JP2016211829A - System capable of concurrently performing harmless formation of exhaust gas generated at drying furnace or heating furnace, and heat recovery - Google Patents
System capable of concurrently performing harmless formation of exhaust gas generated at drying furnace or heating furnace, and heat recovery Download PDFInfo
- Publication number
- JP2016211829A JP2016211829A JP2015104015A JP2015104015A JP2016211829A JP 2016211829 A JP2016211829 A JP 2016211829A JP 2015104015 A JP2015104015 A JP 2015104015A JP 2015104015 A JP2015104015 A JP 2015104015A JP 2016211829 A JP2016211829 A JP 2016211829A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- exhaust gas
- furnace
- catalyst
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 30
- 238000001035 drying Methods 0.000 title claims abstract description 24
- 238000011084 recovery Methods 0.000 title claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 title abstract 2
- 239000003054 catalyst Substances 0.000 claims abstract description 57
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 50
- 238000002485 combustion reaction Methods 0.000 claims abstract description 25
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims description 16
- 238000007084 catalytic combustion reaction Methods 0.000 claims description 15
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 56
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 9
- 238000009841 combustion method Methods 0.000 description 8
- 239000000446 fuel Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 239000002574 poison Substances 0.000 description 3
- 231100000614 poison Toxicity 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000026676 system process Effects 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000001784 detoxification Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002903 organophosphorus compounds Chemical class 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Landscapes
- Incineration Of Waste (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
本発明は、乾燥炉または加熱炉内で発生する排気ガスの無害化及び熱回収を同時に行うことのできるシステムに関し、特に、乾燥炉または加熱炉の加温システムの中間に触媒を設けることにより、従来回収することなく大気中に放出していた排気ガスを回収するとともに無害化を同時に行うことのできるシステムに関する。 The present invention relates to a system capable of simultaneously detoxifying exhaust gas generated in a drying furnace or heating furnace and recovering heat, and in particular, by providing a catalyst in the middle of a heating system of the drying furnace or heating furnace, The present invention relates to a system capable of recovering exhaust gas that has been released into the atmosphere without being recovered and simultaneously detoxifying it.
本発明の乾燥炉または加熱炉で発生する排気ガスの無害化及び熱回収を同時に行うことのできるシステムにおいては、排気ガス流路に熱回収用の熱交換器を二段階設け、その中間に触媒燃焼部を設けることにより、排気ガスを無害化し、高効率で熱回収をする装置である。 In the system capable of simultaneously detoxifying exhaust gas generated in the drying furnace or heating furnace and recovering heat in the present invention, a heat exchanger for heat recovery is provided in two stages in the exhaust gas flow path, and a catalyst is provided between them. By providing a combustion section, the exhaust gas is rendered harmless, and heat recovery is performed with high efficiency.
また、二次熱交換器は一段または二段重ねの構造であり、二段重ねの場合、二次熱交換器の受熱側入口に設置した吸気ファンを介して二次熱交換器上段のNo.2二次熱交換器の常温の外気が導入され、下段のNo.1二次熱交換器には外気の受熱空気が流入し、二次熱交換器により昇温された空気が炉内に放出されるように構成し、且つ、排気ガス燃焼過程における触媒は白金触媒であり、排気ガスの分解は、白金触媒での燃焼温度を活性の高い400℃前後にすることを特徴とする乾燥炉または加熱炉で発生する排気ガスの無害化及び熱回収を同時に行うことのできるシステムである。 In addition, the secondary heat exchanger has a one-stage or two-stage structure. In the case of two-stage structure, the No. of the upper stage of the secondary heat exchanger is connected via an intake fan installed at the heat receiving side inlet of the secondary heat exchanger. No. 2 secondary heat exchanger at normal temperature outside air was introduced, the lower No. 2 1 The heat receiving air of the outside air flows into the secondary heat exchanger, and the air heated by the secondary heat exchanger is discharged into the furnace, and the catalyst in the exhaust gas combustion process is a platinum catalyst The decomposition of exhaust gas is to simultaneously perform detoxification and heat recovery of exhaust gas generated in a drying furnace or heating furnace characterized in that the combustion temperature in the platinum catalyst is around 400 ° C. where the activity is high. It is a system that can.
従来、熱回収が困難とされていた比較的低温度レベルの排気ガスから、乾燥炉または加熱炉で発生する排気ガスの無害化と熱回収を同時に行うシステムが必要とされていた。 Conventionally, there has been a need for a system capable of simultaneously detoxifying exhaust gas generated in a drying furnace or heating furnace and recovering heat from exhaust gas at a relatively low temperature level, which has been difficult to recover heat.
本発明の乾燥炉または加熱炉で発生する排気ガスの無害化と熱回収を同時に行うことのできるシステムによれば、排気ガス流路に熱回収用の一次熱交換器を設け、その下流に触媒燃焼部を設け、更にその下流に熱回収用の二次熱交換機を接続し、排熱側と受熱側のそれぞれにファンを設置して、炉内の排気ガス量と同量の常温の外気が高効率で熱回収され、昇温されて炉内に放出されるように構成したことを特徴とし、且つ、触媒燃焼過程における触媒は白金触媒であり、排気ガスの分解は白金触媒での燃焼温度を活性の高い400℃前後にすることを特徴とする排気ガスの無害化および熱回収を同時に行うことのできるシステムを提供することができる。 According to the system capable of simultaneously detoxifying exhaust gas generated in the drying furnace or heating furnace and recovering heat in the present invention, the exhaust gas flow path is provided with a primary heat exchanger for heat recovery, and a catalyst is provided downstream of the heat exchanger. A combustion section is provided, and a secondary heat exchanger for heat recovery is connected to the downstream, and fans are installed on each of the exhaust heat side and the heat reception side. It is characterized in that heat recovery is performed with high efficiency, the temperature is raised and released into the furnace, and the catalyst in the catalytic combustion process is a platinum catalyst, and the decomposition of the exhaust gas is the combustion temperature at the platinum catalyst. It is possible to provide a system capable of simultaneously detoxifying exhaust gas and recovering heat, characterized by having a high activity around 400 ° C.
また、炉内の高温になった排気ガスを、熱交換システムにより温度を下げて大気に放出することができる。 Further, the exhaust gas having a high temperature in the furnace can be released to the atmosphere at a reduced temperature by a heat exchange system.
また、有害物を含む排気ガスを白金触媒による触媒燃焼により無害化することができる。 Further, exhaust gas containing harmful substances can be rendered harmless by catalytic combustion using a platinum catalyst.
また、外気を熱交換システムにより外気温より高い温度にして炉内に取り込むことができる。 Further, the outside air can be taken into the furnace at a temperature higher than the outside air temperature by the heat exchange system.
乾燥炉または加熱炉で発生する排気ガスの無害化及び熱回収を同時に行うことのできるシステムによれば、間接式加温方式にもかかわらず、排気ガスの熱を回収し再利用するため、エネルギーコスト(燃料消費量)を大幅に削減することができる。 According to the system capable of simultaneously detoxifying exhaust gas generated in a drying furnace or heating furnace and recovering heat, the energy of exhaust gas is recovered and reused despite the indirect heating method. Cost (fuel consumption) can be greatly reduced.
また、触媒反応のために排気ガスを加温する装置が必要なく、通常のシステム過程で発生する熱をコントロールすることにより、触媒反応に適切な温度を得ることができるため、省エネでの排気ガス無害化システムを提供することができる。In addition, there is no need for a device for heating the exhaust gas for the catalytic reaction, and by controlling the heat generated in the normal system process, an appropriate temperature for the catalytic reaction can be obtained. A detoxification system can be provided.
また、420℃までの耐熱性のあるアルミ製の二次熱交換器を採用し、二次熱交換器を二段にすることにより、更に熱効率をアップさせることができる。 Further, by adopting a secondary heat exchanger made of aluminum having a heat resistance up to 420 ° C. and making the secondary heat exchanger in two stages, the thermal efficiency can be further increased.
二段階の熱交換器で排気ガスの熱交換を行うため、乾燥炉または加熱炉内の排気ガス温度よりも低い温度で排気ガスを大気に放出し、吸気は一段または二段式の二次熱交換器により外気の熱交換を行うため外気温度よりも高い温度で導入することが実現できた。 In order to perform heat exchange of exhaust gas in a two-stage heat exchanger, exhaust gas is released to the atmosphere at a temperature lower than the exhaust gas temperature in the drying furnace or heating furnace, and the intake air is a single-stage or two-stage secondary heat. In order to exchange the heat of the outside air with an exchanger, it was possible to introduce it at a temperature higher than the outside air temperature.
また、乾燥炉または加熱炉内に熱交換用のファン及び加温用バーナーを除く全ての機器を収納しているため、各機器は保温の必要がなく、保温措置がとられていないことにより、排気ガス流路全体より熱が発散し、熱エネルギーロスが少ない上に、各機器のメンテナンス及び脱着が容易である。 In addition, since all the equipment except the heat exchange fan and the heating burner are housed in the drying furnace or heating furnace, each equipment does not need to be kept warm, and no warming measures are taken. Heat is dissipated from the entire exhaust gas flow path, there is little heat energy loss, and maintenance and desorption of each device is easy.
以下に、触媒にハニカム形状または粒状の白金触媒を採用し、通常の白金触媒よりも白金の含有量を増加させた素材を使用した触媒の特徴について説明する。 Below, the feature of the catalyst which employ | adopted the platinum catalyst of a honeycomb shape or a granular form as a catalyst and uses the raw material which increased platinum content rather than the normal platinum catalyst is demonstrated.
白金は各種ガス成分に対して低い温度で触媒燃焼する能力があるため、複数のガスが含まれている排気ガス浄化の用途に適しており、特にVOC(臭気物)に対しても白金触媒が優れている。 Since platinum has the ability to catalytically burn various gas components at low temperatures, it is suitable for exhaust gas purification applications that contain multiple gases. Platinum catalysts are also particularly effective against VOCs (odorous substances). Are better.
本発明で使用する触媒はハニカム形状の白金触媒で、圧力損失が少なく、耐熱性、耐久性に優れており、粒状に比べて活性は劣るといわれているが、白金の含有量が通常の約2倍の白金を使用しているので、高い活性を実現している。 The catalyst used in the present invention is a honeycomb-shaped platinum catalyst, has a low pressure loss, is excellent in heat resistance and durability, and is said to be inferior in activity compared to granular, but the platinum content is about the normal about Because it uses twice as much platinum, high activity is achieved.
排気ガスを高温で直接燃焼させて無害化する直接燃焼方式よりも、触媒を通すことにより低温で完全酸化(脱臭)する触媒燃焼方式の方がエネルギーコスト(燃料消費量)を大幅に削減することができる上に、本発明のシステムでは通常のシステムの過程で発生する熱を使用するため触媒のために特に燃料を必要としない。 Compared to the direct combustion method in which exhaust gas is burned directly at high temperature to make it harmless, the catalytic combustion method that completely oxidizes (deodorizes) at low temperature by passing the catalyst significantly reduces the energy cost (fuel consumption). In addition, the system of the present invention does not require any particular fuel for the catalyst because it uses the heat generated in the normal system process.
触媒燃焼方式は直接燃焼方式と比べ燃焼温度が低いためNOx(窒素酸化物)の発生量が少なく、環境にやさしい方式である。 Since the catalytic combustion method has a lower combustion temperature than the direct combustion method, it generates less NOx (nitrogen oxides) and is an environmentally friendly method.
本発明では、排気ガスは通常システムの過程で発生する熱を380〜420℃にコントロールし、白金触媒に接触させることにより、空気と反応し、炭酸ガスと水に変化する。 In the present invention, the exhaust gas usually reacts with air by controlling the heat generated in the process of the system at 380 to 420 ° C. and brought into contact with the platinum catalyst, and changes into carbon dioxide gas and water.
触媒を用いた接触燃焼は最も経済的な燃焼方法であるが、永久的に活性が行われず、触媒毒で劣化が進行する。 Catalytic combustion using a catalyst is the most economical combustion method, but the activity is not performed permanently, and deterioration proceeds with catalyst poison.
塩化化合物や硫黄化合物は接触表面で酸化分解され、その時の触媒反応温度は350℃以上必要である。反応温度以下ではそれらが触媒表面に吸着し、劣化の原因となる。
また、排気ガス中にシリコーンや有機燐化合物を含む場合、触媒表面を被覆し活性を低下させ、更に処理ガス中にダスト(殆どの場合金属酸化物)が含まれる場合は被毒し、触媒が劣化する。Chloride compounds and sulfur compounds are oxidatively decomposed on the contact surface, and the catalytic reaction temperature at that time needs to be 350 ° C. or higher. Below the reaction temperature, they adsorb on the catalyst surface and cause deterioration.
If the exhaust gas contains silicone or organophosphorus compound, the catalyst surface is coated to reduce the activity, and if the processing gas contains dust (mostly metal oxide), it is poisoned and the catalyst to degrade.
排気ガス温度360〜420℃では触媒毒の影響を受けづらい構造になっている。 At an exhaust gas temperature of 360 to 420 ° C., it is difficult to be affected by catalyst poison.
以下、図面に示す実施例に基づいて本発明を実施するための形態を具体的に説明する。以下に、熱回収システムについて、排気ガスの流れと受熱空気の流れに沿って説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, modes for carrying out the present invention will be specifically described based on embodiments shown in the drawings. Below, a heat recovery system is demonstrated along the flow of exhaust gas, and the flow of heat receiving air.
始めに、排熱ガスの流れについて説明する。
乾燥炉または加熱炉で発生する排気ガスを、排気ガス吸込口1より吸込み、排気ガス吸込ダクトを経由してバーナー燃焼室4に送り込む。First, the flow of exhaust heat gas will be described.
Exhaust gas generated in the drying furnace or heating furnace is sucked from the exhaust gas suction port 1 and sent to the
バーナー燃焼室4で加温された空気は、バーナー燃焼室4にて分岐され、一次熱交換器5で熱交換されて一次熱交換後集合チャンバー6に入り一次熱交換器5の排気ガスが再び合流する。 The air heated in the
この過程により、380℃〜420℃まで温度が下がる。 This process reduces the temperature from 380 ° C to 420 ° C.
一次熱交換後集合チャンバー6は、一次熱交換後集合チャンバー〜触媒燃焼部接続ダクト7を経由して触媒燃焼部8に入る。この時、触媒の温度は380℃〜420℃である。 The
触媒燃焼部8を通過したガスは、触媒燃焼部〜No.1二次熱交換器(排熱側入口)接続ダクト9を経由して、No.1二次熱交換器10に入る。 The gas that has passed through the
二次熱交換器は、高効率の二段重ねとすれば、この時のNo.1二次熱交換器10の排熱側入口温度は370℃〜410℃となる。 If the secondary heat exchanger is a two-stage stack with high efficiency, the No. The exhaust heat side inlet temperature of the 1st
No.1二次熱交換器10で熱交換された排気ガスは、排熱側出口からNo.2二次熱交換器11へ入る。 No. The exhaust gas heat-exchanged in the
No.1二次熱交換器10の排熱側出口温度が250℃〜270℃、No.2二次熱交換器11の排熱側入口と同じ温度となる。 No. No. 1
No2二次熱交換器11の放熱側出口温度は120℃まで下がり、No.2二次熱交換器(排熱側出口)〜排熱側ファン接続ダクト12を経由し、排熱側ファン13から大気放出ダクト14を通過して大気中へ放出される。 The heat radiation side outlet temperature of the No. 2 secondary heat exchanger 11 decreases to 120 ° C. The secondary heat exchanger (exhaust heat side outlet) to the exhaust heat side
以下、受熱空気の流れについて説明する。
受熱空気は、受熱側ファン15より外気が取込まれ、受熱側ファン〜No.2二次熱交換器(受熱側入口)接続ダクト16を経由してNo.2二次熱交換器11の受熱側入口に接続される。 受熱側ファン15の外気取り込み温度は常温である。Hereinafter, the flow of the heat receiving air will be described.
As the heat receiving air, outside air is taken in from the heat receiving
No.2二次熱交換器11の受熱側出口で150℃程度に加温された空気は、No.2二次熱交換器(受熱側出口)〜No.1二次熱交換器(受熱側入口)接続ダクト17により、No.1二次熱交換器10に接続され、受熱側出口で250℃〜270℃程度に昇温されて乾燥炉または加熱炉20内に放出される。 No. The air heated to about 150 ° C. at the heat receiving side outlet of the secondary heat exchanger 11 is No. 2. 2 Secondary heat exchanger (heat receiving side outlet) to No. 2 No. 1 secondary heat exchanger (heat receiving side inlet) connecting duct 17, no. 1 is connected to the
以下、触媒燃焼に白金触媒を選定した理由を述べる。
白金は各種ガス成分に対して低い温度で触媒燃焼する能力があるため、複数のガスが含まれている排気ガス浄化の用途に適しており、VOC(臭気物)に対しても白金触媒が優れている。The reason why the platinum catalyst is selected for catalytic combustion will be described below.
Because platinum has the ability to catalytically burn various gas components at low temperatures, it is suitable for exhaust gas purification applications that contain multiple gases. Platinum catalysts are also excellent against VOCs (odorous substances) ing.
本発明で使用する白金触媒はハニカム状または粒状の白金触媒を使用している。
特にハニカム形状の触媒は圧力損失が少なく、耐熱性、耐久性に優れており、粒状形状に比べて活性は劣るといわれているが、白金の含有量が通常の約2倍の白金を使用しているので、高い活性を実現している。The platinum catalyst used in the present invention is a honeycomb or granular platinum catalyst.
In particular, honeycomb-shaped catalysts have less pressure loss, are superior in heat resistance and durability, and are said to be less active than granular shapes, but use platinum that is twice the normal platinum content. Therefore, high activity is realized.
排気ガスを高温で直接燃焼させて無害化する直接燃焼方式よりも、触媒を通すことにより低温で完全酸化(脱臭)する触媒燃焼方式の方がエネルギーコスト(燃料消費量)を大幅に削減することができる上に、本発明のシステムでは通常のシステムの過程で発生する熱を使用するため触媒のために特に燃料を必要としない。 Compared to the direct combustion method in which exhaust gas is burned directly at high temperature to make it harmless, the catalytic combustion method that completely oxidizes (deodorizes) at low temperature by passing the catalyst significantly reduces the energy cost (fuel consumption). In addition, the system of the present invention does not require any particular fuel for the catalyst because it uses the heat generated in the normal system process.
触媒燃焼方式は直接燃焼方式と比べ燃焼温度が低いためNOx(窒素酸化物)の発生量が少なく、環境にやさしい方式である。 Since the catalytic combustion method has a lower combustion temperature than the direct combustion method, it generates less NOx (nitrogen oxides) and is an environmentally friendly method.
本発明では、排気ガスは通常システムの過程で発生する熱を380〜420℃にコントロールし、白金触媒に接触させることにより、空気と反応し、炭酸ガスと水に変化する。 In the present invention, the exhaust gas usually reacts with air by controlling the heat generated in the process of the system at 380 to 420 ° C. and brought into contact with the platinum catalyst, and changes into carbon dioxide gas and water.
触媒を用いた接触燃焼は最も経済的な燃焼方法であるが、一次的または永久的に活性が劣化してしまう。 Catalytic combustion using a catalyst is the most economical combustion method, but its activity deteriorates temporarily or permanently.
塩化化合物や硫黄化合物は接触表面で酸化分解され、その時の触媒反応温度は350℃以上必要である。反応温度以下ではそれらが触媒表面に吸着し、劣化の原因となる。
また、排気ガス中にシリコーンや有機燐化合物を含む場合、触媒表面を被覆し活性を低下させ、更に処理ガス中にダスト(殆どの場合金属酸化物)が含まれる場合は被毒し、触媒が劣化する。Chloride compounds and sulfur compounds are oxidatively decomposed on the contact surface, and the catalytic reaction temperature at that time needs to be 350 ° C. or higher. Below the reaction temperature, they adsorb on the catalyst surface and cause deterioration.
If the exhaust gas contains silicone or organophosphorus compound, the catalyst surface is coated to reduce the activity, and if the processing gas contains dust (mostly metal oxide), it is poisoned and the catalyst to degrade.
排気ガス温度360〜420℃では触媒毒の影響を受けづらい構造になっている。 At an exhaust gas temperature of 360 to 420 ° C., it is difficult to be affected by catalyst poison.
本発明の乾燥炉または加熱炉で発生する排気ガスの無害化及び熱回収を同時に行うことのできるシステムは、以上説明したような構成であるため、排気ガスを高温で直接燃焼させて無害化する直接燃焼方式よりも、触媒を通すことにより低温で完全酸化(脱臭)する触媒燃焼方式の方がエネルギーコスト(燃料消費量)を大幅に削減することができ、本発明のシステムでは通常のシステムの過程で発生する熱を使用することにより触媒のために特に燃料を必要としない。
また、触媒燃焼方式は直接燃焼方式と比べ燃焼温度が低いためNOx(窒素酸化物)の発生量が少なく、環境にやさしい方式であり、産業上の利用価値が高い。Since the system capable of simultaneously detoxifying and recovering heat from the exhaust gas generated in the drying furnace or heating furnace of the present invention is configured as described above, the exhaust gas is directly burned at a high temperature to make it harmless. Compared to the direct combustion method, the catalytic combustion method that completely oxidizes (deodorizes) at a low temperature by passing the catalyst can significantly reduce the energy cost (fuel consumption). By using the heat generated in the process, no fuel is required for the catalyst.
In addition, the catalytic combustion method has a lower combustion temperature than the direct combustion method, and thus generates less NOx (nitrogen oxide), is an environmentally friendly method, and has high industrial utility value.
1.炉内排ガス吸込口
2.排気ガス吸込ダクト
3.加温バーナー
4.バーナー燃焼室
5.一次熱交換器
6.一時熱交換後集合チャンバー
7.一時熱交換後集合チャンバー〜触媒燃焼室 接続ダクト
8.触媒燃焼部
9.触媒燃焼部〜No.1 二次熱交換器(排熱側入口)接続ダクト
10.No.1 二次熱交換器
11.No.2 二次熱交換器
12.No.2 二次熱交換器(排熱側出口)〜排熱側ファン接続ダクト
13.排熱側ファン
14.大気放出ダクト
15.受熱側ファン
16.受熱側ファン〜No.2 二次熱交換器(受熱側入口)接続ダクト
17.No.2 二次熱交換器(受熱側出口)〜No.1 二次熱交換器(受熱側入口)接続ダクト
18.受熱側空気吐出口
20.乾燥炉または加熱炉1. 1. Furnace exhaust gas inlet 2. Exhaust gas suction
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015104015A JP2016211829A (en) | 2015-04-30 | 2015-04-30 | System capable of concurrently performing harmless formation of exhaust gas generated at drying furnace or heating furnace, and heat recovery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015104015A JP2016211829A (en) | 2015-04-30 | 2015-04-30 | System capable of concurrently performing harmless formation of exhaust gas generated at drying furnace or heating furnace, and heat recovery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016211829A true JP2016211829A (en) | 2016-12-15 |
Family
ID=57549552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015104015A Pending JP2016211829A (en) | 2015-04-30 | 2015-04-30 | System capable of concurrently performing harmless formation of exhaust gas generated at drying furnace or heating furnace, and heat recovery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016211829A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113048494A (en) * | 2021-03-17 | 2021-06-29 | 浙江精功科技股份有限公司 | Carbon fiber carbonization production line exhaust purification handles and waste heat recovery utilizes system |
KR102316717B1 (en) * | 2021-02-25 | 2021-10-27 | 성일하이메탈(주) | Detoxification treatment apparatus of noxious gas using heat exchange |
-
2015
- 2015-04-30 JP JP2015104015A patent/JP2016211829A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102316717B1 (en) * | 2021-02-25 | 2021-10-27 | 성일하이메탈(주) | Detoxification treatment apparatus of noxious gas using heat exchange |
CN113048494A (en) * | 2021-03-17 | 2021-06-29 | 浙江精功科技股份有限公司 | Carbon fiber carbonization production line exhaust purification handles and waste heat recovery utilizes system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108273358B (en) | Organic waste gas treatment system and treatment method thereof | |
JP5695042B2 (en) | Flue gas denitration process and equipment | |
US7494625B2 (en) | Systems and methods for removing materials from flue gas via regenerative selective catalytic reduction | |
CN105771638B (en) | Utilize the desulfurization denitration method and device of the hot standby coke oven chimney of coke oven flue gas | |
TW201231147A (en) | Exhaust gas treatment method and apparatus | |
CN106512686B (en) | A kind of organic polluted soil Thermal desorption exhaust treatment system | |
CN206660779U (en) | A kind of waste gas pollution control and treatment system | |
WO2011142376A1 (en) | Emission gas processing system with carbon dioxide chemical absorption device | |
CN105536428A (en) | Organic waste gas purification system and purification method | |
CN110898666A (en) | High-concentration nitrogen-containing organic waste gas catalytic purification device | |
CN113324257A (en) | Heat collection type RTO treatment system suitable for high-concentration VOCs waste gas | |
CN105240864A (en) | Catalytic combustion system and catalytic combustion method | |
JP2016211829A (en) | System capable of concurrently performing harmless formation of exhaust gas generated at drying furnace or heating furnace, and heat recovery | |
CN107131516A (en) | A kind of interior circulation removes the system and method for nitrogen oxides in coal-fired plant flue gas | |
CN209279177U (en) | A kind of heat accumulating type Catalytic oxidation furnace | |
CN103363533A (en) | Device for catalytically purifying industrial organic waste gas and producing high temperature gas | |
CN103994449A (en) | Compound waste gas treatment device | |
CN217464454U (en) | Heat collection type RTO treatment system suitable for high-concentration VOCs waste gas | |
CN212974632U (en) | Energy-saving processing apparatus is used in organic waste gas purification | |
CN107191956B (en) | Flue gas purifying system | |
CN208302501U (en) | A kind of system of constant temperature catalyzing deep purifying VOCs exhaust gas | |
CN112844044A (en) | Flue gas treatment system | |
JP2009172476A (en) | Cleaning apparatus and combustion apparatus | |
CN108204599B (en) | DMF waste gas treatment system | |
CN220083088U (en) | RCO organic waste gas treatment device utilizing waste heat desorption |