[go: up one dir, main page]

JP2017000994A - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP2017000994A
JP2017000994A JP2015120164A JP2015120164A JP2017000994A JP 2017000994 A JP2017000994 A JP 2017000994A JP 2015120164 A JP2015120164 A JP 2015120164A JP 2015120164 A JP2015120164 A JP 2015120164A JP 2017000994 A JP2017000994 A JP 2017000994A
Authority
JP
Japan
Prior art keywords
water
organic substance
water treatment
treatment system
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015120164A
Other languages
Japanese (ja)
Inventor
繁 板山
Shigeru Itayama
繁 板山
杉浦 勉
Tsutomu Sugiura
勉 杉浦
大樹 河野
Hiroki Kono
大樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2015120164A priority Critical patent/JP2017000994A/en
Publication of JP2017000994A publication Critical patent/JP2017000994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide, in a water treatment system for treating organic substances in water, an apparatus which can continuously treat the organic substances at low cost without changing an adsorbent.SOLUTION: A water treatment system comprising: a wet oxidation decomposition apparatus 100 which oxidatively decomposes in water an organic substance contained in water to be treated to discharge a primary treated water; and water treatment equipment 200 which includes adsorption elements 211 and 221 that adsorb the organic substance and desorb the organic substance absorbed when brought into contact with steam, and which alternately carries out an adsorption step where the primary treated water is supplied to the adsorption elements 211 and 221 to have the organic substance contained in the primary treated water adsorbed by the adsorption elements 211 and 221 and secondary treated water is discharged and a desorption step where steam is supplied to the adsorption elements 211 and 221 to desorb the organic substance therefrom, the vapor is liquefied and condensed, and water having a higher concentration of organic substance than that in the primary treated water is discharged as concentrated water. The concentrated water discharged from the water treatment equipment 200 is supplied to the wet oxidation decomposition apparatus 100.SELECTED DRAWING: Figure 3

Description

本発明は、有機物質を含有する被処理水から有機物質を除去することで被処理水を清浄化する水処理システムに関し、特に、各種工場や研究施設等から排出される有機物質を含有する産業被処理水から有機物質を効率的に除去することで産業被処理水を清浄化する水処理システムに関する。   The present invention relates to a water treatment system for purifying water to be treated by removing the organic substance from the water to be treated containing the organic substance, and in particular, an industry containing the organic substance discharged from various factories or research facilities. The present invention relates to a water treatment system that purifies industrial treated water by efficiently removing organic substances from the treated water.

従来より、水中の有機物質の処理方法として、湿式酸化分解装置が広く一般的に知られている。この処理方法は、過酸化水素と鉄を使用したフェントン法、オゾンと紫外線や過酸化水素などを併用した促進酸化法、水へ強制的に電圧をかける電気分解法などであり、何れも反応によって生成したラジカル類によって水中の有機物質は酸化分解される。   Conventionally, a wet oxidative decomposition apparatus is widely known as a method for treating an organic substance in water. This treatment method includes the Fenton method using hydrogen peroxide and iron, the accelerated oxidation method using ozone and ultraviolet rays or hydrogen peroxide together, the electrolysis method for forcibly applying voltage to water, etc. Organic substances in water are oxidatively decomposed by the generated radicals.

一例として、促進酸化法によるオゾン添加量と有機物質濃度の低減傾向の一例を図1に示す。図1の通り、処理開始初期においては、有機物質の低減量が多いが、以後、低減量は小さくなる傾向を示す。図1をもとに処理効率(分解率)と必要電力の関係の一例を図2に示す。図1の傾向を受けて、高効率に処理するに応じて膨大に電力が掛る問題があった。   As an example, FIG. 1 shows an example of the tendency of the ozone addition amount and organic substance concentration to be reduced by the accelerated oxidation method. As shown in FIG. 1, the reduction amount of the organic substance is large at the beginning of the treatment, but thereafter, the reduction amount tends to be small. FIG. 2 shows an example of the relationship between the processing efficiency (decomposition rate) and the required power based on FIG. In response to the trend shown in FIG. 1, there is a problem that a large amount of power is applied in accordance with high-efficiency processing.

また、湿式酸化分解装置のバックアップ装置として交換式吸着装置が一般的に知られている。すなわち、活性炭等の吸着材を充填した槽に有機物質を含有した水を通流させ、吸着材により水中の有機物質を除去するシンプルな処理装置である。   Further, an exchangeable adsorption device is generally known as a backup device for a wet oxidative decomposition apparatus. That is, it is a simple processing device that allows water containing an organic substance to flow through a tank filled with an adsorbent such as activated carbon and removes the organic substance in the water using the adsorbent.

しかしながら、交換式吸着装置は有機物質を一定時間吸着し続け、吸着材の吸着能力が飽和に達すれば、新品への交換、または一度装置から吸着材を取り出して再生が必要となって連続浄化ができず、さらに、水の浄化は、空気の浄化と異なり、微生物の繁殖が不可避であり、吸着材の寿命を縮めることもあって、交換および再生への労力、コスト増大が問題であった。   However, the exchangeable adsorption device continues to adsorb organic substances for a certain period of time, and if the adsorption capacity of the adsorbent reaches saturation, it is necessary to replace it with a new one, or to remove the adsorbent from the device once and regenerate it for continuous purification. In addition, the purification of water, unlike the purification of air, is unavoidable for the growth of microorganisms, and the life of the adsorbent may be shortened.

一方、吸着材を用いて吸着による有機物質の除去(吸着工程)と吸着材の再生(脱着工程)を交互に行うことで、高効率で安定的に除去できる水処理装置が検討されている(例えば、特許文献1)。この水処理装置は、水の連続浄化を実現し、基本的には吸着材の交換が必要なく、有機物質を高効率で安定的に除去することができる。   On the other hand, water treatment devices that can be removed efficiently and stably by alternately performing the removal of organic substances by adsorption (adsorption process) and the regeneration of the adsorbent (desorption process) using an adsorbent ( For example, Patent Document 1). This water treatment apparatus realizes continuous purification of water, basically does not require replacement of the adsorbent, and can stably remove organic substances with high efficiency.

活性炭素繊維を吸着材として使用した場合、活性炭素繊維は吸着速度が速いので、高効率に有機物質を除去できる特性をもつことが知られている。前記水処理装置において、吸着除去された有機物質は、再生時に吸着材から脱離され、有機物質を含んだガス(脱着ガス)として排出され、脱着媒体に水蒸気を使用した場合、脱着ガスを液化凝縮することで、有機物質を高濃度に含有した濃縮水として回収できるので、濃縮装置としての機能もある(例えば、特許文献2)。   When activated carbon fiber is used as an adsorbent, it is known that activated carbon fiber has a property of removing organic substances with high efficiency because of its high adsorption rate. In the water treatment device, the adsorbed and removed organic substance is desorbed from the adsorbent during regeneration and discharged as a gas containing the organic substance (desorption gas). When water vapor is used as the desorption medium, the desorption gas is liquefied. By condensing, it can be recovered as concentrated water containing an organic substance at a high concentration, and thus has a function as a concentrating device (for example, Patent Document 2).

特開2006−055712号公報JP 2006-055712 A 特開2014−217833号公報JP 2014-217833 A

本発明は、上記技術の課題を背景になされたもので、湿式酸化分解装置を使用して水中の有機物質を処理する水処理システムにおいて、基本的に吸着材の交換がなく、連続的に水中の有機物質を処理でき、低コストなバックアップ装置を提供することを課題とするものである。   The present invention has been made in the background of the above-described technical problems. In a water treatment system for treating an organic substance in water by using a wet oxidative decomposition apparatus, there is basically no replacement of the adsorbent, It is an object of the present invention to provide a low-cost backup device that can treat organic substances.

本発明者らは、上記課題を解決するため、鋭意検討した結果、ついに本発明を完成するに到った。すなわち本発明は、以下の通りである。
(1)有機物質を含有する被処理水から有機物質を除去することで被処理水を清浄化する水処理システムであって、
被処理水中の有機物質を水中で酸化分解し、一次処理水を排出する湿式酸化分解装置と、
有機物質を含有する水を接触させることで有機物質を吸着し、水蒸気を接触させることで吸着した有機物質を脱着する吸着素子を含み、前記吸着素子に前記一次処理水を供給することで一次処理水に含まれる有機物質を前記吸着素子に吸着させて二次処理水として排出する吸着工程と、前記吸着素子に水蒸気を供給することで有機物質を前記吸着素子から脱着させて、液化凝縮させ、前記一次処理水中の有機物質濃度よりも高濃度の有機物質を含有する水を濃縮水として排出する脱着工程を交互に実施する水処理装置とを備え、
前記水処理装置から排出された濃縮水が、前記湿式酸化分解装置へ供給され、水処理されるように構成されることを特徴とする水処理システム。
(2)前記湿式酸化分解装置が、フェントン法、促進酸化法、電気分解法のいずれかを用いた湿式酸化分解装置である(1)に記載の水処理システム。
(3)前記水処理装置は、前記吸着素子に付着した水を除去してこれを除去水として排出する(1)または(2)に記載の水処理システム。
(4)前記吸着素子に付着した水の除去に水蒸気を使用する(3)に記載の水処理システム。
(5)前記水処理装置から排出された除去水が、前記水処理装置に再度供給されるように構成された(3)または(4)に記載の水処理システム。
(6)前記吸着素子が、活性炭、活性炭素繊維およびゼオライトからなる群から選ばれる少なくとも1の部材を含んでいる(1)〜(5)のいずれかに記載の水処理システム。
As a result of intensive studies in order to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
(1) A water treatment system for purifying treated water by removing the organic substance from the treated water containing the organic substance,
A wet oxidative decomposition apparatus that oxidizes and decomposes organic substances in water to be treated and discharges primary treated water;
It includes an adsorbing element that adsorbs an organic substance by bringing water containing the organic substance into contact with it, and desorbs the adsorbed organic substance by bringing water vapor into contact therewith, and supplies the primary treatment water to the adsorbing element to perform a primary treatment. An adsorption step of adsorbing an organic substance contained in water to the adsorption element and discharging it as secondary treated water; and desorbing the organic substance from the adsorption element by supplying water vapor to the adsorption element; A water treatment device that alternately performs a desorption step of discharging water containing an organic substance having a concentration higher than the concentration of the organic substance in the primary treated water as concentrated water;
The water treatment system is configured such that the concentrated water discharged from the water treatment device is supplied to the wet oxidative decomposition device and subjected to water treatment.
(2) The water treatment system according to (1), wherein the wet oxidative decomposition apparatus is a wet oxidative decomposition apparatus using any one of a Fenton method, an accelerated oxidation method, and an electrolysis method.
(3) The water treatment system according to (1) or (2), wherein the water treatment device removes water adhering to the adsorption element and discharges it as removed water.
(4) The water treatment system according to (3), wherein water vapor is used to remove water adhering to the adsorption element.
(5) The water treatment system according to (3) or (4), wherein the removed water discharged from the water treatment device is configured to be supplied again to the water treatment device.
(6) The water treatment system according to any one of (1) to (5), wherein the adsorption element includes at least one member selected from the group consisting of activated carbon, activated carbon fiber, and zeolite.

本発明による水処理システムは、湿式酸化分解装置のバックアップとして吸脱着式の水処理装置で二次処理することで高効率に被処理水中の有機物質を処理する共に、水処理装置から排出される濃縮水を湿式酸化分解装置で再処理することで、低コストで水処理ができる利点がある。   The water treatment system according to the present invention treats organic substances in water to be treated with high efficiency by performing secondary treatment with an adsorption / desorption type water treatment device as a backup of a wet oxidative decomposition device, and is discharged from the water treatment device. There is an advantage that water treatment can be performed at low cost by reprocessing the concentrated water with a wet oxidative decomposition apparatus.

促進酸化法によるオゾン添加量と有機物質濃度の低減傾向の一例である。It is an example of the decreasing tendency of the ozone addition amount and organic substance concentration by an accelerated oxidation method. 促進酸化法の処理効率(分解率)と必要電力の関係の一例である。It is an example of the relationship between the processing efficiency (decomposition rate) and required power of the accelerated oxidation method. 本発明を実施するための形態の一例である。It is an example of the form for implementing this invention.

以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す図の実施の形態においては、同一または対応する部分については、適宜省略し、その説明についても繰り返さないことにする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiments shown in the drawings, the same or corresponding parts are omitted as appropriate, and the description thereof will not be repeated.

図3は、本発明の実施の形態における水処理システムのシステム構成図の1つである。図3に示すように、本実施の形態における水処理システムは、湿式酸化分解装置100と水処理装置200を主として備えている。   FIG. 3 is one of the system configuration diagrams of the water treatment system according to the embodiment of the present invention. As shown in FIG. 3, the water treatment system in the present embodiment mainly includes a wet oxidative decomposition apparatus 100 and a water treatment apparatus 200.

湿式酸化分解装置100は、有機物質を含有する被処理水から有機物質を酸化分解する装置である。過酸化水素と鉄を使用したフェントン法、オゾンと紫外線や過酸化水素などを併用した促進酸化法、水へ強制的に電圧をかける電気分解法などの方法を用いた装置があり、何れも反応によって生成したラジカル類によって水中の有機物質は酸化分解する方式であれば特に限定しない。   The wet oxidative decomposition apparatus 100 is an apparatus that oxidizes and decomposes an organic substance from water to be treated containing the organic substance. There are equipment using methods such as the Fenton method using hydrogen peroxide and iron, the accelerated oxidation method using ozone and ultraviolet light or hydrogen peroxide in combination, and the electrolysis method for forcibly applying voltage to water. As long as the organic substance in water is oxidatively decomposed by radicals generated by the above, there is no particular limitation.

有機物質を含有する被処理水は湿式酸化分解装置100にて処理された後、一次処理水として排出される。   Water to be treated containing an organic substance is treated by the wet oxidative decomposition apparatus 100 and then discharged as primary treated water.

水処理装置200は、湿式酸化分解装置100から排出された一次処理水を二次処理するためのバックアップ装置である。吸着素子としての吸着材211、221がそれぞれ収容された第1処理槽210および第2処理槽220を有している。吸着材211、221は、一次処理水を接触させることで一次処理水に含有されるわずかな有機物質を吸着する。したがって、水処理装置200においては、吸着材211、221に一次処理水を供給することで有機物質が吸着材211、221によって吸着され、これにより被処理水中の有機物質がほぼ完全に除去された二次処理水として排出されることになる。吸着材211、221は、供給される一次処理水よりも少ない量の水蒸気を接触させることで吸着した有機物質が脱着される。第1処理槽210および第2処理槽220から排出される水蒸気と脱着された有機物質は、凝縮器230によって冷却凝縮されて、濃縮水として水処理装置200から排出される。   The water treatment device 200 is a backup device for secondary treatment of the primary treated water discharged from the wet oxidative decomposition apparatus 100. It has the 1st processing tank 210 and the 2nd processing tank 220 which each accommodated the adsorbents 211 and 221 as an adsorption element. The adsorbents 211 and 221 adsorb slight organic substances contained in the primary treated water by bringing the primary treated water into contact therewith. Therefore, in the water treatment apparatus 200, the organic material is adsorbed by the adsorbents 211 and 221 by supplying the primary treated water to the adsorbents 211 and 221. Thereby, the organic substances in the water to be treated are almost completely removed. It will be discharged as secondary treated water. The adsorbents 211 and 221 are desorbed of the adsorbed organic substances by bringing a smaller amount of water vapor into contact with the supplied primary treated water. The water vapor discharged from the first treatment tank 210 and the second treatment tank 220 and the desorbed organic substance are cooled and condensed by the condenser 230 and discharged from the water treatment apparatus 200 as concentrated water.

第1処理槽210および第2処理槽220には、一次処理水の供給ライン、二次処理水の排出ライン、水蒸気の供給ライン、濃縮水の排出ラインの配管が接続されており、各ラインにはバルブ等を用いて各処理槽に対して接続/非接続状態に切替えられる流路切替手段が接続された構成となっている。第1処理槽210と第2処理槽220とは、上述したバルブの開閉を操作することによって、交互に吸着槽および脱着槽として機能する。第1処理槽210が吸着槽として機能している場合には、第2処理槽220は脱着槽として機能する。具体的には、一次処理水が第1処理槽210へ供給され、処理水が第1処理槽210から排出されるように流路が確保される場合は、第2処理槽220は水蒸気が供給され、濃縮水が第2処理槽220から排出される流路構成となる。本実施の形態における水処理装置200においては、吸着槽と脱着槽とが経時的に交互に切り替わるように構成されている。   The first treatment tank 210 and the second treatment tank 220 are connected to a primary treatment water supply line, a secondary treatment water discharge line, a water vapor supply line, and a concentrated water discharge line. Has a configuration in which a flow path switching means that is switched to a connected / disconnected state is connected to each processing tank using a valve or the like. The 1st processing tank 210 and the 2nd processing tank 220 function as an adsorption tank and a desorption tank alternately by operating opening and closing of the valve mentioned above. When the 1st processing tank 210 is functioning as an adsorption tank, the 2nd processing tank 220 functions as a desorption tank. Specifically, when the primary treatment water is supplied to the first treatment tank 210 and a flow path is secured so that the treatment water is discharged from the first treatment tank 210, the second treatment tank 220 is supplied with water vapor. The concentrated water is discharged from the second treatment tank 220. The water treatment apparatus 200 in the present embodiment is configured such that the adsorption tank and the desorption tank are alternately switched over time.

水処理装置200から排出される濃縮水は湿式酸化分解装置100の被処理水として供給する構成とする。濃縮水を別途処理する必要がなくなるからである。また、上述の図1および2の説明の通り、湿式酸化分解装置は高効率(例えば、99%以上の除去効率)に有機物質を処理させる場合は、湿式酸化分解装置100を大型化して処理能力を高めるよりも、湿式酸化分解装置100で未処理のまま排出されるわずかな有機物質を水処理装置200にて濃縮させ、湿式酸化分解装置100で再処理した方が効率的であるからである。   The concentrated water discharged from the water treatment apparatus 200 is configured to be supplied as treated water of the wet oxidative decomposition apparatus 100. This is because it is not necessary to treat the concentrated water separately. Also, as described above with reference to FIGS. 1 and 2, when the wet oxidative decomposition apparatus treats an organic substance with high efficiency (for example, removal efficiency of 99% or more), the wet oxidative decomposition apparatus 100 is enlarged to have a processing capacity. This is because it is more efficient to concentrate a small amount of organic substances discharged in the wet oxidative decomposition apparatus 100 in the water treatment apparatus 200 and reprocess in the wet oxidative decomposition apparatus 100 rather than to increase the water content. .

水処理装置200は、図示しないが、吸着槽から脱着槽に切替わった際に、吸着材211、221に付着する水分を除去(脱水)して除去水として排出してから、水蒸気供給による脱着を開始する装置の方が好ましい。吸着材221、221の付着水を事前に除去してから水蒸気脱着を行う方が、濃縮水量を減容化でき濃縮倍率を高めることができるからである。付着水の除去手段は、自重抜き、圧縮空気・窒素・水蒸気などの高圧ガスでの高速パージ、真空ポンプなどを用いた吸引などの手段が使用できるが、水蒸気による高速パージが好ましい。付着水の除去手段を別途付帯する必要がなく、高効率に付着水を除去でき、加えて吸着槽が加温されるため、濃縮倍率および脱着効率が高まるからである。なお、脱水に使用した水蒸気は付着水と接触した際に液化凝縮され、除去水の一部となる。   Although not shown, the water treatment apparatus 200 removes (dehydrates) water adhering to the adsorbents 211 and 221 and discharges it as removed water when the adsorption tank is switched to the desorption tank, and then desorbs by supplying water vapor. An apparatus that initiates is preferred. This is because when the water adsorbed on the adsorbents 221 and 221 is removed in advance and then steam desorption is performed, the amount of concentrated water can be reduced and the concentration rate can be increased. As the means for removing adhering water, means such as self-weight removal, high-speed purge with a high-pressure gas such as compressed air, nitrogen, and water vapor, and suction using a vacuum pump can be used, but high-speed purge with water vapor is preferred. This is because there is no need to separately add a means for removing the adhering water, the adhering water can be removed with high efficiency, and the adsorption tank is heated, so that the concentration ratio and desorption efficiency are increased. The water vapor used for dehydration is liquefied and condensed when it comes into contact with the adhering water and becomes part of the removed water.

また、図示しないが、除去水は水処理装置200に再度供給されるように構成される方が好ましい。除去水を他の水処理装置で別途処理する必要がなくなるからである。   Although not shown, it is preferable that the removed water is configured to be supplied to the water treatment apparatus 200 again. This is because it is not necessary to separately process the removed water with another water treatment apparatus.

吸着材211、221は、活性炭、活性炭素繊維およびゼオライトからなる群から選ばれる少なくとも1の部材を含むことが好ましい。吸着材211、221としては、粒状、粒体状、ハニカム状等の活性炭やゼオライトが利用されるが、活性炭素繊維を利用することがより好ましい。活性炭素繊維は、表面にミクロ孔を有する繊維状構造を有しているため、水との接触効率が高く、特に水中の有機物質の吸着速度が速くなり、他の吸着材に比べて極めて高い吸着効率を実現できる部材である。   The adsorbents 211 and 221 preferably include at least one member selected from the group consisting of activated carbon, activated carbon fiber, and zeolite. As the adsorbents 211 and 221, activated carbon or zeolite having a granular shape, a granular shape, or a honeycomb shape is used, but it is more preferable to use activated carbon fibers. Since the activated carbon fiber has a fibrous structure with micropores on the surface, the contact efficiency with water is high, and the adsorption rate of organic substances in water is particularly high, which is extremely high compared to other adsorbents. It is a member that can realize adsorption efficiency.

吸着材211、221として利用可能な活性炭素繊維の物性や原材料は、特に限定しない。除去対象である有機物質応じて適宜選定すれば良い。   The physical properties and raw materials of activated carbon fibers that can be used as the adsorbents 211 and 221 are not particularly limited. What is necessary is just to select suitably according to the organic substance which is a removal object.

水処理装置200の脱着媒体である水蒸気の蒸気圧、温度等は特に限定しないが、使用する吸着材の耐熱温度や物性などに応じて適宜設定すれば良い。ただし、水処理装置200に供給する被処理水の質量よりも少ない質量の水蒸気により脱着することが必要である。水蒸気の質量の方が多い場合、有機物質が濃縮されず、被処理水中の有機物質濃度よりも高濃度の有機物質を含有する濃縮水が得られない。   The vapor pressure, temperature, and the like of water vapor that is a desorption medium of the water treatment apparatus 200 are not particularly limited, but may be set as appropriate according to the heat-resistant temperature and physical properties of the adsorbent used. However, it is necessary to desorb with water vapor having a mass smaller than that of the water to be treated supplied to the water treatment apparatus 200. When the mass of water vapor is larger, the organic substance is not concentrated, and concentrated water containing an organic substance having a higher concentration than the organic substance concentration in the water to be treated cannot be obtained.

本発明の実施の形態では、二つの吸着材および処理槽を使用して説明したが、二つ以上の処理槽を用いて装置構成しても良い。また、図示しないが、一つの吸着材および処理槽を用いた装置構成でも良い。例えば、吸着材211、処理槽210からなる一つの処理槽を使用した場合、処理槽210が脱着槽として機能している場合には、原水を一時的に貯水し、脱着工程が完了後、吸着槽として機能している切り替えサイクルでも良い。   Although the embodiment of the present invention has been described using two adsorbents and a processing tank, the apparatus may be configured using two or more processing tanks. Moreover, although not shown in figure, the apparatus structure using one adsorbent and a processing tank may be sufficient. For example, when one processing tank consisting of the adsorbent 211 and the processing tank 210 is used, when the processing tank 210 functions as a desorption tank, the raw water is temporarily stored and the adsorption process is completed after the desorption process is completed. A switching cycle functioning as a tank may be used.

本発明の被処理水に含まれる有機物質は、特に限定されないが、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレインなどのアルデヒド類、メチルエチルケトン、ジアセチル、メチルイソブチルケトン、アセトンなどのケトン類、1,4−ジオキサン、2−メチル−1,3−ジオキソラン、1,3−ジオキソラン、テトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル類、エタノール、n−プロピルアルコール、イソプロピルアルコール、ブタノールなどのアルコール類、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコールなどのグリコール類、酢酸、プロピオン酸などの有機酸、フェノール類、トルエン、キシレン、シクロヘキサンなどの芳香族有機化合物、ジエチルエーテル、アリルグリシジルエーテルなどのエーテル類、アクリロニトリルなどの二トリル類、ジクロロメタン、1,2−ジクロロエタン、トリクロロエチレン、エピクロロヒドリンなどの塩素有機化合物、N−メチル−2−ピロリドン、ジメチルアセトアミド、N,N−ジメチルホルムアミドの有機化合物などが一例として挙げられる。   The organic substance contained in the water to be treated of the present invention is not particularly limited, but aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, acrolein, ketones such as methyl ethyl ketone, diacetyl, methyl isobutyl ketone, and acetone, 1,4-dioxane , 2-methyl-1,3-dioxolane, 1,3-dioxolane, tetrahydrofuran, methyl acetate, ethyl acetate, propyl acetate, butyl acetate and other esters, ethanol, n-propyl alcohol, isopropyl alcohol, butanol and other alcohols , Glycols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, organic acids such as acetic acid and propionic acid, phenols, toluene, xylene, cyclohexane Any aromatic organic compound, ethers such as diethyl ether and allyl glycidyl ether, nitriles such as acrylonitrile, chlorinated organic compounds such as dichloromethane, 1,2-dichloroethane, trichloroethylene, epichlorohydrin, N-methyl-2- Examples include pyrrolidone, dimethylacetamide, N, N-dimethylformamide organic compounds, and the like.

以上の図3に示す水処理システムにより、湿式酸化分解装置100および水処理装置200の順に処理することで被処理水中の有機物質を高効率に処理するとともに、水処理装置200は湿式酸化分解装置100で効率的に酸化分解できる有機物質濃度まで濃縮する装置として機能するので、湿式酸化分解装置100の大型化やランニングコストが増大することを防止しつつ、かつ吸着材の交換の必要のなく、水処理することが可能な水処理システムとすることができる。   With the water treatment system shown in FIG. 3 described above, the wet oxidative decomposition apparatus 100 and the water treatment apparatus 200 are processed in this order to treat organic substances in the water to be treated with high efficiency. 100 functions as an apparatus for concentrating to an organic substance concentration that can be efficiently oxidatively decomposed at 100, so that the wet oxidatively decomposed apparatus 100 can be prevented from increasing in size and running cost, and there is no need to replace the adsorbent. It can be set as the water treatment system which can perform water treatment.

以上において図3で説明した本発明の実施の形態の特徴的な構成は、相互に組み合わせることが可能である。   The characteristic configurations of the embodiment of the present invention described above with reference to FIG. 3 can be combined with each other.

また、以上において説明した本発明の実施の形態においては、ポンプやファン等の流体搬送手段やストレージタンク等の流体貯留手段などの構成要素を特に示すことなく説明を行なったが、これら構成要素は必要に応じて適宜の位置に配置すればよい。   Further, in the embodiments of the present invention described above, the description has been made without particularly showing the constituent elements such as the fluid conveying means such as the pump and the fan and the fluid storing means such as the storage tank. What is necessary is just to arrange | position to an appropriate position as needed.

このように、今回開示した上記各実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Thus, the above-described embodiments disclosed herein are illustrative in all respects and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

評価は下記の方法によりおこなった。
(BET比表面積)
BET比表面積は、液体窒素の沸点(−195.8℃)雰囲気下、相対圧力0.0〜0.15の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより試料単位質量あたりの表面積(m/g)を求めた。
(細孔容積)
細孔容積は、相対圧0.95における窒素ガスの気体吸着法により測定した。
(平均細孔径)
平均細孔径は、以下の式で求めた。
dp=40000Vp/S(ただし、dp:平均細孔径(Å))
Vp:細孔容積(cc/g)
S:BET比表面積(m/g)
(有機物質除去効果)
被処理水(原水)は1,4−ジオキサン5mg/L含む水とした。500時間運転後の湿式酸化分解装置100として促進酸化(以下、「AOP」という)装置、水処理装置200の入出の1,4−ジオキサン濃度を測定して除去効果を確認した。
(有機物質濃度評価)
各水をガスクロマトグラフ法により分析し測定した。
Evaluation was performed by the following method.
(BET specific surface area)
The BET specific surface area was measured by measuring the amount of nitrogen adsorbed on the sample when the relative pressure was raised in the range of 0.0 to 0.15 in the atmosphere of the boiling point of liquid nitrogen (-195.8 ° C), and a BET plot. Was used to determine the surface area (m 2 / g) per unit mass of the sample.
(Pore volume)
The pore volume was measured by a nitrogen gas adsorption method at a relative pressure of 0.95.
(Average pore diameter)
The average pore diameter was determined by the following formula.
dp = 40000 Vp / S (where dp: average pore diameter (径))
Vp: pore volume (cc / g)
S: BET specific surface area (m 2 / g)
(Organic substance removal effect)
The water to be treated (raw water) was 1,4-dioxane 5 mg / L. The removal effect was confirmed by measuring the concentration of 1,4-dioxane in and out of the accelerated oxidation (hereinafter referred to as “AOP”) apparatus and the water treatment apparatus 200 as the wet oxidative decomposition apparatus 100 after 500 hours of operation.
(Organic substance concentration evaluation)
Each water was analyzed and measured by gas chromatography.

<実施例1>
システムとしては、図3に示す実施の形態を使用した。
オゾン濃度50mg/L、過酸化水素濃度100mg/L添加条件で、被処理水を処理水量4000L/hになるようにAOP装置へ導入し、一次処理水を得た。その際の出口濃度は、1,4−ジオキサン0.5mg/L以下であった。その際の使用電力は表1に示す通り6kw以下であった。
<Example 1>
As the system, the embodiment shown in FIG. 3 was used.
Under the conditions of ozone concentration 50 mg / L and hydrogen peroxide concentration 100 mg / L, the water to be treated was introduced into the AOP apparatus so that the amount of treated water was 4000 L / h to obtain primary treated water. The outlet concentration at that time was 1,4-dioxane 0.5 mg / L or less. The power used at that time was 6 kw or less as shown in Table 1.

次に水処理装置の吸着材として平均細孔径17.2Å、BET比表面積2050m/g、全細孔容積0.87m/gの活性炭素繊維を使用した重量4kgの吸着素子を2個作成し、図3の水処理装置に設置して、一次処理水を処理水量4000L/hになるように導入し、二次処理水を得た。その際の二次処理水中の1,4−ジオキサン濃度は0.01mg/L以下であった。 Next, two adsorbing elements with a weight of 4 kg using activated carbon fibers having an average pore diameter of 17.2 mm, a BET specific surface area of 2050 m 2 / g, and a total pore volume of 0.87 m 3 / g as an adsorbent for the water treatment apparatus are prepared. And it installed in the water treatment apparatus of FIG. 3, the primary treated water was introduce | transduced so that the amount of treated water might be 4000 L / h, and the secondary treated water was obtained. The 1,4-dioxane concentration in the secondary treated water at that time was 0.01 mg / L or less.

次に、自重抜きで吸着材の付着水を除去(脱水)した後、除去水は水処理装置へ返送した。次に0.1MPa、120℃の水蒸気を吸着材に供給し脱着した。脱着に使用した水蒸気および吸着材から脱着された1,4−ジオキサンは濃縮水として回収した。濃縮水の水量20L/hで約200倍に被処理水が濃縮され、AOP装置へ返送した。   Next, the adsorbent adhering water was removed (dehydrated) by removing its own weight, and the removed water was returned to the water treatment device. Next, water vapor of 0.1 MPa and 120 ° C. was supplied to the adsorbent and desorbed. The water vapor used for desorption and 1,4-dioxane desorbed from the adsorbent were recovered as concentrated water. The water to be treated was concentrated about 200 times at 20 L / h of concentrated water and returned to the AOP device.

本実施例の水処理システムにより浄化された水は、500時間後でも二次処理水の濃度が0.01mg/L以下の性能で1,4−ジオキサンの処理が可能であった。   The water purified by the water treatment system of this example was able to treat 1,4-dioxane even after 500 hours with the performance of the secondary treated water having a concentration of 0.01 mg / L or less.

<比較例1>
実施例1の被処理水をオゾン濃度400mg/L、過酸化水素濃度100mg/L添加条件で、AOP装置へ導入し、AOP処理水を得た。その際の出口濃度は、1,4−ジオキサン0.01mg/L以下であった。使用電力は表1に示す通り50kwであり、実施例の8倍以上の電力を必要とした。
<Comparative Example 1>
The water to be treated of Example 1 was introduced into an AOP apparatus under the conditions of ozone concentration 400 mg / L and hydrogen peroxide concentration 100 mg / L to obtain AOP treated water. The outlet concentration at that time was 1,4-dioxane 0.01 mg / L or less. The power used was 50 kW as shown in Table 1, and required 8 times or more of the power required in the example.

<比較例2>
実施例1の一次処理水を、平均細孔径14.5Å、BET比表面積1300m/g、全細孔容積0.54m/gの破砕炭を使用した交換式吸着装置にて二次処理した。その際、500時間、二次処理水中の1,4−ジオキサン濃度は0.01mg/L以下まで吸着するために必要な活性炭量は20t以上であり、実施例の2250倍以上必要であった。
<Comparative example 2>
The primary treated water of Example 1 was secondarily treated by an exchangeable adsorption apparatus using crushed coal having an average pore diameter of 14.5 mm, a BET specific surface area of 1300 m 2 / g, and a total pore volume of 0.54 m 3 / g. . At that time, the amount of activated carbon required to adsorb the 1,4-dioxane concentration in the secondary treated water to 0.01 mg / L or less for 500 hours was 20 t or more, and it was necessary to be 2250 times or more of the example.

本発明の水処理システムは、湿式酸化分解装置のバックアップとして吸脱着式の水処理装置で二次処理することで高効率に被処理水中の有機物質を処理する共に、水処理装置から排出される濃縮水を湿式酸化分解装置で再処理することで、低コストで水処理ができる利点があり産業界への寄与大である。   The water treatment system of the present invention treats organic substances in water to be treated with high efficiency by performing secondary treatment with an adsorption / desorption type water treatment device as a backup of a wet oxidative decomposition device, and is discharged from the water treatment device. Reprocessing concentrated water with a wet oxidative decomposition apparatus has the advantage of being able to perform water treatment at a low cost, which greatly contributes to the industry.

100:湿式酸化分解装置
200:水処理装置
210:第1処理槽
211:吸着材
220:第2処理槽
221:吸着材
230:凝縮器
100: wet oxidative decomposition apparatus 200: water treatment apparatus 210: first treatment tank 211: adsorbent 220: second treatment tank 221: adsorbent 230: condenser

Claims (6)

有機物質を含有する被処理水から有機物質を除去することで被処理水を清浄化する水処理システムであって、
被処理水中の有機物質を水中で酸化分解し、一次処理水を排出する湿式酸化分解装置と、
有機物質を含有する水を接触させることで有機物質を吸着し、水蒸気を接触させることで吸着した有機物質を脱着する吸着素子を含み、前記吸着素子に前記一次処理水を供給することで一次処理水に含まれる有機物質を前記吸着素子に吸着させて二次処理水として排出する吸着工程と、前記吸着素子に水蒸気を供給することで有機物質を前記吸着素子から脱着させて、液化凝縮させ、前記一次処理水中の有機物質濃度よりも高濃度の有機物質を含有する水を濃縮水として排出する脱着工程を交互に実施する水処理装置とを備え、
前記水処理装置から排出された濃縮水が、前記湿式酸化分解装置へ供給され、水処理されるように構成されることを特徴とする水処理システム。
A water treatment system for purifying treated water by removing the organic substance from the treated water containing the organic substance,
A wet oxidative decomposition apparatus that oxidizes and decomposes organic substances in water to be treated and discharges primary treated water;
It includes an adsorbing element that adsorbs an organic substance by bringing water containing the organic substance into contact with it, and desorbs the adsorbed organic substance by bringing water vapor into contact therewith, and supplies the primary treatment water to the adsorbing element to perform a primary treatment. An adsorption step of adsorbing an organic substance contained in water to the adsorption element and discharging it as secondary treated water; and desorbing the organic substance from the adsorption element by supplying water vapor to the adsorption element; A water treatment device that alternately performs a desorption step of discharging water containing an organic substance having a concentration higher than the concentration of the organic substance in the primary treated water as concentrated water;
The water treatment system is configured such that the concentrated water discharged from the water treatment device is supplied to the wet oxidative decomposition device and subjected to water treatment.
前記湿式酸化分解装置が、フェントン法、促進酸化法、電気分解法のいずれかを用いた湿式酸化分解装置である請求項1に記載の水処理システム。   The water treatment system according to claim 1, wherein the wet oxidative decomposition apparatus is a wet oxidative decomposition apparatus using any one of a Fenton method, an accelerated oxidation method, and an electrolysis method. 前記水処理装置は、前記吸着素子に付着した水を除去してこれを除去水として排出する請求項1または2に記載の水処理システム。   The said water treatment apparatus is a water treatment system of Claim 1 or 2 which removes the water adhering to the said adsorption | suction element, and discharges this as removal water. 前記吸着素子に付着した水の除去に水蒸気を使用する請求項3に記載の水処理システム。   The water treatment system according to claim 3, wherein water vapor is used to remove water adhering to the adsorption element. 前記水処理装置から排出された除去水が、前記水処理装置に再度供給されるように構成された請求項3または4に記載の水処理システム。   The water treatment system of Claim 3 or 4 comprised so that the removal water discharged | emitted from the said water treatment apparatus may be supplied to the said water treatment apparatus again. 前記吸着素子が、活性炭、活性炭素繊維およびゼオライトからなる群から選ばれる少なくとも1の部材を含んでいる請求項1〜5のいずれかに記載の水処理システム。   The water treatment system according to claim 1, wherein the adsorption element includes at least one member selected from the group consisting of activated carbon, activated carbon fiber, and zeolite.
JP2015120164A 2015-06-15 2015-06-15 Water treatment system Pending JP2017000994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015120164A JP2017000994A (en) 2015-06-15 2015-06-15 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015120164A JP2017000994A (en) 2015-06-15 2015-06-15 Water treatment system

Publications (1)

Publication Number Publication Date
JP2017000994A true JP2017000994A (en) 2017-01-05

Family

ID=57753407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015120164A Pending JP2017000994A (en) 2015-06-15 2015-06-15 Water treatment system

Country Status (1)

Country Link
JP (1) JP2017000994A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061453A (en) * 1998-08-25 2000-02-29 Nomura Micro Sci Co Ltd Treatment of water and apparatus therefor
JP2003047980A (en) * 2001-08-03 2003-02-18 Sumitomo Heavy Ind Ltd Wastewater treatment method and its apparatus
JP2009262122A (en) * 2008-03-31 2009-11-12 Panasonic Corp Apparatus for water treatment
JP2010142729A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2012187443A (en) * 2011-03-08 2012-10-04 Kotobuki Kakoki Kk Water treatment apparatus
JP2014217833A (en) * 2013-04-12 2014-11-20 東洋紡株式会社 Wastewater treatment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061453A (en) * 1998-08-25 2000-02-29 Nomura Micro Sci Co Ltd Treatment of water and apparatus therefor
JP2003047980A (en) * 2001-08-03 2003-02-18 Sumitomo Heavy Ind Ltd Wastewater treatment method and its apparatus
JP2009262122A (en) * 2008-03-31 2009-11-12 Panasonic Corp Apparatus for water treatment
JP2010142729A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2012187443A (en) * 2011-03-08 2012-10-04 Kotobuki Kakoki Kk Water treatment apparatus
JP2014217833A (en) * 2013-04-12 2014-11-20 東洋紡株式会社 Wastewater treatment system

Similar Documents

Publication Publication Date Title
JP6393965B2 (en) Wastewater treatment system
JP5643680B2 (en) Method and apparatus for removing organic solvent
JP6332599B2 (en) Water treatment system
JP2008188493A (en) Water treatment apparatus
JP6409589B2 (en) Water treatment equipment
JP2010142792A (en) Wastewater treatment system
JP6428992B2 (en) Wastewater treatment system
JP6862680B2 (en) Water treatment system
JP2012035232A (en) Wastewater treatment system
JP6332586B2 (en) Water treatment device and water treatment system
JP6661898B2 (en) Water treatment system
JP2017000992A (en) Water treatment system
JP2010142790A (en) System for treating exhaust
JP2017000994A (en) Water treatment system
JP6699129B2 (en) Water treatment system
JP7124454B2 (en) Water treatment system and water treatment method
JP2011092870A (en) Organic solvent recovery system
JP6582851B2 (en) Organic solvent recovery system
JP6414470B2 (en) Water treatment equipment
JP2018061945A (en) Water treatment system
JP7484895B2 (en) Water Treatment Systems
TWI856079B (en) Organic Solvent Recovery System
JP2009262121A (en) System for treating organic solvent-containing gas
JP2021159859A (en) Water treatment system
JP6834512B2 (en) Fluid processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903