JP2017037005A - Lift and drag measurement device - Google Patents
Lift and drag measurement device Download PDFInfo
- Publication number
- JP2017037005A JP2017037005A JP2015158637A JP2015158637A JP2017037005A JP 2017037005 A JP2017037005 A JP 2017037005A JP 2015158637 A JP2015158637 A JP 2015158637A JP 2015158637 A JP2015158637 A JP 2015158637A JP 2017037005 A JP2017037005 A JP 2017037005A
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- lift
- rotary
- rotating
- rotating shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
本発明は、揚抗力計測装置に関し、より詳細には、風洞実験において模型に作用する揚力・抗力を電子機器を用いずに計測するための装置に関する。 The present invention relates to a lift / drag force measuring apparatus, and more particularly to an apparatus for measuring lift / drag acting on a model in a wind tunnel experiment without using an electronic device.
従来、風洞実験において模型に作用する揚力・抗力を測定する装置には、何らかの電子機器を搭載する必要があった(例えば、特許文献1)。 Conventionally, a device for measuring lift and drag acting on a model in a wind tunnel experiment has to be equipped with some electronic device (for example, Patent Document 1).
本発明は、上記従来技術における課題に鑑みてなされたものであり、本発明は、風洞実験において模型に作用する揚力・抗力を電子機器を用いずに計測するための新規な揚抗力計測装置を提供することを目的とする。 The present invention has been made in view of the above problems in the prior art, and the present invention provides a novel lift / drag force measuring device for measuring lift / drag acting on a model in a wind tunnel experiment without using an electronic device. The purpose is to provide.
本発明者は、風洞実験において模型に作用する揚力・抗力を電子機器を用いずに計測するための構成につき鋭意検討した結果、以下の構成に想到し、本発明に至ったのである。 As a result of intensive studies on a configuration for measuring lift and drag acting on a model in a wind tunnel experiment without using an electronic device, the present inventor has conceived the following configuration and arrived at the present invention.
すなわち、本発明によれば、風洞内の模型に作用する揚抗力を計測するための揚抗力計測装置であって、模型を偏心位置に取り付け可能な円盤状の回転台座と、前記回転台座の裏面の中心に固定される回転軸と、風洞の壁面に固定され前記回転軸を軸支する回転軸支持手段と、模型に作用する重力が前記回転軸に付与する回転トルクとバランスする回転トルクを該回転軸に付与するための第1の回転トルク付与手段と、模型に作用する揚抗力が前記回転軸に付与する回転トルクとバランスする回転トルクを該回転軸に付与するための第2の回転トルク付与手段と、前記回転トルクのバランス状態を提示するためのバランス状態提示手段と、を含む揚抗力計測装置が提供される。 That is, according to the present invention, a lift / drag force measuring device for measuring a lift / drag force acting on a model in a wind tunnel, a disc-shaped rotary pedestal capable of attaching the model to an eccentric position, and a back surface of the rotary pedestal A rotating shaft fixed to the center of the wind tunnel, a rotating shaft support means fixed to the wall of the wind tunnel and supporting the rotating shaft, and a rotating torque that balances with the rotating torque applied to the rotating shaft by gravity acting on the model. A first rotational torque applying means for applying to the rotating shaft; and a second rotating torque for applying to the rotating shaft a rotational torque that balances the rotational torque applied to the rotating shaft by the lifting force acting on the model. There is provided a lift / drag force measuring device including an applying unit and a balance state presenting unit for presenting a balance state of the rotational torque.
上述したように、本発明によれば、風洞実験において模型に作用する揚力・抗力を電子機器を用いずに計測するための新規な揚抗力計測装置が提供される。 As described above, according to the present invention, there is provided a novel lift / drag force measuring device for measuring lift / drag acting on a model in a wind tunnel experiment without using an electronic device.
以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜、その説明を省略するものとする。 Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings. In the drawings referred to below, the same reference numerals are used for common elements, and the description thereof is omitted as appropriate.
図1は、本発明の実施形態である揚抗力計測装置100が取り付けられた縦型風洞装置200を示す。縦型風洞装置200は、第1の整流部92と、縮流部93と、透明な円筒状部材によって構成される風洞94と、第2の整流部95と、吸気ファン97と、台座98とを含み、吸気ファン97の駆動によって、第1の整流部92で整流された空気が縮流部93を通って風洞94内に導入され鉛直方向下方に流下するように構成されている。この縦型風洞装置200に対して、本実施形態の揚抗力計測装置100は、風洞94の壁面に跨る形で固定される。 FIG. 1 shows a vertical wind tunnel device 200 to which a lifting force measuring device 100 according to an embodiment of the present invention is attached. The vertical wind tunnel device 200 includes a first rectifying unit 92, a contracted portion 93, a wind tunnel 94 formed of a transparent cylindrical member, a second rectifying unit 95, an intake fan 97, and a pedestal 98. The air rectified by the first rectifying unit 92 is introduced into the wind tunnel 94 through the contracted flow unit 93 and flows downward in the vertical direction by driving the intake fan 97. With respect to the vertical wind tunnel device 200, the lift / drag force measuring device 100 of the present embodiment is fixed so as to straddle the wall surface of the wind tunnel 94.
図2は、揚抗力計測装置100の斜視図を示す。図2に示すように、揚抗力計測装置100は、円盤状の回転台座10と、回転台座10に固定される回転軸20と、摩擦抵抗の小さい軸受によって回転軸20を軸支する回転軸支持手段30と、回転軸20に回転トルクを付与するための第1の回転トルク付与手段40および第2の回転トルク付与手段50と、回転軸20に付与される回転トルクのバランス状態を提示するためのバランス状態提示手段60とを含んで構成されている。 FIG. 2 is a perspective view of the lift / drag force measuring apparatus 100. As shown in FIG. 2, the lift / drag force measuring apparatus 100 includes a disc-shaped rotary base 10, a rotary shaft 20 fixed to the rotary base 10, and a rotary shaft support that supports the rotary shaft 20 with a bearing having a small frictional resistance. In order to present the balance state of the rotational torque applied to the rotating shaft 20, the first rotating torque applying means 40 and the second rotating torque applying means 50 for applying the rotating torque to the rotating shaft 20. The balance state presenting means 60 is configured.
回転軸支持手段30は、風洞94の壁面に固定され、その軸受が回転軸20を風洞94の長手方向に直交する形で回転自在に軸支する。回転軸支持手段30に軸支された回転軸20は、その一部が風洞94の内側に突出し、残りの部分が風洞94の外側に突出する。 The rotary shaft support means 30 is fixed to the wall surface of the wind tunnel 94, and its bearing rotatably supports the rotary shaft 20 in a form orthogonal to the longitudinal direction of the wind tunnel 94. A part of the rotary shaft 20 supported by the rotary shaft support means 30 protrudes inside the wind tunnel 94 and the remaining part protrudes outside the wind tunnel 94.
一方、回転台座10は、風洞94の内側に突出した回転軸20の端部に取り外し自在に固定される。図3(a)は、回転台座10の表面を示し、図3(b)、(c)は、回転台座10のA−A’線の断面図を示す。図3に示すように、回転台座10は、大円盤12と小円盤14からなり、図3(b)、(c)に示すように、大円盤12の裏面の中心には、回転軸20の端部を嵌合するため孔を備えた嵌合部19が形成されている。 On the other hand, the rotary pedestal 10 is detachably fixed to the end of the rotary shaft 20 protruding inside the wind tunnel 94. 3A shows the surface of the rotary pedestal 10, and FIGS. 3B and 3C are cross-sectional views taken along the line A-A 'of the rotary pedestal 10. FIG. As shown in FIG. 3, the rotary pedestal 10 includes a large disk 12 and a small disk 14, and as shown in FIGS. 3B and 3C, at the center of the back surface of the large disk 12, A fitting portion 19 having a hole for fitting the end portion is formed.
大円盤12と小円盤14は同じ厚みを有しており、大円盤12に形成される円形の開口部13に小円盤14を嵌合して一体化することによって回転台座10が構成される。大円盤12に形成される開口部13は、回転台座10の回転中心から偏心した位置にその中心を有し、開口部13の径が大円盤12の表面から裏面に向かって次第に大きくなるように、その内周側面がテーパ状に形成されている。一方、小円盤14の外周側面は、開口部13の内周側面に合致するようにテーパ状に形成されており、小円盤14を大円盤12に嵌合したときに回転台座10の表面が面一になるように構成されている。 The large disk 12 and the small disk 14 have the same thickness, and the rotating base 10 is configured by fitting and integrating the small disk 14 with a circular opening 13 formed in the large disk 12. The opening 13 formed in the large disk 12 has its center at a position eccentric from the rotation center of the rotary base 10 so that the diameter of the opening 13 gradually increases from the front surface to the back surface of the large disk 12. The inner peripheral side surface is tapered. On the other hand, the outer peripheral side surface of the small disk 14 is formed in a tapered shape so as to match the inner peripheral side surface of the opening 13, and the surface of the rotary base 10 is a surface when the small disk 14 is fitted to the large disk 12. It is configured to be one.
ここで、小円盤14の表面には、計測対象となる模型の翼80を取り付けるための2つの突起16a,16bがその直径方向に並設されており、小円盤14を大円盤12に嵌合したときに突起16a,16bが回転台座10の表面に突出するようになっている。一方、翼80の側面には、突起16a,16bに対応する形状・大きさを有した2つの孔82a,82bが翼弦方向に並設されており、孔82a,82bに突起16a,16bを嵌合することにより、翼80が、その翼弦方向を小円盤14の直径方向に一致させる形で、回転台座10の偏心位置に取り付けられるようになっている。 Here, on the surface of the small disk 14, two protrusions 16 a and 16 b for mounting the model wing 80 to be measured are arranged in parallel in the diameter direction, and the small disk 14 is fitted to the large disk 12. Then, the protrusions 16a and 16b protrude from the surface of the rotary base 10. On the other hand, two holes 82a and 82b having shapes and sizes corresponding to the protrusions 16a and 16b are arranged side by side in the blade chord direction on the side surface of the blade 80, and the protrusions 16a and 16b are formed in the holes 82a and 82b. By fitting, the wing 80 is attached to the eccentric position of the rotary base 10 so that the chord direction thereof coincides with the diameter direction of the small disk 14.
さらに、本実施形態においては、小円盤14の表面に翼80の翼弦方向を示す印17が表示され、小円盤14が嵌合される開口部13の縁の全周にわたって角度を示す目盛18が等間隔(例えば5度おき)に刻まれている。本実施形態においては、この目盛18を目安にしながら、図3(c)に示すように、小円盤14を円周方向に回転させて大円盤12に嵌合することによって、図4(a)、(b)に示すように、翼80の迎え角θを所望の角度に設定することができるようになっている。 Further, in the present embodiment, a mark 17 indicating the chord direction of the blade 80 is displayed on the surface of the small disk 14, and a scale 18 indicating the angle over the entire circumference of the edge of the opening 13 to which the small disk 14 is fitted. Are engraved at equal intervals (for example, every 5 degrees). In the present embodiment, as shown in FIG. 3C, using the scale 18 as a guide, the small disk 14 is rotated in the circumferential direction and fitted to the large disk 12, so that FIG. , (B), the angle of attack θ of the blade 80 can be set to a desired angle.
さらに、本実施形態においては、後述する4種類の基準状態を設定するために、大円盤12の中心と小円盤14の中心を通る直線上に位置する2つの目盛18のそれぞれに対して、大円盤12の中心から見て順番に、印「2」および印「1」が付されており、さらに、印「2」から見て時計回りに90°離れた位置の目盛18には印「4」が付され、印「1」から見て時計回りに90°離れた位置の目盛18には印「3」が付されている。 Furthermore, in this embodiment, in order to set four types of reference states to be described later, a large scale is respectively provided for each of the two scales 18 positioned on a straight line passing through the center of the large disk 12 and the center of the small disk 14. A mark “2” and a mark “1” are given in order from the center of the disk 12, and a mark “4” is placed on the scale 18 at a position 90 ° clockwise from the mark “2”. ”And the scale 18 at a position 90 ° clockwise from the mark“ 1 ”is marked with a mark“ 3 ”.
再び、図2に戻って説明を続ける。 Returning again to FIG. 2, the description will be continued.
図2に示すように、風洞94の外側に突出する方の回転軸20には、風洞94から見て順番に、第1の回転トルク付与手段40、第2の回転トルク付与手段50、およびバランス状態提示手段60が取り付けられる。 As shown in FIG. 2, the rotating shaft 20 that protrudes outside the wind tunnel 94 includes, in order from the wind tunnel 94, a first rotating torque applying means 40, a second rotating torque applying means 50, and a balance. A state presentation means 60 is attached.
まず、第1の回転トルク付与手段40について説明する。第1の回転トルク付与手段40は、回転軸20に対して回転自在に固定されるリング状の軸固定手段42と、軸固定手段42の外周側面の対向する位置に、回転軸20に直交する形で固定される一対の軸44,44と、軸44に嵌合されるリング状の錘48を含んで構成される。本実施形態では、回転台座10の偏心位置に取り付けられる翼80に作用する重力による回転トルクが回転軸20に作用する。これに対し、軸44に固定された錘48の重力による回転トルクが翼80の重力による回転トルクを打ち消すように作用する。 First, the first rotational torque applying means 40 will be described. The first rotational torque applying means 40 is orthogonal to the rotary shaft 20 at a position opposite to the outer peripheral side surface of the shaft fixing means 42 and a ring-shaped shaft fixing means 42 that is rotatably fixed to the rotary shaft 20. A pair of shafts 44, 44 fixed in shape and a ring-shaped weight 48 fitted to the shaft 44 are included. In the present embodiment, the rotational torque due to gravity acting on the blade 80 attached to the eccentric position of the rotary base 10 acts on the rotary shaft 20. On the other hand, the rotational torque due to the gravity of the weight 48 fixed to the shaft 44 acts so as to cancel the rotational torque due to the gravity of the blade 80.
ここで、錘48は、軸44の軸方向に摺動させることで、その固定位置を自由に変更することができるようになっており、これにより、回転軸20に付与する回転トルクの大きさを調節することができるようになっている。また、軸固定手段42は、回転軸20の軸回りに回転させることで、その軸回りの固定位置を自由に変更することができるように構成されている。 Here, the weight 48 can be freely changed in its fixed position by sliding in the axial direction of the shaft 44, whereby the magnitude of the rotational torque applied to the rotary shaft 20. Can be adjusted. Further, the shaft fixing means 42 is configured to be able to freely change the fixing position around the axis by rotating around the axis of the rotary shaft 20.
次に、第2の回転トルク付与手段50について説明する。第2の回転トルク付与手段50は、回転軸20に固定される円柱状の軸固定手段52と、軸固定手段52の外周側面の対向する位置にその軸中心を一致する形で固定される一対の軸54,54と、軸54に嵌合されるリング状の錘58を含んで構成される。 Next, the second rotational torque applying means 50 will be described. The second rotational torque applying means 50 is a pair of cylinder-shaped shaft fixing means 52 fixed to the rotating shaft 20 and a pair of shafts fixed so that the center of the shaft coincides with the opposing position of the outer peripheral side surface of the shaft fixing means 52. , And a ring-shaped weight 58 fitted to the shaft 54.
本実施形態においては、風洞94内の回転台座10に固定された翼80に向けて鉛直方向に空気が流下すると、図5に示すように、翼80に対して空気力Aが作用する。この空気力Aの鉛直方向成分が抗力Dとして観念され、その水平方向成分が揚力Lとして観念される。そして、本実施形態においては、先述したように、回転台座10の偏心位置に翼80が取り付けられるため、翼80に作用する空気力Aによる回転トルクが回転軸20に作用する。これに対し、軸54に固定された錘58の重力による回転トルクが翼80に作用する空気力Aによる回転トルクを打ち消すように作用する。 In the present embodiment, when the air flows vertically toward the wing 80 fixed to the rotating base 10 in the wind tunnel 94, an aerodynamic force A acts on the wing 80 as shown in FIG. The vertical component of the aerodynamic force A is considered as the drag D, and the horizontal component is considered as the lift L. In the present embodiment, as described above, the wing 80 is attached to the eccentric position of the rotary base 10, so that the rotational torque due to the aerodynamic force A acting on the wing 80 acts on the rotary shaft 20. On the other hand, the rotational torque due to the gravity of the weight 58 fixed to the shaft 54 acts to cancel the rotational torque due to the aerodynamic force A acting on the blade 80.
ここで、錘58は、軸54の軸方向に摺動させることで、その固定位置を自由に変更することができるようになっており、これにより、回転軸20に付与する回転トルクの大きさを調節することができるようになっている。また、軸固定手段52は、回転軸20の軸回りに回転させることで、その軸回りの固定位置を自由に変更することができるようになっている。さらに、軸54の軸方向には、回転軸20の中心軸と錘58の重心との離間距離を読み取るための目盛56が刻まれている。 Here, the weight 58 can be freely changed in its fixed position by sliding in the axial direction of the shaft 54, whereby the magnitude of the rotational torque applied to the rotary shaft 20. Can be adjusted. Further, the shaft fixing means 52 can rotate freely around the axis of the rotary shaft 20 to freely change the fixed position around the axis. Further, in the axial direction of the shaft 54, a scale 56 for reading a separation distance between the central axis of the rotating shaft 20 and the center of gravity of the weight 58 is engraved.
次に、バランス状態提示手段60について説明する。バランス状態提示手段60は、回転軸20に対して回転自在に嵌合される摩擦抵抗の小さい軸受62と、軸受62の外周面に固定される紐64と、紐64の端に固定される錘66と、回転軸20の端部がその中心に固定される位置合わせ用円板68を含んで構成されている。ここで、摩擦抵抗の小さい軸受62の外周面は、回転軸20の回転に抗して軸周りに回転しないようになっており、軸受62から吊り下げられる紐64の長手方向が、常に、鉛直方向と一致するようになっている。一方、位置合わせ用円板68は、透明材料で形成されており、その表面には、紐64が提示する鉛直方向に対して位置合わせを行うための指標として、図6に示すように、円板の中心を通って直径方向に伸びる基準線Rが表示されている。 Next, the balance state presentation unit 60 will be described. The balance state presentation means 60 includes a bearing 62 having a small frictional resistance that is rotatably fitted to the rotary shaft 20, a string 64 fixed to the outer peripheral surface of the bearing 62, and a weight fixed to the end of the string 64. 66 and an alignment disc 68 in which the end of the rotating shaft 20 is fixed to the center thereof. Here, the outer peripheral surface of the bearing 62 having a small frictional resistance is not rotated around the shaft against the rotation of the rotary shaft 20, and the longitudinal direction of the string 64 suspended from the bearing 62 is always vertical. It matches the direction. On the other hand, the alignment disc 68 is formed of a transparent material, and as shown in FIG. 6, a circle is provided on the surface thereof as an index for performing alignment with respect to the vertical direction presented by the string 64. A reference line R extending in the diameter direction through the center of the plate is displayed.
また、本実施形態においては、図6に示すように、回転軸20の回転台座10に固定される端部に位置合わせ用の突条が形成されている。この突条は、回転軸20の十字方向に形成され、その十字の縦方向が位置合わせ用円板68に表示される基準線Rに平行になるように形成されている。一方、回転台座10の嵌合部19の孔には、回転軸20の位置合わせ用の突条に対応する位置合わせ用の溝が孔の十字方向に形成されている。さらに、第2の回転トルク付与手段50の一対の軸54は、基準線Rの直交方向に平行となるように軸固定手段52に固定される。 Further, in the present embodiment, as shown in FIG. 6, alignment protrusions are formed on the end portions of the rotating shaft 20 fixed to the rotating base 10. The ridges are formed in the cross direction of the rotary shaft 20 so that the vertical direction of the cross is parallel to the reference line R displayed on the alignment disc 68. On the other hand, in the hole of the fitting portion 19 of the rotating base 10, an alignment groove corresponding to the alignment protrusion of the rotating shaft 20 is formed in the cross direction of the hole. Further, the pair of shafts 54 of the second rotational torque applying means 50 are fixed to the shaft fixing means 52 so as to be parallel to the direction orthogonal to the reference line R.
以上、揚抗力計測装置100の構成について説明してきたが、続いて、揚抗力計測装置100を使用した揚抗力の計測方法について説明する。 The configuration of the lift / drag force measuring apparatus 100 has been described above. Next, a method for measuring the lift / drag force using the lift / drag force measuring apparatus 100 will be described.
本実施形態においては、揚抗力計測装置100を使用して揚抗力の計測を行う際、1つの計測対象について最大4回の風洞実験を実施する。各実験では、回転台座10が4種類の異なる基準状態に置かれる。図7(a)〜(d)は、4種類の異なる基準状態を示す。 In the present embodiment, when the lift / drag force is measured using the lift / drag force measuring apparatus 100, a maximum of 4 wind tunnel experiments are performed for one measurement object. In each experiment, the rotating pedestal 10 is placed in four different reference states. FIGS. 7A to 7D show four different reference states.
基準状態(1)とは、図7(a)に示すように、大円盤12の中心から見て鉛直方向上方に小円盤14が位置し、小円盤14に固定された翼80の前縁が鉛直方向上方を向き、小円盤14の中心と大円盤12の中心を通る直線S1(以下、直線S1という)が鉛直方向Vに一致する状態をいう。 In the reference state (1), as shown in FIG. 7A, the small disk 14 is positioned vertically upward as viewed from the center of the large disk 12, and the leading edge of the wing 80 fixed to the small disk 14 is A state in which a straight line S1 that faces upward in the vertical direction and passes through the center of the small disk 14 and the center of the large disk 12 (hereinafter referred to as a straight line S1) coincides with the vertical direction V.
基準状態(2)とは、図7(b)に示すように、大円盤12の中心から見て鉛直方向下方に小円盤14が位置し、小円盤14に固定された翼80の前縁が鉛直方向上方を向き、直線S1が鉛直方向Vに一致する状態をいう。 In the reference state (2), as shown in FIG. 7B, the small disk 14 is positioned vertically downward as viewed from the center of the large disk 12, and the leading edge of the wing 80 fixed to the small disk 14 is It refers to a state in which the vertical direction is upward and the straight line S1 coincides with the vertical direction V.
基準状態(3)とは、図7(c)に示すように、大円盤12の中心から見て紙面左側に小円盤14が位置し、小円盤14に固定された翼80の前縁が鉛直方向上方を向き、直線S1が水平方向Hに一致する状態をいう。 In the reference state (3), as shown in FIG. 7C, the small disk 14 is located on the left side of the paper as viewed from the center of the large disk 12, and the leading edge of the wing 80 fixed to the small disk 14 is vertical. A state in which the straight line S <b> 1 coincides with the horizontal direction H with the direction upward.
基準状態(4)とは、図7(d)に示すように、大円盤12の中心から見て紙面右側に小円盤14が位置し、小円盤14に固定された翼80の前縁が鉛直方向上方を向き、直線S1が水平方向Hに一致する状態をいう。 In the reference state (4), as shown in FIG. 7 (d), the small disk 14 is located on the right side of the paper as viewed from the center of the large disk 12, and the leading edge of the wing 80 fixed to the small disk 14 is vertical. A state in which the straight line S <b> 1 coincides with the horizontal direction H with the direction upward.
続いて、風洞実験の具体的な手順を基準状態ごとに説明する。なお、各実験において、気流の流速および翼80の迎え角の条件は統一する。 Subsequently, specific procedures of the wind tunnel experiment will be described for each reference state. In each experiment, the conditions of the airflow velocity and the angle of attack of the blade 80 are unified.
最初に、回転台座10を基準状態(1)に置く。具体的には、まず、印「1」を基準として翼80が決められた迎え角θを取るように小円盤14を回転台座10に嵌合する。その後、翼80を取り付けた回転台座10を風洞94の中に差し入れ、回転台座10の裏面に回転軸20の端部を嵌合して固定する。このとき、図8(a)に示すように、回転台座10の直線S1と位置合わせ用円板68の基準線Rが平行になるように、回転台座10の位置合わせ用の溝に対して回転軸20の位置合わせ用の突条を嵌合する。 First, the rotating pedestal 10 is placed in the reference state (1). Specifically, first, the small disk 14 is fitted to the rotating pedestal 10 so that the blade 80 takes the angle of attack θ determined with reference to the mark “1”. Thereafter, the rotary pedestal 10 to which the blades 80 are attached is inserted into the wind tunnel 94, and the end of the rotary shaft 20 is fitted and fixed to the back surface of the rotary pedestal 10. At this time, as shown in FIG. 8A, the rotation is performed with respect to the alignment groove of the rotation base 10 so that the straight line S1 of the rotation base 10 and the reference line R of the alignment disk 68 are parallel to each other. A protrusion for positioning the shaft 20 is fitted.
続いて、図8(b)に示すように、回転台座10の直線S1と第1の回転トルク付与手段40の軸44の軸方向がほぼ平行になるように軸固定手段42を回転軸20の軸周りに回転させた後、小円盤14と向かい合わない方の軸44に対して錘48を嵌合する。その後、位置合わせ用円板68が任意の角度において手を離したところで静止するようになるまで、図9(a)に示すように、軸固定手段42(軸44)の回転軸20の軸周りの角度と錘48の軸44の軸方向の位置を微調整する。換言すると、軸44の軸方向と、回転台座10の回転中心と回転台座10の重心を結ぶ直線とが平行になって、錘48の重力による回転トルクと翼80の重力による回転トルクがバランスするようになるまで、軸固定手段42(軸44)の角度と錘48の位置を試行錯誤的に微調整する。(以下、基準状態(2)〜(3)について同様。) Subsequently, as shown in FIG. 8B, the shaft fixing means 42 of the rotary shaft 20 is set so that the straight line S1 of the rotary base 10 and the axial direction of the shaft 44 of the first rotational torque applying means 40 are substantially parallel. After rotating around the axis, the weight 48 is fitted to the axis 44 that does not face the small disk 14. Thereafter, until the alignment disc 68 comes to rest when the hand is released at an arbitrary angle, as shown in FIG. 9A, the shaft fixing means 42 (the shaft 44) is rotated around the axis of the rotary shaft 20. And the position in the axial direction of the shaft 44 of the weight 48 are finely adjusted. In other words, the axial direction of the shaft 44 and the straight line connecting the rotation center of the rotary pedestal 10 and the center of gravity of the rotary pedestal 10 are parallel, and the rotational torque due to the gravity of the weight 48 and the rotational torque due to the gravity of the blade 80 are balanced. Until this happens, the angle of the shaft fixing means 42 (the shaft 44) and the position of the weight 48 are finely adjusted by trial and error. (The same applies to the reference states (2) to (3) below.)
最後に、図9(b)に示すように、位置合わせ用円板68の基準線Rと紐64が提示する鉛直方向を一致させる。その結果、回転台座10は、図10(a)に示す基準状態(1)に置かれる。 Finally, as shown in FIG. 9B, the reference line R of the alignment disc 68 and the vertical direction presented by the string 64 are matched. As a result, the rotating pedestal 10 is placed in the reference state (1) shown in FIG.
回転台座10を基準状態(1)に置いて、位置合わせ用円板68の基準線Rと紐64が提示する鉛直方向がずれないように手を軽く添えた状態で、風洞94内に気流を導入すると、図10(b)に示すように、回転台座10に取り付けられた翼80に空気力が作用し、この空気力による回転トルクT1が回転軸20に作用して回転軸20を紙面時計回りに回転させようとする。 With the rotary pedestal 10 placed in the reference state (1), airflow is generated in the wind tunnel 94 with the hand gently attached so that the reference line R of the alignment disc 68 and the vertical direction presented by the string 64 do not shift. When introduced, as shown in FIG. 10B, an aerodynamic force acts on the wings 80 attached to the rotating base 10, and a rotational torque T1 due to this aerodynamic force acts on the rotating shaft 20 to cause the rotating shaft 20 to move to the sheet clock. Try to rotate around.
これを受けて、紙面左側の軸54に対して錘58を嵌合した後、手を離しても基準状態(1)が保持されるようになるまで、錘58の軸54の軸方向の位置を試行錯誤的に微調整する。その結果、図10(c)に示すように、手を離しても基準状態(1)が保持されるようになった時点で、軸54に刻まれた目盛56を読み取って、回転軸20の中心軸と錘58の重心との離間距離d1を取得する。 In response, after the weight 58 is fitted to the shaft 54 on the left side of the drawing, the axial position of the shaft 54 of the weight 58 is maintained until the reference state (1) is maintained even if the hand is released. Make fine adjustments on a trial and error basis. As a result, as shown in FIG. 10C, when the reference state (1) is maintained even if the hand is released, the scale 56 carved on the shaft 54 is read, and the rotation shaft 20 A distance d1 between the center axis and the center of gravity of the weight 58 is acquired.
続いて、回転台座10を基準状態(2)に置く。具体的には、まず、翼80が印「2」を基準として決められた迎え角θを取るように小円盤14を回転台座10に嵌合する。その後、翼80を取り付けた回転台座10を風洞94の中に差し入れ、回転台座10の裏面に回転軸20の端部を嵌合して固定する。 Subsequently, the rotating pedestal 10 is placed in the reference state (2). Specifically, first, the small disk 14 is fitted to the rotating pedestal 10 so that the wing 80 takes the angle of attack θ determined with reference to the mark “2”. Thereafter, the rotary pedestal 10 to which the blades 80 are attached is inserted into the wind tunnel 94, and the end of the rotary shaft 20 is fitted and fixed to the back surface of the rotary pedestal 10.
このとき、基準状態(1)のときと同様に、回転台座10の直線S1と位置合わせ用円板68の基準線Rが平行になるように、回転台座10の位置合わせ用の溝に対して回転軸20の位置合わせ用の突条を嵌合するとともに、回転台座10の直線S1と第1の回転トルク付与手段40の軸44の軸方向がほぼ平行になるように軸固定手段42を回転軸20の軸周りに回転させた後、小円盤14と向かい合わない方の軸44に対して錘48を嵌合する。 At this time, as in the reference state (1), the alignment groove of the rotary pedestal 10 is aligned with the straight line S1 of the rotary pedestal 10 and the reference line R of the alignment disc 68 in parallel. The shaft fixing means 42 is rotated so that the alignment protrusion of the rotary shaft 20 is fitted and the straight line S1 of the rotary base 10 and the axial direction of the shaft 44 of the first rotational torque applying means 40 are substantially parallel. After rotating around the axis of the axis 20, the weight 48 is fitted to the axis 44 that does not face the small disk 14.
その後、位置合わせ用円板68が任意の角度において手を離したところで静止するようになるまで、軸固定手段42(軸44)の回転軸20の軸周りの位置および錘48の軸44の軸方向の位置を試行錯誤的に微調整した後、位置合わせ用円板68の基準線Rと紐64が提示する鉛直方向を一致させる。その結果、回転台座10は、図11(a)に示す基準状態(2)に置かれる。 Thereafter, the position of the shaft fixing means 42 (the shaft 44) around the axis of the rotary shaft 20 and the axis of the shaft 44 of the weight 48 until the positioning disc 68 comes to rest when the hand is released at an arbitrary angle. After finely adjusting the position of the direction by trial and error, the reference line R of the alignment disc 68 and the vertical direction presented by the string 64 are matched. As a result, the rotating pedestal 10 is placed in the reference state (2) shown in FIG.
回転台座10を基準状態(2)に置いて、位置合わせ用円板68の基準線Rと紐64が提示する鉛直方向がずれないように手を軽く添えた状態で、風洞94内に気流を導入すると、図11(b)に示すように、回転台座10に取り付けられた翼80に空気力が作用し、この空気力による回転トルクT2が回転軸20に作用して回転軸20を紙面反時計回りに回転させようとする。 With the rotary pedestal 10 placed in the reference state (2), airflow is passed into the wind tunnel 94 with the hand gently attached so that the reference line R of the alignment disc 68 and the vertical direction presented by the string 64 do not deviate. When introduced, as shown in FIG. 11B, an aerodynamic force acts on the wings 80 attached to the rotating base 10, and a rotational torque T2 due to this aerodynamic force acts on the rotating shaft 20 to cause the rotating shaft 20 to move away from the page. Try to rotate clockwise.
これを受けて、紙面左側の軸54に対して錘58を嵌合した後、手を離しても基準状態(2)が保持されるようになるまで、錘58の軸54の軸方向の位置を試行錯誤的に微調整する。その結果、図11(c)に示すように、手を離しても基準状態(2)が保持されるようになった時点で、軸54に刻まれた目盛56を読み取って、回転軸20の中心軸と錘58の重心との離間距離d2を取得する。 In response to this, after the weight 58 is fitted to the shaft 54 on the left side of the page, the axial position of the shaft 58 of the weight 58 is maintained until the reference state (2) is maintained even if the hand is released. Make fine adjustments on a trial and error basis. As a result, as shown in FIG. 11C, when the reference state (2) is maintained even when the hand is released, the scale 56 carved on the shaft 54 is read, and the rotation shaft 20 A distance d2 between the center axis and the center of gravity of the weight 58 is acquired.
続いて、回転台座10を基準状態(3)に置く。具体的には、まず、翼80が印「3」を基準として決められた迎え角θを取るように小円盤14を回転台座10に嵌合する。その後、翼80を取り付けた回転台座10を風洞94の中に差し入れ、回転台座10の裏面に回転軸20の端部を嵌合して固定する。このとき、図12(a)に示すように、回転台座10の中心を通って直線S1と直交する直線S2(以下、直線S2という)と位置合わせ用円板68の基準線Rが平行になるように、回転台座10の位置合わせ用の溝に対して回転軸20の位置合わせ用の突条を嵌合する。 Subsequently, the rotary base 10 is placed in the reference state (3). Specifically, first, the small disk 14 is fitted to the rotating pedestal 10 so that the wing 80 takes an angle of attack θ determined with reference to the mark “3”. Thereafter, the rotary pedestal 10 to which the blades 80 are attached is inserted into the wind tunnel 94, and the end of the rotary shaft 20 is fitted and fixed to the back surface of the rotary pedestal 10. At this time, as shown in FIG. 12A, a straight line S2 (hereinafter referred to as a straight line S2) that passes through the center of the rotating base 10 and is orthogonal to the straight line S1 is parallel to the reference line R of the alignment disc 68. As described above, the alignment protrusion of the rotary shaft 20 is fitted into the alignment groove of the rotary base 10.
続いて、図12(b)に示すように、回転台座10の直線S1と第1の回転トルク付与手段40の軸44の軸方向がほぼ平行になるように軸固定手段42を回転軸20の軸周りに回転させた後、小円盤14と向かい合わない方の軸44に対して錘48を嵌合する。その後、位置合わせ用円板68が任意の角度において手を離したところで静止するようになるまで、図13(a)に示すように、軸固定手段42(軸44)の回転軸20の軸周りの角度と錘48の軸44の軸方向の位置を微調整する。 Subsequently, as shown in FIG. 12B, the shaft fixing means 42 of the rotary shaft 20 is set so that the straight line S1 of the rotary base 10 and the axial direction of the shaft 44 of the first rotational torque applying means 40 are substantially parallel. After rotating around the axis, the weight 48 is fitted to the axis 44 that does not face the small disk 14. Thereafter, until the alignment disc 68 comes to rest when the hand is released at an arbitrary angle, as shown in FIG. 13A, the shaft fixing means 42 (the shaft 44) is rotated around the axis of the rotary shaft 20 as shown in FIG. And the position in the axial direction of the shaft 44 of the weight 48 are finely adjusted.
最後に、図13(b)に示すように、位置合わせ用円板68の基準線Rと紐64が提示する鉛直方向を一致させる。その結果、回転台座10は、図14(a)に示す基準状態(3)に置かれる。 Finally, as shown in FIG. 13B, the reference line R of the alignment disc 68 and the vertical direction presented by the string 64 are matched. As a result, the rotating pedestal 10 is placed in the reference state (3) shown in FIG.
回転台座10を基準状態(3)に置いて、位置合わせ用円板68の基準線Rと紐64が提示する鉛直方向がずれないように手を軽く添えた状態で、風洞94内に気流を導入すると、図14(b)に示すように、回転台座10に取り付けられた翼80に空気力が作用し、この空気力による回転トルクT3が回転軸20に作用して回転軸20を紙面反時計回りに回転させようとする。 With the rotary pedestal 10 placed in the reference state (3), airflow is passed into the wind tunnel 94 with the hand gently attached so that the reference line R of the alignment disc 68 and the vertical direction presented by the string 64 do not deviate. When introduced, as shown in FIG. 14B, an aerodynamic force acts on the wings 80 attached to the rotary base 10, and the rotational torque T3 due to this aerodynamic force acts on the rotary shaft 20 to cause the rotary shaft 20 to move away from the paper surface. Try to rotate clockwise.
これを受けて、紙面左側の軸54に対して錘58を嵌合した後、手を離しても基準状態(3)が保持されるようになるまで、錘58の軸54の軸方向の位置を試行錯誤的に微調整する。その結果、図14(c)に示すように、手を離しても基準状態(3)が保持されるようになった時点で、軸54に刻まれた目盛56を読み取って、回転軸20の中心軸と錘58の重心との離間距離d3を取得する。 In response to this, after the weight 58 is fitted to the shaft 54 on the left side of the page, the axial position of the shaft 58 of the weight 58 is maintained until the reference state (3) is maintained even if the hand is released. Make fine adjustments on a trial and error basis. As a result, as shown in FIG. 14C, when the reference state (3) is maintained even when the hand is released, the scale 56 carved on the shaft 54 is read, and the rotation shaft 20 A distance d3 between the center axis and the center of gravity of the weight 58 is acquired.
続いて、回転台座10を基準状態(4)に置く。具体的には、まず、翼80が印「4」を基準として決められた迎え角θを取るように小円盤14を回転台座10に嵌合する。その後、翼80を取り付けた回転台座10を風洞94の中に差し入れ、回転台座10の裏面に回転軸20の端部を嵌合して固定する。このとき、基準状態(3)のときと同様に、回転台座10の直線S2と位置合わせ用円板68の基準線Rが平行になるように、回転台座10の位置合わせ用の溝に対して回転軸20の位置合わせ用の突条を嵌合するとともに、回転台座10の直線S1と第1の回転トルク付与手段40の軸44の軸方向がほぼ平行になるように軸固定手段42を回転軸20の軸周りに回転させた後、小円盤14と向かい合わない方の軸44に対して錘48を嵌合する。 Subsequently, the rotating pedestal 10 is placed in the reference state (4). Specifically, first, the small disk 14 is fitted to the rotary pedestal 10 so that the blade 80 takes an angle of attack θ determined with reference to the mark “4”. Thereafter, the rotary pedestal 10 to which the blades 80 are attached is inserted into the wind tunnel 94, and the end of the rotary shaft 20 is fitted and fixed to the back surface of the rotary pedestal 10. At this time, as in the reference state (3), the alignment groove of the rotary pedestal 10 is aligned with the straight line S2 of the rotary pedestal 10 and the reference line R of the alignment disc 68 in parallel. The shaft fixing means 42 is rotated so that the alignment protrusion of the rotary shaft 20 is fitted and the straight line S1 of the rotary base 10 and the axial direction of the shaft 44 of the first rotational torque applying means 40 are substantially parallel. After rotating around the axis of the axis 20, the weight 48 is fitted to the axis 44 that does not face the small disk 14.
その後、位置合わせ用円板68が任意の角度において手を離したところで静止するようになるまで、軸固定手段42(軸44)の回転軸20の軸周りの位置および錘48の軸44の軸方向の位置を試行錯誤的に微調整した後、位置合わせ用円板68の基準線Rと紐64が提示する鉛直方向を一致させる。その結果、回転台座10は、図15(a)に示す基準状態(4)に置かれる。 Thereafter, the position of the shaft fixing means 42 (the shaft 44) around the axis of the rotary shaft 20 and the axis of the shaft 44 of the weight 48 until the positioning disc 68 comes to rest when the hand is released at an arbitrary angle. After finely adjusting the position of the direction by trial and error, the reference line R of the alignment disc 68 and the vertical direction presented by the string 64 are matched. As a result, the rotary pedestal 10 is placed in the reference state (4) shown in FIG.
回転台座10を基準状態(4)に置いて、位置合わせ用円板68の基準線Rと紐64が提示する鉛直方向がずれないように手を軽く添えた状態で、風洞94内に気流を導入すると、図15(b)に示すように、回転台座10に取り付けられた翼80に空気力が作用し、この空気力による回転トルクT4が回転軸20に作用して回転軸20を紙面時計回りに回転させようとする。 With the rotary pedestal 10 placed in the reference state (4), airflow is passed into the wind tunnel 94 with the hand gently attached so that the reference line R of the alignment disc 68 and the vertical direction presented by the string 64 do not shift. When introduced, as shown in FIG. 15B, an aerodynamic force acts on the wings 80 attached to the rotating base 10, and a rotational torque T4 due to this aerodynamic force acts on the rotating shaft 20 to cause the rotating shaft 20 to move to the sheet clock. Try to rotate around.
これを受けて、紙面左側の軸54に対して錘58を嵌合した後、手を離しても基準状態(4)が保持されるようになるまで、錘58の軸54の軸方向の位置を試行錯誤的に微調整する。その結果、図15(c)に示すように、手を離しても基準状態(4)が保持されるようになった時点で、軸54に刻まれた目盛56を読み取って、回転軸20の中心軸と錘58の重心との離間距離d4を取得する。 In response, after the weight 58 is fitted to the shaft 54 on the left side of the page, the axial position of the shaft 54 of the weight 58 is maintained until the reference state (4) is maintained even if the hand is released. Make fine adjustments on a trial and error basis. As a result, as shown in FIG. 15C, when the reference state (4) is maintained even if the hand is released, the scale 56 carved on the shaft 54 is read, and the rotation shaft 20 A distance d4 between the center axis and the center of gravity of the weight 58 is acquired.
以上、1つの測定対象について最大4回実施される風洞実験の手順について説明してきたが、続いて、上述した風洞実験の結果を用いて揚抗力を算出する手順について説明する。 The procedure of the wind tunnel experiment performed up to four times for one measurement object has been described above. Next, the procedure for calculating the lift / drag force using the result of the wind tunnel experiment described above will be described.
図16は、回転台座10を基準状態(1)〜(4)に置いて気流を鉛直方向Vに流下させたときに、回転台座10に作用する空気力(揚力Lと抗力D)とその作用点を示す。ここで、基準状態(1)〜(4)における揚力Lと抗力Dの関係は、それぞれ、下記式(1)〜(4)で表すことができる。 FIG. 16 shows the aerodynamic forces (lift L and drag D) acting on the rotating pedestal 10 and their actions when the rotating pedestal 10 is placed in the reference states (1) to (4) and the airflow is caused to flow down in the vertical direction V. Indicates a point. Here, the relationship between the lift L and the drag D in the reference states (1) to (4) can be expressed by the following formulas (1) to (4), respectively.
上記式(1)〜(4)において、ηは小円盤14の中心と空気力Aの作用点との水平方向の離間距離を表し、ξは小円盤14の中心と空気力Aの作用点との垂直方向の離間距離を表し、rは大円盤12の中心と小円盤14の中心との離間距離を表し、T1〜T4は、空気力Aが回転軸20にもたらす回転トルクを表す。 In the above formulas (1) to (4), η represents the horizontal distance between the center of the small disk 14 and the point of action of the aerodynamic force A, and ξ represents the center of the small disk 14 and the point of action of the aerodynamic force A. , R represents the distance between the center of the large disk 12 and the center of the small disk 14, and T1 to T4 represent the rotational torque that the aerodynamic force A brings to the rotating shaft 20.
ここで、上記式(1)〜(4)におけるT1〜T4は、回転台座10を基準状態(1)〜(4)に置いて実施した風洞実験で取得された離間距離d1〜d4と、錘58の質量mと、重力加速度gを下記式(5)〜(8)に代入することで求まる。 Here, T1 to T4 in the above formulas (1) to (4) are the separation distances d1 to d4 acquired in the wind tunnel experiment performed with the rotating base 10 placed in the reference state (1) to (4), and the weight It is obtained by substituting the mass m of 58 and the gravitational acceleration g into the following formulas (5) to (8).
本実施形態においては、上記式(1)と(2)からなる連立方程式の解として揚力Lを算出することができ、上記式(3)と(4)からなる連立方程式の解として抗力Dを算出することができる。さらに、上記式(1)、(2)、(3)からなる連立方程式または上記式(1)、(2)、(4)からなる連立方程式の解として、揚力Lおよび抗力Dを算出することができる。さらに加えて、上記式(1)、(3)、(4)からなる連立方程式または上記式(2)、(3)、(4)からなる連立方程式の解として、揚力Lおよび抗力Dを算出することができる。 In the present embodiment, the lift L can be calculated as a solution of the simultaneous equations consisting of the above equations (1) and (2), and the drag D as a solution of the simultaneous equations consisting of the above equations (3) and (4). Can be calculated. Further, the lift L and the drag D are calculated as solutions of the simultaneous equations consisting of the above formulas (1), (2), (3) or the simultaneous equations consisting of the above formulas (1), (2), (4). Can do. In addition, lift L and drag D are calculated as solutions of simultaneous equations consisting of the above equations (1), (3) and (4) or simultaneous equations consisting of the above equations (2), (3) and (4). can do.
つまり、本実施形態においては、揚力Lのみを計測する場合、回転台座10を2つの基準状態(1)および(2)においた2回の風洞実験を行えばよく、抗力Dのみを計測する場合は、回転台座10を2つの基準状態(3)および(4)においた2回の風洞実験を行えばよい。また、揚力Lと抗力Dの両方を計測する場合は、回転台座10を4つの基準状態(1)〜(4)の中から選択されるいずれか3つの基準状態において風洞実験を行えばよい。 That is, in this embodiment, when only the lift L is measured, two wind tunnel experiments may be performed with the rotating base 10 in two reference states (1) and (2), and only the drag D is measured. The two wind tunnel experiments may be performed with the rotating base 10 in two reference states (3) and (4). When both lift L and drag D are measured, the wind tunnel experiment may be performed on any one of the three reference states selected from the four reference states (1) to (4).
以上、説明したように、本実施形態の揚抗力計測装置100によれば、風洞実験において模型に作用する揚力・抗力を電子機器を用いずに計測することができる。 As described above, according to the lift / drag force measuring apparatus 100 of the present embodiment, the lift / drag acting on the model in the wind tunnel experiment can be measured without using an electronic device.
以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、種々の設計変更が可能である。 As mentioned above, although this invention was demonstrated with embodiment, this invention is not limited to embodiment mentioned above, A various design change is possible.
例えば、バランス状態提示手段60の位置合わせ用円板68の表面に表示する位置合わせ用の指標は、上述した基準線Rに限定されるものではなく、紐64が提示する鉛直方向に対する位置合わせを可能にするものであれば、どのような態様の指標であってもよい。図17は、位置合わせ用の指標として分度器の目盛を刻んでなる位置合わせ用円板68を例示する。なお、位置合わせ用円板68は、透明でなくてもよい。 For example, the index for alignment displayed on the surface of the alignment disk 68 of the balance state presentation means 60 is not limited to the reference line R described above, and alignment with respect to the vertical direction presented by the string 64 is performed. As long as it is possible, the indicator of any aspect may be used. FIG. 17 exemplifies a positioning disc 68 in which a scale of a protractor is engraved as a positioning index. The alignment disc 68 may not be transparent.
また、上述した実施形態では、回転軸20および回転台座10の嵌合部19のそれぞれに位置合わせ用の溝および孔を形成する構成を示したが、これに代えて、回転台座10の裏面に直線S1および直線S2を表示した上で、回転台座10の回転軸20周りの固定位置または位置合わせ用円板68の回転軸20周りの固定位置の少なくとも一方を変更自在とする構成を採用してもよい。この場合、位置合わせ用円板68の基準線Rと回転台座10の裏面の直線S1または直線S2が平行になることを目視で確認して、回転台座10または位置合わせ用円板68の回転軸20周りの固定位置を決定する。 Further, in the above-described embodiment, the configuration in which the alignment groove and the hole are formed in each of the rotating shaft 20 and the fitting portion 19 of the rotating pedestal 10 is shown, but instead, on the back surface of the rotating pedestal 10. Adopting a configuration in which at least one of the fixed position around the rotation axis 20 of the rotating base 10 and the fixed position around the rotation axis 20 of the alignment disc 68 can be changed after displaying the straight line S1 and the straight line S2. Also good. In this case, it is visually confirmed that the reference line R of the alignment disc 68 and the straight line S1 or the straight line S2 of the back surface of the rotary pedestal 10 are parallel, and the rotation axis of the rotary pedestal 10 or the alignment disc 68 is confirmed. A fixed position around 20 is determined.
また、上述した実施形態では、揚抗力計測装置100を縦型風洞装置に取り付ける例を示したが、本実施形態の揚抗力計測装置100は、鉛直方向の流れの風洞のみならず水平方向の流れの風洞においても有効に機能することはいうまでもない。その他、当業者が推考しうるその他の実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。 In the above-described embodiment, an example in which the lift / drag force measuring device 100 is attached to the vertical wind tunnel device has been described. However, the lift / drag force measuring device 100 according to the present embodiment is not limited to a vertical flow wind tunnel but also a horizontal flow. Needless to say, it also functions effectively in the wind tunnel. In addition, within the scope of other embodiments that can be considered by those skilled in the art, the present invention is included in the scope of the present invention as long as the operations and effects of the present invention are exhibited.
以下、本発明の揚抗力計測装置について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。 Hereinafter, although the lift / drag force measuring apparatus of the present invention will be described more specifically with reference to examples, the present invention is not limited to the examples described later.
図2に示したのと同様の揚抗力計測装置を作製し、作製した揚抗力計測装置を鉛直円筒吸い込み型の風洞内にセットした。そして、円盤台座を上述した基準状態(1)、(2)、(3)に置いた風洞実験を行い、実験結果に基づいて揚力Lおよび抗力Dを計算により求めた。なお、風洞内の気流の最大流速を7.3m/sとし、4種類の迎え角(5°、10°、15°、20°)を設定して実験を行った。 A lift / drag force measurement device similar to that shown in FIG. 2 was produced, and the produced lift / drag force measurement device was set in a vertical cylindrical suction type wind tunnel. And the wind tunnel experiment which put the disk pedestal in the reference | standard state (1) mentioned above, (2), (3) was conducted, and the lift L and the drag D were calculated | required by calculation based on the experimental result. The experiment was conducted by setting the maximum flow velocity of the airflow in the wind tunnel to 7.3 m / s and setting four types of angles of attack (5 °, 10 °, 15 °, and 20 °).
実験で得られた揚力Lおよび抗力Dの計算値を、それぞれ、下記式(9)および(10)に代入して揚力係数CLおよび抗力係数CDを求めた。なお、下記式(9)および(10)において、ρは空気の比重を表し、qは空気の流速を表し、Sは実験に使用した翼の翼面積を表す。 The calculated value of the lift L and drag D obtained in experiments, respectively were determined lift coefficient C L and the drag coefficient C D is substituted into the following equation (9) and (10). In the following formulas (9) and (10), ρ represents the specific gravity of air, q represents the flow velocity of air, and S represents the blade area of the blade used in the experiment.
図18は、実験結果を示すグラフである。図18において、■は揚力係数CLの実験値を示し、●は抗力係数CDの実験値を示し、△はポテンシャル理論で求めた揚力係数CLの理論値を示す。図18に示すように、揚力係数CLの実験値と理論値が良く一致したことから、本発明の揚抗力計測装置の実用性を確認することができた。 FIG. 18 is a graph showing experimental results. In FIG. 18, ■ indicates the experimental value of the lift coefficient C L , ● indicates the experimental value of the drag coefficient C D , and Δ indicates the theoretical value of the lift coefficient C L obtained by the potential theory. As shown in FIG. 18, since the experimental values and the theoretical value of the lift coefficient C L matches well, it was possible to confirm the utility of lift and drag measurement device of the present invention.
10…回転台座、12…大円盤、13…開口部、14…小円盤、16…突起、17…印、18…目盛、19…嵌合部、20…回転軸、30…回転軸支持手段、40…第1の回転トルク付与手段、42…軸固定手段、44…軸、48…錘、50…第2の回転トルク付与手段、52…軸固定手段、54…軸、56…目盛、58…錘、60…バランス状態提示手段、62…軸受、64…紐、66…錘、68…位置合わせ用円板、80…翼、82a,82b…孔、92…第1の整流部、93…縮流部、94…風洞、95…第2の整流部、97…吸気ファン、98…台座、100…揚抗力計測装置、200…縦型風洞装置 DESCRIPTION OF SYMBOLS 10 ... Rotation base, 12 ... Large disk, 13 ... Opening part, 14 ... Small disk, 16 ... Protrusion, 17 ... Mark, 18 ... Scale, 19 ... Fitting part, 20 ... Rotating shaft, 30 ... Rotating shaft support means, DESCRIPTION OF SYMBOLS 40 ... 1st rotational torque provision means, 42 ... Shaft fixing means, 44 ... Shaft, 48 ... Weight, 50 ... 2nd rotational torque provision means, 52 ... Shaft fixing means, 54 ... Shaft, 56 ... Scale, 58 ... Weight: 60 ... Balance state presentation means, 62: Bearing, 64 ... String, 66 ... Weight, 68 ... Positioning disc, 80 ... Wings, 82a, 82b ... Hole, 92 ... First rectification unit, 93 ... Shrinkage Flow part, 94 ... wind tunnel, 95 ... second rectification part, 97 ... intake fan, 98 ... pedestal, 100 ... lift force measurement apparatus, 200 ... vertical wind tunnel apparatus
Claims (4)
大円盤に形成される開口部に模型を固定するための小円盤を着脱自在に嵌合してなる回転台座と、
前記回転台座の裏面の中心に固定される回転軸と、
風洞の壁面に固定され前記回転軸を軸支する回転軸支持手段と、
模型に作用する重力が前記回転軸に付与する回転トルクとバランスする回転トルクを該回転軸に付与するための第1の回転トルク付与手段と、
模型に作用する揚抗力が前記回転軸に付与する回転トルクとバランスする回転トルクを該回転軸に付与するための第2の回転トルク付与手段と、
前記回転トルクのバランス状態を提示するためのバランス状態提示手段と、
を含む、
揚抗力計測装置。 A lift / drag force measuring device for measuring the lift / drag force acting on a model in a wind tunnel,
A rotating pedestal formed by detachably fitting a small disk for fixing the model to an opening formed in the large disk;
A rotating shaft fixed to the center of the back surface of the rotating pedestal;
A rotating shaft support means fixed to the wall surface of the wind tunnel and supporting the rotating shaft;
First rotating torque applying means for applying to the rotating shaft a rotating torque that balances with the rotating torque applied to the rotating shaft by gravity acting on the model;
Second rotational torque applying means for applying to the rotating shaft a rotational torque that balances with the rotational torque applied to the rotating shaft by a lifting force acting on the model;
A balance state presentation means for presenting a balance state of the rotational torque;
including,
Lift / drag force measuring device.
前記回転軸に対して回転自在に固定される軸固定手段と、
前記軸固定手段の対向する位置に前記回転軸に直交して固定される一対の第1の軸と、
前記第1の軸に対して軸方向の固定位置を変更自在に固定される第1の錘と、
を含み、
前記第2の回転トルク付与手段は、
前記回転軸に対して固定される軸固定手段と、
前記軸固定手段の対向する位置に前記回転軸に直交して固定される一対の第2の軸と、
前記第2の軸に対して軸方向の固定位置を変更自在に固定される第2の錘と、
を含む、
請求項1に記載の揚抗力計測装置。 The first rotational torque applying means includes
Shaft fixing means fixed rotatably with respect to the rotating shaft;
A pair of first shafts fixed orthogonally to the rotation shaft at opposite positions of the shaft fixing means;
A first weight fixed so as to change an axial fixing position relative to the first axis;
Including
The second rotational torque applying means is
Shaft fixing means fixed to the rotating shaft;
A pair of second shafts fixed at right angles to the rotation shaft at opposite positions of the shaft fixing means;
A second weight fixed so as to be freely changeable in an axial fixing position with respect to the second axis;
including,
The lift / drag force measuring device according to claim 1.
前記回転軸に対して回転自在に嵌合される軸受と、
一方の端が前記軸受に接続され他方の端に錘が接続される紐と、
前記回転軸に固定される円板であって、前記紐が提示する鉛直方向に対する位置合わせを行うための指標が表示される位置合わせ用円板と、
を含む、
請求項1または2に記載の揚抗力計測装置。 The balance state presentation means includes
A bearing that is rotatably fitted to the rotating shaft;
A string having one end connected to the bearing and a weight connected to the other end;
A disc fixed to the rotating shaft, and an alignment disc on which an index for performing alignment with respect to the vertical direction presented by the string is displayed;
including,
The lift / drag force measuring device according to claim 1.
請求項1〜3のいずれか一項に記載の揚抗力計測装置。
The opening formed in the large disk is formed in a tapered shape so that its diameter gradually increases from the front surface to the back surface of the large disk, and a scale indicating an angle over the entire circumference of the edge of the opening. Engraved,
The lift / drag force measuring device according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015158637A JP6558634B2 (en) | 2015-08-11 | 2015-08-11 | Lift / drag force measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015158637A JP6558634B2 (en) | 2015-08-11 | 2015-08-11 | Lift / drag force measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017037005A true JP2017037005A (en) | 2017-02-16 |
JP6558634B2 JP6558634B2 (en) | 2019-08-14 |
Family
ID=58048276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015158637A Active JP6558634B2 (en) | 2015-08-11 | 2015-08-11 | Lift / drag force measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6558634B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108444626A (en) * | 2018-06-26 | 2018-08-24 | 中电科芜湖钻石飞机制造有限公司 | The measuring device of vehicle rudder hinge moment |
CN110160739A (en) * | 2019-03-25 | 2019-08-23 | 北京机电工程研究所 | High-frequency vibration unsteady aerodynamic force generation device |
CN110667883A (en) * | 2019-08-27 | 2020-01-10 | 广东工业大学 | Simple method for searching lift center of fixed-wing unmanned aerial vehicle |
CN116465592A (en) * | 2023-04-10 | 2023-07-21 | 武汉理工大学 | Single-rotor unmanned aerial vehicle pneumatic characteristic testing device and method |
CN116625628A (en) * | 2023-07-25 | 2023-08-22 | 中国航空工业集团公司沈阳空气动力研究所 | Two-degree-of-freedom movement measurement mechanism and method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5749833A (en) * | 1980-09-09 | 1982-03-24 | Natl Aerospace Lab | Eccentric fluid joint |
JPS6353671U (en) * | 1986-09-27 | 1988-04-11 | ||
US5056361A (en) * | 1990-09-18 | 1991-10-15 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Dual strain gage balance system for measuring light loads |
JPH0972822A (en) * | 1995-09-07 | 1997-03-18 | Mitsubishi Heavy Ind Ltd | Wind tunnel testing apparatus |
JPH09210839A (en) * | 1996-01-30 | 1997-08-15 | Mitsubishi Heavy Ind Ltd | Testing apparatus for structure in wind tunnel |
JPH10300628A (en) * | 1997-04-28 | 1998-11-13 | Mitsubishi Heavy Ind Ltd | Turn table device for testing wind tunnel |
JP2011122992A (en) * | 2009-12-14 | 2011-06-23 | Ikutoku Gakuen | Vertical wind tunnel device |
-
2015
- 2015-08-11 JP JP2015158637A patent/JP6558634B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5749833A (en) * | 1980-09-09 | 1982-03-24 | Natl Aerospace Lab | Eccentric fluid joint |
JPS6353671U (en) * | 1986-09-27 | 1988-04-11 | ||
US5056361A (en) * | 1990-09-18 | 1991-10-15 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Dual strain gage balance system for measuring light loads |
JPH0972822A (en) * | 1995-09-07 | 1997-03-18 | Mitsubishi Heavy Ind Ltd | Wind tunnel testing apparatus |
JPH09210839A (en) * | 1996-01-30 | 1997-08-15 | Mitsubishi Heavy Ind Ltd | Testing apparatus for structure in wind tunnel |
JPH10300628A (en) * | 1997-04-28 | 1998-11-13 | Mitsubishi Heavy Ind Ltd | Turn table device for testing wind tunnel |
JP2011122992A (en) * | 2009-12-14 | 2011-06-23 | Ikutoku Gakuen | Vertical wind tunnel device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108444626A (en) * | 2018-06-26 | 2018-08-24 | 中电科芜湖钻石飞机制造有限公司 | The measuring device of vehicle rudder hinge moment |
CN108444626B (en) * | 2018-06-26 | 2023-08-11 | 中电科芜湖钻石飞机制造有限公司 | Measuring device for aircraft control surface hinge moment |
CN110160739A (en) * | 2019-03-25 | 2019-08-23 | 北京机电工程研究所 | High-frequency vibration unsteady aerodynamic force generation device |
CN110667883A (en) * | 2019-08-27 | 2020-01-10 | 广东工业大学 | Simple method for searching lift center of fixed-wing unmanned aerial vehicle |
CN110667883B (en) * | 2019-08-27 | 2022-08-30 | 广东工业大学 | Simple method for searching lift center of fixed-wing unmanned aerial vehicle |
CN116465592A (en) * | 2023-04-10 | 2023-07-21 | 武汉理工大学 | Single-rotor unmanned aerial vehicle pneumatic characteristic testing device and method |
CN116465592B (en) * | 2023-04-10 | 2024-02-06 | 武汉理工大学 | A device and method for testing aerodynamic characteristics of a single-rotor unmanned aerial vehicle |
CN116625628A (en) * | 2023-07-25 | 2023-08-22 | 中国航空工业集团公司沈阳空气动力研究所 | Two-degree-of-freedom movement measurement mechanism and method |
Also Published As
Publication number | Publication date |
---|---|
JP6558634B2 (en) | 2019-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6558634B2 (en) | Lift / drag force measuring device | |
CN103971564B (en) | A kind of property of gyroscope apparatus for demonstrating | |
CN103323625B (en) | Error calibration compensation method of accelerometers in MEMS-IMU under dynamic environment | |
KR200456891Y1 (en) | Model airplane wing airflow flow monitoring device | |
US2170824A (en) | Propeller protractor | |
JP2013050417A5 (en) | Weather information providing apparatus, weather information providing system, and weather information providing method | |
CN104792306A (en) | Inclination angle measuring method | |
CN204666139U (en) | The level meter that can take measurement of an angle | |
JP5816900B2 (en) | Gyro characteristic measurement method using 2-axis orthogonal double turntable | |
RU2010124610A (en) | GRAVIMETRIC DEVICE NOT DEPENDING ON ORIENTATION | |
CN202994823U (en) | A simple wind direction gauge | |
TWI490018B (en) | Adjusting device for calibrating center of gravity of remote control aircraft | |
RU161802U1 (en) | DEVICE FOR DEMONSTRATION AND RESEARCH OF GYROSCOPIC PHENOMENA | |
CN106379564B (en) | Tri-axis micro-interference torque motion simulating device for ground simulation of space vehicles | |
CN203981703U (en) | A kind of vertical accelerometer | |
CN207407789U (en) | A kind of rotational structure of measurable angle | |
CN102565455A (en) | Wind regime measurement device and application method thereof | |
JP3189250U (en) | Wind direction and anemometer | |
CN202244046U (en) | Device for keeping postures of underwater instrument | |
CN106739681A (en) | A kind of protractor with ruler | |
CN205541570U (en) | Inertia and theorem of angular momentum's presentation device | |
CN108414144A (en) | A kind of propeller statical equilibrium detection device | |
CN103996328B (en) | Vehicle corner balance testing device and testing method | |
CN208239018U (en) | A kind of propeller statical equilibrium detection device | |
CN205049141U (en) | Can measure chi utensil of inclined plane slope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180807 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20180807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180808 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190704 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6558634 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |