[go: up one dir, main page]

JP2017011980A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2017011980A
JP2017011980A JP2015138152A JP2015138152A JP2017011980A JP 2017011980 A JP2017011980 A JP 2017011980A JP 2015138152 A JP2015138152 A JP 2015138152A JP 2015138152 A JP2015138152 A JP 2015138152A JP 2017011980 A JP2017011980 A JP 2017011980A
Authority
JP
Japan
Prior art keywords
bidirectional switch
load
antenna
current
bidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015138152A
Other languages
Japanese (ja)
Inventor
佐藤 守男
Morio Sato
守男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohira Electronics Co Ltd
Original Assignee
Ohira Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohira Electronics Co Ltd filed Critical Ohira Electronics Co Ltd
Priority to JP2015138152A priority Critical patent/JP2017011980A/en
Publication of JP2017011980A publication Critical patent/JP2017011980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for generating from a high frequency current a stable AC current or a DC current by controlling an AC phase, instead of generating a stable DC voltage from a DC voltage which is obtained through rectification and smoothing on the power reception side.SOLUTION: The power transmission side of a non-contact power transmission device directly switches an AC current to generate a high frequency current. The power reception side generates a pulse by the comparison of an AC envelope extracted from the high frequency current with a threshold, so that the pulse switches on and off a bidirectional switch through a logic circuit to stabilize a voltage or a current applied to a load.SELECTED DRAWING: Figure 1

Description

本発明はスイッチング電源に関し、特に非接触電力伝送装置に関する。  The present invention relates to a switching power supply, and more particularly to a contactless power transmission device.

従来の非接触電力伝送装置の中で交流電流を直接オン・オフして行う方法として、本出願人が特許登録した特許第4835985がある。その実施例の1つを図8に示す。  Japanese Patent No. 4835985 registered by the present applicant as a method for directly turning on and off an alternating current in a conventional non-contact power transmission apparatus. One such embodiment is shown in FIG.

図8において、111は交流電源、112〜120は交流電流をオン・オフして高周波電流を作るインバータである。高周波電流は送電コイル121と受電コイル122によって伝送され、整流器123によって直流に変換される。直流電圧が不安定であるため定電圧回路124によって安定化されて負荷125に供給される。
図8に示した従来方式は受電側に定電圧回路を付加することによって負荷に加わる電圧を安定させているが、軽負荷時に定電圧回路に加わる電圧が大きくなるため定電圧回路の入力電圧を広くしなければならず、それがコストを上げ、また効率を下げる原因になっている。
In FIG. 8, 111 is an AC power source, and 112 to 120 are inverters that generate high-frequency current by turning on and off the AC current. The high-frequency current is transmitted by the power transmission coil 121 and the power reception coil 122 and converted into direct current by the rectifier 123. Since the DC voltage is unstable, it is stabilized by the constant voltage circuit 124 and supplied to the load 125.
The conventional method shown in FIG. 8 stabilizes the voltage applied to the load by adding a constant voltage circuit on the power receiving side. However, since the voltage applied to the constant voltage circuit increases at light loads, the input voltage of the constant voltage circuit is reduced. It must be widened, which increases costs and decreases efficiency.

本発明は受電側で整流平滑された直流電圧から安定した直流電圧を作るのではなく交流の位相を制御することによって高周波電流から安定した交流電流または直流電流を作る技術を提供することを目的としている。  It is an object of the present invention to provide a technique for generating a stable alternating current or a direct current from a high frequency current by controlling the phase of the alternating current instead of creating a stable direct current voltage from the rectified and smoothed direct current voltage on the power receiving side. Yes.

請求項1記載の発明は交流電源と、交流電流を高周波電流に変換するインバータと、高周波電流を電磁界エネルギとして空中に放出する第1の空中線と、その電磁界エネルギを受電する第2の空中線と、第2の空中線に生じる高周波電流を供給する負荷からなる非接触電力伝送装置において、第2の空中線と負荷を接続する一方の線に第1の双方向スイッチを直列に挿入し、第2の空中線と負荷を接続する他方の線に第2の双方向スイッチを直列に挿入し、第1の双方向スイッチの第2の空中線側端子と第2の双方向スイッチの負荷側端子の間に第3の双方向スイッチを接続し、第1の双方向スイッチの負荷側端子と第2の双方向スイッチの第2の空中線端子側の間に第4の双方向スイッチを接続し、第2の空中線に生じる高周波電流の交流包絡線を取り出す整流回路と、その整流回路の出力電圧がしきい値を越えている期間だけパルスを発生して第1ないし第4の双方向スイッチをいずれも正方向に導通させ、かつ、そのパルスの次に発生するパルスで第1ないし第4の双方向スイッチをいずれも負方向に導通させることを繰り返して負荷に交流電流を供給する論理回路と、負荷に加わる交流電圧を安定させるためにそのしきい値を制御する制御回路を付加した。  The invention according to claim 1 is an AC power source, an inverter that converts AC current into high-frequency current, a first antenna that emits high-frequency current into the air as electromagnetic energy, and a second antenna that receives the electromagnetic energy. And a non-contact power transmission device comprising a load for supplying a high-frequency current generated in the second antenna, a first bidirectional switch is inserted in series on one line connecting the second antenna and the load, A second bidirectional switch is inserted in series with the other line connecting the antenna and the load between the second antenna side terminal of the first bidirectional switch and the load side terminal of the second bidirectional switch. A third bidirectional switch is connected, a fourth bidirectional switch is connected between the load side terminal of the first bidirectional switch and the second antenna terminal side of the second bidirectional switch; Alternating high-frequency current generated in the antenna A rectifying circuit for extracting the tangential line, generating a pulse only during a period when the output voltage of the rectifying circuit exceeds the threshold value, and making each of the first to fourth bidirectional switches conductive in the positive direction; and In order to stabilize the AC voltage applied to the load, and a logic circuit that repeatedly supplies the AC current to the load by repeatedly conducting the first to fourth bidirectional switches in the negative direction with a pulse generated next to the pulse. A control circuit for controlling the threshold is added.

請求項2記載の発明は、論理回路が第1ないし第4の双方向スイッチを毎パルス正方向にだけ導通させることを繰り返して負荷に直流電流を供給し、制御回路が負荷に加わる直流電圧を安定させるためにしきい値を制御する。  According to the second aspect of the present invention, the logic circuit repeatedly conducts the first to fourth bidirectional switches only in the positive direction of each pulse to supply a DC current to the load, and the control circuit generates a DC voltage applied to the load. Control the threshold to stabilize.

請求項3記載の発明は、第2の双方向スイッチと第4の双方向スイッチをコンデンサに置き換えた。  In the invention according to claim 3, the second bidirectional switch and the fourth bidirectional switch are replaced with capacitors.

請求項4記載の発明は、請求項2記載の発明において第2の双方向スイッチと第4の双方向スイッチをいずれもダイオードに置き換えた。  According to a fourth aspect of the present invention, in the second aspect, the second bidirectional switch and the fourth bidirectional switch are both replaced with diodes.

請求項5記載の発明は、請求項2ないし請求項4記載の発明において、双方向スイッチを各々1つのMOSFETと1つのダイオードを直列接続した片方向スイッチに置き換えた。  According to a fifth aspect of the present invention, in the second to fourth aspects of the invention, the bidirectional switch is replaced with a unidirectional switch in which one MOSFET and one diode are connected in series.

請求項6記載の発明は、請求項1ないし請求項5記載の発明において、制御回路が負荷に加わる電流を安定させるためにしきい値を制御する。  According to a sixth aspect of the invention, in the first to fifth aspects of the invention, the control circuit controls the threshold value in order to stabilize the current applied to the load.

本発明の非接触電力伝送装置は、従来装置の受電側に備えられていた整流用のダイオードと定電圧回路を双方向スイッチまたは片方向スイッチに替えることにより、電力損失が増えることなく負荷に安定した電圧または電流を供給することができるのでコストの削減に効果がでる。  The contactless power transmission device of the present invention is stable in the load without increasing power loss by replacing the rectifying diode and the constant voltage circuit provided on the power receiving side of the conventional device with a bidirectional switch or a unidirectional switch. The reduced voltage or current can be supplied, so that the cost can be reduced.

受電側は、車輌に応用するのであれば軽量化が重要な課題になるが、回路部品が削減されることと電力損失が小さくなることで軽量化に貢献できる。  If the power receiving side is applied to a vehicle, weight reduction becomes an important issue, but it can contribute to weight reduction by reducing circuit parts and reducing power loss.

本発明を実施するための最良の形態を図面を参照して説明する。  The best mode for carrying out the present invention will be described with reference to the drawings.

図1は請求項1記載の発明に関わる実施例を示す回路図である。
図2は図1に示した回路図上の各部の波形を示す図である。
図1において、1は交流電源、2はインバータ、3はコンデンサ、4は第1の空中線、5は第2の空中線、6はコンデンサ、7は負荷である。11と12はMOSFETで、2つ1組で第1の双方向スイッチを構成している。21と22、31と32、41と42はいずれもMOSFETでそれぞれの組が第2ないし第4の双方向スイッチを構成している。13と14、23と24、33と34、43と44はいずれもMOSFETを駆動するための絶縁ドライバである。
FIG. 1 is a circuit diagram showing an embodiment relating to the first aspect of the present invention.
FIG. 2 is a diagram showing waveforms at various parts on the circuit diagram shown in FIG.
In FIG. 1, 1 is an AC power source, 2 is an inverter, 3 is a capacitor, 4 is a first antenna, 5 is a second antenna, 6 is a capacitor, and 7 is a load. Reference numerals 11 and 12 denote MOSFETs, and a pair of two constitutes a first bidirectional switch. Reference numerals 21 and 22, 31 and 32, and 41 and 42 are MOSFETs, and each pair constitutes a second to a fourth bidirectional switch. Reference numerals 13 and 14, 23 and 24, 33 and 34, and 43 and 44 are insulating drivers for driving the MOSFET.

図1において、51〜55は整流平滑回路で、51のダイオードの入力には図2の(1)に示した波形の電圧が加わり、55の絶縁アンプからは図2の(2)に示した波形の電圧が出力する。図2の(2)に示されている101はしきい値を示し、次に説明する制御回路57によって与えられる。  In FIG. 1, reference numerals 51 to 55 denote rectifying and smoothing circuits. The voltage of the waveform shown in FIG. 2 (1) is applied to the input of 51 diodes, and the insulation amplifier of 55 is shown in FIG. 2 (2). Waveform voltage is output. 101 shown in (2) of FIG. 2 indicates a threshold value, which is given by a control circuit 57 described below.

図1において、負荷7に加わる電圧は抵抗58と59によって分圧され、制御回路57の帰還制御端子に加えられ、絶縁アンプ55の出力電圧は制御回路57のフィードフォワード制御端子に加えられる。制御回路57からは図2(3)の波形の信号が出力される。56は論理回路で、その端子Aに入力される図2の(3)の信号は(4)と(5)に示した1つおきの信号に変換されて各々論理回路56の端子BとCから出力される。論理回路56の端子Gは端子BとCに対するグランド端子である。  In FIG. 1, the voltage applied to the load 7 is divided by resistors 58 and 59 and applied to the feedback control terminal of the control circuit 57, and the output voltage of the insulation amplifier 55 is applied to the feedforward control terminal of the control circuit 57. The control circuit 57 outputs a signal having the waveform shown in FIG. 56 is a logic circuit, and the signal of (3) in FIG. 2 inputted to its terminal A is converted into every other signal shown in (4) and (5), and terminals B and C of the logic circuit 56 are respectively converted. Is output from. The terminal G of the logic circuit 56 is a ground terminal for the terminals B and C.

また、図1の回路上のUとVは説明のために設けた回路上の点で、Uは第1の双方向スイッチと第3の双方向スイッチの接続点にあり、Vは第4の双方向スイッチと第2の双方向スイッチの接続点にある。  Further, U and V on the circuit of FIG. 1 are points on the circuit provided for explanation, U is a connection point between the first bidirectional switch and the third bidirectional switch, and V is a fourth point. At the connection point of the bidirectional switch and the second bidirectional switch.

図2の(2)に示されているしきい値101の値が変わることにより制御回路57から出力される信号のパルス幅が変わる。バルス幅が変わると双方向スイッチをオン・オフする位相が変わり、出力電圧が変わる。  The pulse width of the signal output from the control circuit 57 is changed by changing the value of the threshold value 101 shown in (2) of FIG. When the pulse width changes, the phase at which the bidirectional switch is turned on and off changes, and the output voltage changes.

すなわち、負荷に加わる電圧が基準値に対して高くなると、しきい値が上がり制御回路57の信号のパルスが短くなり、双方向スイッチのオン幅が短くなるので負荷に加わる電圧が下がる。  That is, when the voltage applied to the load becomes higher than the reference value, the threshold value is increased, the signal pulse of the control circuit 57 is shortened, and the ON width of the bidirectional switch is shortened, so the voltage applied to the load is lowered.

図2において時刻T1の状態を調べると、図1のU−V間には正負に振れる高周波電圧が加わっている。論理回路56のBには図2の(4)の信号が出力しており、Cには信号が出力していないので、MOSFET11、21、31、41がオン状態になっており、MOSFET12、22、32、42はオフ状態になっている。この状態で高周波の電圧が正のとき、電流はMOSFET11、MOSFET12のボディダイオード、負荷7、MOSFET21、MOSFET22のボディダイオードの順に流れる。また、同じ状態で高周波電圧が負のときは電流はMOSFET41、MOSFET42のボディダイオード、負荷7、MOSFET31、MOSFET32のボディダイオードの順に流れる。すなわち、高周波電圧の正負には関係なく、負荷7には図の上から下に向かう電流が流れる。  When examining the state at time T1 in FIG. 2, a high-frequency voltage swinging positive and negative is applied between U and V in FIG. Since the signal (4) in FIG. 2 is output to B of the logic circuit 56 and no signal is output to C, the MOSFETs 11, 21, 31, and 41 are turned on, and the MOSFETs 12, 22 are output. , 32 and 42 are in an off state. In this state, when the high-frequency voltage is positive, the current flows in the order of the MOSFET 11, the body diode of the MOSFET 12, the load 7, the MOSFET 21, and the body diode of the MOSFET 22. When the high-frequency voltage is negative in the same state, the current flows in the order of the MOSFET 41, the body diode of the MOSFET 42, the load 7, the MOSFET 31, and the body diode of the MOSFET 32. That is, a current flowing from the top to the bottom of the figure flows through the load 7 regardless of whether the high frequency voltage is positive or negative.

図2において、時刻T2の状態を調べると、論理回路56のCに信号が出力しておりBには信号が出力していないので、上記と同様に電流を追うと、高周波電圧の正負に関係なく、負荷7には図の下から上に向かう電流が流れる。すなわち、負荷には入力交流電圧に同期した交流が流れる。  In FIG. 2, when the state at time T2 is examined, a signal is output to C of the logic circuit 56 and no signal is output to B. Therefore, following the current in the same manner as described above is related to the sign of the high-frequency voltage. Instead, a current flows from the bottom to the top of the load 7. That is, alternating current synchronized with the input alternating voltage flows through the load.

図1において、双方向スイッチを2つのMOSFETを互いに逆に直列接続して構成しているので、MOSFETのボディダイオードを利用している。IGBTのようにボディダイオードを持たないスイッチ素子を図1の実施例に用いる場合は図7(a)に示したように各1GBTにダイオードを並列接続することで可能である。  In FIG. 1, since the bidirectional switch is configured by connecting two MOSFETs in series in reverse, the body diode of the MOSFET is used. When a switch element having no body diode, such as an IGBT, is used in the embodiment of FIG. 1, it is possible to connect a diode to each 1 GBT in parallel as shown in FIG.

図3は請求項2記載の発明に関わる実施例を示す回路図である。
図において、論理回路56の端子Dからは、図2の(3)の波形の信号が出力されて、MOSFET11、21、31、41がオン・オフを繰り返している。MOSFET12、22、32、42はゲートを駆動する信号がオフ状態なのでボディダイオードだけが働き、負荷7には一方方向の直流電流が流れる。
FIG. 3 is a circuit diagram showing an embodiment according to the second aspect of the present invention.
In the figure, the signal having the waveform (3) in FIG. 2 is output from the terminal D of the logic circuit 56, and the MOSFETs 11, 21, 31, and 41 are repeatedly turned on and off. Since the signals for driving the gates of the MOSFETs 12, 22, 32, and 42 are off, only the body diode works, and a DC current in one direction flows through the load 7.

図4は請求項3記載の発明に関わる実施例を示す回路図である。
図において、25と45は各々コンデンサである。論理回路56の端子BとCから図1の場合と同じ信号が出力されている。図4における図2の時刻T1の状態はMOSFET11と31がオン状態になっているので、U−V間の高周波電圧は、正に振れたとき電流はMOSFET11、MOSFET12のボディダイオード、コンデンサ45の順に流れてコンデンサ45を充電する。負に振れたとき電流はコンデンサ25、MOSFET31、MOSFETのボディダイオードの順に流れてコンデンサ25を充電する。負荷7には2つのコンデンサの電圧をたした電圧が図の上がプラスとなって加わる。
FIG. 4 is a circuit diagram showing an embodiment according to the third aspect of the present invention.
In the figure, 25 and 45 are capacitors. The same signals as in the case of FIG. 1 are output from the terminals B and C of the logic circuit 56. 2 at time T1 in FIG. 2 is that the MOSFETs 11 and 31 are in the on state, the high-frequency voltage between U and V is positive when the current swings in the order of the MOSFET 11, the body diode of the MOSFET 12, and the capacitor 45. It flows and charges the capacitor 45. When it swings negatively, the current flows in the order of the capacitor 25, the MOSFET 31, and the body diode of the MOSFET to charge the capacitor 25. A voltage obtained by adding the voltages of the two capacitors is applied to the load 7 with the top of the figure being positive.

図4における図2の時刻T2の状態はMOSFET12と32がオン状態になっているので、U−V間の高周波電圧はコンデンサ45と25は逆方向に充電され、負荷7には2つのコンデンサの電圧をたした電圧が図の下がプラスになって加わる。  In the state at time T2 in FIG. 2 in FIG. 4, since the MOSFETs 12 and 32 are on, the high frequency voltage between U and V is charged in the capacitors 45 and 25 in the reverse direction, and the load 7 has two capacitors. The added voltage is added with the bottom of the figure plus.

図5は請求項4記載の発明に関わる実施例を示す回路図である。
図において、26と46は各々ダイオードである。論理回路56の端子Dから図3と同じ信号が出力されて、MOSFET11と31がオン・オフを繰り返している。
FIG. 5 is a circuit diagram showing an embodiment according to the fourth aspect of the present invention.
In the figure, reference numerals 26 and 46 denote diodes. The same signal as in FIG. 3 is output from the terminal D of the logic circuit 56, and the MOSFETs 11 and 31 are repeatedly turned on and off.

図6は請求項5記載の発明の実施例を示す回路図である。
図において、15と35は各々ダイオードである。
FIG. 6 is a circuit diagram showing an embodiment of the invention as set forth in claim 5.
In the figure, reference numerals 15 and 35 denote diodes.

図7は請求項6記載の発明に関わる実施例を示す回路図である。
図において61は電流を検出する抵抗であり、この抵抗両端の電圧が安定するようにしきい値が制御される。
FIG. 7 is a circuit diagram showing an embodiment according to the sixth aspect of the present invention.
In the figure, reference numeral 61 denotes a resistor for detecting a current, and the threshold value is controlled so that the voltage across the resistor is stabilized.

図1及び図3〜5の各々の回路において、双方向スイッチが2つのNチャンネルのMOSFETをソースをコモンにして互いに向きを合わせて構成しているが、アノードをコモンにして互いに向き合わせて構成しても良い。図6においてダイオードのアノードをMOSFETのソースに接続して直列接続を構成しているが、ダイオードのカソードとMOSFETのドレインを接続して直列接続を構成しても良い。  In each of the circuits of FIGS. 1 and 3 to 5, the bidirectional switch is configured by arranging two N-channel MOSFETs with the common source and facing each other, but with the anode common and facing each other. You may do it. In FIG. 6, the anode of the diode is connected to the source of the MOSFET to form a series connection, but the diode cathode and the drain of the MOSFET may be connected to form a series connection.

図1及び図3〜5の各々の回路において、双方向スイッチはMOSFETによって構成されているが、図7(a)に示したようなIGBTとダイオードを用いて構成しても良い。また、図7(b)のようにMOSFETにボディダイオードより順方向ドロップ電圧の小さいショットキバリアダイオードを並列接続して構成しても良い。  In each circuit of FIGS. 1 and 3 to 5, the bidirectional switch is configured by a MOSFET, but may be configured by using an IGBT and a diode as illustrated in FIG. 7A. Further, as shown in FIG. 7B, a Schottky barrier diode having a forward drop voltage smaller than that of the body diode may be connected in parallel to the MOSFET.

図1〜7の各々の回路において、空中線をコイルで表現しているが、コイルの線長は電力の伝送が最も効率よく行われるように高周波電流の波長に応じて求められる。実際の線長が求められた値に満たない場合は図9(1)に示したようにインダクタを直列に挿入して空中線の等価的な線長を伸ばしても良い。図9(2)に示したようにコンデンサを並列に接続して空中線の等価的な線長を伸ばしても良い。図9(3)に示したようにインダクタとコンデンサを混ぜて用いて等価的な線長を伸ばしても良い。  In each of the circuits shown in FIGS. 1 to 7, the aerial wire is represented by a coil, and the wire length of the coil is determined according to the wavelength of the high-frequency current so that electric power is transmitted most efficiently. When the actual line length is less than the obtained value, the equivalent line length of the antenna may be extended by inserting an inductor in series as shown in FIG. As shown in FIG. 9 (2), the equivalent line length of the antenna may be extended by connecting capacitors in parallel. As shown in FIG. 9 (3), an equivalent line length may be extended by using a mixture of an inductor and a capacitor.

空中線としてループ状や渦巻状に巻いたものを用いても良い。  An aerial wire wound in a loop or spiral may be used.

産業上の利用の可能性Industrial applicability

従来の非接触電力伝送装置の多くは送電側で直流をスイッチングして高周波電流を作っていたので受電側で負荷に供給する電圧または電流を安定化するためにコストのかかる効率の良くない定電圧回路に依存しなければならなかった。本発明では送電側で交流を直接スイッチングすることにより、受電側で交流の位相を利用して制御することができ、シンプルなハードウェア構成と低速なデジタル処理で安定化が可能になった。また、負荷に流れる電流が大きいとき程双方向スイッチの導通角が広がり、送電側の電流が電圧に比例する。その結果、力率が良くなるので力率改善回路を省略できることがわかった。これらによって産業上の利用が期待できる。  Many conventional non-contact power transmission devices switch high frequency current by switching direct current on the power transmission side, so the voltage or current that is supplied to the load on the power receiving side is unstable and costly and inefficient constant voltage Had to depend on the circuit. In the present invention, by directly switching alternating current on the power transmission side, control can be performed using the phase of the alternating current on the power receiving side, and stabilization is possible with a simple hardware configuration and low-speed digital processing. Further, the larger the current flowing through the load, the wider the conduction angle of the bidirectional switch, and the current on the power transmission side is proportional to the voltage. As a result, it has been found that the power factor can be omitted because the power factor is improved. Industrial use can be expected by these.

請求項1記載の発明に関わる実施例を示す回路図である。It is a circuit diagram which shows the Example regarding the invention of Claim 1. 図1の回路の波形を示す図である。It is a figure which shows the waveform of the circuit of FIG. 請求項2記載の発明に関わる実施例を示す回路図である。It is a circuit diagram which shows the Example in connection with invention of Claim 2. 請求項3記載の発明に関わる実施例を示す回路図である。It is a circuit diagram which shows the Example in connection with invention of Claim 3. 請求項4記載の発明に関わる実施例を示す回路図である。It is a circuit diagram which shows the Example regarding the invention of Claim 4. 請求項5記載の発明に関わる実施例を示す回路図である。It is a circuit diagram which shows the Example in connection with invention of Claim 5. 請求項6記載の発明に関わる実施例を示す回路図である。It is a circuit diagram which shows the Example regarding the invention of Claim 6. 双方向スイッチの構成例を示す回路図である。It is a circuit diagram which shows the structural example of a bidirectional switch. 従来方式の1例を示す回路図である。It is a circuit diagram which shows an example of a conventional system.

1 交流電源
2 高周波インバータ
3、6 コンデンサ
4、5 空中線
7 負荷
11、12、21、22、31、32、41、42 MOSFET
13、14、23、24、33、34、43、44 絶縁ドライバ
15、35 ダイオード
25、45 コンデンサ
26、46 ダイオード
51 ダイオード
52 コンデンサ
53,54 抵抗
55 絶縁アンプ
56 論理回路
57 制御回路
58、59 抵抗
61、62 IGBT
63、64 ダイオード
71、72 MOSFET
73、74 ショットキバリアダイオード
DESCRIPTION OF SYMBOLS 1 AC power supply 2 High frequency inverter 3, 6 Capacitor 4, 5 Antenna 7 Load 11, 12, 21, 22, 31, 32, 41, 42 MOSFET
13, 14, 23, 24, 33, 34, 43, 44 Insulation driver 15, 35 Diode 25, 45 Capacitor 26, 46 Diode 51 Diode 52 Capacitor 53, 54 Resistance 55 Insulation amplifier 56 Logic circuit 57 Control circuit 58, 59 Resistance 61, 62 IGBT
63, 64 Diode 71, 72 MOSFET
73, 74 Schottky barrier diode

【0034】
【図1】請求項1記載の発明に関わる実施例を示す回路図である。
【図2】図1の回路の波形を示す図である。
【図3】請求項2記載の発明に関わる実施例を示す回路図である。
【図4】請求項3記載の発明に関わる実施例を示す回路図である。
【図5】請求項4記載の発明に関わる実施例を示す回路図である。
【図6】請求項5記載の発明に関わる実施例を示す回路図である。
【図7】請求項6記載の発明に関わる実施例を示す回路図である。
【図8】双方向スイッチの構成例を示す回路図である。
【図9】空中線の等価的線長を伸ばす例を示す回路図である。
【図10】従来方式の1例を示す回路図である
【符号の簡単な説明】
[0034]
FIG. 1 is a circuit diagram showing an embodiment according to the first aspect of the present invention;
FIG. 2 is a diagram illustrating waveforms of the circuit of FIG.
FIG. 3 is a circuit diagram showing an embodiment according to the second aspect of the present invention;
4 is a circuit diagram showing an embodiment according to the invention of claim 3. FIG.
FIG. 5 is a circuit diagram showing an embodiment according to the invention as set forth in claim 4;
FIG. 6 is a circuit diagram showing an embodiment according to the invention as set forth in claim 5;
FIG. 7 is a circuit diagram showing an embodiment according to the invention as set forth in claim 6;
FIG. 8 is a circuit diagram showing a configuration example of a bidirectional switch.
FIG. 9 is a circuit diagram showing an example of extending the equivalent line length of an antenna.
FIG. 10 is a circuit diagram showing an example of a conventional method .
[Brief description of symbols]

Claims (6)

交流電源と前記交流電源が供給する交流電流をオン・オフすることによって高周波電流に変換するインバータと前記インバータが出力する高周波電流を電磁界エネルギとして空中に放出する第1の空中線と前記第1の空中線が放出する電磁界エネルギを受電する第2の空中線と前記第2の空中線に生じる高周波電流が供給される負荷を備えた非接触電力伝送装置において、前記第2の空中線と前記負荷を接続する一方の線に第1の双方向スイッチを直列に挿入し、前記第2の空中線と前記負荷を接続する他方の線に第2の双方向スイッチを直列に挿入し、前記第1の双方向スイッチの前記第2の空中線側端子と前記第2の双方向スイッチの前記負荷側端子の間に第3の双方向スイッチを接続し、前記第1の双方向スイッチの前記負荷側端子と前記第2の双方向スイッチの前記第2の空中線側端子の間に第4の双方向スイッチを接続し、前記第2の空中線に生じる高周波電流の交流包絡線を取り出す整流平滑回路と、前記整流平滑回路の出力電圧がしきい値を越えている期間だけパルスを発生させて前記第1ないし第4の双方向スイッチをいずれも正方向に導通させ、かつ前記パルスの次に発生するパルスで前記第1ないし第4の双方向スイッチをいずれも負方向に導通させ、これを繰り返して前記負荷に交流電流を供給する論理回路と、前記負荷に加わる交流電圧を安定させるために前記しきい値を制御する制御回路を付加したことを特徴とする非接触電力伝送装置。  An AC power source, an inverter that converts the AC current supplied from the AC power source into a high-frequency current by turning on and off, a first antenna that emits the high-frequency current output from the inverter into the air as electromagnetic field energy, and the first In a non-contact power transmission apparatus including a second antenna for receiving electromagnetic field energy emitted by an antenna and a load to which a high-frequency current generated in the second antenna is supplied, the second antenna is connected to the load. A first bidirectional switch is inserted in series on one line, a second bidirectional switch is inserted in series on the other line connecting the second antenna line and the load, and the first bidirectional switch A third bidirectional switch is connected between the second antenna side terminal of the second and the load side terminal of the second bidirectional switch, and the load side terminal of the first bidirectional switch A rectifying / smoothing circuit for connecting a fourth bidirectional switch between the second antenna side terminals of the second bidirectional switch to extract an AC envelope of high-frequency current generated in the second antenna, and the rectification A pulse is generated only during the period when the output voltage of the smoothing circuit exceeds the threshold value, and all of the first to fourth bidirectional switches are made to conduct in the positive direction, and the pulse generated after the pulse Each of the first to fourth bidirectional switches is turned on in the negative direction, and this is repeated to supply an alternating current to the load, and the threshold value is set to stabilize the alternating voltage applied to the load. A non-contact power transmission device, wherein a control circuit for controlling is added. 前記論理回路が前記第1ないし第4の双方向スイッチを毎パルス正方向にだけ導通させることを繰り返して負荷に直流電流を供給し、前記制御回路が前記負荷に加わる直流電圧を安定させるために前記しきい値を制御することを特徴とする前記請求項1記載の発明。  In order to stabilize the DC voltage applied to the load by repeatedly supplying the DC current to the load by repeating the logic circuit conducting the first to fourth bidirectional switches only in the positive direction every pulse. 2. The invention according to claim 1, wherein the threshold value is controlled. 前記第2の双方向スイッチと前記第4の双方向スイッチをいずれもコンデンサに置換えたことを特徴とする前記請求項1ないし2記載の発明。  3. The invention according to claim 1, wherein both the second bidirectional switch and the fourth bidirectional switch are replaced with capacitors. 前記第2の双方向スイッチと前記第4の双方向スイッチをいずれもダイオードに置き換えたことを特徴とする前記請求項2記載の発明。  3. The invention according to claim 2, wherein both the second bidirectional switch and the fourth bidirectional switch are replaced with diodes. 前記双方向スイッチを各々1つのMOSFETと1つのダイオードを直列に接続した片方向スイッチに置き換えたことを特徴とする前記請求項2ないし4記載の発明。  5. The invention according to claim 2, wherein the bidirectional switch is replaced with a unidirectional switch in which one MOSFET and one diode are connected in series. 前記制御回路が負荷に加わる電流を安定化させるために前記しきい値を制御することを特徴とする前記請求項1ないし請求項5記載の発明。  6. The invention according to claim 1, wherein the control circuit controls the threshold value in order to stabilize a current applied to a load.
JP2015138152A 2015-06-23 2015-06-23 Non-contact power transmission device Pending JP2017011980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015138152A JP2017011980A (en) 2015-06-23 2015-06-23 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138152A JP2017011980A (en) 2015-06-23 2015-06-23 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
JP2017011980A true JP2017011980A (en) 2017-01-12

Family

ID=57764511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138152A Pending JP2017011980A (en) 2015-06-23 2015-06-23 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP2017011980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039314A (en) * 2017-06-09 2018-12-18 比亚迪股份有限公司 Control circuit and control method for double semiconductor switch pipe two-way switch

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS459486B1 (en) * 1964-10-27 1970-04-06 Ohio Crankshaft Co
US4504897A (en) * 1983-11-15 1985-03-12 White Scientific Consultants Inc. Harmonic noise control in chopper type voltage regulators
JPH0833355A (en) * 1994-07-18 1996-02-02 Nippon Electric Ind Co Ltd Inverter system of carrier frequency modulation by high-frequency transformer coupling
JP2007312585A (en) * 2006-05-15 2007-11-29 Ohira Denshi Kk Non-contact power transmission apparatus
JP2011097688A (en) * 2009-10-28 2011-05-12 Merstech Inc Power conversion device and power conversion method
JP2012105398A (en) * 2010-11-08 2012-05-31 Fuji Electric Co Ltd Ac-ac conversion circuit and power conversion device using the same
JP2012125138A (en) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd Non-contact power supply device, and control method thereof
WO2013005405A1 (en) * 2011-07-04 2013-01-10 パナソニック株式会社 Switching power supply
JP2015002598A (en) * 2013-06-14 2015-01-05 株式会社プリンシパルテクノロジー Non-contact power transmission device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS459486B1 (en) * 1964-10-27 1970-04-06 Ohio Crankshaft Co
US4504897A (en) * 1983-11-15 1985-03-12 White Scientific Consultants Inc. Harmonic noise control in chopper type voltage regulators
JPH0833355A (en) * 1994-07-18 1996-02-02 Nippon Electric Ind Co Ltd Inverter system of carrier frequency modulation by high-frequency transformer coupling
JP2007312585A (en) * 2006-05-15 2007-11-29 Ohira Denshi Kk Non-contact power transmission apparatus
JP2011097688A (en) * 2009-10-28 2011-05-12 Merstech Inc Power conversion device and power conversion method
JP2012105398A (en) * 2010-11-08 2012-05-31 Fuji Electric Co Ltd Ac-ac conversion circuit and power conversion device using the same
JP2012125138A (en) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd Non-contact power supply device, and control method thereof
WO2013005405A1 (en) * 2011-07-04 2013-01-10 パナソニック株式会社 Switching power supply
JP2015002598A (en) * 2013-06-14 2015-01-05 株式会社プリンシパルテクノロジー Non-contact power transmission device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039314A (en) * 2017-06-09 2018-12-18 比亚迪股份有限公司 Control circuit and control method for double semiconductor switch pipe two-way switch
CN109039314B (en) * 2017-06-09 2020-08-25 比亚迪股份有限公司 Control circuit and control method for bidirectional switch of double semiconductor switch tubes

Similar Documents

Publication Publication Date Title
US8040702B2 (en) DC/DC power converting apparatus
US8036008B2 (en) DC/DC power converting apparatus
US10476395B2 (en) Voltage converting system and method of using the same
JP6490093B2 (en) Power converter
JP6397757B2 (en) Power supply
CN108206634B (en) Insulating synchronous rectification DC/DC converter, controller, adapter and equipment
TW201611492A (en) Boost inductor demagnetization detection for bridgeless boost PFC converter operating in boundary-conduction mode
JP6081214B2 (en) Non-contact power feeding device
JP2014180110A (en) DC-DC converter
EP3098955A1 (en) Step-up device and converter device
US9276482B2 (en) Forward type DC-DC converter
JP6361282B2 (en) Non-contact power feeding device
US9564819B2 (en) Switching power supply circuit
KR102005880B1 (en) DC to DC Converting System
US9601996B2 (en) Switching power supply apparatus
US20190386574A1 (en) Power supply and power supply unit
US20160308454A1 (en) Inverter device
JP2019041431A (en) Power reception device
CN204168555U (en) Power circuit and lighting device
JP6350818B2 (en) Non-contact power transmission device
JP2017011980A (en) Non-contact power transmission device
WO2012093423A1 (en) Non-contact charging system power supply device
JP6783738B2 (en) converter
US8891263B2 (en) Inverter apparatus having power supply circuit
KR102525753B1 (en) Isolated switching power supply

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190730