[go: up one dir, main page]

JP2017013014A - Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system - Google Patents

Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system Download PDF

Info

Publication number
JP2017013014A
JP2017013014A JP2015133487A JP2015133487A JP2017013014A JP 2017013014 A JP2017013014 A JP 2017013014A JP 2015133487 A JP2015133487 A JP 2015133487A JP 2015133487 A JP2015133487 A JP 2015133487A JP 2017013014 A JP2017013014 A JP 2017013014A
Authority
JP
Japan
Prior art keywords
measuring device
concentration measuring
atmosphere
phosphorus concentration
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015133487A
Other languages
Japanese (ja)
Inventor
時本 寛幸
Hiroyuki Tokimoto
寛幸 時本
卓巳 小原
Takumi Obara
卓巳 小原
理 山中
Satoru Yamanaka
理 山中
由紀夫 平岡
Yukio Hiraoka
由紀夫 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015133487A priority Critical patent/JP2017013014A/en
Publication of JP2017013014A publication Critical patent/JP2017013014A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic wastewater treatment system that is capable of efficiently removing nitrogen and phosphorus from organic wastewater, an organic wastewater treatment method, and a control program of the organic wastewater treatment system.SOLUTION: According to an embodiment, an organic wastewater treatment system comprises: a biological reaction tank equipped with an anaerobic treatment region, an adjustment treatment region and an aerobic treatment region in order; an ammonia concentration measuring device; a total nitrogen concentration measuring device; a total phosphorus concentration measuring device or a phosphate phosphorus concentration measuring device; and a control part. The adjustment treatment region is switchable to one or two or more atmospheres of anaerobic atmosphere, microaerobic atmosphere or aerobic atmosphere. Further, the region is a region where a range occupied with each atmosphere is adjustable. The control part has a control program which controls the adjustment treatment region so as to put priority to nitrification in removal of nitrogen, and remove phosphorus in the case where nitrification is sufficiently done.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、有機排水処理システム、有機排水処理方法、及び有機排水処理システムの制御プログラムに関する。   Embodiments described herein relate generally to an organic wastewater treatment system, an organic wastewater treatment method, and a control program for an organic wastewater treatment system.

従来、生活排水を浄化処理する下水処理場では、もっとも代表的なプロセスとして、標準活性汚泥法が採用されてきた。標準活性汚泥法は、送風機により水中に空気を供給する曝気槽において、好気微生物により水中の有機汚濁物質を酸化分解するものである。この標準活性汚泥法では、有機物は分解除去できる。   Conventionally, the standard activated sludge method has been adopted as the most typical process in sewage treatment plants that purify domestic wastewater. The standard activated sludge method oxidizes and decomposes organic pollutants in water by aerobic microorganisms in an aeration tank that supplies air into the water by a blower. In this standard activated sludge method, organic substances can be decomposed and removed.

しかしながら、放流先の富栄養化問題の原因物質となる窒素やリンは、標準活性汚泥法では除去できない。そこで、有機物を分解するとともに、窒素及びリンを除去する方法として、標準活性汚泥法の変法である窒素除去型の循環式硝化脱窒法、リン除去型の嫌気−好気活性汚泥法(AO法)、窒素・リン同時除去型の嫌気−無酸素-好気活性汚泥法(AO)法などの高度処理プロセスの導入が進められている。 However, nitrogen and phosphorus that cause eutrophication problems at the discharge destination cannot be removed by the standard activated sludge method. Therefore, as a method for decomposing organic substances and removing nitrogen and phosphorus, a nitrogen removal type circulatory nitrification denitrification method, a phosphorus removal type anaerobic-aerobic activated sludge method (AO method), which is a modification of the standard activated sludge method. ), Advanced treatment processes such as an anaerobic-anoxic-aerobic activated sludge method (A 2 O) method of simultaneous removal of nitrogen and phosphorus are being promoted.

こうした高度処理プロセスでは、流入下水から最初沈殿池で沈殿汚泥が除去された一次処理水が生物反応槽に送られる。次いで、生物反応槽内の嫌気槽、無酸素槽および好気槽において微生物の反応により、一次処理水から有機物、窒素、リンが除去される。同時に、生物反応槽において微生物の凝集体であるフロックが形成される。そして、フロックを含む二次処理水が最終沈殿池に送られる。最終沈殿池では二次処理水からフロックが沈殿、除去される。沈殿物の大部分は活性汚泥を含む返送汚泥として最終沈殿池から生物反応槽に戻される。沈殿物の一部は余剰汚泥として最終沈殿池から排出され、濃縮・脱水後に焼却処理される。   In such an advanced treatment process, primary treated water from which the settled sludge has been removed from the influent sewage in the first settling tank is sent to the biological reaction tank. Next, organic substances, nitrogen, and phosphorus are removed from the primary treated water by the reaction of microorganisms in the anaerobic tank, anoxic tank, and aerobic tank in the biological reaction tank. At the same time, flocs that are aggregates of microorganisms are formed in the bioreactor. Then, secondary treated water containing floc is sent to the final sedimentation basin. In the final sedimentation basin, flocs are settled and removed from the secondary treated water. Most of the sediment is returned to the biological reaction tank from the final sedimentation basin as return sludge containing activated sludge. Part of the sediment is discharged as surplus sludge from the final sedimentation basin and incinerated after concentration and dehydration.

有機排水中の窒素分としてのアンモニアの除去プロセスは次の通りである。まず、好気槽においてアンモニアが硝酸イオンに酸化(硝化)される。酸化された硝酸イオンは無酸素槽に返送される。無酸素槽において微生物の作用により硝酸イオンが窒素ガスに還元(脱窒)される。また、リンの除去プロセスでは、嫌気槽において微生物からリンを吐き出させる。次いで好気槽において、微生物にリンを吸収させ、リンを吸収した微生物をフロックとして沈澱除去させる。好気槽において微生物に吸収されるリン量は、嫌気槽において微生物が吐き出すリン量よりも大量である。この吐出量と吸収量の差に基づきリンの除去が行われる。   The process for removing ammonia as nitrogen in organic wastewater is as follows. First, ammonia is oxidized (nitrified) into nitrate ions in an aerobic tank. Oxidized nitrate ions are returned to the anoxic tank. In the anaerobic tank, nitrate ions are reduced (denitrified) to nitrogen gas by the action of microorganisms. Further, in the phosphorus removal process, phosphorus is discharged from microorganisms in an anaerobic tank. Next, in the aerobic tank, the microorganisms absorb phosphorus, and the microorganisms that have absorbed phosphorus are precipitated and removed as floc. The amount of phosphorus absorbed by the microorganisms in the aerobic tank is larger than the amount of phosphorus discharged by the microorganisms in the anaerobic tank. Phosphorus removal is performed based on the difference between the discharge amount and the absorption amount.

しかしながら、既存の排水処理装置に、上記の高度処理方法を導入するためには、生物反応槽内に新たに嫌気槽、無酸素槽および好気槽を設ける必要がある。具体的には、攪拌機、ポンプなどの新たな機器の導入ならびに新たなコンクリート躯体の新設が必要となる。このため、既存の設備の改造には時間と手間がかかり、コスト高であるといった課題があった。   However, in order to introduce the above-described advanced treatment method into an existing wastewater treatment apparatus, it is necessary to newly provide an anaerobic tank, an oxygen-free tank, and an aerobic tank in the biological reaction tank. Specifically, it is necessary to introduce new equipment such as a stirrer and a pump, and newly install a new concrete frame. For this reason, the modification of the existing equipment takes time and labor, and there is a problem that the cost is high.

こうした課題に対応するために、例えば、有機性排水中の固形分と液分を固液分離する最初沈殿池と、最初沈殿池の越流水を活性汚泥にて処理する生物反応槽と活性汚泥を固液分離する活性汚泥処理法の施設において、生物反応槽内に水の流下方向に配された散気管の調整バルブの開度調整により、嫌気−微好気−好気の運転切替できるゾーン(調整処理領域)を設けた有機排水処理システムが知られている。そして、この調整処理領域を、処理水中の窒素、リン濃度並びにアンモニア濃度の計測値に応じて、リンの処理性能が悪い場合には嫌気運転、窒素の処理性能が悪くかつアンモニアの処理性能が悪い場合は好気運転、その他の場合は微好気運転とすることによって、窒素およびリンを除去できるとされている。しかしながら、こうした有機排水処理システムでは、窒素の除去とリンの除去とを両立させる場合、流入する被処理水の水量や水質の条件によっては窒素およびリンを効率的に除去することが困難になる場合もあった。   In order to respond to these issues, for example, there are a first sedimentation basin that separates solids and liquids in organic wastewater into solid-liquid separation, a biological reaction tank that treats the overflow water of the first sedimentation basin with activated sludge, and activated sludge. In an activated sludge treatment facility that separates solid and liquid, a zone that can be switched between anaerobic, microaerobic and aerobic operation by adjusting the opening of the adjustment valve of the diffuser pipe arranged in the direction of water flow in the biological reaction tank ( An organic wastewater treatment system provided with an adjustment treatment area) is known. Then, according to the measured values of nitrogen, phosphorus concentration and ammonia concentration in the treated water, this adjustment treatment area is anaerobic operation when the treatment performance of phosphorus is bad, the treatment performance of nitrogen is bad and the treatment performance of ammonia is bad. In some cases, it is said that nitrogen and phosphorus can be removed by aerobic operation, and in other cases, microaerobic operation. However, in such an organic wastewater treatment system, when nitrogen removal and phosphorus removal are both compatible, it may be difficult to efficiently remove nitrogen and phosphorus depending on the amount of treated water flowing in and the water quality conditions. There was also.

特開2015−097976号公報Japanese Patent Laying-Open No. 2015-097976

本発明が解決しようとする課題は、有機排水中から窒素およびリンを効率的に除去することを可能にする有機排水処理システム、有機排水処理方法、及び有機排水処理システムの制御プログラムを提供することである。   The problem to be solved by the present invention is to provide an organic wastewater treatment system, an organic wastewater treatment method, and a control program for an organic wastewater treatment system that enable efficient removal of nitrogen and phosphorus from organic wastewater. It is.

実施形態の有機排水処理システムは、嫌気雰囲気、微好気雰囲気または好気雰囲気の1種または2種以上の雰囲気に切り替え可能な調整処理領域を備え、この調整処理領域の雰囲気の範囲を調整する制御部は、窒素除去においては硝化を優先させ、前記アンモニア濃度測定器、および前記全リン濃度測定器またはリン酸態リン濃度測定器により測定された値に基づいて、前記硝化が十分だと判断した場合にはリン除去を行うように前記調整処理領域を制御する制御プログラムを有する。   The organic wastewater treatment system of the embodiment includes an adjustment processing region that can be switched to one or more of an anaerobic atmosphere, a microaerobic atmosphere, or an aerobic atmosphere, and adjusts the range of the atmosphere of the adjustment processing region. The control unit prioritizes nitrification in nitrogen removal, and determines that the nitrification is sufficient based on values measured by the ammonia concentration measuring device and the total phosphorus concentration measuring device or the phosphorous phosphorus concentration measuring device. In this case, a control program is provided for controlling the adjustment processing area so as to remove phosphorus.

実施形態に係る有機排水処理システムを示す模式図。The schematic diagram which shows the organic waste water treatment system which concerns on embodiment. 調整処理領域の雰囲気制御の一例を示す模式図。The schematic diagram which shows an example of the atmosphere control of an adjustment process area | region. 調整処理領域の雰囲気制御の一例を示す模式図。The schematic diagram which shows an example of the atmosphere control of an adjustment process area | region. 調整処理領域の雰囲気制御の一例を示す模式図。The schematic diagram which shows an example of the atmosphere control of an adjustment process area | region. 調整処理領域の雰囲気制御の一例を示す模式図。The schematic diagram which shows an example of the atmosphere control of an adjustment process area | region.

以下、実施形態の有機排水処理システム、有機排水処理方法、及び有機排水処理システムの制御プログラムを、図面を参照して説明する。   Hereinafter, an organic wastewater treatment system, an organic wastewater treatment method, and an organic wastewater treatment system control program according to embodiments will be described with reference to the drawings.

図1に示す本実施形態の有機排水処理システム1は、上流側から順に最初沈殿池2(沈殿池)、生物反応槽3および最終沈殿池4を備えている。また、有機排水処理システム1には、制御部9が備えられている。   The organic waste water treatment system 1 of this embodiment shown in FIG. 1 includes a first sedimentation basin 2 (sedimentation basin), a biological reaction tank 3 and a final sedimentation basin 4 in order from the upstream side. The organic waste water treatment system 1 is provided with a control unit 9.

生物反応槽3は、微生物による分解作用を利用して汚水を浄化処理するための反応容器である。生物反応漕3には、嫌気処理領域11、調整処理領域12、好気処理領域13が設置されている。調整処理領域12は、嫌気処理領域11と好気処理領域13との間に配置されている。ここで、「間に配置」とは、空間的な概念ではなく、調整処理領域12における処理の順番が、被処理水の流れ沿った上流側から下流側に向かって、嫌気処理領域11と好気処理領域13との間であることを意味している。   The biological reaction tank 3 is a reaction vessel for purifying sewage using a decomposition action by microorganisms. The biological reaction tank 3 is provided with an anaerobic treatment area 11, an adjustment treatment area 12, and an aerobic treatment area 13. The adjustment processing area 12 is disposed between the anaerobic processing area 11 and the aerobic processing area 13. Here, “arranged between” is not a spatial concept, but the order of processing in the adjustment processing region 12 is favorably compared with the anaerobic processing region 11 from the upstream side to the downstream side along the flow of the water to be treated. This means that it is between the gas processing region 13.

生物反応槽3には、浄化処理前の有機排水(被処理水)が導入流路51から流入する流入部と、浄化処理後の有機排水(処理済水)が流出する流出部がある。流入部は、嫌気処理領域11の近傍に設置されている。流出部は、好気処理領域13の近傍に設置されている。   The biological reaction tank 3 has an inflow portion through which organic waste water (treated water) before purification treatment flows from the introduction flow path 51 and an outflow portion from which organic waste water (purified water) after purification treatment flows out. The inflow portion is installed in the vicinity of the anaerobic treatment region 11. The outflow part is installed in the vicinity of the aerobic treatment region 13.

嫌気処理領域11における有機排水の水面高さは、調整処理領域12における有機排水の水面高さよりも高くなっている。調整処理領域12における有機排水の水面高さは、好気処理領域13における有機排水の水面高さよりも高くなっている。このように、嫌気処理領域11、調整処理領域12、好気処理領域13における水面高さが、段階的に低くなるように構成されている。   The water surface height of the organic waste water in the anaerobic treatment region 11 is higher than the water surface height of the organic waste water in the adjustment treatment region 12. The water surface height of the organic waste water in the adjustment treatment region 12 is higher than the water surface height of the organic waste water in the aerobic treatment region 13. Thus, the water surface height in the anaerobic processing region 11, the adjustment processing region 12, and the aerobic processing region 13 is configured to be lowered stepwise.

嫌気処理領域11は、生物反応槽3の内容積のうち、例えば、15〜30%を占める領域とされる。好気処理領域13は、生物反応槽3の内容積のうち、例えば、40〜60%を占める領域とされる。生物反応槽3の内容積の残りが調整処理領域12とされる。   The anaerobic treatment region 11 is a region that occupies, for example, 15 to 30% of the internal volume of the biological reaction tank 3. The aerobic treatment region 13 is, for example, a region that occupies 40 to 60% of the internal volume of the biological reaction tank 3. The remainder of the internal volume of the biological reaction tank 3 is used as the adjustment processing region 12.

最初沈殿池2は、有機排水(被処理水)を受け入れ、浮遊物質(SS)を沈殿させる一次処理設備である。最初沈殿池2には堰が設けられ、上澄み水が堰を乗り越えてオーバーフローラインに流れ込み、さらにオーバーフローラインから生物反応槽3に流入するようになっている。なお、最初沈殿池2の底部には図示しない汚泥排出ラインが連通し、汚泥が定期的に又は随時に排出されるようになっている。   The first sedimentation basin 2 is a primary treatment facility that accepts organic waste water (treated water) and precipitates suspended matter (SS). The sedimentation basin 2 is initially provided with a weir, and the supernatant water passes over the weir and flows into the overflow line, and further flows into the biological reaction tank 3 from the overflow line. In addition, the sludge discharge line which is not shown in figure communicates with the bottom part of the first sedimentation tank 2, and sludge is discharged | emitted regularly or at any time.

制御部9は、調整処理領域12を制御するための制御プログラムが格納されたコンピュータである。制御部9は、後述するアンモニア濃度測定器5、全窒素濃度測定器7、および全リン濃度測定器8の測定結果に基づき、調整処理領域12の状態を、嫌気雰囲気、微好気雰囲気または好気雰囲気の1種または2種以上の雰囲気に切り替える。こうした制御プログラムによる制御部9の動作は後述する。   The control unit 9 is a computer in which a control program for controlling the adjustment processing area 12 is stored. Based on the measurement results of the ammonia concentration measuring device 5, the total nitrogen concentration measuring device 7, and the total phosphorus concentration measuring device 8, which will be described later, the control unit 9 changes the state of the adjustment processing region 12 to an anaerobic atmosphere, a microaerobic atmosphere, Switch to one or more atmospheres. The operation of the control unit 9 according to such a control program will be described later.

生物反応漕3には、曝気手段としてエアレーション装置20が備えられている。エアレーション装置20は、ブロア21と、ブロア21から延びる空気配管22と、空気配管22に設けられた流量調整弁23と、空気配管22から分岐した分岐管24と、各分岐管24に設けられた開閉弁25a〜25dと、各分岐管24の先端に取り付けられた散気板26a〜26dとから構成されている。散気板26a〜26dは、生物反応漕3の内部に設置されている。   The biological reaction vessel 3 is provided with an aeration device 20 as an aeration means. The aeration apparatus 20 includes a blower 21, an air pipe 22 extending from the blower 21, a flow rate adjusting valve 23 provided in the air pipe 22, a branch pipe 24 branched from the air pipe 22, and each branch pipe 24. The on / off valves 25a to 25d and diffuser plates 26a to 26d attached to the tips of the branch pipes 24 are configured. The diffuser plates 26 a to 26 d are installed inside the biological reaction vessel 3.

散気板26aは、生物反応漕3の嫌気処理領域11に設置されている。また、散気板26b及び26cは処理水が流れる方向に沿って調整処理領域12内に設置されている。更に、散気板26dは処理水が流れる方向に沿って好気処理領域13に設置されている。   The diffuser plate 26 a is installed in the anaerobic treatment region 11 of the biological reaction vessel 3. The diffuser plates 26b and 26c are installed in the adjustment processing region 12 along the direction in which the treated water flows. Further, the diffuser plate 26d is installed in the aerobic treatment region 13 along the direction in which the treated water flows.

また、各分岐管24に設けられた開閉弁25a〜25dのうち、嫌気処理領域11に向かう分岐管24に設置された開閉弁25aは、常に「閉」とされている。なお、分岐管24、開閉弁25a及び散気板26aの設置は省略してもよい。また、好気処理領域13に向かう分岐管24に設置された開閉弁25dは、常に「開」とされている。更に、調整処理領域12に向かう分岐管24に設置された開閉弁25b及び25cは、開度が自在に設定可能になっている。開閉弁25b及び25cは、後述する制御部9に接続されている。   Of the on-off valves 25 a to 25 d provided on each branch pipe 24, the on-off valve 25 a installed on the branch pipe 24 toward the anaerobic treatment region 11 is always “closed”. In addition, you may abbreviate | omit installation of the branch pipe 24, the on-off valve 25a, and the diffuser board 26a. Further, the on-off valve 25d installed in the branch pipe 24 toward the aerobic treatment region 13 is always “open”. Further, the opening / closing valves 25b and 25c installed in the branch pipe 24 toward the adjustment processing region 12 can be freely set. The on-off valves 25b and 25c are connected to the control unit 9 described later.

開閉弁25bおよび25cは、制御部9の指令に基づき、その開度が制御される。これら開閉弁25b及び25cの開度を制御することで、調整処理領域12における雰囲気の範囲を調整可能になっている。たとえば、調整処理領域12の雰囲気を、嫌気雰囲気、微好気雰囲気または好気雰囲気の1種または2種以上に設定できるようになっている。   The opening / closing valves 25b and 25c are controlled based on instructions from the control unit 9. By controlling the opening degree of these on-off valves 25b and 25c, the range of the atmosphere in the adjustment processing region 12 can be adjusted. For example, the atmosphere of the adjustment processing region 12 can be set to one or more of an anaerobic atmosphere, a slight aerobic atmosphere or an aerobic atmosphere.

更に、空気配管22に設けられた流量調整弁23は、風量コントローラ30に接続されている。風量コントローラ30の制御によって、空気配管22における空気の流量が調整可能となっている。   Further, the flow rate adjusting valve 23 provided in the air pipe 22 is connected to the air volume controller 30. The air flow rate in the air pipe 22 can be adjusted by the control of the air volume controller 30.

嫌気処理領域11は、バルブが全閉であるため、定常運転時において嫌気性微生物の活性が高まるように嫌気雰囲気(ORP値がマイナス側)となる。より詳細には、ORP値が−200mV以下となる。ここでORP値とは酸化還元電位のことをいう。処理水のORP値がマイナスの場合はその処理水は還元状態にあるといえる。すなわち、曝気しないで嫌気的な状態におかれた汚水は電位が低くなる(マイナスのORP値)。嫌気処理領域11では、微生物からのリンの吐き出しが進むとともに、硝酸イオンから窒素への還元反応が進む。   Since the valve is fully closed, the anaerobic treatment region 11 becomes an anaerobic atmosphere (ORP value is on the negative side) so that the activity of the anaerobic microorganisms is increased during steady operation. More specifically, the ORP value is −200 mV or less. Here, the ORP value means a redox potential. If the ORP value of the treated water is negative, it can be said that the treated water is in a reduced state. In other words, the sewage that is placed in an anaerobic state without aeration has a low potential (negative ORP value). In the anaerobic treatment region 11, the discharge of phosphorus from the microorganism proceeds and the reduction reaction from nitrate ions to nitrogen proceeds.

一方、好気処理領域13は、定常運転時において好気性微生物の活性が高まるように好気雰囲気(ORP値がプラス側)に調整されている。より詳細には、ORP値が50mV以上の範囲になるように調整されている。ORP値がプラスの場合はその処理水は酸化状態にあるといえる。すなわち、曝気が十分で好気的な状態におかれた処理水は電位が高くなる。好気処理領域13では、微生物によるリンの吸収が進むとともにアンモニアから硝酸イオンへの酸化反応が進む。   On the other hand, the aerobic treatment region 13 is adjusted to an aerobic atmosphere (ORP value is on the positive side) so that the activity of aerobic microorganisms is increased during steady operation. More specifically, the ORP value is adjusted to be in a range of 50 mV or more. When the ORP value is positive, it can be said that the treated water is in an oxidized state. That is, the treated water placed in an aerobic state with sufficient aeration has a high potential. In the aerobic treatment region 13, the absorption of phosphorus by microorganisms proceeds and the oxidation reaction from ammonia to nitrate ions proceeds.

調整処理領域12は、雰囲気を嫌気雰囲気、微好気雰囲気または好気雰囲気のいずれか1種または2種以上に切り替え可能である。また、調整処理領域12は、嫌気雰囲気、微好気雰囲気および好気雰囲気の各雰囲気が占める範囲を調整可能とされている。本実施形態において、調整処理領域12は、第1領域12aと第2領域12bの2つの領域に分けられている。   In the adjustment processing region 12, the atmosphere can be switched to one or more of an anaerobic atmosphere, a slight aerobic atmosphere, and an aerobic atmosphere. Moreover, the adjustment process area | region 12 can adjust the range which each atmosphere of an anaerobic atmosphere, a micro aerobic atmosphere, and an aerobic atmosphere occupies. In the present embodiment, the adjustment processing area 12 is divided into two areas, a first area 12a and a second area 12b.

第1領域12aは、散気板26bの設置箇所に対応する領域であり、第2領域12bは、散気板26cの設置箇所に対応する領域である。第1領域12aと第2領域12bとは、それぞれ雰囲気を独立して切り替え可能とされている。   The first region 12a is a region corresponding to the installation location of the diffuser plate 26b, and the second region 12b is a region corresponding to the installation location of the diffusion plate 26c. The first region 12a and the second region 12b can be switched independently of each other.

ここで、微好気雰囲気とは、ORP値が−50〜50mVの範囲になるように調整された雰囲気をいう。嫌気雰囲気が−200mV以下の範囲の雰囲気であり、好気雰囲気が50mV以上の範囲の雰囲気であるから、微好気雰囲気は、嫌気雰囲気と好気雰囲気の中間の状態にあるといえる。この微好気雰囲気では、硝酸イオンから窒素への還元反応と、アンモニアから硝酸イオンへの酸化反応とが同時に進む。   Here, the slightly aerobic atmosphere refers to an atmosphere adjusted so that the ORP value is in the range of −50 to 50 mV. Since the anaerobic atmosphere is an atmosphere in a range of −200 mV or less and the aerobic atmosphere is an atmosphere in a range of 50 mV or more, it can be said that the slightly aerobic atmosphere is in an intermediate state between the anaerobic atmosphere and the aerobic atmosphere. In this slightly aerobic atmosphere, the reduction reaction from nitrate ions to nitrogen and the oxidation reaction from ammonia to nitrate ions proceed simultaneously.

調整処理領域12における雰囲気の切替は、エアレーション装置20を操作することにより行う。エアレーション装置20は、後述する制御部9の指令によって制御される。エアレーション装置20の各散気板から空気を供給しない場合は嫌気雰囲気となる。エアレーション装置20の各散気板から空気を多量に供給する場合は好気雰囲気となる。エアレーション装置20の各散気板から空気を少量に供給する場合は微好気雰囲気となる。   Switching the atmosphere in the adjustment processing region 12 is performed by operating the aeration apparatus 20. The aeration apparatus 20 is controlled by a command from the control unit 9 described later. When air is not supplied from each diffuser plate of the aeration apparatus 20, an anaerobic atmosphere is created. When a large amount of air is supplied from each diffuser plate of the aeration apparatus 20, an aerobic atmosphere is obtained. When a small amount of air is supplied from each diffuser plate of the aeration apparatus 20, a slightly aerobic atmosphere is obtained.

好気雰囲気と微好気雰囲気の切替は、分岐管24に設けられた開閉弁25b、25cの開度を調整することで行う。例えば、好気雰囲気にする場合は開閉弁25b、25cの開度を全開(100%開)とする。微好気雰囲気にする場合は開閉弁25b、25cの開度を、全開に対して5〜15%の開度とする。   Switching between the aerobic atmosphere and the slightly aerobic atmosphere is performed by adjusting the opening degree of the on-off valves 25b and 25c provided in the branch pipe 24. For example, in the case of an aerobic atmosphere, the opening degree of the on-off valves 25b and 25c is fully opened (100% open). When the slightly aerobic atmosphere is used, the opening degree of the on-off valves 25b and 25c is set to 5 to 15% with respect to the full opening.

また、各雰囲気の占める範囲を調整するには、調整処理領域12に備えられた2つの散気板26b、26cからの空気供給量を独立に制御することで行う。たとえば、散気板26b、26cの両方の空気供給を止めた場合は、調整処理領域12の全部が嫌気雰囲気となる。また、散気板26bの空気供給を止めるとともに散気板26cから少量の空気を供給した場合は、第1領域12aが嫌気雰囲気となり、第2領域12bが微好気雰囲気となる。また、散気板26bから少量の空気を供給するとともに散気板26cから大量の空気を供給した場合は、第1領域12aが微好気雰囲気となり、第2領域12bが好気雰囲気となる。   Moreover, in order to adjust the range which each atmosphere occupies, it carries out by controlling independently the air supply amount from the two diffuser plates 26b and 26c with which the adjustment process area | region 12 was equipped. For example, when the air supply of both of the diffuser plates 26b and 26c is stopped, the entire adjustment processing region 12 becomes an anaerobic atmosphere. When the air supply to the diffuser plate 26b is stopped and a small amount of air is supplied from the diffuser plate 26c, the first region 12a becomes an anaerobic atmosphere, and the second region 12b becomes a slightly aerobic atmosphere. When a small amount of air is supplied from the diffuser plate 26b and a large amount of air is supplied from the diffuser plate 26c, the first region 12a becomes a slightly aerobic atmosphere and the second region 12b becomes an aerobic atmosphere.

更に、散気板26b、26cの両方から大量の空気を供給した場合は、調整処理領域12の全部が好気雰囲気となる。本実施形態においては、調整処理領域12に2つの散気板26b、26cを設置することで調整処理領域12を更に2つの領域(第1領域、第2領域)に分けているが、散気板を更に数多く設置して、調整処理領域12をより多くの領域に分けることで、調整処理領域12における雰囲気をより柔軟に調整することが可能となる。   Further, when a large amount of air is supplied from both of the diffuser plates 26b and 26c, the entire adjustment processing region 12 becomes an aerobic atmosphere. In the present embodiment, the adjustment processing region 12 is further divided into two regions (first region and second region) by installing the two diffuser plates 26b and 26c in the adjustment processing region 12. By installing more plates and dividing the adjustment processing region 12 into more regions, the atmosphere in the adjustment processing region 12 can be adjusted more flexibly.

最終沈殿池4の下流側には図示しない消毒設備が設けられ、消毒された処理水が放流用流路を通って河川や海洋に放流されるようになっている。   A disinfection facility (not shown) is provided on the downstream side of the final sedimentation basin 4 so that the sterilized treated water is discharged to a river or ocean through a discharge channel.

また、最終沈澱池4には、返送配管40が備えられる。返送配管40の途中にはポンプ41が備えられている。返送配管40によって、返送汚泥及び処理水の一部が最終沈澱池4から生物反応漕3の上流部に常時戻される。   The final sedimentation basin 4 is provided with a return pipe 40. A pump 41 is provided in the middle of the return pipe 40. Return sludge and part of the treated water are always returned from the final sedimentation basin 4 to the upstream portion of the biological reaction tank 3 by the return pipe 40.

また、有機排水処理システム1には、アンモニア濃度測定器5と、溶存酸素測定器6と、全リン濃度測定器8とが備えられている。更に全窒素濃度測定器7が備えられていることも好ましい。アンモニア濃度測定器5は、好気処理領域13を流れる処理水のアンモニア濃度を測定する。溶存酸素測定器6は、好気処理領域13を流れる処理水の溶存酸素量を測定する。全窒素濃度測定器7および全リン濃度測定器8は、生物反応槽3及び最終沈殿池4から流出された処理水の全窒素濃度及び全リン濃度をそれぞれ測定する。なお、全リン濃度測定器8に代えて、リン酸態リン濃度測定器を用いることもできる。   The organic waste water treatment system 1 is provided with an ammonia concentration measuring device 5, a dissolved oxygen measuring device 6, and a total phosphorus concentration measuring device 8. It is also preferable that a total nitrogen concentration measuring device 7 is provided. The ammonia concentration measuring device 5 measures the ammonia concentration of the treated water flowing through the aerobic treatment region 13. The dissolved oxygen measuring device 6 measures the dissolved oxygen amount of the treated water flowing through the aerobic treatment region 13. The total nitrogen concentration measuring device 7 and the total phosphorus concentration measuring device 8 measure the total nitrogen concentration and the total phosphorus concentration of the treated water discharged from the biological reaction tank 3 and the final sedimentation basin 4, respectively. In addition, it can replace with the total phosphorus concentration measuring device 8, and a phosphoric acid state phosphorus concentration measuring device can also be used.

アンモニア濃度測定器5及び溶存酸素測定器6は、風量コントローラ30に接続されている。更にアンモニア濃度測定器5は、制御部9にも接続されている。更にまた、全窒素濃度測定器7及び全リン濃度測定器8は、制御部9に接続されている。   The ammonia concentration measuring device 5 and the dissolved oxygen measuring device 6 are connected to the air volume controller 30. Further, the ammonia concentration measuring device 5 is also connected to the control unit 9. Furthermore, the total nitrogen concentration measuring device 7 and the total phosphorus concentration measuring device 8 are connected to the control unit 9.

制御部9には、生物反応漕3を制御する制御プログラムが格納されている。この制御プログラムは、第1ステップと、第2ステップとからなる。第1ステップは、所定時間毎に、好気処理領域13における処理水のアンモニア濃度、生物反応槽から流出された処理水の全窒素濃度及び全リン濃度をそれぞれ測定させる指令を発する。第2ステップは、これらアンモニア濃度、全リン濃度、及び好ましくは全窒素濃度の測定結果に基づき、調整処理領域12における嫌気雰囲気、微好気雰囲気及び好気雰囲気の範囲を調整する指令を発する。制御プログラムの第1、第2ステップは、たとえば、制御部9を構成する中央演算装置に備えられた機能によって実現される。こうした制御プログラムの動作による有機排水処理方法は、後述する。   The control unit 9 stores a control program for controlling the biological reaction vessel 3. This control program includes a first step and a second step. The first step issues a command to measure the ammonia concentration of the treated water in the aerobic treatment region 13, the total nitrogen concentration of the treated water discharged from the biological reaction tank, and the total phosphorus concentration at each predetermined time. The second step issues a command to adjust the range of the anaerobic atmosphere, the microaerobic atmosphere, and the aerobic atmosphere in the adjustment processing region 12 based on the measurement results of the ammonia concentration, the total phosphorus concentration, and preferably the total nitrogen concentration. The first and second steps of the control program are realized, for example, by functions provided in the central processing unit that constitutes the control unit 9. The organic waste water treatment method by the operation of such a control program will be described later.

次に、本実施形態の有機排水処理システムを用いた有機排水処理方法および有機排水処理システムの制御プログラムについて説明する。
有機排水(被処理水)は,まず最初沈殿池2において、固形分と液分に分離する。液分は導入流路を介して生物反応槽3内に導入させる。生物反応槽3内では微生物の凝集物である活性汚泥の働きにより、有機物質の分解除去と同時に、以下に示す原理で窒素、リンの除去が行われる。
Next, an organic wastewater treatment method using the organic wastewater treatment system of the present embodiment and a control program for the organic wastewater treatment system will be described.
The organic waste water (treated water) is first separated into a solid content and a liquid content in the sedimentation basin 2. The liquid component is introduced into the biological reaction tank 3 through the introduction channel. In the biological reaction tank 3, the activated sludge, which is an agglomerate of microorganisms, simultaneously removes organic substances and removes nitrogen and phosphorus by the following principle.

まず、窒素除去の原理を説明する。
有機排水中の窒素成分の大半はアンモニアイオン(NH )の形態で存在する。この窒素分は、酸素が存在する条件下で活性汚泥中に存在する硝化菌の働きにより、(1)式の反応により、硝酸性窒素(NO )まで酸化される。この反応は、主に、好気処理領域13において進行する。
First, the principle of nitrogen removal will be described.
Most of the nitrogen components in organic wastewater exist in the form of ammonia ions (NH 4 + ). This nitrogen content is oxidized to nitrate nitrogen (NO 3 ) by the reaction of the formula (1) by the action of nitrifying bacteria present in the activated sludge under conditions where oxygen is present. This reaction proceeds mainly in the aerobic treatment region 13.

酸素が存在する条件(好気条件)
NH +2O→NO +HO+2H…(1)
Conditions where oxygen is present (aerobic conditions)
NH 4 + + 2O 2 → NO 3 + H 2 O + 2H + (1)

この硝酸性窒素が、酸素なしの条件で脱窒菌の働きにより、(2)式の反応により窒素ガスに還元される。この反応は、主に、嫌気処理領域11において進行する。(2)式の(H)は、下水中の有機物質(水素供与体)から与えられるため、この反応の促進のためには有機物が必要となる。有機物は、有機排水中の有機物でもよく、アルコール、カルボン酸等を嫌気処理領域11に供給することでもよい。   This nitrate nitrogen is reduced to nitrogen gas by the reaction of formula (2) by the action of denitrifying bacteria in the absence of oxygen. This reaction proceeds mainly in the anaerobic treatment region 11. Since (H) in the formula (2) is given from an organic substance (hydrogen donor) in sewage, an organic substance is required to promote this reaction. The organic matter may be an organic matter in organic waste water, or may supply alcohol, carboxylic acid or the like to the anaerobic treatment region 11.

酸素なしの条件(嫌気条件)
2NO +10H→N+2OH+4HO … (2)
Conditions without oxygen (anaerobic conditions)
2NO 3 + 10H → N 2 + 2OH + 4H 2 O (2)

上述のように、好気雰囲気では、(1)式の反応が主に進行する。また、嫌気雰囲気では、(2)式の反応が主に進行する。更に、微好気雰囲気では、(1)式と(2)式の反応が同時に進む。   As described above, the reaction of the formula (1) mainly proceeds in an aerobic atmosphere. In the anaerobic atmosphere, the reaction of the formula (2) mainly proceeds. Further, in the slightly aerobic atmosphere, the reactions of formulas (1) and (2) proceed simultaneously.

ここで、(1)式のアンモニアから硝酸イオンへの反応の進行が不十分の場合は、(2)式の反応が進まず、有機排水中の全窒素濃度が低減できない。従って、有機排水中のアンモニア濃度及び全窒素濃度が高い場合は、(1)式を促進する必要があり、好気雰囲気を増やす必要がある。   Here, when the progress of the reaction from ammonia in formula (1) to nitrate ions is insufficient, the reaction in formula (2) does not proceed and the total nitrogen concentration in the organic waste water cannot be reduced. Therefore, when the ammonia concentration and the total nitrogen concentration in the organic waste water are high, it is necessary to promote the formula (1), and it is necessary to increase the aerobic atmosphere.

一方、(1)式の反応の進行が十分であっても、(2)式の反応が進まない場合は、有機排水中の全窒素濃度が低減できない。従って、有機排水中のアンモニア濃度が低いにも係わらず全窒素濃度が高い場合は、(2)式を促進する必要があるので、微好気雰囲気を増やす必要がある。   On the other hand, even if the reaction of the formula (1) is sufficiently advanced, if the reaction of the formula (2) does not proceed, the total nitrogen concentration in the organic waste water cannot be reduced. Therefore, when the total nitrogen concentration is high despite the low ammonia concentration in the organic waste water, it is necessary to promote the formula (2), and thus it is necessary to increase the slightly aerobic atmosphere.

次に、リン除去の原理について示す。
リンは、活性汚泥中に存在するリン蓄積菌の働きにより除去される。リン蓄積菌は嫌気雰囲気において、菌体内に蓄積したリンを吐出する。一方、好気雰囲気においては、嫌気雰囲気において菌体から吐出した以上のリンを吸収する。吐出量と吸収量との差分に相当するリンが水中から除去される。リンを体内に蓄えたリン蓄積菌は最終沈殿池4で余剰汚泥として引き抜かれることにより、除去される。また、リン蓄積菌によるリンの除去は、嫌気雰囲気の容積が大きいほど、効果的に進む場合が多い。なお、硝化・脱窒反応が促進される微好気条件ではリン蓄積菌によるリンの吐出は起こらない。
Next, the principle of phosphorus removal will be described.
Phosphorus is removed by the action of phosphorus accumulating bacteria present in the activated sludge. Phosphorus-accumulating bacteria discharge phosphorus accumulated in the cells in an anaerobic atmosphere. On the other hand, in an aerobic atmosphere, it absorbs more phosphorus than was discharged from the cells in an anaerobic atmosphere. Phosphorus corresponding to the difference between the discharge amount and the absorption amount is removed from the water. The phosphorus accumulating bacteria that store phosphorus in the body are removed by being extracted as excess sludge in the final sedimentation basin 4. Moreover, removal of phosphorus by phosphorus accumulating bacteria often proceeds more effectively as the volume of the anaerobic atmosphere increases. In addition, under the microaerobic condition where the nitrification / denitrification reaction is promoted, phosphorus is not discharged by the phosphorus accumulating bacteria.

以上の窒素の除去、およびリンの除去の原理に基づき、本実施形態の有機排水処理方法を、制御部9が実行する制御プログラムの動作と合わせて説明する。
本実施形態においては、生物反応槽3の調整処理領域12を好気処理領域とすることにより、脱窒(硝酸イオンを窒素ガスに還元)の前段である硝化(アンモニアから硝酸イオンへの酸化)までにとどめ、次に、この硝化が十分な場合には、生物反応槽3の調整処理領域12を嫌気雰囲気に設定することによって、リンを除去するといった動作を制御プログラムによって行い、窒素(アンモニア)の除去とリンの除去とを行うものである。
Based on the above principle of nitrogen removal and phosphorus removal, the organic wastewater treatment method of the present embodiment will be described together with the operation of the control program executed by the control unit 9.
In the present embodiment, the adjustment treatment region 12 of the biological reaction tank 3 is an aerobic treatment region, so that nitrification (oxidation from ammonia to nitrate ions) is performed before denitrification (reduction of nitrate ions to nitrogen gas). Next, when this nitrification is sufficient, the control program performs an operation of removing phosphorus by setting the adjustment processing region 12 of the biological reaction tank 3 to an anaerobic atmosphere, and nitrogen (ammonia). Removal and phosphorus removal.

具体的には、生物反応槽3の流出側に設置したアンモニア濃度測定器5によって、生物反応槽3の流出側のアンモニア濃度を測定する。また、最終沈澱池4の流出側に設置した全リン濃度測定器8によって、最終沈澱池4の流出側の全リン濃度を測定する。なお、全リン濃度測定器8に代えてリン酸態リン濃度測定器を用いるときには、リン酸態リン濃度を測定する。   Specifically, the ammonia concentration measuring device 5 installed on the outflow side of the biological reaction tank 3 measures the ammonia concentration on the outflow side of the biological reaction tank 3. Further, the total phosphorus concentration on the outflow side of the final sedimentation basin 4 is measured by the total phosphorus concentration measuring device 8 installed on the outflow side of the final sedimentation basin 4. In addition, when using a phosphate phosphorus concentration measuring device instead of the total phosphorus concentration measuring device 8, the phosphate phosphorus concentration is measured.

調整処理領域12の雰囲気切替(嫌気雰囲気、微好気雰囲気、好気雰囲気)機能は、生物反応槽3の流出側に設置したアンモニア濃度測定器5によって測定された生物反応槽3の流出側におけるアンモニア濃度、および最終沈澱池4の流出側に設置した全リン濃度測定器8により測定された最終沈澱池4の流出側における全リン濃度(全リン濃度測定器8に代えてリン酸態リン濃度測定器を用いるときには、リン酸態リン濃度)に基づき、生物反応槽3の調整処理領域12を嫌気雰囲気および好気雰囲気に切替える。   The atmosphere switching (anaerobic atmosphere, slightly aerobic atmosphere, aerobic atmosphere) function of the adjustment processing region 12 is performed on the outflow side of the biological reaction tank 3 measured by the ammonia concentration measuring device 5 installed on the outflow side of the biological reaction tank 3. Ammonia concentration and total phosphorus concentration on the outflow side of the final precipitation basin 4 measured by the total phosphorus concentration measuring device 8 installed on the outflow side of the final precipitation basin 4 (in place of the total phosphorus concentration measuring device 8, phosphate phosphorus concentration When the measuring device is used, the adjustment processing region 12 of the biological reaction tank 3 is switched between an anaerobic atmosphere and an aerobic atmosphere based on the phosphoric acid state phosphorus concentration).

調整処理領域12の雰囲気切替制御の基本条件は、まず、窒素除去は生物反応槽3の調整処理領域12を好気雰囲気とすることにより、脱窒(硝酸イオンを窒素ガスに還元)の前段である硝化(アンモニアから硝酸イオンへの酸化)までにとどめ、次に、この硝化が十分であると判断された場合には、生物反応槽3の調整処理領域12を嫌気雰囲気とすることによって、リンを除去する。窒素除去に関わるアンモニアは、処理水のBOD濃度を上昇させる原因となるため、BOD濃度に影響を与えない硝酸イオンへの酸化(硝化)まで行うように制御される。   The basic condition of the atmosphere switching control in the adjustment processing region 12 is that nitrogen removal is performed before the denitrification (reduction of nitrate ions to nitrogen gas) by making the adjustment processing region 12 of the biological reaction tank 3 an aerobic atmosphere. Only by nitrification (oxidation from ammonia to nitrate ions) and then, if it is judged that this nitrification is sufficient, the adjustment treatment area 12 of the biological reaction tank 3 is made anaerobic atmosphere to thereby reduce the phosphorus content. Remove. Ammonia related to nitrogen removal causes a rise in the BOD concentration of the treated water, and is controlled so as to perform oxidation (nitrification) to nitrate ions that do not affect the BOD concentration.

本実施形態における調整処理領域12の具体的な雰囲気切替制御例を図2の模式図を参照して説明する。
調整処理領域12の雰囲気切替制御は、処理水質の状態別(処理水質状態(I)〜(IV))に応じて実施する。制御周期にもとづく制御のタイミングで、次のような判断を行う。制御周期は時間オーダよりも日オーダが好ましいが、限定されるものでは無い。なお、以下の例は、NH−N目標値とPO−P目標値に対する余裕しろ(制御上の冗長性)ありの場合である。NH−N目標値とPO−P目標値には、例えばそれぞれ1mg/L、2mg/Lであり、余裕しろは、NH−N目標値およびPO−P目標値ごとに設定でき、0.1や0.2など調整可能なパラメータである。
A specific atmosphere switching control example of the adjustment processing region 12 in the present embodiment will be described with reference to the schematic diagram of FIG.
The atmosphere switching control in the adjustment treatment region 12 is performed according to the state of the treated water (treated water quality state (I) to (IV)). The following determination is performed at the timing of control based on the control cycle. The control period is preferably a day order rather than a time order, but is not limited. In the following example, there is a margin (control redundancy) with respect to the NH 4 -N target value and the PO 4 -P target value. The NH 4 -N target value and the PO 4 -P target value are, for example, 1 mg / L and 2 mg / L, respectively, and a margin can be set for each NH 4 -N target value and PO 4 -P target value. Adjustable parameters such as 0.1 and 0.2.

<処理水質状態I>
処理水質状態Iは、処理水のNH−Nが目標上限値(NH−N目標値+余裕しろ)を超え、かつ処理水のPO−Pが目標下限値(PO−P目標値−余裕しろ)以下となる水質状態である。この場合は硝化が不十分かつリン除去が十分なため、硝化を促進するために、調整処理領域12を好気雰囲気が増加するように制御する。
<Processed water quality I>
In the treated water quality state I, the treated water NH 4 -N exceeds the target upper limit value (NH 4 -N target value + margin), and the treated water PO 4 -P is the target lower limit value (PO 4 -P target value). -Margin) The water quality is as follows. In this case, since nitrification is insufficient and phosphorus removal is sufficient, in order to promote nitrification, the adjustment processing region 12 is controlled so that the aerobic atmosphere increases.

<処理水質状態II>
処理水質状態IIは、処理水のNH−Nが目標上限値(NH−N目標値+余裕しろ)を超え、かつ処理水のPO−Pが目標上限値(PO−P目標値+余裕しろ)を超える水質状態である。この場合は硝化が不十分かつリン除去が不十分なため、硝化を優先するために、調整処理領域12を好気雰囲気が増加するように制御する。
<Processed water quality II>
In the treated water quality state II, NH 4 -N of the treated water exceeds the target upper limit value (NH 4 -N target value + allowance margin), and PO 4 -P of the treated water is the target upper limit value (PO 4 -P target value). The water quality is over +). In this case, since nitrification is insufficient and phosphorus removal is insufficient, in order to give priority to nitrification, the adjustment processing region 12 is controlled so that the aerobic atmosphere increases.

<処理水質状態III>
処理水質状態IIIは、処理水のNH−Nが目標下限値(NH−N目標値−余裕しろ)以下で、かつ処理水のPO−Pが目標上限値(PO−P目標値+余裕しろ)を超える水質状態である。この場合は硝化が十分かつリン除去が不十分なため、リン除去を促進するために、調整処理領域12を嫌気雰囲気が増加するように制御する。
<Processed water quality III>
In the treated water quality state III, NH 4 -N of the treated water is equal to or less than the target lower limit (NH 4 -N target value−allowance), and PO 4 -P of the treated water is the target upper limit (PO 4 -P target value). The water quality is over +). In this case, since nitrification is sufficient and phosphorus removal is insufficient, the adjustment processing region 12 is controlled to increase the anaerobic atmosphere in order to promote phosphorus removal.

<処理水質状態IV>
処理水質状態IVは、処理水のNH−Nが目標下限値(NH−N目標値−余裕しろ)以下で、かつ処理水のPO−Pが目標下限値(PO−P目標値−余裕しろ)以下となる水質状態である。この場合は硝化が十分かつリン除去が十分なため、調整処理領域12の雰囲気を現状維持する。
<Treatment water quality IV>
In the treated water quality state IV, the treated water NH 4 -N is equal to or lower than the target lower limit value (NH 4 -N target value-allowance), and the treated water PO 4 -P is the target lower limit value (PO 4 -P target value). -Margin) The water quality is as follows. In this case, since nitrification is sufficient and phosphorus removal is sufficient, the atmosphere of the adjustment processing region 12 is maintained as it is.

生物反応槽3の調整処理領域12の切替について、図3を参照して一例を説明する。なお、この図3において、第1区画は嫌気処理領域11であり、第4区画は好気処理領域13である。そして、第2区画は、調整処理領域12の第1領域12a、第3区画は、調整処理領域12の第2領域12bである。   An example of switching the adjustment processing region 12 of the biological reaction tank 3 will be described with reference to FIG. In FIG. 3, the first section is the anaerobic processing area 11, and the fourth section is the aerobic processing area 13. The second section is the first area 12 a of the adjustment processing area 12, and the third section is the second area 12 b of the adjustment processing area 12.

生物反応槽3の第1区画、第2区画、第3区画、第4区画がとりうる処理雰囲気を、以下の3パターンとする。
(状態1)第1区画:嫌気、第2区画:好気、第3区画:好気、第4区画:好気
(状態2)第1区画:嫌気、第2区画:嫌気、第3区画:好気、第4区画:好気
(状態3)第1区画:嫌気、第2区画:嫌気、第3区画:嫌気、第4区画:好気
The processing atmosphere that can be taken by the first compartment, the second compartment, the third compartment, and the fourth compartment of the biological reaction tank 3 is defined as the following three patterns.
(State 1) 1st section: Anaerobic, 2nd section: Aerobic, 3rd section: Aerobic, 4th section: Aerobic (State 2) 1st section: Anaerobic, 2nd section: Anaerobic, 3rd section: Aerobic, fourth compartment: aerobic (state 3) first compartment: anaerobic, second compartment: anaerobic, third compartment: anaerobic, fourth compartment: aerobic

制御のタイミングに、処理水質状態Iと処理水質状態IIで生物反応槽3の調整処理領域12を好気雰囲気とする場合は、生物反応槽3を上述した状態3→状態2→状態1の順に1段階切替える。
処理水質状態IIIで生物反応槽3の調整処理領域12を嫌気雰囲気とする場合は、生物反応槽3を上述した状態1→状態2→状態3の順に1段階切替える。
処理水質状態IVで生物反応槽3の調整処理領域12を現状維持とする場合は、生物反応槽3の状態を切替えることなく維持する。
When the adjustment processing region 12 of the biological reaction tank 3 is set to an aerobic atmosphere in the treated water quality state I and the treated water quality state II at the timing of control, the biological reaction tank 3 is in the order of state 3 → state 2 → state 1 described above. Switch one step.
When the adjustment treatment region 12 of the biological reaction tank 3 is set in an anaerobic atmosphere in the treated water state III, the biological reaction tank 3 is switched in one stage in the order of the state 1 → the state 2 → the state 3 described above.
When the adjustment treatment region 12 of the biological reaction tank 3 is maintained as it is in the treated water quality IV, the state of the biological reaction tank 3 is maintained without being switched.

生物反応槽3の調整処理領域12の状態の切替は、1回の制御タイミングで1段階とする。制御のタイミングで、生物反応槽3の調整処理領域12を好気雰囲気とする必要があり、現状の生物反応槽3が状態1の場合は、これ以上調整処理領域12を好気雰囲気とすることができないため、生物反応槽3の状態を切替えることなく、生物反応槽3を状態1のままとする。   Switching of the state of the adjustment processing region 12 of the biological reaction tank 3 is performed in one step at one control timing. At the timing of control, it is necessary to make the adjustment processing region 12 of the biological reaction tank 3 an aerobic atmosphere. When the current biological reaction tank 3 is in the state 1, the adjustment processing region 12 should be an aerobic atmosphere any more. Therefore, the biological reaction tank 3 remains in the state 1 without switching the state of the biological reaction tank 3.

制御のタイミングで、生物反応槽3の調整処理領域12を嫌気雰囲気とする必要があり、現状の生物反応槽3が状態3の場合は、これ以上調整処理領域12を嫌気雰囲気とすることができないため、生物反応槽3の状態を切替えることなく、生物反応槽3を状態3のままとする。   At the timing of control, it is necessary to make the adjustment processing region 12 of the biological reaction tank 3 an anaerobic atmosphere. When the current biological reaction tank 3 is in the state 3, the adjustment processing region 12 cannot be made an anaerobic atmosphere any more. Therefore, the biological reaction tank 3 is left in the state 3 without switching the state of the biological reaction tank 3.

生物反応槽3の調整処理領域12の切替の一例として、生物反応槽3の初期状態を図3の状態1とした場合を示す。処理水質状態Iと処理水質状態I Iの場合、生物反応槽3の調整処理領域12を好気雰囲気とする必要があるが、これ以上調整処理領域12を好気雰囲気とすることができないため、生物反応槽3は状態1のままとする。
処理水質状態IIIの場合、生物反応槽3の調整処理領域12を嫌気雰囲気とするため、生物反応槽3を状態1から状態2に切替える。
処理水質状態IVの場合、生物反応槽3の調整処理領域12を現状維持とするため、生物反応槽3を状態1のままにする。
As an example of switching of the adjustment processing region 12 of the biological reaction tank 3, a case where the initial state of the biological reaction tank 3 is set to the state 1 in FIG. In the case of the treated water quality state I and the treated water quality state II, it is necessary to make the adjustment treatment region 12 of the biological reaction tank 3 an aerobic atmosphere. The reaction vessel 3 remains in state 1.
In the case of the treated water quality state III, the biological reaction tank 3 is switched from the state 1 to the state 2 in order to make the adjustment treatment region 12 of the biological reaction tank 3 an anaerobic atmosphere.
In the case of the treated water quality state IV, the biological reaction tank 3 is left in the state 1 in order to maintain the adjustment treatment region 12 of the biological reaction tank 3 as it is.

NH−N目標値とPO−P目標値に対して余裕しろを設けることにより、エアレーション装置20から調整処理領域12に至るまでの途上に形成された開閉弁25b、25cの無駄な開度調節を不要にできるため、開閉弁25b、25cの機器寿命を延長することが可能となる。 By providing a margin with respect to the NH 4 -N target value and the PO 4 -P target value, useless opening of the on-off valves 25 b and 25 c formed on the way from the aeration apparatus 20 to the adjustment processing region 12 Since adjustment can be made unnecessary, it is possible to extend the device life of the on-off valves 25b and 25c.

即ち、初期の処理水質状態IIの場合、硝化を優先するために、生物反応槽3の調整処理領域12を好気雰囲気とすることで、硝化が改善されていき、処理水質状態IIIに向かう。処理水質状態IIから処理水質状態IIIに向かう際に、余裕しろを設けている場合、処理水のNH−N目標上限値(NH−N目標値+余裕しろ)から処理水のNH−N目標下限値(NH−N目標値−余裕しろ)の間は、制御しない領域となるため、開閉弁25b、25cの無駄な開度調節がなくなる。 That is, in the case of the initial treated water quality state II, in order to give priority to nitrification, the nitrification is improved by making the adjustment treatment region 12 of the biological reaction tank 3 an aerobic atmosphere, and the treatment water quality state III is headed. When a margin is provided when moving from the treated water quality state II to the treated water quality state III, the NH 4 −N target upper limit value (NH 4 −N target value + allowance margin) of the treated water is changed to NH 4 − of the treated water. During the N target lower limit value (NH 4 −N target value−allowance margin), there is no control, so there is no useless adjustment of the opening / closing valves 25b and 25c.

処理水質状態IIIになると、リン除去を促進するために、生物反応槽3の調整処理領域12を嫌気雰囲気とすることで、リン除去は改善されていき、処理水質状態IVまたは処理水質状態Iに向かう。なお、嫌気雰囲気とすることで硝化が悪化する可能性もあり、この場合は、処理水質状態Iに向かう。処理水質状態IIIから処理水質状態IV に向かう際に、余裕しろを設けている場合、処理水のPO−P目標上限値(PO−P目標値+余裕しろ)から処理水のPO−P目標下限値(PO−P目標値−余裕しろ)の間は、制御しない領域となるため、開閉弁25b、25cの無駄な開度調節がなくなる。 In the treated water quality state III, in order to promote the removal of phosphorus, by making the adjustment treatment region 12 of the biological reaction tank 3 an anaerobic atmosphere, the removal of phosphorus is improved, and the treated water quality state IV or treated water quality state I is changed. Head. In addition, there is a possibility that the nitrification will deteriorate due to the anaerobic atmosphere. When an allowance is provided when moving from the treated water quality state III to the treated water quality state IV, the treated water PO 4 −P target upper limit value (PO 4 −P target value + allowed margin) is changed from the treated water PO 4 − During the P target lower limit value (PO 4 −P target value−allowance margin), it becomes an uncontrolled region, so that unnecessary opening adjustment of the on-off valves 25b and 25c is eliminated.

また、処理水質状態IIIから処理水質状態Iに向かう際に、余裕しろを設けている場合、処理水のPO−P目標上限値(PO−P目標値+余裕しろ)から処理水のPO−P目標下限値(PO−P目標値−余裕しろ)の間と、処理水のNH−N目標下限値(NH−N目標値−余裕しろ)から処理水のNH−N目標上限値(NH−N目標値+余裕しろ)の間は、それぞれ制御しない領域となるため、開閉弁25b、25cの無駄な開度調節がなくなる。
処理水質状態IVになると、生物反応槽3の調整処理領域12は現在の状態を維持する。
Further, when an allowance is provided when moving from the treated water quality state III to the treated water quality state I, the treated water PO is reduced from the treated water PO 4 -P target upper limit value (PO 4 -P target value + margin). Between the 4- P target lower limit (PO 4 -P target value-margin) and the NH 4 -N target lower limit (NH 4 -N target value-margin) of the treated water, NH 4 -N of treated water. Between the target upper limit values (NH 4 −N target value + allowance margin), the regions are not controlled. Therefore, useless opening adjustment of the on-off valves 25b and 25c is eliminated.
When the treated water quality state IV is reached, the adjustment treatment region 12 of the biological reaction tank 3 maintains the current state.

処理水質状態Iになると、硝化を促進するために、生物反応槽3の調整処理領域12を好気雰囲気とすることで、硝化は改善されていき、処理水質状態Iから処理水質状態IV に向かう。処理水質状態Iから処理水質状態IV に向かう際に、余裕しろを設けている場合、処理水のNH−N目標上限値(NH−N目標値+余裕しろ)から処理水のNH−N目標下限値(NH−N目標値−余裕しろ)の間は、制御しない領域となるため、開閉弁25b、25cの無駄な開度調節がなくなる。 In the treated water quality state I, in order to promote nitrification, nitrification is improved by making the adjustment treatment region 12 of the biological reaction tank 3 an aerobic atmosphere, and the treated water quality state I moves toward the treated water quality state IV. . When an allowance is provided when going from the treated water quality state I to the treated water quality state IV, the NH 4 −N target upper limit value of the treated water (NH 4 −N target value + allowable margin) is changed from the treated water NH 4 − During the N target lower limit value (NH 4 −N target value−allowance margin), there is no control, so there is no useless adjustment of the opening / closing valves 25b and 25c.

次に、NH−N目標値とPO−P目標値に対する余裕しろなしの場合について、図4の模式図を参照して説明する。制御周期は時間オーダよりも日オーダが好ましいが、限定されるものでは無い。 Next, the case where there is no margin for the NH 4 -N target value and the PO 4 -P target value will be described with reference to the schematic diagram of FIG. The control period is preferably a day order rather than a time order, but is not limited.

<処理水質状態I>
処理水質状態Iは、処理水のNH−Nが目標値を超え、かつ処理水のPO−Pが目標値以下となる水質状態である。この場合は硝化が不十分かつリン除去が十分なため、硝化を促進するために、調整処理領域12を好気雰囲気が増加するように制御する。
<Processed water quality I>
The treated water quality state I is a water quality state in which the treated water NH 4 -N exceeds the target value and the treated water PO 4 -P is equal to or lower than the target value. In this case, since nitrification is insufficient and phosphorus removal is sufficient, in order to promote nitrification, the adjustment processing region 12 is controlled so that the aerobic atmosphere increases.

<処理水質状態II>
処理水質状態IIは、処理水のNH−Nが目標値を超え、かつ処理水のPO−Pが目標値を超える水質状態である。この場合は硝化が不十分かつリン除去が不十分なため、硝化を優先するために、調整処理領域12を好気雰囲気が増加するように制御する。
<Processed water quality II>
The treated water quality state II is a water quality state where NH 4 -N of the treated water exceeds the target value and PO 4 -P of the treated water exceeds the target value. In this case, since nitrification is insufficient and phosphorus removal is insufficient, in order to give priority to nitrification, the adjustment processing region 12 is controlled so that the aerobic atmosphere increases.

<処理水質状態III>
処理水質状態IIIは、処理水のNH−Nが目標値以下で、かつ処理水のPO−Pが目標値を超える水質状態である。この場合は硝化が十分かつリン除去が不十分なため、リン除去を促進するために、調整処理領域12を嫌気雰囲気が増加するように制御する。
<Processed water quality III>
The treated water quality state III is a water quality state where NH 4 -N of the treated water is equal to or lower than the target value and PO 4 -P of the treated water exceeds the target value. In this case, since nitrification is sufficient and phosphorus removal is insufficient, the adjustment processing region 12 is controlled to increase the anaerobic atmosphere in order to promote phosphorus removal.

<処理水質状態IV>
処理水質状態IVは、処理水のNH−Nが目標値以下で、かつ処理水のPO−Pが目標値以下となる水質状態である。この場合は硝化が十分かつリン除去が十分なため、調整処理領域12の雰囲気を現状維持する。
<Treatment water quality IV>
The treated water quality state IV is a water quality state where the treated water NH 4 -N is equal to or lower than the target value and the treated water PO 4 -P is equal to or lower than the target value. In this case, since nitrification is sufficient and phosphorus removal is sufficient, the atmosphere of the adjustment processing region 12 is maintained as it is.

なお、NH−N目標値、PO−P目標値は、余裕しろありの場合と同様、例えばそれぞれ1mg/L、2mg/Lであるが、目標値を超えてから生物反応槽3の調整処理領域12を変更するのではタイミングが遅いため、目標値よりも少し小さい値(NH−N目標値、PO−P目標値をそれぞれ1mg/L、2mg/Lとした時に、例えば、0.5mg/L、1.5mg/Lとなった時点で、生物反応槽3の調整処理領域12を変更してタイミングを早める。 The NH 4 -N target value and the PO 4 -P target value are, for example, 1 mg / L and 2 mg / L, respectively, as in the case where there is a margin, but the adjustment process of the biological reaction tank 3 after exceeding the target value When the region 12 is changed, the timing is late. Therefore, when the values slightly smaller than the target values (NH 4 -N target value and PO 4 -P target values are 1 mg / L and 2 mg / L, respectively, for example, 0. When it becomes 5 mg / L and 1.5 mg / L, the adjustment process area | region 12 of the biological reaction tank 3 is changed, and a timing is advanced.

次に、リン除去を改善するために生物反応槽3の調整処理領域12を嫌気雰囲気にした際に、一時的にリン除去が悪化する現象の発生頻度を低減させる実施形態を図5の模式図を参照して説明する。   Next, the schematic diagram of FIG. 5 shows an embodiment in which the occurrence frequency of a phenomenon in which phosphorus removal temporarily deteriorates when the adjustment processing region 12 of the biological reaction tank 3 is set in an anaerobic atmosphere in order to improve phosphorus removal. Will be described with reference to FIG.

以下の処理水質状態別の処理では、基本的には処理水NH−Nをもとに、生物反応槽3の調整処理領域12を変更し、生物反応槽3の調整処理領域12を好気雰囲気としたり、現状維持として、生物反応槽3の調整処理領域12を嫌気雰囲気とするのは、処理水質状態Dとなる場合のみとしている。 In the following treatment by treatment water quality state, basically, the adjustment treatment region 12 of the biological reaction tank 3 is changed based on the treatment water NH 4 -N, and the adjustment treatment region 12 of the biological reaction vessel 3 is aerobic. In order to maintain the atmosphere or to maintain the current state, the adjustment treatment region 12 of the biological reaction tank 3 is set to an anaerobic atmosphere only when the treated water quality state D is reached.

制御周期は日オーダよりも時間オーダが好ましいが、この限りではない。なお、処理水のNH−N目標値とPO−P目標値に対する余裕しろありの場合を以下に示す。NH−N目標値とPO−P目標値は、例えばそれぞれ1mg/L、2mg/Lである。余裕しろは、NH−N目標値の場合のみであるが、0.1や0.2など調整可能なパラメータである。 The control period is preferably a time order rather than a day order, but is not limited to this. In addition, the case where there is a margin with respect to the NH 4 -N target value and the PO 4 -P target value of the treated water is shown below. The NH 4 -N target value and the PO 4 -P target value are, for example, 1 mg / L and 2 mg / L, respectively. The margin is an adjustable parameter such as 0.1 or 0.2, although only in the case of the NH 4 -N target value.

余裕しろを設定する意義は、図2に示す実施形態の内容と同様である。また、NH−N目標値の余裕しろが無い場合もあり、余裕しろが無い場合の意義は図4に示す実施形態と同様である。なお、NH−N目標値の余裕しろが無い場合に、目標値よりも少し小さい値となった時点で生物反応槽3の調整処理領域12を変更してタイミングを早めることについても、図4に示す実施形態に記載の内容と同様である。 The significance of setting a margin is the same as that of the embodiment shown in FIG. Further, there is a case where there is no margin for the NH 4 -N target value, and the significance when there is no margin is the same as in the embodiment shown in FIG. In addition, when there is no allowance for the NH 4 -N target value, the adjustment processing region 12 of the biological reaction tank 3 may be changed when the value becomes slightly smaller than the target value to advance the timing. It is the same as that described in the embodiment.

<処理水質状態A>
処理水質状態Aは、処理水NH−Nが処理水NH−Nの目標上限値(NH−N目標値+余裕しろ)を超える水質状態であり、この場合は硝化が不十分なため、硝化を改善するために、生物反応槽3の調整処理領域12を好気雰囲気が増加するようにする。
<Processed water quality state A>
The treated water quality state A is a water quality state where the treated water NH 4 -N exceeds the target upper limit value (NH 4 -N target value + margin) of the treated water NH 4 -N, and in this case, nitrification is insufficient. In order to improve nitrification, the aerobic atmosphere is increased in the adjustment processing region 12 of the biological reaction tank 3.

<処理水質状態B>
処理水質状態Bは、処理水NH−Nが処理水NH−Nの目標下限値(NH−N目標値−余裕しろ)以上で、かつ処理水NH−Nが処理水NH−Nの目標上限値(NH−N目標値+余裕しろ)以下となる水質状態であり、硝化が十分なため、生物反応槽3の調整処理領域12を現状維持とする。
<Processed water quality state B>
In the treated water quality state B, the treated water NH 4 -N is equal to or higher than the target lower limit value of the treated water NH 4 -N (NH 4 -N target value-allowance), and the treated water NH 4 -N is treated water NH 4 -N. Since the water quality is below the N target upper limit (NH 4 −N target value + allowance margin) and nitrification is sufficient, the adjustment treatment region 12 of the biological reaction tank 3 is maintained as it is.

<処理水質状態C>
処理水質状態Cは、処理水NH−Nが処理水NH−Nの目標下限値(NH−N目標値−余裕しろ)を下回り(未満となり)、かつ処理水PO−PがPO−P目標値以下となる水質状態であり、硝化が十分かつリンはそれほど悪くないと判断して、生物反応槽3の調整処理領域12を現状維持とする。
<Processed water quality state C>
In the treated water quality state C, the treated water NH 4 -N is below (below) the target lower limit value of the treated water NH 4 -N (NH 4 -N target value−allowance), and the treated water PO 4 -P is PO. It is determined that the water quality is lower than the 4- P target value, nitrification is sufficient, and phosphorus is not so bad, and the adjustment treatment area 12 of the biological reaction tank 3 is maintained as it is.

<処理水質状態D>
処理水質状態Dは、処理水NH−Nが処理水NH−Nの目標下限値(NH−N目標値−余裕しろ)を下回り(未満となり)、かつ処理水PO−PがPO−P目標値を超える水質状態であり、硝化は十分であるがリンが悪化しているため、リン除去を改善するために、生物反応槽3の調整処理領域12を、予めシミュレーションなどで求めておいた、リン除去に効果がある処理雰囲気とする。
<Processed water quality state D>
In the treated water quality state D, the treated water NH 4 -N is less than (below) the target lower limit value of the treated water NH 4 -N (NH 4 -N target value-allowance), and the treated water PO 4 -P is PO. Since the water quality is higher than the 4- P target value and nitrification is sufficient but phosphorus is deteriorated, the adjustment treatment region 12 of the biological reaction tank 3 is obtained in advance by simulation or the like in order to improve phosphorus removal. The processing atmosphere is effective for removing phosphorus.

以上説明した少なくともひとつの実施形態によれば、制御部は、窒素除去においては硝化を優先させ、硝化が十分な場合にはリン除去を行うように調整処理領域を制御することによって、窒素除去及びリン除去が効率的になされ、有機排水中の全窒素濃度及び全リン濃度を低減可能な有機排水処理システム、有機排水処理方法、及び有機排水処理システムの制御プログラムを提供することができる。
また、調整処理領域の雰囲気を制御する開閉弁の無駄な開度調節を無くして、低コストに窒素除去及びリン除去を行うことができる。
According to at least one embodiment described above, the control unit prioritizes nitrification in nitrogen removal, and controls the adjustment processing region to perform phosphorus removal when nitrification is sufficient, thereby removing nitrogen and It is possible to provide an organic wastewater treatment system, an organic wastewater treatment method, and a control program for the organic wastewater treatment system that can efficiently remove phosphorus and reduce the total nitrogen concentration and the total phosphorus concentration in the organic wastewater.
Further, it is possible to remove nitrogen and phosphorus at low cost by eliminating useless opening adjustment of the on-off valve that controls the atmosphere in the adjustment processing region.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1…有機排水処理システム、2…最初沈殿池(沈殿池)、3…生物反応槽、5…アンモニア濃度測定器、7…全窒素濃度測定器、8…全リン濃度測定器、9…制御部、11…嫌気処理領域、12…調整処理領域、13…好気処理領域。   DESCRIPTION OF SYMBOLS 1 ... Organic waste water treatment system, 2 ... First sedimentation basin (precipitation basin), 3 ... Biological reaction tank, 5 ... Ammonia concentration measuring device, 7 ... Total nitrogen concentration measuring device, 8 ... Total phosphorus concentration measuring device, 9 ... Control part 11 anaerobic processing region 12 adjustment processing region 13 aerobic processing region

Claims (5)

被処理水の流れに沿った上流側から下流側に向かって、嫌気処理領域、調整処理領域および好気処理領域を順に備えた生物反応槽と、
前記好気処理領域における処理水のアンモニア濃度を測定するアンモニア濃度測定器と、
前記生物反応槽から流出した処理水の全窒素濃度を測定する全窒素濃度測定器と、
前記生物反応槽から流出した処理水の全リン濃度またはリン酸態リン濃度を測定する全リン濃度測定器またはリン酸態リン濃度測定器と、
前記アンモニア濃度測定器、前記全窒素濃度測定器および前記全リン濃度測定器または前記リン酸態リン濃度測定器により測定された値に基づいて、前記調整処理領域の雰囲気の範囲を調整する制御部と、
を具備し、
前記調整処理領域は、嫌気雰囲気、微好気雰囲気または好気雰囲気のうち、少なくともいずれか一種の雰囲気に切り替え可能であり、かつ、各雰囲気が占める範囲を調整可能であり、
前記制御部は、窒素除去においては硝化を優先させ、前記アンモニア濃度測定器、および前記全リン濃度測定器または前記リン酸態リン濃度測定器により測定された値に基づいて、前記硝化が十分だと判断した場合にはリン除去を行うように前記調整処理領域を制御する制御プログラムを有することを特徴とする有機排水処理システム。
From the upstream side to the downstream side along the flow of the water to be treated, a biological reaction tank comprising an anaerobic treatment region, an adjustment treatment region, and an aerobic treatment region in order,
An ammonia concentration measuring device for measuring the ammonia concentration of treated water in the aerobic treatment region;
A total nitrogen concentration measuring device for measuring the total nitrogen concentration of the treated water flowing out of the biological reaction tank;
A total phosphorus concentration measuring device or a phosphorous phosphorus concentration measuring device for measuring the total phosphorus concentration or phosphate phosphorus concentration of the treated water flowing out of the biological reaction tank;
A control unit that adjusts the atmosphere range of the adjustment processing region based on values measured by the ammonia concentration measuring device, the total nitrogen concentration measuring device, and the total phosphorus concentration measuring device or the phosphoric phosphorus concentration measuring device. When,
Comprising
The adjustment processing area can be switched to at least one kind of atmosphere among anaerobic atmosphere, slightly aerobic atmosphere or aerobic atmosphere, and the range occupied by each atmosphere can be adjusted,
The control unit prioritizes nitrification in nitrogen removal, and the nitrification is sufficient based on the values measured by the ammonia concentration measuring device and the total phosphorus concentration measuring device or the phosphorous phosphorus concentration measuring device. An organic wastewater treatment system comprising a control program for controlling the adjustment treatment area so as to remove phosphorus when it is determined that
被処理水の流れに沿った上流側から下流側に向かって、嫌気処理領域、調整処理領域および好気処理領域を順に備えた生物反応槽と、
前記好気処理領域における処理水のアンモニア濃度を測定するアンモニア濃度測定器と、
前記生物反応槽から流出した処理水の全窒素濃度を測定する全窒素濃度測定器と、
前記生物反応槽から流出した処理水の全リン濃度またはリン酸態リン濃度を測定する全リン濃度測定器またはリン酸態リン濃度測定器と、
前記アンモニア濃度測定器、前記全窒素濃度測定器および前記全リン濃度測定器または前記リン酸態リン濃度測定器により測定された値に基づいて、前記調整処理領域の雰囲気の範囲を調整する制御部と、
を具備し、
前記調整処理領域は、嫌気雰囲気、微好気雰囲気または好気雰囲気の1種または2種以上の雰囲気に切り替え可能であり、かつ、各雰囲気が占める範囲を調整可能な領域であり、
前記制御部は、窒素除去においては硝化を優先させ、前記アンモニア濃度測定器、および前記全リン濃度測定器または前記リン酸態リン濃度測定器により測定された値に基づいて、前記硝化が十分だと判断し、かつリン濃度が規定値を超過した場合にリン除去を行うように前記調整処理領域を制御する制御プログラムを有することを特徴とする有機排水処理システム。
From the upstream side to the downstream side along the flow of the water to be treated, a biological reaction tank comprising an anaerobic treatment region, an adjustment treatment region, and an aerobic treatment region in order,
An ammonia concentration measuring device for measuring the ammonia concentration of treated water in the aerobic treatment region;
A total nitrogen concentration measuring device for measuring the total nitrogen concentration of the treated water flowing out of the biological reaction tank;
A total phosphorus concentration measuring device or a phosphorous phosphorus concentration measuring device for measuring the total phosphorus concentration or phosphate phosphorus concentration of the treated water flowing out of the biological reaction tank;
A control unit that adjusts the atmosphere range of the adjustment processing region based on values measured by the ammonia concentration measuring device, the total nitrogen concentration measuring device, and the total phosphorus concentration measuring device or the phosphoric phosphorus concentration measuring device. When,
Comprising
The adjustment treatment area is an area that can be switched to one or more atmospheres of an anaerobic atmosphere, a slight aerobic atmosphere or an aerobic atmosphere, and the range occupied by each atmosphere can be adjusted,
The control unit prioritizes nitrification in nitrogen removal, and the nitrification is sufficient based on the values measured by the ammonia concentration measuring device and the total phosphorus concentration measuring device or the phosphorous phosphorus concentration measuring device. And an organic wastewater treatment system having a control program for controlling the adjustment processing region so that phosphorus removal is performed when the phosphorus concentration exceeds a specified value.
前記制御部は、
前記アンモニア濃度、および前記全リン濃度または前記リン酸態リン濃度についてあらかじめ設定された目標値を格納する目標値設定器と、
前記目標値と、前記アンモニア濃度測定器、および前記全リン濃度測定器またはリン酸態リン濃度測定器で測定されたそれぞれの測定値とを照らし、前記調整処理領域の雰囲気の範囲を調整する切替判定部と、
を具備する請求項1または2に記載の有機排水処理システム。
The controller is
A target value setter for storing a target value set in advance for the ammonia concentration and the total phosphorus concentration or the phosphate phosphorus concentration;
Switch to adjust the range of the atmosphere in the adjustment processing area by illuminating the target value and the measured values measured by the ammonia concentration measuring device and the total phosphorus concentration measuring device or the phosphorous phosphorus concentration measuring device. A determination unit;
The organic waste water treatment system according to claim 1 or 2 comprising.
被処理水の流れに沿った上流側から下流側に向かって、嫌気処理領域、調整処理領域および好気処理領域を順に備えた生物反応槽と、
前記好気処理領域における処理水のアンモニア濃度を測定するアンモニア濃度測定器と、
前記生物反応槽から流出した処理水の全窒素濃度を測定する全窒素濃度測定器と、
前記生物反応槽から流出した処理水の全リン濃度またはリン酸態リン濃度を測定する全リン濃度測定器またはリン酸態リン濃度測定器と、
前記アンモニア濃度測定器、前記全窒素濃度測定器および前記全リン濃度測定器または前記リン酸態リン濃度測定器により測定された値に基づいて、前記調整処理領域の雰囲気の範囲を調整する制御部と、
を具備し、
前記調整処理領域は、嫌気雰囲気、微好気雰囲気または好気雰囲気の1種または2種以上の雰囲気に切り替え可能であり、かつ、各雰囲気が占める範囲を調整可能な領域である有機排水処理システムを用いた有機排水処理方法であって、
前記調整処理領域に対して、窒素除去においては硝化を優先させ、前記アンモニア濃度測定器、および前記全リン濃度測定器または前記リン酸態リン濃度測定器により測定された値に基づいて、前記硝化が十分だと判断した場合にはリン除去を行うように制御する工程を備えたことを特徴とする有機排水処理方法。
From the upstream side to the downstream side along the flow of the water to be treated, a biological reaction tank comprising an anaerobic treatment region, an adjustment treatment region, and an aerobic treatment region in order,
An ammonia concentration measuring device for measuring the ammonia concentration of treated water in the aerobic treatment region;
A total nitrogen concentration measuring device for measuring the total nitrogen concentration of the treated water flowing out of the biological reaction tank;
A total phosphorus concentration measuring device or a phosphorous phosphorus concentration measuring device for measuring the total phosphorus concentration or phosphate phosphorus concentration of the treated water flowing out of the biological reaction tank;
A control unit that adjusts the atmosphere range of the adjustment processing region based on values measured by the ammonia concentration measuring device, the total nitrogen concentration measuring device, and the total phosphorus concentration measuring device or the phosphoric phosphorus concentration measuring device. When,
Comprising
The adjustment treatment area can be switched to one or more of anaerobic atmosphere, slightly aerobic atmosphere or aerobic atmosphere, and an organic wastewater treatment system which can adjust the range occupied by each atmosphere. An organic wastewater treatment method using
Prioritizing nitrification in nitrogen removal with respect to the adjustment treatment region, the nitrification is performed based on values measured by the ammonia concentration measuring device and the total phosphorus concentration measuring device or the phosphate phosphorus concentration measuring device. An organic wastewater treatment method comprising a step of controlling so as to remove phosphorus when it is determined that is sufficient.
被処理水の流れに沿った上流側から下流側に向かって、嫌気処理領域、調整処理領域および好気処理領域を順に備えた生物反応槽と、
前記好気処理領域における処理水のアンモニア濃度を測定するアンモニア濃度測定器と、
前記生物反応槽から流出した処理水の全窒素濃度またはリン酸態リン濃度を測定する全窒素濃度測定器またはリン酸態リン濃度測定器と、
前記生物反応槽から流出した処理水の全リン濃度を測定する全リン濃度測定器と、
前記アンモニア濃度測定器、前記全窒素濃度測定器および前記全リン濃度測定器または前記リン酸態リン濃度測定器により測定された値に基づいて、前記調整処理領域の雰囲気の範囲を調整する制御部と、
を具備し、
前記調整処理領域は、嫌気雰囲気、微好気雰囲気または好気雰囲気の1種または2種以上の雰囲気に切り替え可能であり、かつ、各雰囲気が占める範囲を調整可能な領域である有機排水処理システムの前記制御部に実行させるための制御プログラムであって、
前記調整処理領域に対して、窒素除去においては硝化を優先させ、前記アンモニア濃度測定器、および前記全リン濃度測定器または前記リン酸態リン濃度測定器により測定された値に基づいて、前記硝化が十分だと判断した場合にはリン除去を行うように制御するステップを備えたことを特徴とする制御プログラム。
From the upstream side to the downstream side along the flow of the water to be treated, a biological reaction tank comprising an anaerobic treatment region, an adjustment treatment region, and an aerobic treatment region in order,
An ammonia concentration measuring device for measuring the ammonia concentration of treated water in the aerobic treatment region;
A total nitrogen concentration measuring device or a phosphorous phosphorus concentration measuring device for measuring the total nitrogen concentration or phosphate phosphorus concentration of the treated water flowing out of the biological reaction tank;
A total phosphorus concentration measuring device for measuring the total phosphorus concentration of treated water flowing out of the biological reaction tank;
A control unit that adjusts the atmosphere range of the adjustment processing region based on values measured by the ammonia concentration measuring device, the total nitrogen concentration measuring device, and the total phosphorus concentration measuring device or the phosphoric phosphorus concentration measuring device. When,
Comprising
The adjustment treatment area can be switched to one or more of anaerobic atmosphere, slightly aerobic atmosphere or aerobic atmosphere, and an organic wastewater treatment system which can adjust the range occupied by each atmosphere. A control program for causing the control unit to execute
Prioritizing nitrification in nitrogen removal with respect to the adjustment treatment region, the nitrification is performed based on values measured by the ammonia concentration measuring device and the total phosphorus concentration measuring device or the phosphate phosphorus concentration measuring device. A control program comprising a step of performing control to remove phosphorus when it is determined that is sufficient.
JP2015133487A 2015-07-02 2015-07-02 Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system Pending JP2017013014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015133487A JP2017013014A (en) 2015-07-02 2015-07-02 Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015133487A JP2017013014A (en) 2015-07-02 2015-07-02 Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system

Publications (1)

Publication Number Publication Date
JP2017013014A true JP2017013014A (en) 2017-01-19

Family

ID=57829472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015133487A Pending JP2017013014A (en) 2015-07-02 2015-07-02 Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system

Country Status (1)

Country Link
JP (1) JP2017013014A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006341A (en) * 2018-07-11 2020-01-16 Jfeエンジニアリング株式会社 Sewage treatment method and apparatus
CN113415887A (en) * 2021-08-25 2021-09-21 国美(天津)水技术工程有限公司 Biological enhanced denitrification device and application
CN117049709A (en) * 2023-10-10 2023-11-14 湖南易净环保科技有限公司 Monitoring and diagnosis integrated linkage sewage treatment system and method
WO2024080068A1 (en) * 2022-10-11 2024-04-18 株式会社クボタ Organic-wastewater treatment method and organic-wastewater treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage
JP2012501816A (en) * 2009-05-04 2012-01-26 シス イーエヌジー カンパニー リミテッド Variable type advanced sewage treatment equipment
JP2013212490A (en) * 2011-11-08 2013-10-17 Toshiba Corp Nitrogen/phosphor removal treatment method and nitrogen/phosphor removal treatment apparatus
JP2015097976A (en) * 2013-11-18 2015-05-28 株式会社東芝 Organic wastewater treatment apparatus, organic wastewater treatment method, and control program for organic wastewater treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage
JP2012501816A (en) * 2009-05-04 2012-01-26 シス イーエヌジー カンパニー リミテッド Variable type advanced sewage treatment equipment
JP2013212490A (en) * 2011-11-08 2013-10-17 Toshiba Corp Nitrogen/phosphor removal treatment method and nitrogen/phosphor removal treatment apparatus
JP2015097976A (en) * 2013-11-18 2015-05-28 株式会社東芝 Organic wastewater treatment apparatus, organic wastewater treatment method, and control program for organic wastewater treatment apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006341A (en) * 2018-07-11 2020-01-16 Jfeエンジニアリング株式会社 Sewage treatment method and apparatus
CN113415887A (en) * 2021-08-25 2021-09-21 国美(天津)水技术工程有限公司 Biological enhanced denitrification device and application
WO2024080068A1 (en) * 2022-10-11 2024-04-18 株式会社クボタ Organic-wastewater treatment method and organic-wastewater treatment device
CN117049709A (en) * 2023-10-10 2023-11-14 湖南易净环保科技有限公司 Monitoring and diagnosis integrated linkage sewage treatment system and method
CN117049709B (en) * 2023-10-10 2023-12-26 湖南易净环保科技有限公司 Monitoring and diagnosis integrated linkage sewage treatment system and method

Similar Documents

Publication Publication Date Title
CN103819049B (en) A kind of sewage water treatment method and system
JP6404999B2 (en) Organic wastewater treatment equipment
CN104710087A (en) Hypoxia-aerobic comprehensive treatment method for tannery waste water
KR20130138048A (en) Membrane wastewater treatment system and method for high energy efficiency, high flow capicity, low operating cost, automated scum and foam removal / destruction and conversion method thereof from a constant level sequencing batch reactor process
CN104071949B (en) Integrated hybrid biomembrane-activated sludge reaction system and application method thereof
JP2017013014A (en) Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system
RU2672419C1 (en) Biofilm nitrification-contact denitrification system and method
JP2015104712A (en) Sewage treatment facility and sewage treatment method
CN204211601U (en) Sewerage integrated processing system
CN1609016A (en) Nitrogen and phosphorus removal process - NPR process
JP6158691B2 (en) Organic wastewater treatment apparatus, organic wastewater treatment method, and organic wastewater treatment apparatus control program
JP5900098B2 (en) Nitrogen and phosphorus removal apparatus and method
KR20090063312A (en) Floating Contact Sewage Treatment Facility
CN101693581B (en) Method of hydrolysis-catalytic iron-aerobic coupling for treating poisonous and harmful hard-degradation waste water
JP6529886B2 (en) Organic wastewater treatment system, control method and computer program
JP2019217484A (en) Adjustment section control apparatus, adjustment section control method, computer program and organic wastewater treatment system
KR20170105458A (en) Nitrogen and phosphorus removal device for wastewater
KR101345642B1 (en) Method for removing nitrogen in waste water
JP6396238B2 (en) Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program
JP7581057B2 (en) Organic wastewater treatment system, organic wastewater treatment method, and control program for organic wastewater treatment system
CN212050996U (en) A nitrogen and phosphorus removal device for town sewage treatment plant tail water advanced treatment
KR100239887B1 (en) Method for removing nutrient salt(N,P)
JP5883697B2 (en) Waste water treatment apparatus and waste water treatment method
KR20040021146A (en) The Biological Nutrient Removal System Using The Porous Media
JP6839047B2 (en) Digestive sludge desorbed liquid treatment method, its treatment equipment, wastewater treatment method and wastewater treatment equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170912

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702