[go: up one dir, main page]

JP2017014556A - Martensitic stainless steel excellent in precipitation hardening performance - Google Patents

Martensitic stainless steel excellent in precipitation hardening performance Download PDF

Info

Publication number
JP2017014556A
JP2017014556A JP2015130498A JP2015130498A JP2017014556A JP 2017014556 A JP2017014556 A JP 2017014556A JP 2015130498 A JP2015130498 A JP 2015130498A JP 2015130498 A JP2015130498 A JP 2015130498A JP 2017014556 A JP2017014556 A JP 2017014556A
Authority
JP
Japan
Prior art keywords
less
formula
stainless steel
steel
precipitation hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015130498A
Other languages
Japanese (ja)
Other versions
JP6501652B2 (en
Inventor
孝 細田
Takashi Hosoda
孝 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2015130498A priority Critical patent/JP6501652B2/en
Publication of JP2017014556A publication Critical patent/JP2017014556A/en
Application granted granted Critical
Publication of JP6501652B2 publication Critical patent/JP6501652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a martensitic steel having relatively cheap price, high hardness, high toughness and excellent corrosion resistance without using a tramp element inhibiting recycling property.SOLUTION: There is provided a martensitic steel containing, by mass%, C:0.01 to 0.10%, Si:0.30 to 2.00%, Mn:0.01 to 1.00%, P:0.040% or less, S:0.030% or less, Ni:3.0 to 8.0%, Cr:12.0 to 20.0%, Mo:0.20 to 0.80%, Cu:0.50% or less, Ti:0.30 to 2.50%, Nb:0.01 to 2.00%, N:0.0500% or less and the balance Fe with inevitable impurities, satisfying the formula 1:[Cr]+[Mo]+[Nb]+[Ti]+[Si]+[Ni]-26([C]+[N])-10.3≥10.0 and the formula 2:[Cr]+1.5[Si]+[Mo]+0.5[Nb]+2[Ti]-0.5[Ni]-6.7([C]+[N])≤20.0 and excellent in precipitation hardening performance.SELECTED DRAWING: None

Description

本願の発明は、自動車の主要装置であるエンジンの動力を伝えるために変速機と差動歯車とをつなぐ回転軸であるプロペラシャフトや自動車の懸架装置との関係でエンジンの動力を左右の車輪に伝達するためのドライブシャフトなど、あるいは圧延用のロールや鍛造用のロールなどの、高硬度、高耐食および高靱性が求められる析出硬化型であるマルテンサイト系ステンレス鋼に関する。   The invention of this application uses the propeller shaft, which is the rotating shaft that connects the transmission and the differential gear to transmit the power of the engine, which is the main device of the automobile, and the engine power to the left and right wheels in relation to the suspension system of the automobile. The present invention relates to a martensitic stainless steel that is a precipitation hardening type that requires high hardness, high corrosion resistance, and high toughness, such as a drive shaft for transmission, a roll for rolling, and a roll for forging.

JISに規定するSUS630およびSUS631のステンレス鋼に代表される析出硬化系ステンレス鋼は、時効熱処理によって良好な耐食性と高硬度でかつ高靱性を有する材料である。しかし、これらの析出硬化系ステンレス鋼には、スクラップを再利用する鉄鋼材料の利点を阻害するトランプエレメントの1つであるCuを析出硬化元素として利用しているものが多く、Cuを利用しない場合であっても、硬さや靱性に悪影響を及ぼすδフェライトやγの量を制御し、さらに耐食性を維持するために、高価なNiやMoを多量に添加したり、あるいは複雑な加工熱処理を行ったりしている。このために、コストアップが避けられない状況である。そこで、トランプエレメントや高価な元素などを多量に添加することなく、また複雑な加工熱処理に頼ることなく、安価で、かつ、高い硬度、高い靱性、優れた耐食性が発揮できる析出硬化系ステンレス鋼が求められている。   Precipitation hardening type stainless steel represented by JIS SUS630 and SUS631 stainless steel defined in JIS is a material having good corrosion resistance, high hardness and high toughness by aging heat treatment. However, many of these precipitation hardening stainless steels use Cu as a precipitation hardening element, which is one of the trump elements that hinder the advantages of steel materials that reuse scrap, and when Cu is not used. Even so, in order to control the amount of δ ferrite and γ that adversely affect hardness and toughness, and to maintain corrosion resistance, a large amount of expensive Ni and Mo are added, or complex thermomechanical heat treatment is performed. doing. For this reason, an increase in cost is inevitable. Therefore, precipitation hardened stainless steel that is inexpensive and can exhibit high hardness, high toughness, and excellent corrosion resistance without adding a large amount of playing elements, expensive elements, etc., and without relying on complicated processing heat treatment. It has been demanded.

ところで、従来の自動車の足回りの部品などに使用される鋼材として、焼入れ焼戻しなどの熱処理を必要とせず、熱間鍛造後、自然空冷のままで、優れた強度および靱性の得られる鋼材が提案されている(例えば、特許文献1参照。)。しかし、この鋼材は、Crを0.8〜2.0%含有しており、耐食性の鋼材ではない。   By the way, as a steel material used for parts of a conventional automobile undercarriage, etc., a steel material that does not require a heat treatment such as quenching and tempering and can be obtained with excellent strength and toughness while being naturally air cooled after hot forging. (For example, refer to Patent Document 1). However, this steel material contains 0.8 to 2.0% of Cr and is not a corrosion-resistant steel material.

本発明と技術分野および用途が同じで、鋼種も析出硬化型マルテンサイト系ステンレス鋼で同じであるが、析出硬化元素としてCuを必須元素とし、さらに被削性に特化するために、Sも積極的に添加している鋼が提案されている(例えば、特許文献2参照。)。しかしながら、一般にCuはトランプエレメントとして含有されるが、特許文献2のCuの含有量では多すぎて、トランプエレメントとしての鋼の再利用が阻害される。一方、Sは多く含有されると、延性、靱性、熱間加工性が劣化するので、積極的に添加することは一般には行われていない。したがって、この特許文献2のものは、高硬度、高耐食性および高靱性を得る目的で積極的に添加するものであって、本願発明のものとは相違するものである。   The technical field and application are the same as in the present invention, and the steel type is the same in precipitation hardening martensitic stainless steel, but Cu is an essential element as a precipitation hardening element, and in order to specialize in machinability, S is also used. Steel that is actively added has been proposed (see, for example, Patent Document 2). However, in general, Cu is contained as a playing element, but the Cu content of Patent Document 2 is too large, and the reuse of steel as a playing element is hindered. On the other hand, when a large amount of S is contained, ductility, toughness, and hot workability deteriorate, so that it is generally not actively added. Therefore, the thing of this patent document 2 is positively added in order to obtain high hardness, high corrosion resistance, and high toughness, and is different from the thing of this invention.

さらに、CuおよびSを積極的に添加して、高強度を有しつつ被削性に優れ、さらに良好な冷間加工性を有する鋼が提案されている(例えば、特許文献3参照。)。しかしながら、このものは、特許文献2と同様に、一般にCuはトランプエレメントとして含有されるが、特許文献3のCuの含有量では多すぎて、トランプエレメントとしての鋼の再利用が阻害される。   Furthermore, steel which has been added with Cu and S positively and has high strength and excellent machinability and further good cold workability has been proposed (for example, see Patent Document 3). However, as in Patent Document 2, this generally contains Cu as a playing element, but the Cu content of Patent Document 3 is too large, and the reuse of steel as a playing element is hindered.

また、CuやTi等の析出硬化元素を添加することなく、成分および調質圧延(圧延率1〜10%)にて材料中のδフェライトおよび残留γ量を制御し、高硬度および高靱性が得られる鋼板の発明が提案されている(例えば、特許文献4参照。)。しかし、このものは目的の特性を得るためには、厳密に工程設計された調質圧延が必須であり、成分(添加元素)と熱処理にて高硬度および高靱性を得る本願の発明とは相違する。   Moreover, without adding precipitation hardening elements such as Cu and Ti, the amount of δ ferrite and residual γ in the material is controlled by ingredients and temper rolling (rolling ratio 1 to 10%), and high hardness and high toughness are achieved. Invention of the steel plate obtained is proposed (for example, refer patent document 4). However, in order to obtain the desired properties, temper rolling with strict process design is indispensable, which is different from the invention of the present application in which high hardness and high toughness are obtained by components (additive elements) and heat treatment. To do.

また、高耐食、高靱性および高硬度が得られる析出硬化型ステンレス鋼の発明が提案されている。(例えば、特許文献5参照。)。しかし、この提案のものは、Cu、高価なCoおよびMoを必須元素としており、再利用性およびコスト面で不利と見られる。   Further, an invention of a precipitation hardening type stainless steel capable of obtaining high corrosion resistance, high toughness and high hardness has been proposed. (For example, refer to Patent Document 5). However, this proposal uses Cu, expensive Co and Mo as essential elements, and is considered disadvantageous in terms of reusability and cost.

特開平7−003385号公報JP 7-003385 A 特開2004−360034号公報JP 2004-360034 A 特開2005−171335号公報JP 2005-171335 A 特開2000−129401号公報JP 2000-129401 A 特開2013−117054号公報JP 2013-117054 A

そこで、本願発明が解決しようとする課題は、鉄鋼材料の利点である再利用性を阻害するようなトランプエレメントを使用することなく、比較的安価で、高硬度、高靱性であり、かつ優れた耐食性を備えた材料の鋼を提供することである。   Therefore, the problem to be solved by the present invention is that it is relatively inexpensive, high hardness, high toughness, and excellent without using a trump element that hinders reusability, which is an advantage of steel materials. It is to provide a steel material with corrosion resistance.

課題を解決するための本願の手段は、第1の手段では、質量%で、C:0.01〜0.10%、Si:0.30〜2.00%、Mn:0.01〜1.00%、P:0.040%以下、S:0.030%以下、Ni:3.0〜8.0%、Cr:12.0〜20.0%、Mo:0.20〜0.80%、Cu:0.50%以下、Ti:0.30〜2.50%、Nb:0.01〜2.00%、N:0.0500%以下、残部Feおよび不可避不純物からなり、式1:[Cr]+[Mo]+[Nb]+[Ti]+[Si]+[Ni]−26([C]+[N])−10.3≧10.0、式2:[Cr]+1.5[Si]+[Mo]+0.5[Nb]+2[Ti]−0.5[Ni]−6.7([C]+[N])≦20.0を満足することを特徴とする析出硬化能に優れたマルテンサイト系ステンレス鋼である。ただし、上記の式1および式2の[元素記号]は、質量%で示す成分元素の量を%で示す際の数値を表す。   The means of the present application for solving the problem is, in the first means, in mass%, C: 0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.01 to 1 0.000%, P: 0.040% or less, S: 0.030% or less, Ni: 3.0-8.0%, Cr: 12.0-20.0%, Mo: 0.20-0. 80%, Cu: 0.50% or less, Ti: 0.30 to 2.50%, Nb: 0.01 to 2.00%, N: 0.0500% or less, balance Fe and inevitable impurities, 1: [Cr] + [Mo] + [Nb] + [Ti] + [Si] + [Ni] −26 ([C] + [N]) − 10.3 ≧ 10.0, Formula 2: [Cr ] +1.5 [Si] + [Mo] +0.5 [Nb] +2 [Ti] −0.5 [Ni] −6.7 ([C] + [N]) ≦ 20.0 Characterized precipitation hardness An excellent martensitic stainless steel capacity. However, the [element symbol] in the above formulas 1 and 2 represents a numerical value when the amount of the component element represented by mass% is represented by%.

本願の発明は、鉄鋼材料の利点である再利用性を阻害するようなトランプエレメントを使用することなく、比較的に安価で、時効硬さが45HRC以上の高硬度で、シャルピー衝撃値が45J/cm2以上の高靱性であり、かつ孔食試験における腐食度が20g/cm2/h以下である耐食性に優れた材料のマルテンサイト系ステンレス鋼を得ることが複雑な加工熱処理に頼ることなくできる。 The invention of the present application is relatively inexpensive, has a high age hardness of 45 HRC or higher, and has a Charpy impact value of 45 J / min without using a trump element that hinders reusability, which is an advantage of steel materials. It is possible to obtain a martensitic stainless steel having a high toughness of cm 2 or more and a corrosion resistance in a pitting corrosion test of 20 g / cm 2 / h or less and having excellent corrosion resistance without resorting to complicated thermomechanical processing. .

本発明を実施するための形態を記載するに先立って、本願発明における化学成分の限定理由並びに式1および式2の限定理由を以下に説明する。なお、%は質量%である。   Prior to describing the embodiment for carrying out the present invention, the reasons for limiting chemical components and the reasons for limiting Formula 1 and Formula 2 in the present invention will be described below. In addition,% is the mass%.

C:0.01〜0.10%
Cは、γ相の安定化元素であって、過剰なδフェライトの生成を抑制し、良好な靱性を確保する元素である。このためには、Cは0.01%以上含有されることが必要である。しかし、Cが0.10%より多いと炭窒化物を生成して耐食性を劣化する。そこで、Cは0.01〜0.10%とする。
C: 0.01 to 0.10%
C is a γ-phase stabilizing element that suppresses the formation of excess δ ferrite and ensures good toughness. For this purpose, C must be contained in an amount of 0.01% or more. However, if C is more than 0.10%, carbonitrides are produced and the corrosion resistance is degraded. Therefore, C is set to 0.01 to 0.10%.

Si:0.30〜2.00%
Siは、製鋼段階での脱酸剤であり、析出硬化粒子を生成する元素である。このためには、Siは0.30%以上含有される。しかし、Siが2.00%より多いと、鋼材の延性を阻害し、δフェライト生成による靱性の低下および鋼材の製造性を低下する。そこで、Siは0.30〜2.00%とし、好ましくは0.50〜1.80%とする。
Si: 0.30 to 2.00%
Si is a deoxidizer in the steelmaking stage, and is an element that generates precipitation hardened particles. For this purpose, Si is contained in an amount of 0.30% or more. However, if Si is more than 2.00%, the ductility of the steel material is hindered, the toughness is reduced due to the formation of δ ferrite, and the productivity of the steel material is lowered. Therefore, Si is 0.30 to 2.00%, preferably 0.50 to 1.80%.

Mn:0.01〜1.00%
Mnは、製鋼段階での脱酸剤として必要な元素である。このためには、Mnは0.01%以上含有されることが必要である。しかし、Mnが1.00%より多くても脱酸剤としての効果は飽和し、さらに硫化物の生成を促進して耐食性を落下する。そこで、Mnは0.01〜1.00%とし、好ましくは0.10〜0.80%とする。
Mn: 0.01 to 1.00%
Mn is an element necessary as a deoxidizer in the steelmaking stage. For this purpose, Mn needs to be contained in an amount of 0.01% or more. However, even if Mn is more than 1.00%, the effect as a deoxidizer is saturated, and further, the formation of sulfides is promoted and the corrosion resistance is lowered. Therefore, Mn is 0.01 to 1.00%, preferably 0.10 to 0.80%.

P:0.040%以下
Pは、不純物として含有される元素である。しかし、Pは0.040%より多いと、得られた鋼材の延性、靱性あるいは熱間加工性を劣化する。そこで、Pは0.040%以下とし、好ましくは0.020%以下とする。
P: 0.040% or less P is an element contained as an impurity. However, when P is more than 0.040%, the ductility, toughness or hot workability of the obtained steel material deteriorates. Therefore, P is set to 0.040% or less, preferably 0.020% or less.

S:0.030%以下
S、不純物として含有される元素である。しかし、Sは0.030%より多いと、得られた鋼材の延性、靱性あるいは熱間加工性を劣化する。そこで、Sは0.030%以下とし、好ましくは0.020%以下とする。
S: 0.030% or less S is an element contained as an impurity. However, when S is more than 0.030%, the ductility, toughness or hot workability of the obtained steel material is deteriorated. Therefore, S is set to 0.030% or less, preferably 0.020% or less.

Ni:3.0〜8.0%
Niは、γ相の安定化元素であって、過剰なδフェライトの生成を抑制し、良好な靱性を確保し、さらに焼入性の向上による均質な微細組織を形成する元素である。このためには、Niは3.0%以上含有されることが必要である。しかし、Niは8.0%より多く含有されても上記した効果は飽和し、さらに高価な元素であるので高コストとなる。そこで、Niは3.0〜8.0%とし、好ましくは4.5〜6.5%とする。
Ni: 3.0-8.0%
Ni is an element that stabilizes the γ phase and suppresses the formation of excessive δ ferrite, ensures good toughness, and forms a homogeneous microstructure by improving hardenability. For this purpose, Ni needs to be contained in an amount of 3.0% or more. However, even if Ni is contained in an amount of more than 8.0%, the above-described effects are saturated and the cost is high because it is an expensive element. Therefore, Ni is set to 3.0 to 8.0%, preferably 4.5 to 6.5%.

Cr:12.0〜20.0%
Crは、耐食性を向上させる元素である。このためには、Crは12.0%以上含有されることが必要である。しかし、Crは20.0%より多く含有されても、耐食性向上の効果は飽和し、δフェライト生成による靱性の劣化および脆化相を形成する。そこで、Crは12.0〜20.0%とし、好ましくは14.0〜18.0%とする。
Cr: 12.0 to 20.0%
Cr is an element that improves the corrosion resistance. For this purpose, Cr needs to be contained at 12.0% or more. However, even if Cr is contained in an amount of more than 20.0%, the effect of improving the corrosion resistance is saturated, and the toughness is deteriorated due to the formation of δ ferrite and an embrittled phase is formed. Therefore, Cr is 12.0 to 20.0%, preferably 14.0 to 18.0%.

Mo:0.20〜0.80%
Moは、耐食性を向上させる元素である。このためには、Moは0.20%以上含有されることが必要である。しかし、Moは高価な元素であるので、0.80%より多く含有されると高コストとなる。そこで、Moは0.20〜0.80%とする。
Mo: 0.20 to 0.80%
Mo is an element that improves the corrosion resistance. For this purpose, Mo needs to be contained by 0.20% or more. However, since Mo is an expensive element, if it is contained more than 0.80%, the cost becomes high. Therefore, Mo is 0.20 to 0.80%.

Cu:0.50%以下
Cuは、不純物として含有される元素である。ところで、Cuは循環性元素すなわちトランプエレメントであり、多く含有されると鋼の再利用を阻害する元素である。そこで、Cuは0.50%以下とし、好ましくは0.20%以下とする。
Cu: 0.50% or less Cu is an element contained as an impurity. By the way, Cu is a circulating element, that is, a trump element, and if contained in a large amount, Cu is an element that inhibits the reuse of steel. Therefore, Cu is 0.50% or less, preferably 0.20% or less.

Ti:0.30〜2.50%
Tiは、析出硬化粒子を生成して得られた鋼を強化する元素である。このために、Tiは0.70%以上含有されることが必要である。しかし、Tiは2.50%より多く含有されると粗大炭窒化物を生成して耐食性を劣化すると共に、高コストとなる。そこで、Tiは0.30〜2.50%とし、好ましくは0.70〜2.30%とする。
Ti: 0.30 to 2.50%
Ti is an element that strengthens steel obtained by generating precipitation hardening particles. For this reason, it is necessary to contain Ti 0.70% or more. However, if Ti is contained in an amount of more than 2.50%, coarse carbonitrides are generated to deteriorate the corrosion resistance and increase the cost. Therefore, Ti is 0.30 to 2.50%, preferably 0.70 to 2.30%.

Nb:0.01〜2.00%
Nbは、析出硬化粒子を生成して得られた鋼を強化する元素である。このために、Nbは0.01%以上含有されることが必要である。しかし、Nbは2.00%より多く含有されると粗大なNb炭化物が生成されて耐食性を劣化すると共に、高コストとなる。そこで、Nbは0.01〜2.00%とする。
Nb: 0.01 to 2.00%
Nb is an element that strengthens steel obtained by generating precipitation hardening particles. For this reason, Nb needs to contain 0.01% or more. However, if Nb is contained in an amount of more than 2.00%, coarse Nb carbides are generated to deteriorate the corrosion resistance and increase the cost. Therefore, Nb is set to 0.01 to 2.00%.

N:0.0500%以下
Nは、耐食性および結晶粒粗大化の防止に有効な元素である。このために、Nは0.0500%以下とする必要がある。Nが0.0500%より多いと粗大炭窒化物を生成して耐食性を劣化する。そこで、Nは0.0500%以下とする。
N: 0.0500% or less N is an element effective for preventing corrosion and coarsening of crystal grains. For this reason, N needs to be 0.0500% or less. When N is more than 0.0500%, coarse carbonitride is produced and the corrosion resistance is deteriorated. Therefore, N is set to 0.0500% or less.

式1:[Cr]+[Mo]+[Nb]+[Ti]+[Si]+[Ni]−26([C]+[N])−10.3≧10.0
式1は、マルテンサイトステンレス鋼の時効硬さおよび耐食性を確保するために必要な条件を示す式である。すなわち、この式1において、括弧中に元素記号を記載して示している[元素記号]は、本願のマルテンサイトステンレス鋼の各発明例または各比較例の供試材に含有される各成分元素の量を%で示す際の数値である。この式1の値が10.0以上であれば、その式1で示すマルテンサイトステンレス鋼は、その鋼の時効硬さが45HRC以上であり、さらに孔食試験の腐食度が20g/m2/h未満で、耐食性が確保できる。そこで、式1の値は10.0以上とする。
Formula 1: [Cr] + [Mo] + [Nb] + [Ti] + [Si] + [Ni] −26 ([C] + [N]) − 10.3 ≧ 10.0
Formula 1 is a formula which shows conditions required in order to ensure the aging hardness and corrosion resistance of martensitic stainless steel. That is, in the formula 1, [element symbol] indicated in parentheses by describing the element symbol is each component element contained in the sample material of each invention example or each comparative example of the martensitic stainless steel of the present application. It is a numerical value when the amount of is shown in%. If the value of the formula 1 is 10.0 or more, the martensitic stainless steel represented by the formula 1 has an aging hardness of 45 HRC or more, and further has a corrosion degree of 20 g / m 2 / pitting corrosion test. Less than h, corrosion resistance can be ensured. Therefore, the value of Equation 1 is set to 10.0 or more.

式2:[Cr]+1.5[Si]+[Mo]+0.5[Nb]+2[Ti]−0.5[Ni]−6.7([C]+[N])≦20.0
式2は、時効硬さおよび耐食性を確保しつつ、δフェライト増量による衝撃特性の劣化を回避するために必要な条件を示す式である。式2において、[元素記号]は、本願のマルテンサイトステンレス鋼の各発明例または各比較例の供試材に含有される各成分元素の量を%で示す際の数値である。この式2の値が20.0以下であれば、その式2で示すマルテンサイトステンレス鋼は、その鋼の時効硬さおよび耐食性を確保しつつ、δフェライト増量による衝撃特性の劣化を回避できる、すなわち、シャルピー衝撃値の値を45J/cm2以上にすることができる。そこで、式2の値は20.0以下とする。
Formula 2: [Cr] +1.5 [Si] + [Mo] +0.5 [Nb] +2 [Ti] −0.5 [Ni] −6.7 ([C] + [N]) ≦ 20.0
Expression 2 is an expression showing conditions necessary for avoiding deterioration of impact characteristics due to an increase in δ ferrite while ensuring aging hardness and corrosion resistance. In Formula 2, [element symbol] is a numerical value when the amount of each component element contained in the sample material of each invention example or each comparative example of the martensitic stainless steel of the present application is expressed in%. If the value of Formula 2 is 20.0 or less, the martensitic stainless steel represented by Formula 2 can avoid deterioration of impact characteristics due to an increase in δ ferrite while securing the aging hardness and corrosion resistance of the steel. That is, the Charpy impact value can be 45 J / cm 2 or more. Therefore, the value of Expression 2 is set to 20.0 or less.

次いで、本願発明の実施の形態について、表1に基づいて、以下に説明する。先ず、本願発明の実施例およびその比較例については、表1に示す発明例のNo.1〜13と、こ比較例のNo.14〜33における、各No.の化学成分からなる供試材の鋼を、100kg真空誘導加熱炉(VIM)で溶解して鋼塊とした。これらの鋼塊を、1150℃に加熱して径20mmの丸棒材あるいは一辺15mmの角材に、それぞれ鍛伸した。その後、これらの棒材あるいは角材からなる鋼を900℃〜1200℃に10分以上保持した後に水冷する固溶化熱処理を行った。その後、さらに、これらの鋼を−90℃〜−20℃に10分以上に保持してサブゼロ処理し、さらに、時効熱処理として、300℃〜800℃に30分以上保持した後、空冷して各試験片とした。   Next, embodiments of the present invention will be described below based on Table 1. First, with respect to the examples of the present invention and comparative examples thereof, No. 1-13 and No. of this comparative example. 14-33, each No. The steel of the test material consisting of the following chemical components was melted in a 100 kg vacuum induction heating furnace (VIM) to form a steel ingot. These ingots were heated to 1150 ° C. and forged into round bars with a diameter of 20 mm or squares with a side of 15 mm. Thereafter, the steel made of these rods or squares was held at 900 ° C. to 1200 ° C. for 10 minutes or more, and then subjected to a solution heat treatment that was water-cooled. Thereafter, these steels were further maintained at −90 ° C. to −20 ° C. for 10 minutes or more and subjected to subzero treatment. Further, as an aging heat treatment, the steel was maintained at 300 ° C. to 800 ° C. for 30 minutes or more, and then air-cooled. A test piece was obtained.

Figure 2017014556
Figure 2017014556

表1において、Feの項目における残部には不可避不純物も含む。さらに、式1および式2の項目の数値は、各No.における各式1および各式2の算出値である。   In Table 1, the remainder in the item of Fe includes inevitable impurities. Further, the numerical values of the items of the formula 1 and the formula 2 are respectively No. Are the calculated values of Equation 1 and Equation 2.

上記で作成した径20mmの丸棒材の時効熱処理後の試験片について、それらの鍛伸方向に垂直な断面の端部と中心部の間の箇所のロックウェル硬さを測定し、下記の表2に時効硬さを示し評価した。事項硬さの測定値が45HRC以上を評価の項目に○と記し、45HRC未満を評価の項目に×と記した。   About the test piece after aging heat treatment of the round bar material of diameter 20mm created above, the Rockwell hardness of the location between the edge part and center part of a cross section perpendicular | vertical to those forging directions was measured, and the following table | surface The aging hardness was shown in 2 and evaluated. When the measured hardness value was 45 HRC or more, the evaluation item was marked with “◯”, and when it was less than 45 HRC, the evaluation item was marked with “X”.

上記で作成した一辺15mmの角材を使用して、時効熱処理後に鍛伸方向に平行に一辺10mmの角状で長さ55mmの試験片を切り出し、これから2mmUノッチ試験片を作製し、これを常温にてシャルピー衝撃試験に供してシャルピー衝撃値を測定し、下記の表2にシャルピー衝撃値を示し評価した。シャルピー衝撃値の測定値が45J/cm2以上を評価の項目に○と記し、45J/cm2未満を評価の項目に×と記した。 Using the square material with a side of 15 mm created above, after aging heat treatment, cut out a test piece with a side of 10 mm and a length of 55 mm parallel to the forging direction, from which a 2 mm U-notch test piece was prepared. The Charpy impact value was measured using a Charpy impact test, and the Charpy impact value was shown in Table 2 below for evaluation. A measured value of Charpy impact value of 45 J / cm 2 or more was marked as “◯” as an evaluation item, and less than 45 J / cm 2 was marked as “X” as an evaluation item.

上記で作成した径20mmの丸棒材の時効熱処理後の試験片を、径12mmで長さ21mmの丸棒状の腐食試験片へ加工した。これらの丸棒状の腐食試験片を、6%塩化第二鉄の25℃の孔食試験液に24時間浸漬する孔食試験を実施し、その腐食度を測定し、下記の表2に孔食試験の腐食度を示し評価した。孔食試験の腐食度が20g/m2/h未満のものを○と記し、20g/m2/h以上ないし30g/m2/h未満のものを△と記し、30g/m2/h以上のものを×と記した。 The test piece after the aging heat treatment of the round bar material having a diameter of 20 mm prepared above was processed into a round bar-shaped corrosion test piece having a diameter of 12 mm and a length of 21 mm. A pitting corrosion test was conducted by immersing these round bar-shaped corrosion test pieces in a pitting corrosion test solution of 6% ferric chloride at 25 ° C. for 24 hours, and the degree of corrosion was measured. The corrosion degree of the test was shown and evaluated. A pitting corrosion test with a degree of corrosion of less than 20 g / m 2 / h is marked with ◯, and a value of 20 g / m 2 / h or more to less than 30 g / m 2 / h is marked with △, and 30 g / m 2 / h or more. Was marked with x.

Figure 2017014556
Figure 2017014556

表2において、比較例のNo.18は、表1に示すように、Niの含有量が8.6%であって、本願の請求項に規定するNiの含有量の3.0〜8.0%より多いので、高コストである。さらに、比較例のNo.24、No.25、No.28、No.29は、時効硬さの測定値が45HRC未満であるため、シャルピー衝撃試験および孔食試験を実施していないので、それらのシャルピー衝撃値の項目および孔食試験の項目には、−を表記している。さらに比較例のNo.33は、表1に示すようにCuを2.17%含有して本願の請求項で規定する0.05%以下を大幅に超えているので、本発明の対象外のものである。   In Table 2, No. of the comparative example. No. 18, as shown in Table 1, the Ni content is 8.6%, which is more than 3.0 to 8.0% of the Ni content defined in the claims of the present application. is there. Furthermore, No. of the comparative example. 24, no. 25, no. 28, no. In No. 29, the measured value of aging hardness is less than 45 HRC, so the Charpy impact test and the pitting corrosion test are not performed. Therefore, the Charpy impact value item and the pitting corrosion test item indicate −. ing. Furthermore, No. of the comparative example. As shown in Table 1, since No. 33 contains 2.17% of Cu and greatly exceeds 0.05% or less specified in the claims of the present application, it is out of the scope of the present invention.

Claims (1)

質量%で、C:0.01〜0.10%、Si:0.30〜2.00%、Mn:0.01〜1.00%、P:0.040%以下、S:0.030%以下、Ni:3.0〜8.0%、Cr:12.0〜20.0%、Mo:0.20〜0.80%、Cu:0.50%以下、Ti:0.30〜2.50%、Nb:0.01〜2.00%、N:0.0500%以下、残部Feおよび不可避不純物からなり、式1:[Cr]+[Mo]+[Nb]+[Ti]+[Si]+[Ni]−26([C]+[N])−10.3≧10.0、式2:[Cr]+1.5[Si]+[Mo]+0.5[Nb]+2[Ti]−0.5[Ni]−6.7([C]+[N])≦20.0を満足することを特徴とする析出硬化能に優れたマルテンサイト系ステンレス鋼。
ただし、上記の式1および式2の[元素記号]は、質量%で示す成分元素の量を%で示す際の数値を表す。
In mass%, C: 0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.01 to 1.00%, P: 0.040% or less, S: 0.030 %: Ni: 3.0-8.0%, Cr: 12.0-20.0%, Mo: 0.20-0.80%, Cu: 0.50% or less, Ti: 0.30 2.50%, Nb: 0.01 to 2.00%, N: 0.0500% or less, balance Fe and inevitable impurities, formula 1: [Cr] + [Mo] + [Nb] + [Ti] + [Si] + [Ni] −26 ([C] + [N]) − 10.3 ≧ 10.0, Formula 2: [Cr] +1.5 [Si] + [Mo] +0.5 [Nb] +2 [Ti] -0.5 [Ni] -6.7 ([C] + [N]) ≦ 20.0 Martensitic stainless steel excellent in precipitation hardening ability,
However, the [element symbol] in the above formulas 1 and 2 represents a numerical value when the amount of the component element represented by mass% is represented by%.
JP2015130498A 2015-06-29 2015-06-29 Martensitic stainless steel with excellent precipitation hardenability Active JP6501652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015130498A JP6501652B2 (en) 2015-06-29 2015-06-29 Martensitic stainless steel with excellent precipitation hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015130498A JP6501652B2 (en) 2015-06-29 2015-06-29 Martensitic stainless steel with excellent precipitation hardenability

Publications (2)

Publication Number Publication Date
JP2017014556A true JP2017014556A (en) 2017-01-19
JP6501652B2 JP6501652B2 (en) 2019-04-17

Family

ID=57827986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015130498A Active JP6501652B2 (en) 2015-06-29 2015-06-29 Martensitic stainless steel with excellent precipitation hardenability

Country Status (1)

Country Link
JP (1) JP6501652B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266979A (en) * 2018-10-20 2019-01-25 江苏铸鸿锻造有限公司 A kind of heavy-duty gear alloy steel forging circle and preparation method thereof
WO2021171698A1 (en) * 2020-02-27 2021-09-02 日本冶金工業株式会社 Precipitation-hardening martensitic stainless steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161343A (en) * 2000-11-20 2002-06-04 Hitachi Metals Ltd Precipitation-hardening type martensitic stainless-steel with high strength superior in corrosion resistance
JP2003073783A (en) * 2001-09-03 2003-03-12 Nisshin Steel Co Ltd Precipitation-hardening type martensitic stainless steel sheet for flapper valve, and manufacturing method therefor
US20030102057A1 (en) * 2001-10-23 2003-06-05 Short John William High-strength high-toughness precipitation-hardened steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161343A (en) * 2000-11-20 2002-06-04 Hitachi Metals Ltd Precipitation-hardening type martensitic stainless-steel with high strength superior in corrosion resistance
JP2003073783A (en) * 2001-09-03 2003-03-12 Nisshin Steel Co Ltd Precipitation-hardening type martensitic stainless steel sheet for flapper valve, and manufacturing method therefor
US20030102057A1 (en) * 2001-10-23 2003-06-05 Short John William High-strength high-toughness precipitation-hardened steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266979A (en) * 2018-10-20 2019-01-25 江苏铸鸿锻造有限公司 A kind of heavy-duty gear alloy steel forging circle and preparation method thereof
WO2021171698A1 (en) * 2020-02-27 2021-09-02 日本冶金工業株式会社 Precipitation-hardening martensitic stainless steel
JP2021134395A (en) * 2020-02-27 2021-09-13 日本冶金工業株式会社 Precipitation hardening martensitic stainless steel

Also Published As

Publication number Publication date
JP6501652B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP5505263B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP2015025162A (en) Ferrite pearlite type non-heat treated steel
JP6844943B2 (en) Non-microalloyed steel for induction hardening
JP6729686B2 (en) Non-heat treated steel for induction hardening
JP5729827B2 (en) High strength non-magnetic steel
JP2013028860A (en) Steel material made of carburizing steel having excellent torsion-fatigue characteristics
JP2018178144A (en) Precipitation-hardened stainless steel having excellent hot workability
EP3126537B1 (en) Dual-phase stainless steel
KR20150074697A (en) Low-nickel containing stainless steels
JP2019501286A (en) Lean duplex stainless steel with improved corrosion resistance and workability and method for producing the same
WO2015133470A1 (en) Age hardening non-heat treated bainitic steel
JP2017014556A (en) Martensitic stainless steel excellent in precipitation hardening performance
WO2012102233A1 (en) Steel for carburizing or carbonitriding applications
JP7223997B2 (en) Steel with high hardness and excellent toughness
JP6583885B2 (en) High hardness stainless steel with excellent corrosion resistance and manufacturability
JP2017071859A (en) Non-tempered steel and method for producing the same
JPWO2016194938A1 (en) Steel for hot forging
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JPWO2014203302A1 (en) Precipitation hardening type stainless steel and stainless steel parts, and method for producing precipitation hardening type stainless steel
JP6987651B2 (en) High hardness precipitation hardening stainless steel with excellent hot workability and no sub-zero treatment required
JP5443277B2 (en) High-strength steel with excellent machinability and method for producing the same
JP6282078B2 (en) Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics
JP2003342677A (en) Steel for mechanical structure excellent in machinability and method for producing part for mechanical structure comprising the steel
RU2823412C1 (en) Article in form of rod for manufacture of parts of electric submersible plants for extraction of oil from alloy based on iron and chromium
JP5679439B2 (en) Induction hardening steel excellent in torsional strength and toughness after induction hardening, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6501652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250