[go: up one dir, main page]

JP2017014405A - Polypropylene and manufacturing method therefor - Google Patents

Polypropylene and manufacturing method therefor Download PDF

Info

Publication number
JP2017014405A
JP2017014405A JP2015133000A JP2015133000A JP2017014405A JP 2017014405 A JP2017014405 A JP 2017014405A JP 2015133000 A JP2015133000 A JP 2015133000A JP 2015133000 A JP2015133000 A JP 2015133000A JP 2017014405 A JP2017014405 A JP 2017014405A
Authority
JP
Japan
Prior art keywords
polypropylene
unit
aromatic
mol
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015133000A
Other languages
Japanese (ja)
Other versions
JP6619168B2 (en
Inventor
俊明 谷池
Toshiaki Taniike
俊明 谷池
稔 寺野
Minoru Terano
稔 寺野
健 永井
Takeshi Nagai
健 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Industries Corp
Original Assignee
Kojima Press Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Press Industry Co Ltd filed Critical Kojima Press Industry Co Ltd
Priority to JP2015133000A priority Critical patent/JP6619168B2/en
Publication of JP2017014405A publication Critical patent/JP2017014405A/en
Application granted granted Critical
Publication of JP6619168B2 publication Critical patent/JP6619168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide polypropylene having enhanced crystallization speed and excellent in molding processability while maintaining physical properties such as the melting point and a manufacturing method therefor.SOLUTION: There is provided polypropylene containing a propylene unit (A) and an aromatic comonomer unit (B), where percentage content of the aromatic comonomer unit (B) is 0.005 mol% to 0.05 mol% based on total amount of a monomer unit constituting the polypropylene.SELECTED DRAWING: None

Description

本発明は、ポリプロピレンおよびその製造方法に関する。   The present invention relates to polypropylene and a method for producing the same.

ポリプロピレン(PP)は、軽量であって、比較的安価であり、融点が高く、物性のバランス、耐薬品性、成形加工性およびリサイクル性に優れる等の様々な利点を有することから、汎用性プラスチックとして広く使用されている。   Polypropylene (PP) is lightweight, relatively inexpensive, has a high melting point, and has various advantages such as excellent physical property balance, chemical resistance, molding processability, and recyclability. As widely used.

PPを含む樹脂組成物の成形加工および成形品の利用に重大な影響を与え得るPPの物性として、結晶化速度、結晶化度、結晶構造、融点、ガラス転移温度等がある。これらのうち結晶化速度は、成形加工のサイクルタイムを決定する上で最も重要な因子である。また、結晶化度および結晶構造は融点、力学特性等の各物性に影響を与え得る。PPおよびPPを含む樹脂組成物の結晶化速度は、様々な手段で調整することができる。結晶化速度は、例えば、成形加工条件によって調整することができ、結晶核剤(造核剤)等の添加剤や、他のポリマーとの複合化によっても調整される。   The physical properties of PP that can have a significant influence on the molding process of a resin composition containing PP and the use of a molded product include crystallization speed, crystallinity, crystal structure, melting point, glass transition temperature, and the like. Of these, the crystallization speed is the most important factor in determining the cycle time of the molding process. Further, the crystallinity and crystal structure can affect each physical property such as melting point and mechanical properties. The crystallization speed of the resin composition containing PP and PP can be adjusted by various means. The crystallization rate can be adjusted by, for example, molding processing conditions, and can also be adjusted by an additive such as a crystal nucleating agent (nucleating agent) or a complex with another polymer.

例えば、特許文献1には、シンジオタクチックポリプロピレンに、特定の構造式で表される芳香族リン酸エステル金属塩成分と、特定の構造式で表される脂肪族有機酸金属塩成分との複合体からなる造核物を配合することによって、結晶化速度および成形サイクルを向上させたシンジオタクチックポリプロピレン組成物に関する発明が開示されている。   For example, Patent Document 1 discloses a composite of an aromatic phosphate metal salt component represented by a specific structural formula and an aliphatic organic acid metal salt component represented by a specific structural formula on syndiotactic polypropylene. An invention relating to a syndiotactic polypropylene composition in which the crystallization rate and the molding cycle are improved by blending a nucleation product comprising a body is disclosed.

ポリプロピレンにおける分子量、分子量分布および立体規則性等の一次構造が、結晶化挙動に影響を与え得ることが知られている。しかしながら、ポリプロピレンの分子量および分子量分布については、ポリプロピレンを含む樹脂組成物の成形加工および成形品の目的等によって、取り得る数値の範囲は限定されている。また、ポリプロピレンの立体規則性については、これまでに重合触媒により向上を図る試みが多数なされており、立体規則性の更なる向上は困難な領域に達している。   It is known that primary structures such as molecular weight, molecular weight distribution and stereoregularity in polypropylene can affect crystallization behavior. However, regarding the molecular weight and molecular weight distribution of polypropylene, the range of numerical values that can be taken is limited depending on the molding process of the resin composition containing polypropylene, the purpose of the molded product, and the like. Further, many attempts have been made to improve the stereoregularity of polypropylene with a polymerization catalyst so far, and it has been difficult to further improve the stereoregularity.

ポリプロピレンに対して官能基を導入することにより、ポリプロピレンの結晶化挙動に影響を与え得ることも知られている。しかし、ポリプロピレンの官能基化(例えばグラフト重合による変性等)を行った場合、側鎖に導入された官能基によって結晶ラメラ構造が成長できず、融点の降下や結晶化度の低下が起き、熱安定性や力学的強度の低下を招くおそれがあり、また、官能基同士の相互作用による粘度上昇によって成形加工性の低下が起こるおそれがある。   It is also known that the introduction of a functional group to polypropylene can affect the crystallization behavior of polypropylene. However, when functionalization of polypropylene (for example, modification by graft polymerization, etc.) is performed, the crystalline lamella structure cannot grow due to the functional group introduced into the side chain, resulting in a decrease in melting point and a decrease in crystallinity. There is a possibility that stability and mechanical strength are lowered, and there is a possibility that molding processability is lowered due to an increase in viscosity due to interaction between functional groups.

特開2008−231143号公報JP 2008-231143 A

本発明の目的は、融点等の物理的特性を維持しながら、結晶化速度が向上し、成形加工性に優れたポリプロピレンおよびその製造方法を提供することにある。   An object of the present invention is to provide a polypropylene having improved crystallization speed and excellent molding processability while maintaining physical characteristics such as a melting point and a method for producing the same.

本発明に係るポリプロピレンは、プロピレン単位(A)と芳香族コモノマー単位(B)とを含むポリプロピレンであって、芳香族コモノマー単位(B)の含有率がポリプロピレンを構成するモノマー単位の総量に対して0.005モル%以上0.05モル%以下である。   The polypropylene according to the present invention is a polypropylene containing a propylene unit (A) and an aromatic comonomer unit (B), and the content of the aromatic comonomer unit (B) is based on the total amount of monomer units constituting the polypropylene. It is 0.005 mol% or more and 0.05 mol% or less.

また、前記芳香族コモノマー単位(B)がスチレンおよび1−アリルナフタレンから選択される少なくとも1つの化合物に由来するモノマー単位であることが好ましい。   The aromatic comonomer unit (B) is preferably a monomer unit derived from at least one compound selected from styrene and 1-allylnaphthalene.

また、本発明に係るポリプロピレンの製造方法は、不活性溶媒中、触媒の存在下において、プロピレンとエチレン性不飽和基および芳香環を有する化合物とを少なくとも含むモノマー原料を重合させることにより製造する方法である。   In addition, the method for producing polypropylene according to the present invention is a method for producing by polymerizing a monomer raw material containing at least propylene and a compound having an ethylenically unsaturated group and an aromatic ring in an inert solvent in the presence of a catalyst. It is.

上記構成によれば、融点等の物理的特性を維持しながら、結晶化速度が向上し、成形加工性に優れたポリプロピレンを提供することができる。   According to the above configuration, it is possible to provide a polypropylene having improved crystallization speed and excellent moldability while maintaining physical characteristics such as a melting point.

以下、本発明を実施するための形態(以下「本実施形態」という)について説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

<ポリプロピレンの組成>
本実施形態に係るポリプロピレン(以下「PP」ともいう)は、構成単位として、プロピレン単位(A)を主成分として含み、更に少量の芳香族コモノマー単位(B)を含むポリマーである。なお、本明細書において「ポリプロピレン」または「PP」とは、プロピレンのホモポリマー、プロピレン単位(A)および芳香族コモノマー単位(B)のみで構成されているポリマーのみを意味するのではなく、プロピレン単位(A)および芳香族コモノマー単位(B)以外の構成単位を含む共重合体をも含み、例えば、プロピレン単位(A)の含有率が、当該PPを構成するモノマー単位の総量に対して90モル%以上、好ましくは95モル%以上であって、残りのモノマー単位がプロピレン以外のコモノマーに由来する共重合体も含む。
<Composition of polypropylene>
The polypropylene (hereinafter also referred to as “PP”) according to the present embodiment is a polymer that contains a propylene unit (A) as a main component and further contains a small amount of an aromatic comonomer unit (B) as a constituent unit. In the present specification, “polypropylene” or “PP” does not mean only a polymer composed only of a homopolymer of propylene, a propylene unit (A) and an aromatic comonomer unit (B). A copolymer containing a constituent unit other than the unit (A) and the aromatic comonomer unit (B) is also included. For example, the content of the propylene unit (A) is 90% with respect to the total amount of monomer units constituting the PP. Also included is a copolymer having a mol% or more, preferably 95 mol% or more, and the remaining monomer units derived from a comonomer other than propylene.

本明細書において、「プロピレン単位(A)」および「芳香族コモノマー単位(B)」等における「単位」、あるいは、「モノマー単位」との記載は、ポリマー構造中の、重合されたモノマー原料に由来する構成単位を意味する。また、本明細書において、PPを構成するモノマー単位の「含有率」とは、PPを構成するモノマー単位の総量(合計)に対する当該モノマー単位の存在量の割合を意味し、モル%で表される。   In the present specification, the description of “unit” or “monomer unit” in “propylene unit (A)” and “aromatic comonomer unit (B)” refers to the polymerized monomer raw material in the polymer structure. Derived structural unit. In the present specification, the “content ratio” of the monomer units constituting PP means the ratio of the abundance of the monomer units to the total amount (total) of monomer units constituting PP, and is expressed in mol%. The

本実施形態のPPに含まれる芳香族コモノマー単位(B)は、エチレン性不飽和基および芳香環を有する化合物(以下「芳香族コモノマー(b)」ともいう)に由来するモノマー単位である。   The aromatic comonomer unit (B) contained in PP of the present embodiment is a monomer unit derived from a compound having an ethylenically unsaturated group and an aromatic ring (hereinafter also referred to as “aromatic comonomer (b)”).

芳香族コモノマー(b)としては、エチレン性不飽和基と芳香環とを有する化合物であれば限定はされず、例えば、エチレン性不飽和基を有するアルケニル基を芳香環上の置換基として有する芳香族化合物が挙げられる。エチレン性不飽和基を有するアルケニル基としては、例えば、ビニル基、アリル基(プロピレン基)および1,2−ブテン基等が挙げられ、芳香環としては、例えば、メチル基等の置換基を有していてもよいフェニル基およびナフチル基が挙げられる。芳香族コモノマー(b)の具体例としては、例えば、スチレン、アリルベンゼン、ビニルナフタレン(1−ビニルナフタレンまたは2−ビニルナフタレン)およびアリルナフタレン(1−アリルナフタレンまたは2−アリルナフタレン)等が挙げられる。   The aromatic comonomer (b) is not limited as long as it is a compound having an ethylenically unsaturated group and an aromatic ring. For example, an aromatic comonomer (b) having an alkenyl group having an ethylenically unsaturated group as a substituent on the aromatic ring. Group compounds. Examples of the alkenyl group having an ethylenically unsaturated group include a vinyl group, an allyl group (propylene group), and a 1,2-butene group. The aromatic ring has, for example, a substituent such as a methyl group. And an optionally substituted phenyl group and naphthyl group. Specific examples of the aromatic comonomer (b) include styrene, allylbenzene, vinylnaphthalene (1-vinylnaphthalene or 2-vinylnaphthalene) and allylnaphthalene (1-allylnaphthalene or 2-allylnaphthalene). .

本実施形態のPPは、芳香族コモノマー単位(B)の含有率が、本実施形態のポリプロピレンを構成するモノマー単位の総量に対して、0.005モル%以上0.05モル%以下である。さらに、芳香族コモノマー単位(B)の含有率は0.005モル%以上0.03モル%以下であることが好ましい。   In the PP of this embodiment, the content of the aromatic comonomer unit (B) is 0.005 mol% or more and 0.05 mol% or less with respect to the total amount of monomer units constituting the polypropylene of this embodiment. Furthermore, the content of the aromatic comonomer unit (B) is preferably 0.005 mol% or more and 0.03 mol% or less.

本実施形態のPPは、芳香族コモノマー単位(B)を上記範囲の含有率で含むことにより、芳香族コモノマー単位(B)を含まないこと以外は同じ組成を有するPPと比較して融点等の物理的特性をほぼ維持しながら、結晶化速度を向上させることができる。結晶化速度が向上した本実施形態のPPは、成形加工性に優れるため、本実施形態のPPを含む樹脂組成物を成形加工する際のサイクルタイムの短縮が可能となる。   The PP of the present embodiment includes an aromatic comonomer unit (B) at a content in the above range, and thus has a melting point and the like as compared with PP having the same composition except that the aromatic comonomer unit (B) is not included. The crystallization rate can be improved while substantially maintaining the physical characteristics. Since the PP of the present embodiment having an improved crystallization speed is excellent in molding processability, it becomes possible to shorten the cycle time when the resin composition containing the PP of the present embodiment is molded.

本実施形態のPPにおいては、例えば、芳香族コモノマー単位(B)が、スチレン由来のモノマー単位等の芳香環を1つ有するモノマー単位である場合、その芳香族コモノマー単位(B)の含有率は0.015モル%以上0.05モル%以下であることが好ましく、0.018モル%以上0.03モル%以下であることがより好ましい。また、芳香族コモノマー単位(B)が、1−アリルナフタレン由来のモノマー単位等の芳香環を2つ有するモノマー単位である場合、その芳香族コモノマー単位(B)の含有率は0.005モル%以上0.03モル%以下であることが好ましい。   In the PP of this embodiment, for example, when the aromatic comonomer unit (B) is a monomer unit having one aromatic ring such as a monomer unit derived from styrene, the content of the aromatic comonomer unit (B) is It is preferable that it is 0.015 mol% or more and 0.05 mol% or less, and it is more preferable that it is 0.018 mol% or more and 0.03 mol% or less. When the aromatic comonomer unit (B) is a monomer unit having two aromatic rings such as a monomer unit derived from 1-allylnaphthalene, the content of the aromatic comonomer unit (B) is 0.005 mol%. It is preferable that it is 0.03 mol% or more.

PPにおける芳香族コモノマー単位(B)の含有率は、公知のH−NMR測定による方法に従って、H−NMRスペクトルにおける芳香環に由来するピークの吸収強度と、主鎖であるアルキル基に由来するピークの吸収強度とを比較することにより、求められる。また、PPにおける芳香族コモノマー単位(B)の含有率は、下記のα−オレフィンコモノマー単位(C)の含有割合の測定方法と同様に、公知の13C−NMR測定による方法に従って求めることもできる。 The content of the aromatic comonomer unit (B) in PP is derived from the absorption intensity of the peak derived from the aromatic ring in the 1 H-NMR spectrum and the alkyl group as the main chain in accordance with the known 1 H-NMR measurement method. It is calculated | required by comparing with the absorption intensity of the peak to do. Moreover, the content rate of the aromatic comonomer unit (B) in PP can also be calculated | required according to the method by the well-known 13 C-NMR measurement similarly to the measuring method of the content rate of the following alpha-olefin comonomer unit (C). .

本実施形態のPPは、プロピレン単位(A)および芳香族コモノマー単位(B)のみで構成されていてもよく、また、プロピレン単位(A)および芳香族コモノマー単位(B)以外のα−オレフィンコモノマー単位(C)等のコモノマー単位を更に含んでいてもよい。   The PP of this embodiment may be composed of only a propylene unit (A) and an aromatic comonomer unit (B), and an α-olefin comonomer other than the propylene unit (A) and the aromatic comonomer unit (B). A comonomer unit such as unit (C) may further be included.

α−オレフィンコモノマー単位(C)は、プロピレン以外のα−オレフィンコモノマー(以下、単に「コモノマー(c)」ともいう)に由来するモノマー単位であれば特に限定されない。具体的なコモノマー(c)としては、例えば、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテンおよび1−オクテン等の直鎖状モノオレフィン類、3−メチル−1−ブテン、3−メチル−1−ペンテンおよび4−メチル−1−ペンテン等の分岐モノオレフィン類が挙げられる。コモノマー(c)としては1種のみ用いてもよく、2種以上のコモノマー(c)を用いてもよい。   The α-olefin comonomer unit (C) is not particularly limited as long as it is a monomer unit derived from an α-olefin comonomer other than propylene (hereinafter also simply referred to as “comonomer (c)”). Specific examples of the comonomer (c) include linear monoolefins such as ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene, 3-methyl-1-butene, Examples thereof include branched monoolefins such as 3-methyl-1-pentene and 4-methyl-1-pentene. As the comonomer (c), only one type may be used, or two or more types of comonomer (c) may be used.

本実施形態のPPは、α−オレフィンコモノマー単位(C)を含む場合の配列については限定されるものではなく、例えば、プロピレン単位(A)およびα−オレフィンコモノマー単位(C)がランダムに配列しているランダムコポリマーであってもよいし、プロピレン単位(A)およびα−オレフィンコモノマー単位(C)のそれぞれが連鎖ブロックを形成しているブロックコポリマーであってもよい。   In the PP of the present embodiment, the arrangement when the α-olefin comonomer unit (C) is included is not limited. For example, the propylene unit (A) and the α-olefin comonomer unit (C) are randomly arranged. The copolymer may be a random copolymer, or may be a block copolymer in which each of the propylene unit (A) and the α-olefin comonomer unit (C) forms a chain block.

PPにおけるプロピレン単位(A)およびα−オレフィンコモノマー単位(C)の含有割合は、公知の13C−NMR測定による方法に従い、PPの13C−NMRスペクトルにおける各炭素原子に基づくピークの強度から求められる。 The content ratio of the propylene unit (A) and the α-olefin comonomer unit (C) in PP is determined from the intensity of the peak based on each carbon atom in the 13 C-NMR spectrum of PP according to a known method by 13 C-NMR measurement. It is done.

本実施形態のPPの立体規則性(タクティシティー)については特に限定されないが、例えば、アイソタクティックペンタッド分率(mmmm分率)が90モル%以上であるPPが好ましい。PPの立体規則性は、13C−NMRを用いたPPの解析により測定される。mmmm分率は、PP等のポリマーのアイソタクティック性を示す指標である。 Although the stereoregularity (tacticity) of PP of this embodiment is not particularly limited, for example, PP having an isotactic pentad fraction (mmmm fraction) of 90 mol% or more is preferable. The stereoregularity of PP is measured by analysis of PP using 13 C-NMR. The mmmm fraction is an index indicating the isotacticity of a polymer such as PP.

<ポリプロピレンの物性の測定>
PPの結晶化速度、融点(結晶融解ピーク温度)Tmおよび結晶化度Xcは、示差走査熱量計(DSC)を用いて、常法により測定される。
<Measurement of physical properties of polypropylene>
The crystallization rate, melting point (crystal melting peak temperature) Tm, and crystallinity Xc of PP are measured by a conventional method using a differential scanning calorimeter (DSC).

本実施形態のPPの分子量は、特に限定されるものではないが、例えば、重量平均分子量Mwが2000以上、好ましくは10000以上であるPPが挙げられる。重量平均分子量Mwの上限は実用上数百万程度である。重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、標準ポリスチレンに換算した重量平均分子量Mwとして測定することができる。   Although the molecular weight of PP of this embodiment is not specifically limited, For example, PP whose weight average molecular weight Mw is 2000 or more, Preferably it is 10,000 or more is mentioned. The upper limit of the weight average molecular weight Mw is practically several million. The weight average molecular weight can be measured as a weight average molecular weight Mw converted to standard polystyrene using GPC (gel permeation chromatography).

<ポリプロピレンの製造方法>
本実施形態のPPは、プロピレン(場合によりプロピレンおよびプロピレン以外のコモノマー)を重合する際に、エチレン性不飽和基および芳香環を有する芳香族コモノマー(b)を共存させて重合反応を行うことにより製造することができ、その製造方法としては、公知のPP製造方法が適用し得る。例えば、本実施形態に係るPPは、スラリー重合、バルク重合および気相重合等の公知の重合方法によって調製することができる。
<Production method of polypropylene>
In the PP of this embodiment, when polymerizing propylene (in some cases, comonomer other than propylene and propylene), by carrying out a polymerization reaction in the presence of an aromatic comonomer (b) having an ethylenically unsaturated group and an aromatic ring. A known PP production method can be applied as the production method. For example, the PP according to this embodiment can be prepared by a known polymerization method such as slurry polymerization, bulk polymerization, and gas phase polymerization.

以下、本実施形態のPPをスラリー重合により製造する場合について説明する。スラリー重合による本実施形態のPPの製造は、例えば、重合反応槽において、不活性溶媒中、触媒並びに必要に応じて添加される助触媒および連鎖移動剤等の存在下において、プロピレンと芳香族コモノマー(b)とを少なくとも含むモノマー原料を重合させることにより、行われる。スラリー重合による本実施形態のPPの製造方法としては、バッチ法および連続法のいずれの方法で重合反応を行ってもよい。   Hereinafter, the case where PP of this embodiment is manufactured by slurry polymerization will be described. Production of PP of this embodiment by slurry polymerization is carried out, for example, in a polymerization reaction tank in the presence of a catalyst, a co-catalyst and a chain transfer agent added as necessary, in an inert solvent. It is carried out by polymerizing a monomer raw material containing at least (b). As a method for producing the PP of this embodiment by slurry polymerization, the polymerization reaction may be performed by either a batch method or a continuous method.

本実施形態のPPの製造に用いる溶媒としては、プロピレンおよびエチレン性不飽和基および芳香環を有する化合物を含むモノマー原料、並びに、これらの重合体に対して不活性な溶媒であればいずれも使用でき、例えば、ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;これら炭化水素のハロゲン誘導体等が挙げられる。これらは単独でまたは2種以上を組み合わせて用いることができる。   As the solvent used in the production of PP of this embodiment, any monomer raw material containing a compound having propylene and an ethylenically unsaturated group and an aromatic ring, and any solvent inert to these polymers are used. For example, aliphatic hydrocarbons such as pentane, isopentane, hexane, heptane, and octane; alicyclic hydrocarbons such as methylcyclopentane and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; And halogen derivatives. These can be used alone or in combination of two or more.

本実施形態のPPの製造に用いる触媒としては、オレフィン重合用触媒として通常使用される、遷移金属成分を含有する固体触媒であれば特に限定されるものではなく、例えば、チーグラー・ナッタ(Ziegler-Natta)触媒、メタロセン触媒等の公知の触媒が使用できる。チーグラー・ナッタ触媒としては、例えば、チタン化合物と、トリエチルアルミニウムやメチルアルモキサン(MAO)等の助触媒(ドナー)とを組み合わせてなる触媒が挙げられ、ハロゲン化マグネシウム等の担体に両者を担持させてなる担持型触媒としても用いられている。メタロセン触媒としては、例えば、シクロペンタジエニル誘導体と遷移金属との錯体にアルキルアルミニウム化合物等の助触媒を添加してなる触媒が挙げられる。   The catalyst used for the production of PP of the present embodiment is not particularly limited as long as it is a solid catalyst containing a transition metal component, which is usually used as an olefin polymerization catalyst. For example, Ziegler-Natta (Ziegler- Natta) catalysts, metallocene catalysts, and other known catalysts can be used. Examples of the Ziegler-Natta catalyst include a catalyst comprising a combination of a titanium compound and a co-catalyst (donor) such as triethylaluminum or methylalumoxane (MAO). Both are supported on a carrier such as magnesium halide. It is also used as a supported catalyst. Examples of the metallocene catalyst include a catalyst obtained by adding a promoter such as an alkylaluminum compound to a complex of a cyclopentadienyl derivative and a transition metal.

用いられる触媒の使用量は、触媒の種類によって調整されるが、例えば、溶媒に対して遷移金属原子として10−7〜10mmol/Lとすることができる。 Although the usage-amount of the catalyst used is adjusted with the kind of catalyst, it can be 10 <-7 > -10 < 3 > mmol / L as a transition metal atom with respect to a solvent, for example.

本実施形態のPPの製造において用いる助触媒としては、例えば、アルキルアルミニウム、アルミノキサン、ルイス酸、フルオロボラン、アルキルボロンおよびアルキルボロンアンモニウム塩等が挙げられる。より具体的には、メチルアルミノキサン(MAO)、エチルアルミノキサン(EAO)、イソブチルアルミノキサン(IBAO)、トリメチルアルミニウム(TMA)、トリエチルアルミニウム(TEA)およびトリイソブチルアルミニウム(TIBA)等が挙げられ、これらを単独でまたは2種以上を混合して用いることができる。   Examples of the cocatalyst used in the production of the PP of the present embodiment include alkylaluminum, aluminoxane, Lewis acid, fluoroborane, alkylboron, and alkylboron ammonium salt. More specifically, methylaluminoxane (MAO), ethylaluminoxane (EAO), isobutylaluminoxane (IBAO), trimethylaluminum (TMA), triethylaluminum (TEA), triisobutylaluminum (TIBA) and the like can be mentioned. Or a mixture of two or more.

スラリー重合に用いる助触媒の使用量は、触媒および助触媒の種類によって調整されるが、例えば、触媒中の遷移金属原子に対する助触媒中の金属原子(Al原子等)のモル比で、0.1〜100,000の範囲とすることができる。触媒および助触媒は、重合反応系内に別々に投入してもよいし、両者を予め接触させたものを投入してもよい。予め、重合するモノマー原料の存在下で両者を接触させ、少量のモノマーを一部重合する予備重合を行ってもよい。   The amount of the cocatalyst used in the slurry polymerization is adjusted depending on the type of the catalyst and the cocatalyst. For example, the molar ratio of the metal atom (Al atom or the like) in the cocatalyst to the transition metal atom in the catalyst It can be in the range of 1 to 100,000. The catalyst and the cocatalyst may be charged separately in the polymerization reaction system, or may be charged in advance after both have been brought into contact with each other. Preliminary polymerization in which both are brought into contact with each other in the presence of a monomer raw material to be polymerized to partially polymerize a small amount of monomer may be performed in advance.

本実施形態のPPの製造に用いられるモノマー原料としては、プロピレンおよび芳香族コポリマー(b)を含み、更に、コモノマー(c)を含んでいてもよい。これらの各モノマー原料は、各モノマー原料の物性等に応じて供給される。   As a monomer raw material used for manufacture of PP of this embodiment, propylene and an aromatic copolymer (b) are included, and also a comonomer (c) may be included. Each of these monomer raw materials is supplied according to the physical properties of each monomer raw material.

スラリー重合による本実施形態のPPの製造において、プロピレンは、例えば、重合反応槽の気相部にガス状で供給し、溶媒に溶解することにより、重合反応系内に供給することができる。本実施形態のPPを連続式で製造する場合は、重合反応によるプロピレンの消費に応じて逐次供給すればよい。   In the production of PP of this embodiment by slurry polymerization, propylene can be supplied into the polymerization reaction system by, for example, supplying gas in the gas phase part of the polymerization reaction tank and dissolving it in a solvent. What is necessary is just to supply sequentially according to consumption of the propylene by a polymerization reaction, when manufacturing PP of this embodiment by a continuous type.

芳香族コモノマー(b)は、重合反応に先立って予め、または、逐次重合反応中に、重合反応槽の溶媒中に添加される。本実施形態のPPの製造においては、使用される溶媒および重合反応条件に応じて、芳香族コモノマー単位(B)を上記の特定の範囲で含有するPPが得られる量で、芳香族コモノマー(b)を重合反応系に供給する。   The aromatic comonomer (b) is added to the solvent in the polymerization reaction tank in advance or during the sequential polymerization reaction prior to the polymerization reaction. In the production of PP of the present embodiment, depending on the solvent used and the polymerization reaction conditions, the aromatic comonomer (b) is obtained in such an amount that PP containing the aromatic comonomer unit (B) in the above specific range is obtained. ) To the polymerization reaction system.

スラリー重合による本実施形態のPPの製造においては、不活性溶媒の種類および重合反応条件等によって異なるが、溶媒に対する芳香族コモノマー(b)の添加量を、例えば、1〜30mmol/Lとすることができる。スラリー重合による本実施形態のPPの製造においては、芳香族コモノマー(b)としてスチレン等の芳香環を1つ有する化合物を用いる場合、溶媒に対する芳香族コモノマー(b)の添加量が7.5〜20mmol/Lであることが好ましく、芳香族コモノマー(b)として1−アリルナフタレン等の芳香環を2つ有する化合物を用いる場合、溶媒に対する芳香族コモノマー(b)の添加量が5〜15mmol/Lであることが好ましい。本実施形態のPPを連続式で製造する場合は、重合反応による芳香族コモノマー(b)の消費に応じて逐次添加すればよい。   In the production of PP of this embodiment by slurry polymerization, the amount of the aromatic comonomer (b) added to the solvent is, for example, 1 to 30 mmol / L, depending on the type of the inert solvent and the polymerization reaction conditions. Can do. In the production of PP of this embodiment by slurry polymerization, when a compound having one aromatic ring such as styrene is used as the aromatic comonomer (b), the addition amount of the aromatic comonomer (b) to the solvent is 7.5 to 20 mmol / L is preferable. When a compound having two aromatic rings such as 1-allylnaphthalene is used as the aromatic comonomer (b), the amount of the aromatic comonomer (b) added to the solvent is 5 to 15 mmol / L. It is preferable that What is necessary is just to add sequentially according to consumption of the aromatic comonomer (b) by a polymerization reaction, when manufacturing PP of this embodiment by a continuous type.

コモノマー(c)は、その物質の状態によって、気体であればプロピレンと同様に重合反応槽の気相部に送られ、液体または固体であれば溶媒中に投入される。PPにおけるα−オレフィンコモノマー単位(C)の含有率は、例えば、コモノマー(c)の重合反応系への供給量によって調節することができる。   Depending on the state of the substance, comonomer (c) is sent to the gas phase part of the polymerization reaction tank in the same manner as propylene if it is a gas, and is charged into a solvent if it is liquid or solid. The content rate of the α-olefin comonomer unit (C) in PP can be adjusted by, for example, the supply amount of the comonomer (c) to the polymerization reaction system.

本実施形態のPPは、上記の重合方法により製造することができる。また、本実施形態のPPは、上記のスラリー重合に限らず、不活性溶媒を実質的に用いずにプロピレンを溶媒として用いるバルク重合、あるいは、実質的に液相が存在せず気相中で重合を行う気相重合等、公知の製造方法で製造することができる。   The PP of this embodiment can be produced by the above polymerization method. In addition, the PP of the present embodiment is not limited to the above-described slurry polymerization, but bulk polymerization using propylene as a solvent without substantially using an inert solvent, or substantially in the gas phase without a liquid phase. It can be produced by a known production method such as gas phase polymerization for carrying out polymerization.

本実施形態の、芳香族コモノマー単位(B)を0.005モル%以上0.05モル%以下の含有率で含むPPを製造する上記製造方法は、PPの結晶化速度を向上させる方法を提供するものである。このPPの結晶化速度の向上方法は、芳香族コモノマー単位(B)を含まないこと以外は同じ方法で製造されたPPと比較して、PPの結晶化速度以外の結晶化挙動、例えば、融点、立体規則性および結晶化度等をほぼ維持しながら、PPの結晶化速度を向上させる方法を提供するものである。   The above-described production method for producing PP containing the aromatic comonomer unit (B) at a content of 0.005 mol% to 0.05 mol% in the present embodiment provides a method for improving the crystallization rate of PP. To do. This method for improving the crystallization rate of PP is compared with PP produced by the same method except that it does not contain the aromatic comonomer unit (B). The present invention provides a method for improving the crystallization rate of PP while substantially maintaining stereoregularity and crystallinity.

本実施形態のPPは、その使用目的に応じて、本実施形態のPPを含む樹脂組成物として提供される。当該樹脂組成物としては、樹脂成分として本実施形態のPPのみを含有していてもよいし、或いは、本実施形態のPP以外の他の樹脂、例えばポリエチレン、本実施形態のPP以外のPP、ポリブテン、ポリ4−メチルペンテン−1等の他のポリα−オレフィン、ポリエステル、ポリアミド、ポリカーボネート、ABS樹脂、エラストマー、ポリ塩化ビニル等と混合した樹脂組成物を調製してもよい。   The PP of the present embodiment is provided as a resin composition containing the PP of the present embodiment depending on the purpose of use. The resin composition may contain only the PP of the present embodiment as a resin component, or other resins other than the PP of the present embodiment, such as polyethylene, PP other than the PP of the present embodiment, A resin composition mixed with other poly α-olefins such as polybutene and poly-4-methylpentene-1, polyester, polyamide, polycarbonate, ABS resin, elastomer, polyvinyl chloride and the like may be prepared.

本実施形態のPPを含む樹脂組成物は、必要に応じて、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、造核剤、滑剤、難燃剤、アンチブロッキング剤、着色剤、無機質または有機質の充填剤等の各種添加剤を含有していてもよい。   The resin composition containing PP according to the present embodiment includes a heat stabilizer, an antioxidant, an ultraviolet absorber, an antistatic agent, a nucleating agent, a lubricant, a flame retardant, an antiblocking agent, a colorant, and an inorganic material as necessary. Alternatively, various additives such as organic fillers may be contained.

本実施形態のPPおよびこれを含む樹脂組成物の用途は、従来のPPと同様であって、限定されるものではない。本実施形態のPP等の用途としては、例えば、バンパー、ダッシュボード、インスツルメントパネル等の自動車用樹脂部品;冷蔵庫、洗濯機、掃除機等の家電製品用樹脂部品;食器、入浴用品等の家庭用品;タンク、ボトル等の貯蔵容器;注射器、カテーテル、医療用チューブ等の医療用成形品;壁材、床材、壁紙等の建材;電線被覆材;農業用資材;ラップ、トレイ等の食品包装材;容器ボトル、コップ、保存用容器等の食品用途の成形品;発泡断熱材、発泡緩衝材等の緩衝材等が挙げられる。   The use of PP of this embodiment and the resin composition containing this is the same as that of conventional PP, and is not limited. Examples of applications such as PP of this embodiment include resin parts for automobiles such as bumpers, dashboards, and instrument panels; resin parts for household appliances such as refrigerators, washing machines, and vacuum cleaners; Household goods; Storage containers such as tanks and bottles; Medical molded products such as syringes, catheters and medical tubes; Building materials such as wall materials, flooring materials and wallpaper; Wire covering materials; Agricultural materials; Foods such as wraps and trays Packaging materials; molded products for food use such as container bottles, cups, storage containers; and cushioning materials such as foam insulation and foam cushioning materials.

以下、実施例に基づき、本発明の実施形態をさらに具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, based on an Example, embodiment of this invention is described more concretely. In addition, this invention is not limited to a following example.

<物性評価>
(芳香族コモノマー単位(B)の含有率)
調製されたPPをヘキサクロロ−1,3−ブタジエンに溶解し、核磁気共鳴(NMR)装置(BRUKER社製、AVANCE III型)を用いて、120℃でH−NMR測定を行った。1,1,2,2,−テトラクロエタン−dを基準とし、芳香環に由来する化学シフトのピーク(7.0〜8.5ppm)とアルキル基に由来する化学シフトのピーク(0.8〜3ppm)の強度を比較し、PPにおける芳香族コモノマー単位(B)の含有率を測定した。
<Physical property evaluation>
(Content of aromatic comonomer unit (B))
The prepared PP was dissolved in hexachloro-1,3-butadiene, and 1 H-NMR measurement was performed at 120 ° C. using a nuclear magnetic resonance (NMR) apparatus (manufactured by BRUKER, AVANCE III type). 1,1,2,2, - with reference to the tetra Chloe Tan -d 2, chemical shifts derived from an alkyl group peak (7.0~8.5Ppm) chemical shift derived from the aromatic ring peak (0. The content of the aromatic comonomer unit (B) in PP was measured.

(結晶化速度)
PPの結晶化速度を示差走査熱量計(DSC)(Mettler社製、製品名DSC822)を用いて求めた。調製されたPPの5mgをDSCのセルに投入し、230℃で10分間保持した後、5℃/分の速度で132℃まで下げて、その温度を保持した。本明細書では、測定されたDSC曲線から、温度保持後の結晶化による発熱ピークの立ち上がりからピーク面積の1/2になるまでの時間(半結晶化時間t1/2)を算出し、その半結晶化時間t1/2の逆数を結晶化速度とした。
(Crystallization speed)
The crystallization rate of PP was determined using a differential scanning calorimeter (DSC) (product name DSC822, manufactured by Mettler). 5 mg of the prepared PP was put into a DSC cell and maintained at 230 ° C. for 10 minutes, and then decreased to 132 ° C. at a rate of 5 ° C./minute to maintain the temperature. In this specification, from the measured DSC curve, the time from the rise of the exothermic peak due to crystallization after holding the temperature to ½ of the peak area (half crystallization time t 1/2 ) is calculated, The reciprocal of the half crystallization time t1 / 2 was taken as the crystallization rate.

(mmmm分率)
調製されたPPを2,4−トリクロロベンゼンに溶解し、核磁気共鳴(NMR)装置(BRUKER社製、AVANCE III型)を用いて、120℃で13C−NMR測定を行った。積算回数は、5000回以上であった。
(Mmmm fraction)
The prepared PP was dissolved in 2,4-trichlorobenzene, and 13 C-NMR measurement was performed at 120 ° C. using a nuclear magnetic resonance (NMR) apparatus (manufactured by BRUKER, AVANCE III type). The number of integrations was 5000 times or more.

(融点Tm、結晶化度Xc)
PPの融点Tmおよび結晶化度Xcを、示差走査熱量計(DSC)(Mettler社製、製品名DSC822)を用いて求めた。調製されたPPの5mgをDSCのセルに投入し、昇温速度20℃/分で50℃から200℃まで温度を上げて、熱量分析を行った。
(Melting point Tm, crystallinity Xc)
The melting point Tm and crystallinity Xc of PP were determined using a differential scanning calorimeter (DSC) (product name DSC822, manufactured by Mettler). 5 mg of the prepared PP was charged into a DSC cell, and the temperature was increased from 50 ° C. to 200 ° C. at a temperature rising rate of 20 ° C./min, and calorimetric analysis was performed.

[実施例1]
充分に乾燥させた重合反応槽に、窒素雰囲気下、脱水処理および脱気処理を十分に行った140質量部のn−ヘプタン、2ミリモル部のトリエチルアルミニウム、2ミリモル部のスチレンを加えた。重合反応槽内の温度を50℃に設定し、重合圧力が5atmとなるようにプロピレンを重合反応槽に導入することにより溶媒を飽和させた。この溶媒に、ジエーテル系内部ドナーを有する塩化マグネシウム担持型であるチーグラー・ナッタ触媒を0.01質量部と、連鎖移動剤として水素を8ミリモル部加え、重合温度を50℃に、プロピレンの重合圧力を5atmに維持しながら、スラリー重合を30分間行った。
[Example 1]
In a sufficiently dried polymerization reaction vessel, 140 parts by mass of n-heptane, 2 mmole of triethylaluminum, and 2 mmole of styrene that had been sufficiently dehydrated and degassed in a nitrogen atmosphere were added. The temperature in the polymerization reaction vessel was set to 50 ° C., and the solvent was saturated by introducing propylene into the polymerization reaction vessel so that the polymerization pressure was 5 atm. To this solvent, 0.01 parts by mass of a magnesium chloride-supported Ziegler-Natta catalyst having a diether internal donor and 8 mmol parts of hydrogen as a chain transfer agent were added, the polymerization temperature was 50 ° C., and the polymerization pressure of propylene Was maintained at 5 atm, and slurry polymerization was performed for 30 minutes.

重合開始から30分間経過後、得られたスラリーにメタノールを40質量部加え、5分間攪拌した後、ろ過した。得られた粉末状の生成物を、塩酸およびエタノールの混合溶液(塩酸/エタノールの体積比1/4)を用いて洗浄し、更に、イオン交換水を用いて2回洗浄した後、ろ過し、乾燥した。得られたろ過物を、139℃に加熱されたキシレン260質量部に加えて溶解した後、この溶液をアセトン2100質量部に加えて再沈殿させた。得られた再沈殿物をろ過および乾燥して、21質量部のPPが調製された。   After 30 minutes from the start of polymerization, 40 parts by mass of methanol was added to the resulting slurry, and the mixture was stirred for 5 minutes and then filtered. The obtained powdery product was washed with a mixed solution of hydrochloric acid and ethanol (volume ratio 1/4 of hydrochloric acid / ethanol), further washed twice with ion-exchanged water, filtered, Dried. The obtained filtrate was added to 260 parts by mass of xylene heated to 139 ° C. and dissolved, and then this solution was added to 2100 parts by mass of acetone for reprecipitation. The obtained reprecipitate was filtered and dried to prepare 21 parts by mass of PP.

実施例1で得られたPPについて、H−NMRにより解析した結果、スチレンコモノマー単位の含有率は0.020モル%であり、13C−NMRにより解析した結果、mmmm分率は93モル%であった。また、実施例1で得られたPPについて示差走査熱量計(DSC)により解析した結果、下記表1に記載の通り融点Tmは167℃であり、結晶化度Xcは47%であり、結晶化速度は0.22であった。 The PP obtained in Example 1 was analyzed by 1 H-NMR. As a result, the content of styrene comonomer units was 0.020 mol%, and as a result of analysis by 13 C-NMR, the mmmm fraction was 93 mol%. Met. The PP obtained in Example 1 was analyzed by a differential scanning calorimeter (DSC). As a result, the melting point Tm was 167 ° C. and the crystallinity Xc was 47% as shown in Table 1 below. The speed was 0.22.

[実施例2]
スチレンに代えて2ミリモル部の1−アリルナフタレンを溶媒に加えたこと以外は、実施例1と同様にして重合を行った。その結果、18質量部のPPが調製された。実施例2で得られたPPについて、H−NMRにより解析した結果、1−アリルナフタレンコモノマー単位の含有率は0.010モル%であり、13C−NMRにより解析した結果、mmmm分率は94モル%であった。また、実施例2で得られたPPについてDSCにより解析した結果、下記表1に記載の通り融点Tmは167℃であり、結晶化度Xcは48%であり、結晶化速度は0.25であった。
[Example 2]
Polymerization was carried out in the same manner as in Example 1 except that 2 mmol part of 1-allylnaphthalene was added to the solvent instead of styrene. As a result, 18 parts by mass of PP was prepared. The PP obtained in Example 2 was analyzed by 1 H-NMR. As a result, the content of 1-allylnaphthalene comonomer unit was 0.010 mol%, and analyzed by 13 C-NMR, the mmmm fraction was It was 94 mol%. Moreover, as a result of analyzing by DSC about PP obtained in Example 2, as shown in following Table 1, melting | fusing point Tm is 167 degreeC, Crystallinity degree Xc is 48%, Crystallization speed | rate is 0.25. there were.

[実施例3]
スチレンの添加量を3ミリモル部としたこと以外は、実施例1と同様にして重合を行った。その結果、20質量部のPPが調製された。実施例3で得られたPPについて、H−NMRにより解析した結果、スチレンコモノマー単位の含有率は0.022モル%であり、13C−NMRにより解析した結果、mmmm分率は93モル%であった。また、実施例3で得られたPPについてDSCにより解析した結果、下記表1に記載の通り融点Tmは167℃であり、結晶化度Xcは47%であり、結晶化速度は0.19であった。
[Example 3]
Polymerization was carried out in the same manner as in Example 1 except that the amount of styrene added was 3 mmol parts. As a result, 20 parts by mass of PP was prepared. The PP obtained in Example 3 was analyzed by 1 H-NMR. As a result, the content of styrene comonomer units was 0.022 mol%, and as a result of analysis by 13 C-NMR, the mmmm fraction was 93 mol%. Met. Moreover, as a result of analyzing by DSC about PP obtained in Example 3, as shown in following Table 1, melting | fusing point Tm is 167 degreeC, Crystallinity degree Xc is 47%, Crystallization speed | rate is 0.19. there were.

[実施例4]
スチレンに代えて1ミリモル部の1−アリルナフタレンを溶媒に加えたこと以外は、実施例1と同様にして重合を行った。その結果、20質量部のPPが調製された。実施例4で得られたPPについて、H−NMRにより解析した結果、1−アリルナフタレンコモノマー単位の含有率は0.005モル%であり、13C−NMRにより解析した結果、mmmm分率は94モル%であった。また、実施例4で得られたPPについてDSCにより解析した結果、下記表1に記載の通り融点Tmは167℃であり、結晶化度Xcは48%であり、結晶化速度は0.19であった。
[Example 4]
Polymerization was carried out in the same manner as in Example 1 except that 1 mmol part of 1-allylnaphthalene was added to the solvent instead of styrene. As a result, 20 parts by mass of PP was prepared. The PP obtained in Example 4 was analyzed by 1 H-NMR. As a result, the content of 1-allylnaphthalene comonomer unit was 0.005 mol%, and analyzed by 13 C-NMR, the mmmm fraction was It was 94 mol%. Moreover, as a result of analyzing by DSC about PP obtained in Example 4, melting | fusing point Tm is 167 degreeC as described in following Table 1, Crystallinity degree Xc is 48%, Crystallization speed | rate is 0.19. there were.

[比較例1]
スチレンを添加しなかったこと以外は、実施例1と同様にして重合を行った結果、18質量部のPP(プロピレンホモポリマー)が得られた。比較例1で得られたPPについて13C−NMRにより解析した結果、mmmm分率は93モル%であった。また、比較例1で得られたPPについてDSCにより解析した結果、下記表1に記載の通り融点Tmは168℃であり、結晶化度Xcは49%であり、結晶化速度は0.18であった。
[Comparative Example 1]
Polymerization was carried out in the same manner as in Example 1 except that styrene was not added. As a result, 18 parts by mass of PP (propylene homopolymer) was obtained. The PP obtained in Comparative Example 1 was analyzed by 13 C-NMR. As a result, the mmmm fraction was 93 mol%. Moreover, as a result of analyzing by DSC about PP obtained by the comparative example 1, melting | fusing point Tm is 168 degreeC as described in following Table 1, Crystallinity degree Xc is 49%, Crystallization speed | rate is 0.18. there were.

[比較例2]
スチレンの添加量を10mmolとしたこと以外は、実施例1と同様にして重合を行った結果、20質量部のPPが得られた。比較例2で得られたPPについて、H−NMRおよび13C−NMRにより解析した結果、スチレンコモノマー単位の含有率は0.064モル%であり、mmmm分率は93モル%であった。また、比較例2で得られたPPについてDSCにより解析した結果、下記表1に記載の通り融点Tmは166℃であり、結晶化度Xcは47%であり、結晶化速度は0.17であった。
[Comparative Example 2]
Polymerization was carried out in the same manner as in Example 1 except that the amount of styrene added was 10 mmol. As a result, 20 parts by mass of PP was obtained. The PP obtained in Comparative Example 2 was analyzed by 1 H-NMR and 13 C-NMR. As a result, the content of styrene comonomer units was 0.064 mol%, and the mmmm fraction was 93 mol%. Moreover, as a result of analyzing by DSC about PP obtained by the comparative example 2, melting | fusing point Tm is 166 degreeC as described in following Table 1, Crystallinity degree Xc is 47%, Crystallization speed | rate is 0.17. there were.

実施例1〜4、比較例1および2で調製されたPPの物性および結晶化挙動を下記表1に示す。

Figure 2017014405
The physical properties and crystallization behavior of PP prepared in Examples 1 to 4 and Comparative Examples 1 and 2 are shown in Table 1 below.
Figure 2017014405

実施例1〜4および比較例1〜2の結果が示すように、プロピレン単位(A)および芳香族コモノマー単位(B)を含み、芳香族コモノマー単位(B)の含有率がポリプロピレンを構成するモノマー単位の総量に対して0.005モル%以上0.05モル%以下であるポリプロピレンは、芳香族コモノマー単位(B)を含まないこと以外は同じ組成を有する比較例1のポリプロピレン、および、芳香族コモノマー単位(B)の含有率が上記範囲の上限を超える比較例2のポリプロピレンと比較して、結晶化速度が向上した。結晶化速度が向上したことから、実施例1〜4のポリプロピレンは成形加工性に優れると考えられる。また、実施例1〜4のポリプロピレンは、芳香族コモノマー単位(B)を含まない比較例1のポリプロピレンに比べて、融点、立体規則性および結晶化度が維持されていた。   As the results of Examples 1 to 4 and Comparative Examples 1 and 2 show, a monomer containing a propylene unit (A) and an aromatic comonomer unit (B), and the content of the aromatic comonomer unit (B) constitutes polypropylene. The polypropylene of 0.005 mol% or more and 0.05 mol% or less with respect to the total amount of the units is the polypropylene of Comparative Example 1 having the same composition except that it does not contain the aromatic comonomer unit (B), and the aromatic Compared with the polypropylene of the comparative example 2 in which the content rate of a comonomer unit (B) exceeds the upper limit of the said range, the crystallization speed improved. Since the crystallization speed was improved, the polypropylenes of Examples 1 to 4 are considered to be excellent in moldability. Moreover, the polypropylene of Examples 1-4 maintained melting | fusing point, stereoregularity, and crystallinity compared with the polypropylene of the comparative example 1 which does not contain an aromatic comonomer unit (B).

Claims (3)

プロピレン単位(A)と芳香族コモノマー単位(B)とを含むポリプロピレンであって、前記芳香族コモノマー単位(B)の含有率が前記ポリプロピレンを構成するモノマー単位の総量に対して0.005モル%以上0.05モル%以下であることを特徴とする、ポリプロピレン。   A polypropylene containing a propylene unit (A) and an aromatic comonomer unit (B), wherein the content of the aromatic comonomer unit (B) is 0.005 mol% with respect to the total amount of monomer units constituting the polypropylene. More than 0.05 mol%, The polypropylene characterized by the above-mentioned. 前記芳香族コモノマー単位(B)がスチレンおよび1−アリルナフタレンから選択される少なくとも1つの化合物に由来するモノマー単位である、請求項1に記載のポリプロピレン。   The polypropylene according to claim 1, wherein the aromatic comonomer unit (B) is a monomer unit derived from at least one compound selected from styrene and 1-allylnaphthalene. 請求項1または2に記載のポリプロピレンを製造する方法であって、不活性溶媒中、触媒の存在下において、プロピレンとエチレン性不飽和基および芳香環を有する化合物とを少なくとも含むモノマー原料を重合させることにより製造することを特徴とする、製造方法。   The method for producing polypropylene according to claim 1 or 2, wherein a monomer raw material containing at least propylene and a compound having an ethylenically unsaturated group and an aromatic ring is polymerized in an inert solvent in the presence of a catalyst. The manufacturing method characterized by manufacturing by this.
JP2015133000A 2015-07-01 2015-07-01 Polypropylene and method for producing the same Active JP6619168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015133000A JP6619168B2 (en) 2015-07-01 2015-07-01 Polypropylene and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015133000A JP6619168B2 (en) 2015-07-01 2015-07-01 Polypropylene and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017014405A true JP2017014405A (en) 2017-01-19
JP6619168B2 JP6619168B2 (en) 2019-12-11

Family

ID=57829751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015133000A Active JP6619168B2 (en) 2015-07-01 2015-07-01 Polypropylene and method for producing the same

Country Status (1)

Country Link
JP (1) JP6619168B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151204A (en) * 1984-12-24 1986-07-09 Idemitsu Petrochem Co Ltd Production of polyolefin
JPH08269134A (en) * 1995-04-04 1996-10-15 Denki Kagaku Kogyo Kk Propylene-aromatic vinyl compound copolymer and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151204A (en) * 1984-12-24 1986-07-09 Idemitsu Petrochem Co Ltd Production of polyolefin
JPH08269134A (en) * 1995-04-04 1996-10-15 Denki Kagaku Kogyo Kk Propylene-aromatic vinyl compound copolymer and its production

Also Published As

Publication number Publication date
JP6619168B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
US6248829B1 (en) Polymers of propene
CN101511879B (en) Preparation of polymerization catalyst activators utilizing indole-modified silica supports
KR101720920B1 (en) Propylene-based resin composition
KR101692346B1 (en) High density ethylene polymer using supported hybrid metallocene catalyst and methods for producing the same
CN101080270B (en) Device for polymerization process
US9714306B2 (en) Olefin resin and method for producing same
US6733717B1 (en) Injection stretch-blow molded containers made of olefin polymers
US20030130443A1 (en) Partly crystalline propylene polymerisate composition for production of biaxial-stretched polypropylene films
RU2647310C1 (en) Olefin-based resin, process for its production and propylene-based resin composition
US7173099B1 (en) Propylene polymers and resin composition and molding containing the polymers
CA2396670C (en) High-molecular polypropylene with a broad distribution of the molecular weight and a short isotactic sequence length
EP1448633B2 (en) Two-step polymerization process
CN117255734A (en) Polymer composition comprising polypropylene and hydrocarbon resin
JP6564289B2 (en) Olefinic resin, production method and composition thereof, and molded article
JP6619168B2 (en) Polypropylene and method for producing the same
JP7664398B2 (en) Hybrid catalyst composition, catalyst containing same, and method for producing olefin-based polymer using same
CN113195623A (en) Composition comprising a metal oxide and a metal oxide
CN117836365A (en) Homopolymer-random copolymer blends with beneficial balance of optical and mechanical properties
WO1998035997A1 (en) Preactivated catalyst for olefin (co)polymer, catalyst for olefin (co)polymerization, olefin (co)polymer composition, and process for producing the same
JP2000095820A (en) Propylene-based polymer and composition including the same
JP2024535365A (en) Process for producing propylene copolymers
CN117377704A (en) Copolymer
WO2016047699A1 (en) Olefin-based polymer and process for producing same
JPH08217928A (en) Syndiotactic polypropylene resin composition and method for producing the same
JPH09151214A (en) Polypropylene molding and preparation of its base resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191114

R150 Certificate of patent or registration of utility model

Ref document number: 6619168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250