battery according to Example 5 had higher battery resistance than the secondary battery according to Example 1. This is considered that the gas generating agent arranged in the active material layer hinders the movement of the charge carrier.
Further, in the secondary battery shown in Example 2, the CID operated appropriately (relatively early) during overcharge. On the other hand, in the secondary batteries according to Examples 1, 3, 4, and 6, the CID did not operate properly. Since the secondary battery according to Example 1 does not include a gas generating agent in the battery, and the secondary battery according to Example 3 has a low gas generating agent content in the battery, the amount of gas generated is insufficient. Think. Moreover, the secondary battery which concerns on Example 4 and Example 6 thinks that the temperature rise of the location which has arrange | positioned the overcharge gas generating agent was inadequate, or the temperature rise of the said location was delayed.
That is, according to the present invention, while maintaining high battery performance (suppressing an increase in resistance), the amount of gas generated during overcharge can be increased (gas is generated quickly from the generating agent), and the current is interrupted. It was confirmed that the mechanism can operate properly.

以上、本発明の具体例を詳細に説明したが、上記実施形態及び実施例は例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, the said embodiment and Example are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20 捲回電極体
30 電池ケース
32 電池ケース本体
34 蓋体
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極
52 正極集電体
53 正極集電体露出端部
54 正極活物質層
60 負極
62 負極集電体
63 負極集電体露出端部
64 負極活物質層
70 セパレータ
80 電流遮断機構(CID)
90 電極活物質層非形成部分
92 ガス発生剤配置部分
100 二次電池(リチウム二次電池)
20 Winding electrode body 30 Battery case 32 Battery case body 34 Cover body 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collector plate 44 Negative electrode terminal 44a Negative electrode current collector plate 50 Positive electrode 52 Positive electrode current collector 53 Positive electrode current collector exposed end 54 Positive electrode Active material layer 60 Negative electrode 62 Negative electrode current collector 63 Negative electrode current collector exposed end 64 Negative electrode active material layer 70 Separator 80 Current interruption mechanism (CID)
90 Electrode active material layer non-formation part 92 Gas generant arrangement part 100 Secondary battery (lithium secondary battery)

Claims (1)

正極集電体上に正極活物質層を有する正極と、負極集電体上に負極活物質層を有する負極と、当該正極および負極を電気的に隔離するセパレータとを有する捲回電極体と、
電解質と、
前記捲回電極体および電解質を収容する電池ケースと、
前記捲回電極体に電気的に接続された外部端子と、
前記電池ケースの内圧が予め定められた圧力以上に上昇した場合に、前記捲回電極体と外部端子との電気的な接続を遮断する電流遮断機構と、を備える二次電池であって、
前記正極のうちの前記捲回電極体の最外周に位置する正極部分、および、前記負極のうちの前記捲回電極体の最外周に位置する負極部分のうちの少なくとも一方には、前記正極活物質層または前記負極活物質層が形成されていない電極活物質層非形成部分が有り、
該電極活物質層非形成部分には、所定の温度に到達した場合にガスを発生させるガス発生剤が配置されており、
ここで、該二次電池中の前記ガス発生剤の含有量は、以下の式:
X≧32.9×(P2/T2−P1/T1)×V/R
(ここで、Xは二次電池中のガス発生剤の量(g)、P1は電池構築時の電池ケースの内圧(MPa)、P2は電流遮断機構が作動する電池ケースの内圧(MPa)の設定値、T1は電池構築時の電池温度(K)、T2は電流遮断機構が作動する電池温度(K)の設定値、Vは電池ケース内の残空間の体積(cm)、R:気体定数(J/K・mol)である。)
を具備するように設定される、二次電池。
A wound electrode body having a positive electrode having a positive electrode active material layer on the positive electrode current collector, a negative electrode having a negative electrode active material layer on the negative electrode current collector, and a separator for electrically isolating the positive electrode and the negative electrode;
Electrolyte,
A battery case containing the wound electrode body and the electrolyte;
An external terminal electrically connected to the wound electrode body;
When the internal pressure of the battery case rises above a predetermined pressure, a secondary battery comprising a current interruption mechanism that interrupts electrical connection between the wound electrode body and the external terminal,
At least one of the positive electrode portion positioned on the outermost periphery of the wound electrode body in the positive electrode and the negative electrode portion positioned on the outermost periphery of the wound electrode body in the negative electrode is provided with the positive electrode active portion. There is an electrode active material layer non-formed part in which the material layer or the negative electrode active material layer is not formed,
In the part where the electrode active material layer is not formed, a gas generating agent that generates gas when a predetermined temperature is reached is disposed,
Here, the content of the gas generating agent in the secondary battery is expressed by the following formula:
X ≧ 32.9 × (P2 / T2-P1 / T1) × V / R
(Where X is the amount (g) of the gas generating agent in the secondary battery, P1 is the internal pressure (MPa) of the battery case at the time of battery construction, and P2 is the internal pressure (MPa) of the battery case at which the current interruption mechanism operates. Set value, T1 is the battery temperature (K) at the time of battery construction, T2 is the set value of the battery temperature (K) at which the current interruption mechanism operates, V is the volume of the remaining space in the battery case (cm 3 ), R: gas Constant (J / K · mol).)
A secondary battery set to include:
JP2015178860A 2015-09-10 2015-09-10 Secondary battery Pending JP2017054739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178860A JP2017054739A (en) 2015-09-10 2015-09-10 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178860A JP2017054739A (en) 2015-09-10 2015-09-10 Secondary battery

Publications (1)

Publication Number Publication Date
JP2017054739A true JP2017054739A (en) 2017-03-16

Family

ID=58317114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178860A Pending JP2017054739A (en) 2015-09-10 2015-09-10 Secondary battery

Country Status (1)

Country Link
JP (1) JP2017054739A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808095A (en) * 2017-04-30 2018-11-13 深圳格林德能源有限公司 A kind of polymer Li-ion battery rapid forming method
CN109309265A (en) * 2017-07-29 2019-02-05 深圳格林德能源有限公司 A kind of smooth improvement chemical synthesis technology of high voltage polymer Li-ion battery
WO2019216267A1 (en) * 2018-05-07 2019-11-14 本田技研工業株式会社 Nonaqueous-electrolyte secondary cell
WO2019245137A1 (en) * 2018-06-20 2019-12-26 주식회사 엘지화학 Electrode assembly with improved connection between electrode tabs

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808095A (en) * 2017-04-30 2018-11-13 深圳格林德能源有限公司 A kind of polymer Li-ion battery rapid forming method
CN109309265A (en) * 2017-07-29 2019-02-05 深圳格林德能源有限公司 A kind of smooth improvement chemical synthesis technology of high voltage polymer Li-ion battery
WO2019216267A1 (en) * 2018-05-07 2019-11-14 本田技研工業株式会社 Nonaqueous-electrolyte secondary cell
CN112020790A (en) * 2018-05-07 2020-12-01 本田技研工业株式会社 Nonaqueous electrolyte secondary battery
JPWO2019216267A1 (en) * 2018-05-07 2021-02-18 本田技研工業株式会社 Non-aqueous electrolyte secondary battery
CN112020790B (en) * 2018-05-07 2024-07-26 本田技研工业株式会社 Nonaqueous electrolyte secondary battery
WO2019245137A1 (en) * 2018-06-20 2019-12-26 주식회사 엘지화학 Electrode assembly with improved connection between electrode tabs
US11721839B2 (en) 2018-06-20 2023-08-08 Lg Energy Solution, Ltd. Electrode assembly with improved connection between electrode tabs

Similar Documents

Publication Publication Date Title
JP5822089B2 (en) Sealed lithium secondary battery
JP6044842B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6024990B2 (en) Method for producing non-aqueous electrolyte secondary battery
US9859534B2 (en) Secondary battery
US10236537B2 (en) Non-aqueous electrolyte secondary battery
US9917296B2 (en) Nonaqueous electrolyte secondary battery
EP3048661B1 (en) Nonaqueous electrolyte secondary battery
JP2018106903A (en) Lithium ion secondary battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
JP6674631B2 (en) Lithium ion secondary battery
JP2021039874A (en) Non-aqueous electrolyte secondary battery
JP2017054739A (en) Secondary battery
JP6274532B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5618156B2 (en) Manufacturing method of sealed lithium secondary battery
KR101833597B1 (en) Method of manufacturing lithium ion secondary battery
JP2019033045A (en) Non-aqueous electrolyte secondary battery
JP6919809B2 (en) Non-aqueous electrolyte lithium ion battery
KR102628578B1 (en) Non-aqueous electrolyte secondary battery
US20180097234A1 (en) Lithium ion secondary battery
JP6895079B2 (en) Non-aqueous electrolyte secondary battery
JP2017098156A (en) Non-aqueous electrolyte secondary battery
JP6185403B2 (en) Secondary battery and separator for the battery
JP5260576B2 (en) Lithium secondary battery
JP2017097956A (en) Nonaqueous electrolyte secondary battery
JP2024127043A (en) Method for manufacturing non-aqueous electrolyte secondary battery