JP2017053727A - Load transducer - Google Patents
Load transducer Download PDFInfo
- Publication number
- JP2017053727A JP2017053727A JP2015177938A JP2015177938A JP2017053727A JP 2017053727 A JP2017053727 A JP 2017053727A JP 2015177938 A JP2015177938 A JP 2015177938A JP 2015177938 A JP2015177938 A JP 2015177938A JP 2017053727 A JP2017053727 A JP 2017053727A
- Authority
- JP
- Japan
- Prior art keywords
- load
- strain
- axis
- measurement
- measurement load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Force In General (AREA)
Abstract
Description
本発明は、引張り若しくは圧縮荷重が負荷されるとせん断歪みを発生する起歪部に、せん断型ひずみゲージを貼付け、荷重の大きさに応じて変化するせん断型ひずみゲージの電気抵抗値を、電圧信号等によって検出することで測定を行う荷重変換器に関するものである。 In the present invention, a shear type strain gauge is attached to a strain generating portion that generates shear strain when a tensile or compressive load is applied, and the electric resistance value of the shear type strain gauge that changes according to the magnitude of the load is expressed as a voltage. The present invention relates to a load transducer that performs measurement by detecting the signal or the like.
荷重変換器の起歪部の形状は、測定荷重の大きさ、小型あるいは薄型というような荷重変換器に要求される使用環境、精度等に応じて種々のものが提案され、実用化がなされている。 Various shapes of the strain generating part of the load transducer have been proposed and put into practical use depending on the size of the measurement load, the usage environment required for the load transducer, such as small or thin, and accuracy. Yes.
引張り若しくは圧縮荷重の測定には、図1で示すS字ローバーバルの起歪体を備えた荷重変換器が広く用いられている。この形状の起歪体1は、弾性に富む材料、例えばアルミニウム合金によって構成されており、ほぼS字型の形状を成している。そこで、例えばS字断面のアルミニウム押出し材を得、これを所望の長さに切断することによって図1に示すS字形状の起歪体1を得るようにしている。 For measuring the tensile or compressive load, a load converter having an S-shaped rover valving body shown in FIG. 1 is widely used. The strain body 1 having this shape is made of a material rich in elasticity, for example, an aluminum alloy, and has a substantially S-shape. Therefore, for example, an aluminum extruded material having an S-shaped cross section is obtained, and this is cut into a desired length to obtain the S-shaped strain body 1 shown in FIG.
S字形状の起歪体1の上端及び下端の辺6,7は当該起歪体1を他の部材、例えば測定器本体及び荷重受け部材等に対して固定するための固定部である。 The upper and lower sides 6 and 7 of the S-shaped strain generating body 1 are fixing portions for fixing the strain generating body 1 to other members such as a measuring instrument main body and a load receiving member.
起歪体1にはその中央に、ほぼ矩形状の貫通孔2があけられ2つのビーム部3,4が形成されている。貫通孔2の四隅は応力集中を回避するため曲面で構成され、内周壁面に歪みゲージR1〜R4が貼付けられている。 The strain body 1 has a substantially rectangular through-hole 2 at the center thereof to form two beam portions 3 and 4. The four corners of the through-hole 2 are composed of curved surfaces to avoid stress concentration, and strain gauges R1 to R4 are attached to the inner peripheral wall surface.
上端の辺6および下端の辺7は、起歪体1において、荷重によって生じる歪は、上下2つのビーム部3,4に集中し、図2で示すような、歪みゲージR1〜R4により形成されたホイートストンブリッジ回路から電気抵抗値変化量を電気量(電圧信号)にとして取り出し、荷重の大きさを測定している。 The upper side 6 and the lower side 7 are formed by strain gauges R1 to R4 as shown in FIG. The amount of change in the electric resistance value is taken out as an electric quantity (voltage signal) from the Wheatstone bridge circuit, and the magnitude of the load is measured.
図1に示す構成において、ビーム部3,4で生じる歪みが貼付けられた歪みゲージを歪ませる。また、歪みゲージの電気抵抗値変化量は、ゲージ率に起因するため一般の導電箔を使用したゲージでは、ほぼ2とされている。ここで、断面係数が不変である場合、歪み量を大きくするためには、ビーム部3,4を大きく撓ませ、力を受ける部分の変位を大きくする必要があり剛性面で問題が生じる。 In the configuration shown in FIG. 1, the strain gauge to which the strain generated in the beam portions 3 and 4 is attached is distorted. In addition, since the amount of change in the electrical resistance value of the strain gauge is caused by the gauge factor, it is approximately 2 in a gauge using a general conductive foil. Here, when the section modulus is unchanged, in order to increase the amount of distortion, it is necessary to greatly deflect the beam portions 3 and 4 and increase the displacement of the portion receiving the force, which causes a problem in terms of rigidity.
この対策として、図9で示すような、変位が小さく抑えられ、剛性が大きく取れるせん断歪み測定方式の起歪体を用いる方法が採られていた。しかし、せん断歪みを測定する方式では、ひずみゲージの感度方向を荷重の測定方向に対して正確に45度にする必要がある。ここで角度誤差が生じてしまうと、測定方向以外に係る荷重、特に測定する方向と直交する方向に係る荷重の影響を受け易くなり、その分が誤差となって測定精度の低下を招いていた。 As a countermeasure, a method using a strain generator of a shear strain measurement method in which the displacement is suppressed to be small and the rigidity can be increased as shown in FIG. 9 has been adopted. However, in the method of measuring the shear strain, it is necessary to set the sensitivity direction of the strain gauge to 45 degrees with respect to the load measurement direction. If an angle error occurs here, it is likely to be affected by a load related to a direction other than the measurement direction, particularly a load related to the direction orthogonal to the measurement direction, and the corresponding error causes an error in measurement accuracy. .
また、測定精度の低下を避けるため、測定方向とは異なる方向からの荷重に対する歪みの発生を抑えるよう起歪体の剛性を高め、測定方向以外に係る荷重の影響を除去する手法も採られていた。しかしながら、剛性を上げることにより、測定する荷重の大きさに対して起歪体自体が大型化してしまうという問題があった。 In addition, in order to avoid a decrease in measurement accuracy, a technique has been adopted to increase the rigidity of the strain-generating body so as to suppress the generation of strain due to a load from a direction different from the measurement direction, and to remove the influence of the load related to other than the measurement direction. It was. However, increasing the rigidity has a problem that the strain generating body itself increases in size with respect to the magnitude of the load to be measured.
本発明は、せん断歪みを測定する方式で起歪体の大型化を避け、かつ高精度な荷重変換器を提供することを課題としている。 An object of the present invention is to provide a highly accurate load transducer that avoids an increase in the size of the strain-generating body by a method of measuring shear strain.
上述の課題を解決するため、本発明においては以下の技術的手段を講じた。
本発明に係る荷重変換器は、測定荷重を電気量に変換して検出する荷重変換器であって、
測定荷重軸に沿って荷重導入部、第一伝達部、受感部、第二伝達部および荷重支持部が順に並設され、
前記受感部が前記測定荷重軸に沿って柱状をなし、前記受感部の外側周面にあって相対する一対の面に向かって、前記測定荷重軸と直交する方向に沿って、互いに前記測定荷重軸を挟んで左右対称に、同一の深さに達する同一形状の底面を有する孔部を形設することで、中心に受感軸部と、前記受感軸部の左右端に面状をなす一対の起歪部と、前記起歪部を包接する一対の肉厚部とを備え、かつ前記測定荷重軸に対する前記起歪部を含む断面形状が、前記測定荷重軸に直交する方向に対して同形なH型形状を横に2つ並べて結合した形状をなし、
前記第一伝達部及び前記第二伝達部は、前記測定荷重軸上に中心軸があって、前記測定荷重軸と直交する面上に対する断面積が、前記受感部の断面積より小さく、いづれか一方は前記受感軸部(103)と連接し、もう一方は一対の前記肉厚部と連接し、
前記起歪部(101,102)の表面である前記孔部の前記底面に歪みゲージが、貼付けられている。
In order to solve the above-mentioned problems, the following technical means have been taken in the present invention.
The load converter according to the present invention is a load converter that detects and converts a measured load into an electrical quantity,
A load introduction part, a first transmission part, a sensing part, a second transmission part and a load support part are arranged in parallel along the measurement load axis,
The sensitive part has a columnar shape along the measurement load axis, and toward the pair of opposing surfaces on the outer peripheral surface of the sensitive part, along the direction perpendicular to the measurement load axis, By forming a hole with a bottom surface of the same shape that reaches the same depth symmetrically across the measurement load axis, the sensor shaft part at the center and a planar shape at the left and right ends of the sensor shaft part A cross-sectional shape including the strain-generating portion with respect to the measurement load axis is perpendicular to the measurement load axis. On the other hand, it has a shape where two identical H-shapes are combined side by side,
The first transmission part and the second transmission part have a central axis on the measurement load axis, and the cross-sectional area with respect to a plane orthogonal to the measurement load axis is smaller than the cross-sectional area of the sensing part. One is connected to the sensitive shaft (103), the other is connected to the pair of thick parts,
A strain gauge is affixed to the bottom surface of the hole, which is the surface of the strain generating portion (101, 102).
この手段によれば、荷重に対して起歪体の大きさを適切に保ちながら、起歪部がせん断歪みを生じる形状にすることが可能なため、全体が高い剛性をもつ起歪部を構成することができる。更に、せん断型歪みゲージによる測定で問題となる測定荷重軸方向以外の力の影響により生じる測定精度の低下に関しては、測定荷重軸方向に対する断面の形状を、曲げに対する断面係数が大きく取れるH型形状の断面を横に2つ並べて結合した形状にすることで、その力の影響が及び難くいものにできる。加えて、歪みゲージが貼付けられる起歪部が、受感部の外周側面において相対する一対の面に対して、測定荷重軸を基準に左右対称な位置に、同じ形状で設けられた孔部の底面であるため、荷重によって発生するせん断歪みが左右で対称となり、ホイートストンブリッジ回路による補償が大きく取れる。また、独立した面にそれぞれ歪みゲージを貼付けるため、最もせん断歪みが発生する箇所に貼付け可能であり、感度特性においても好適に作用する。 According to this means, since the strain generating portion can be formed into a shape that generates shear strain while maintaining the size of the strain generating body appropriately with respect to the load, the entire strain forming portion is configured with high rigidity. can do. Furthermore, with regard to the decrease in measurement accuracy caused by the force other than the measurement load axis direction, which is a problem in measurement with a shear type strain gauge, the shape of the cross section with respect to the measurement load axis direction is an H-shaped shape with a large section modulus for bending. By forming a shape in which two cross-sections are arranged side by side, the influence of the force can be made difficult. In addition, the strained portion to which the strain gauge is attached is a hole provided in the same shape at a symmetrical position with respect to the measurement load axis with respect to a pair of opposing surfaces on the outer peripheral side surface of the sensing portion. Since it is a bottom surface, the shear strain generated by the load is symmetrical on the left and right, and compensation by the Wheatstone bridge circuit can be greatly taken. Moreover, since each strain gauge is affixed to an independent surface, it can be affixed to a location where shear strain is generated most, and it also works favorably in sensitivity characteristics.
本発明に係る荷重変換器では、荷重に対して適切な大きさの範囲内で起歪体の高剛性化が可能となり、荷重による変位も小さく抑えられことで信頼性が向上し、かつ測定誤差要因となる測定荷重方向以外に係る力の影響を極力回避することで、高精度な荷重変換器が提供可能となる。 In the load transducer according to the present invention, it is possible to increase the rigidity of the strain generating body within a range of an appropriate size with respect to the load, and the displacement due to the load is suppressed to be small, thereby improving the reliability and measuring error. A highly accurate load converter can be provided by avoiding as much as possible the influence of forces related to directions other than the measurement load direction.
以下、本発明の実施の形態を図面に基づいて説明する。図3は、本発明の実施形態である引張り若しくは圧縮荷重の荷重変換器8を示している。図3(a)は、当該荷重変換器8の外観を現した図であり、荷重負荷部21は、直接引張り若しくは圧縮荷重が負荷される部分となる。ケーシング22は、後述する起歪体20の全体を覆う筺体を示す。図3(b)は、荷重変換器8におけるケーシング22の内部(断面)を示した図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 shows a load transducer 8 for tensile or compressive load, which is an embodiment of the present invention. FIG. 3A is a diagram showing an appearance of the load converter 8, and the load load portion 21 is a portion to which a direct tensile or compressive load is applied. Casing 22 shows the housing which covers the whole strain generating body 20 mentioned below. FIG. 3B is a view showing the inside (cross section) of the casing 22 in the load converter 8.
図3(b)において、起歪体20は、荷重変換器8に荷重の大きさに応じて、歪みが生じる部位であり、材質は弾性に優れた素材、例えばアルミニウム合金によって構成されている。また、形状については、高い精度を実現する必要から、例えば棒材からの削り出しによって一体に形成されている。 In FIG. 3 (b), the strain body 20 is a portion where strain is generated in the load transducer 8 in accordance with the magnitude of the load, and the material is made of a material excellent in elasticity, for example, an aluminum alloy. Further, the shape is integrally formed by cutting out from a bar, for example, because it is necessary to achieve high accuracy.
起歪体20は、図4で示すように、主に荷重導入部9、受感部10、荷重支持部11、第一伝達部12、第二伝達部13から構成されている。また受感部10には、孔部14〜17、起歪部101,102、受感軸部103および肉厚部104,105を備えている。本実施形態において、係る最大荷重は500N程度であり、荷重導入部9、受感部10および荷重支持部の外径寸法(最大寸法)は、概ね10mmから20mm以内である。 As shown in FIG. 4, the strain body 20 mainly includes a load introduction part 9, a sensing part 10, a load support part 11, a first transmission part 12, and a second transmission part 13. The sensitive part 10 includes holes 14 to 17, strain-generating parts 101 and 102, a sensitive shaft part 103, and thick parts 104 and 105. In the present embodiment, the maximum load is about 500 N, and the outer diameter dimensions (maximum dimensions) of the load introduction part 9, the sensing part 10, and the load support part are generally within 10 mm to 20 mm.
荷重導入部9は、荷重負荷部21に負荷される引張り若しくは圧縮荷重を受け、第一伝達部12以下後方に位置する部位へと伝達するための部位であり、測定荷重軸Zにおいて荷重負荷部21と同軸上に位置している。また、その端部において荷重負荷部21の取り付け部を備えている。 The load introducing portion 9 is a portion for receiving a tensile or compressive load applied to the load loading portion 21 and transmitting the tensile or compressive load to a portion located behind the first transmission portion 12. 21 and the same axis. Moreover, the attachment part of the load load part 21 is provided in the edge part.
第一伝達部12は、荷重導入部9が受ける荷重を、受感部10へと伝達する部位であって、図4および図5に示すように、測定荷重軸Z上に中心軸を備える。また、図5の断面A−Aで示すように、測定荷重軸Zと直交する面上での断面積は、荷重導入部9よりも小さく、且つ、受感部10の中央部に位置する受感軸部103へ連接するよう、互いに180度反対に位置する外側周面から所定の厚み分だけ、括れるように摺割加工が施されている。これによって伝達された荷重は、受感部10の測定荷重軸Z周辺、すなわち受感軸部103に集中させることができる。ただし、第一伝達部12は、最大荷重が負荷されたときでも充分に耐えうるだけの必要最低限の断面積は確保されている。 The first transmission unit 12 is a part that transmits the load received by the load introduction unit 9 to the sensing unit 10, and includes a central axis on the measurement load axis Z as shown in FIGS. 5, the cross-sectional area on the plane orthogonal to the measurement load axis Z is smaller than that of the load introducing portion 9 and is located at the center of the sensing portion 10. The slitting process is applied so as to be confined by a predetermined thickness from the outer peripheral surfaces positioned opposite to each other by 180 degrees so as to be connected to the sensitive part 103. The load thus transmitted can be concentrated around the measurement load axis Z of the sensing part 10, that is, on the sensing axis part 103. However, the first transmission portion 12 has a minimum necessary cross-sectional area that can sufficiently withstand even when a maximum load is applied.
受感部10は、測定荷重軸Zがその中心を通る柱状をなし、その中央部には同じく測定荷重軸Zを中心として係る荷重に対し高い剛性を備えた受感軸部103と、受感軸部103の左右端に位置し、面状をなす一対の起歪部101,102と、外縁部にあって、起歪部を包接し高い剛性を備えた一対の肉厚部104,105とを備えている。一対の起歪部101,102は、柱状をなす受感部10の外側周面上で、測定荷重軸Zと直交する方向(Y方向)において相対する位置関係にある一対の面(S1面とS2面)に、2個ずつ合計4つの孔部14〜17を設けることで形成される。よって、起歪部101,102を含み、測定荷重軸Zと直交する面に対する受感部10の断面形状は、図5の断面B−Bで示すように、同形のH型形状を横に2つ並べた、ちょうどH型鋼のプレートガーダの一辺が結合された形状であり、起歪部101,102はちょうどその結合されたH型鋼の2つのウェブプレート部分に相当する。 The sensor unit 10 has a column shape in which the measurement load axis Z passes through the center thereof, and the sensor unit 103 having a high rigidity with respect to the load centered on the measurement load axis Z at the center thereof, A pair of strain-generating portions 101 and 102 that are positioned at the left and right ends of the shaft portion 103 and have a planar shape, and a pair of thick-walled portions 104 and 105 that are at the outer edge and enclose the strain-generating portion and have high rigidity. It has. The pair of strain generating portions 101 and 102 is a pair of surfaces (S1 surface and the S1 surface) that are in a positional relationship facing each other in the direction (Y direction) orthogonal to the measurement load axis Z on the outer peripheral surface of the columnar sensing unit 10. S2 surface) is formed by providing a total of four hole portions 14 to 17 each two. Therefore, the cross-sectional shape of the sensing part 10 with respect to the plane including the strain-generating parts 101 and 102 and orthogonal to the measurement load axis Z is 2 horizontally as shown by the cross-section BB in FIG. One side of the plate girder of the H-shaped steel arranged side by side is joined, and the strain generating portions 101 and 102 correspond to the two web plate portions of the joined H-shaped steel.
また、受感部10は、孔部14〜17が同一の深さおよび同一形状の底面で形成されているため、測定荷重軸Zを包含し直交する2つの平面、すなわち、図4,図5におけるXZ平面およびYZ平面の双方に対して、左右対称な線対称形状を成している。 Moreover, since the holes 14-17 are formed in the bottom face of the same depth and the same shape, the sensitive part 10 includes two planes including the measurement load axis Z and orthogonal to each other, that is, FIGS. It has a line-symmetric shape that is bilaterally symmetric with respect to both the XZ plane and the YZ plane.
第二伝達部13は、受感部10と荷重支持部11との間に設けられた部位で、測定荷重軸Z上に中心軸を備え、受感部10に伝わった荷重をさらに荷重支持部11へと伝達する。その形状については、図5の断面C−Cで示すように、測定荷重軸Zと直交する面上での断面積は、荷重支持部11より小さく、且つ図5の上方に位置する受感部10の外縁部に備わる一対の肉厚部104,105に対して連接するように、中央部分に楕円状の貫通孔18が加工されている。ただし、第一伝達部12と同様に第二伝達部13は、最大荷重が負荷されたときでも充分に耐えうるだけの必要最低限の断面積は確保されている。 The second transmission unit 13 is a portion provided between the sensing unit 10 and the load support unit 11 and has a central axis on the measurement load axis Z, and further transmits the load transmitted to the sensing unit 10. 11 is transmitted. As for the shape, as shown by a cross-section CC in FIG. 5, the cross-sectional area on the surface orthogonal to the measurement load axis Z is smaller than the load support portion 11 and is located at the upper side of FIG. 5. An elliptical through-hole 18 is machined in the central portion so as to be connected to the pair of thick portions 104 and 105 provided on the outer edge portion of the ten. However, like the first transmission portion 12, the second transmission portion 13 has a minimum necessary cross-sectional area that can sufficiently withstand even when a maximum load is applied.
一対の起歪部101,102の表裏面、即ち孔部14〜17の底面には、それぞれ、歪みゲージG1〜G4が、接着,蒸着,スパッタリングおよびその他の手段によって貼付けられている。歪みゲージG1〜G4は、図8に示すホイートストンブリッジ回路を形成する。ここで、歪みゲージG1〜G4は、すべて同種類の単軸歪みゲージであって、感度方向が測定荷重軸Z方向に対して反時計回りに45度の角度を貼付けられている。ただし、感度方向が測定荷重軸Z方向に対して時計回りに45度の角度に貼付けてもよい。 Strain gauges G1 to G4 are respectively attached to the front and back surfaces of the pair of strain generating portions 101 and 102, that is, the bottom surfaces of the holes 14 to 17 by adhesion, vapor deposition, sputtering, and other means. The strain gauges G1 to G4 form a Wheatstone bridge circuit shown in FIG. Here, the strain gauges G1 to G4 are all uniaxial strain gauges of the same type, and the sensitivity direction is attached at an angle of 45 degrees counterclockwise with respect to the measurement load axis Z direction. However, the sensitivity direction may be pasted at an angle of 45 degrees clockwise with respect to the measurement load axis Z direction.
次に、上記説明した構成における作用に関しての図6および図7に基づき説明を加える。荷重負荷部21に負荷された荷重Fは、起歪体20の荷重導入部9に伝わり第一伝達部12を経て受感部10の受感軸部103へと伝達される。また、荷重支持部11、第二伝達部13および受感部10の肉厚部104,105は、荷重Fが係る方向において高い剛性備えているため、その反力によって起歪部101,102においては、図で示すようなせん断歪みが発生する。 Next, an explanation will be given based on FIGS. 6 and 7 regarding the operation in the above-described configuration. The load F applied to the load load portion 21 is transmitted to the load introduction portion 9 of the strain body 20 and is transmitted to the sensitive shaft portion 103 of the sensitive portion 10 through the first transmission portion 12. Further, since the thick portions 104 and 105 of the load support portion 11, the second transmission portion 13, and the sensing portion 10 have high rigidity in the direction to which the load F is applied, the reaction force causes the strain portions 101 and 102. Causes shear strain as shown in the figure.
ここで、荷重負荷部21に負荷される荷重が、測定荷重軸Zに対して任意の角度をもった力、即ち偏荷重や横荷重の場合、荷重導入部9には、測定荷重軸Zと直交する方向(図4,5におけるXY平面の任意方向)の分力FSが発生する。 Here, when the load applied to the load load portion 21 is a force having an arbitrary angle with respect to the measurement load axis Z, that is, an uneven load or a lateral load, the load introduction portion 9 includes the measurement load axis Z and A component force FS is generated in an orthogonal direction (an arbitrary direction on the XY plane in FIGS. 4 and 5).
しかしながら、受感部10における受感軸部103および肉厚部104,105が分力FSに対して十分大きな剛性を備え、かつ起歪部101,102を含む起歪体20の断面が、図5の断面B−Bで示すように、H型形状を横に2つ並べて結合した形状であって高い断面係数を示す。よって、分力FSによる起歪部101,102でのせん断歪み発生を防止することができる。 However, the sensitive shaft portion 103 and the thick portions 104 and 105 in the sensitive portion 10 have sufficiently large rigidity with respect to the component force FS, and the cross section of the strain generating body 20 including the strain generating portions 101 and 102 is shown in FIG. As shown by the section B-B in FIG. 5, it is a shape in which two H-shaped shapes are arranged side by side, and has a high section modulus. Therefore, it is possible to prevent the occurrence of shear strain at the strain generating portions 101 and 102 due to the component force FS.
また、仮に偏荷重や横荷重の影響が、僅かながら起歪部101,102に生じたとしても、一対の起歪部101,102では、測定荷重軸Zを中心する線対称な位置関係にあるため、発生するせん断歪みにおいても、同様に線対称なせん断歪みとなる。その結果、歪みゲージG1〜G4によるホイートストンブリッジ回路(図8)による補償が大きく取れ、充分にキャンセルが可能となり、測定荷重軸Z方向の荷重成分のみに応じた電気量(電圧信号)を得ることができる。 In addition, even if the influence of the uneven load and the lateral load is slightly generated in the strain generating portions 101 and 102, the pair of strain generating portions 101 and 102 are in a line-symmetrical positional relationship around the measurement load axis Z. Therefore, the generated shear strain is similarly line-symmetrical shear strain. As a result, compensation by the Wheatstone bridge circuit (FIG. 8) by the strain gauges G1 to G4 can be made large and can be sufficiently canceled, and an electric quantity (voltage signal) corresponding to only the load component in the measurement load axis Z direction can be obtained. Can do.
加えて、歪みゲージG1〜G4は、起歪部101,102のそれぞれ独立した4つの表裏面に、それぞれ貼付けられるので、せん断歪みが最も大きく発生する箇所に、その感度中心部を合せることが可能なため、優れた感度特性を示すことになる。 In addition, the strain gauges G1 to G4 are attached to four independent front and back surfaces of the strain generating portions 101 and 102, respectively, so that the center of sensitivity can be matched with the location where the shear strain is the largest. Therefore, excellent sensitivity characteristics are exhibited.
以上、本発明の実施形態である荷重変換器8について、実施形態の詳細を説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変形が可能である。例えば、起歪体20において、荷重導入部9と荷重支持部11、および第一伝達部12と第二伝達部13とが入れ替わるようにした場合でも、同様な作用・効果が生じる。また、単軸歪みゲージに代わって、図10で示すような2軸歪みゲージを適用することも可能である。 As mentioned above, although the detail of embodiment was demonstrated about the load converter 8 which is embodiment of this invention, this invention is not limited to said embodiment, A various deformation | transformation is possible. For example, in the strain body 20, even when the load introduction part 9 and the load support part 11, and the first transmission part 12 and the second transmission part 13 are interchanged, similar actions and effects are produced. Further, instead of the uniaxial strain gauge, a biaxial strain gauge as shown in FIG. 10 can be applied.
本発明に係る荷重変換器は、引張り若しくは圧縮荷重の測定に係る計量装置全般に利用可能であり、例えば、大きな面積の高剛性低床秤、長時間計測用動力計などがある。 The load converter according to the present invention can be used for all weighing devices related to measurement of tensile or compressive load, and includes, for example, a large-area high-rigidity low floor balance, a long-time measurement dynamometer, and the like.
8…荷重変換器
9…荷重導入部 10…受感部 11…荷重支持部 12…第一伝達部 13…第二伝達部
14,15,16,17…孔部 18…貫通孔
20…起歪体
101,102…起歪部 103…受感軸部 104,105…肉厚部
G1,G2,G3,G4…歪みゲージ
21…荷重負荷部 22…ケーシング 23…Oリング
DESCRIPTION OF SYMBOLS 8 ... Load converter 9 ... Load introduction part 10 ... Sensitive part 11 ... Load support part 12 ... 1st transmission part 13 ... 2nd transmission part 14, 15, 16, 17 ... Hole 18 ... Through-hole 20 ... Strain Body 101, 102 ... Straining part 103 ... Sensitive shaft part 104, 105 ... Thick part G1, G2, G3, G4 ... Strain gauge 21 ... Load loading part 22 ... Casing 23 ... O-ring
Claims (4)
測定荷重軸に沿って荷重導入部、第一伝達部、受感部、第二伝達部および荷重支持部が順に並設され、
前記受感部が、前記測定荷重軸に沿って柱状をなし、前記受感部の外側周面にあって相対する一対の面に向かって、前記測定荷重軸と直交する方向に沿って、互いに前記測定荷重軸を挟んで左右対称に、同一の深さに達する同一形状の底面を有する孔部を形設することで、中心に受感軸部と、前記受感軸部の左右端に面状をなす一対の起歪部と、前記起歪部を包接する一対の肉厚部とを備え、かつ前記測定荷重軸に対する前記起歪部を含む断面形状が、前記測定荷重軸に直交する方向に対して同形なH型形状を横に2つ並べて結合した形状をなし、
前記第一伝達部及び前記第二伝達部は、前記測定荷重軸上に中心軸があって、前記測定荷重軸と直交する面上に対する断面積が、前記受感部の断面積より小さく、いづれか一方は前記受感軸部と連接し、もう一方は一対の前記肉厚部と連接し、
前記起歪部の表面である前記孔部の前記底面に歪みゲージが、貼付けられたことを特徴とする荷重変換器。 In the load transducer that detects the measurement load by converting it into an electrical quantity,
A load introduction part, a first transmission part, a sensing part, a second transmission part and a load support part are arranged in parallel along the measurement load axis,
The sensing part is formed in a column shape along the measurement load axis, and along a direction perpendicular to the measurement load axis, toward a pair of opposed surfaces on the outer peripheral surface of the sensing part, By forming a hole having a bottom surface of the same shape reaching the same depth symmetrically across the measurement load axis, a surface is provided at the center of the sensitive shaft and the left and right ends of the sensitive shaft. A cross-sectional shape including the strain-generating portion with respect to the measurement load axis is perpendicular to the measurement load axis. The shape is a combination of two H-shapes that are the same shape.
The first transmission part and the second transmission part have a central axis on the measurement load axis, and the cross-sectional area with respect to a plane orthogonal to the measurement load axis is smaller than the cross-sectional area of the sensing part. One is connected to the sensitive shaft part, the other is connected to the pair of thick parts,
A load transducer, wherein a strain gauge is attached to the bottom surface of the hole, which is the surface of the strain generating portion.
The load transducer according to claim 3, wherein the strain body according to claim 3 has a maximum dimension of 10 mm to 20 mm in a direction orthogonal to the measurement load axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015177938A JP6364637B2 (en) | 2015-09-09 | 2015-09-09 | Load transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015177938A JP6364637B2 (en) | 2015-09-09 | 2015-09-09 | Load transducer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017053727A true JP2017053727A (en) | 2017-03-16 |
JP6364637B2 JP6364637B2 (en) | 2018-08-01 |
Family
ID=58317697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015177938A Active JP6364637B2 (en) | 2015-09-09 | 2015-09-09 | Load transducer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6364637B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI768242B (en) * | 2019-09-18 | 2022-06-21 | 光旴科技股份有限公司 | A device for measuring the strength of sports equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3376537A (en) * | 1966-02-11 | 1968-04-02 | Bytrex Inc | Shear strain load cell |
JPS58166231A (en) * | 1982-03-05 | 1983-10-01 | アクチボラゲツト・ボツフオ−ス | Load cell |
JPH0979925A (en) * | 1995-09-14 | 1997-03-28 | Unyusho Senpaku Gijutsu Kenkyusho | Load transducer for detecting vertical force acting on road surface of automobile |
JP2001255216A (en) * | 2000-03-10 | 2001-09-21 | Kubota Corp | Digital load cell unit and load cell scale |
US20150082902A1 (en) * | 2013-09-26 | 2015-03-26 | Fisher Controls International Llc | Valve stem connector with integrated stem force measurement |
-
2015
- 2015-09-09 JP JP2015177938A patent/JP6364637B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3376537A (en) * | 1966-02-11 | 1968-04-02 | Bytrex Inc | Shear strain load cell |
JPS58166231A (en) * | 1982-03-05 | 1983-10-01 | アクチボラゲツト・ボツフオ−ス | Load cell |
JPH0979925A (en) * | 1995-09-14 | 1997-03-28 | Unyusho Senpaku Gijutsu Kenkyusho | Load transducer for detecting vertical force acting on road surface of automobile |
JP2001255216A (en) * | 2000-03-10 | 2001-09-21 | Kubota Corp | Digital load cell unit and load cell scale |
US20150082902A1 (en) * | 2013-09-26 | 2015-03-26 | Fisher Controls International Llc | Valve stem connector with integrated stem force measurement |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI768242B (en) * | 2019-09-18 | 2022-06-21 | 光旴科技股份有限公司 | A device for measuring the strength of sports equipment |
Also Published As
Publication number | Publication date |
---|---|
JP6364637B2 (en) | 2018-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8966996B2 (en) | Force sensor | |
KR101115418B1 (en) | 6-axis sensor structure using force sensor and method of measuring force and moment therewith | |
US5440077A (en) | Combined weighting and displacement sensor and weighing apparatus using the same | |
CA2898117C (en) | Improved load cell | |
JP2012145497A (en) | Capacitance force sensor | |
JP4337595B2 (en) | Load cell | |
JP5339495B2 (en) | Load cell | |
JPH0772026A (en) | Strain element structure and multi-axis force detection sensor using the strain element structure | |
JP6364637B2 (en) | Load transducer | |
JP5183977B2 (en) | Straining body for load cell, and load cell unit and weight measuring device using the same | |
JP6037440B2 (en) | ROBERVAL type load cell | |
CN117607489B (en) | Sensitive structure of piezoresistive acceleration sensor and acceleration sensor | |
JP6219700B2 (en) | Load cell | |
JP2014109438A (en) | Strain body, load cell and weighing apparatus | |
CN217900985U (en) | Load cell and weighing device | |
CN216050201U (en) | High-precision sheet weighing sensor | |
CN208488197U (en) | A kind of primary structure member and the strain transducer with the primary structure member | |
JPS5912326A (en) | load transducer | |
JP2005121603A (en) | Rotational torque detector | |
JP7429025B2 (en) | Load measuring device and weighing device | |
RU2382369C1 (en) | Strain accelerometre | |
JP2006058211A (en) | Strain gauge type sensor | |
JP3852291B2 (en) | Load cell | |
RU2469436C1 (en) | Integrated pressure transducer with three solid centres | |
JP3265539B2 (en) | Maybe a force meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180606 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6364637 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |