[go: up one dir, main page]

JP2016201357A - 燃料セル双極板上にプレス加工された板特徴部によって達成される注入式金属ビードチャネル封止部 - Google Patents

燃料セル双極板上にプレス加工された板特徴部によって達成される注入式金属ビードチャネル封止部 Download PDF

Info

Publication number
JP2016201357A
JP2016201357A JP2016061135A JP2016061135A JP2016201357A JP 2016201357 A JP2016201357 A JP 2016201357A JP 2016061135 A JP2016061135 A JP 2016061135A JP 2016061135 A JP2016061135 A JP 2016061135A JP 2016201357 A JP2016201357 A JP 2016201357A
Authority
JP
Japan
Prior art keywords
channel
seal
fluid
plug
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016061135A
Other languages
English (en)
Inventor
チャールズ・イー・フリース・ヴイ
V Charles E Freese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of JP2016201357A publication Critical patent/JP2016201357A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • H01M4/8631Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】漏れが低減された燃料セルシステムおよび燃料セルシステムを組み立てる方法を提供すること。
【解決手段】システム内の双極板70は、入口流路及び出口流路に流体的に結合された反応物質チャネル72および冷却剤チャネルを含み、封止部は−面内および面外寸法のその組合せにより−実質的に中空の容積を形成し、この中に栓が配置されて、封止部が板の意図される作用区域の周りに冷却剤または反応物質の分流された流れを形成する、という傾向を低減する。流体出入口交差部は、封止部と一体に形成されかつ容積と流体的に協働するように形成され、栓材料の流動性の前駆体の導入を受け入れることができ、この結果、前駆体物質は硬化すると、容積と交差部の両方を切れ目なく満たす実質的に剛性の挿入体を形成し、このことにより、移動に対する栓のおよび分流された流れに対する封止部の、抵抗を高める。
【選択図】図1

Description

[0001]本発明は一般に、燃料セル組立体において使用される双極板内の改善された封止のための装置および方法に関し、より具体的には、封止部内の容積が、普通であれば封止部によって形成されたビード経路を通過する分流された流体流を回避するための栓を収容する、板内に形成された封止部の使用に関する。
[0002]燃料セルは、電気化学反応を介して、燃料を使用可能な電気へと変換する。そのようなエネルギー生成手段にとっての大きな利益は、これが、中間ステップとして燃焼に依存することなく達成されることである。したがって燃料セルは、推進用途および関連する動力用途に関し、内燃機関(ICE)と比較して環境に関するいくつかの利点を有する。プロトン交換膜式または高分子電解質膜式(いずれの場合もPEM)燃料セルなどの典型的な燃料セルでは、膜電極組立体(MEA)と一般に呼ばれるものにおいて、1対の触媒化された電極が、イオン透過性媒体(たとえばNafion(商標))によって切り離される。電気化学反応は、気体状の還元剤(たとえば水素、H)の形態の第1の反応物質がアノードに導入されそこでイオン化され、次いでイオン透過性媒体を通過させられ、この結果、第1の反応物質が、他方の電極(カソード)を通して導入されている気体状の酸化剤(たとえば酸素、O)の形態の第2の反応物質と結合するときに生じる。反応物質のこの結合は、副産物として水を形成する。第1の反応物質のイオン化において自由化された電子は、有用な仕事が行われ得る負荷(たとえば電動機、ならびに様々なポンプ、弁、圧縮機、または他の流体送達構成要素)を典型的には含む外部回路を介して、直流(DC)の形態でカソードへと進む。直流電気のこの流れによって生成される発電量は、多数のこのようなセルを組み合わせてさらに大きい電流生成組立体とすることによって、増加され得る。1つのそのような構造において、燃料セルは、共通のスタック寸法に沿って接続されて−カードのデッキと非常に似ている−、燃料セルスタックを形成する。
[0003]そのようなスタックにおいて、隣接するMEAは、典型的には気体不透過性の双極板の形態の、一連の反応物質流チャネルによって互いから切り離され、この双極板は−反応物質、冷却剤および副産物の搬送を促進することに加え−MEAに対して、構造的支持、ならびに電流の収集または搬送およびセル間の封止をもたらす。1つの一般的な形態では、チャネルは、各板の対向する全体的に平坦な表面の大部分を覆う、全体的に蛇行した配置のものである。板とMEAを並置することは、反応物質のうちの1つの燃料セルへのまたは燃料セルからの搬送を促進し、このとき、冷却剤の送達のために、(反応物質チャネルから流体的に切り離されている)追加のチャネルも使用され得る。1つの構成では、双極板はそれ自体が、流体の相互作用を促進するために自体の表面上にチャネルがプレス加工またはそれ以外の方法で一体に形成された薄い金属薄板(半板と呼ばれる)の対を固着することによって形成された、組立体である。チャネルによって両側面上に形成された様々な反応物質および冷却剤の流路は、典型的には板の1つまたは複数の対向する縁部上に画定された多岐管(本明細書では多岐管領域または多岐管区域とも呼ばれる)のところに集まる。これらの特徴全ての例−ならびにPEM燃料セルにおいて使用され得るそのような双極板組立体の典型的な構造−は、同一所有者による米国特許第5,776,624号および第8,679,697号において示され記載されており、これらの内容は参照により本明細書に組み込まれる。
[0004]典型的な双極板の構造では、1つに溶接されて様々な流体通路、封止表面、支持構造および導電表面を有する積層構造を形成する、個々のプレス加工された板の層から、単一の板組立体が形成される。従来では、板の多岐管および作用区域の周りの封止機能は、1つの方法では、別個のガスケットまたは封止組立体の使用によって達成され、この場合下にある板が担体として働くが、別の方法では、組立工程中に隣接する板の層の間に配置された現地硬化式(CIP)封止材料によって達成される。CIP手法は、費用が高く、封止材料を適切に硬化させるために多くの場合長い製造サイクル時間を要し、またいずれも、高い製造費および材料費が容認され得る、小量用途に対してのみ好適である。
[0005]残念ながら、工業用の自動車燃料セル用途は、年間10,000から100,000個の燃料セルスタック(各々がスタックあたりおよそ300から400個のセルを有する)を生産し得る、大量製造向けの解決法を必要とする。各セルがMEAの各側面上に双極板組立体を必要とするとすれば、小量生産であっても、3百万個以上の板が製作されることを必要とする。上記の封止手法は、双極板の大量生産を達成するには費用のかかりすぎる方法であろう。
[0006]CIPまたは個別の封止部および担体の組立体の手法に関連する費用および製造の問題のうちのいくつかを克服するために、本発明の譲受人は、セル間の封止を確立するためにプレス加工された金属ビード封止部(MBS、本明細書ではより簡単に「封止部」とも呼ばれる)が使用される、双極板の封止のための手法を開発した。そのような構成は上述された大量生産の要請との適合性がより高いが、金属同士の接続が、余分な漏れ経路が導入されないことを保証するのを困難にし、この場合、冷却剤または他の流体がMBSによって形成されたチャネルを充填する可能性がある。そのようなチャネルの充填は、金属ビード封止部の長さに沿って形成された3次元的な空間(volumetric space)を通して冷却剤を板の排出側へと直接分流することによって、冷却剤または他の流体がセルを通る好ましい経路を迂回することにつながることになる。そのような分流は、冷却システムのポンプに対する寄生損失につながる可能性がある(したがってより大型でより効率の低いポンプが必要となる)とともに、より高いセル動作温度(およびスタックのより急速な劣化)につながる可能性がある。チャネルの充填および封止のために、双極板の組立および溶接作業中に、予備形成された封止可能ないわゆる盲栓が使用され得るが、栓の配置は高度な精度を必要とし、これには栓の設置不良の危険が伴う。さらに、そのような手法は、目で見て品質検査できるものではない。
米国特許第5,776,624号 米国特許第8,679,697号 米国特許出願第14/547,308号
[0007]MBSに基づく双極板封止部設計内で冷却剤チャネル栓を形成するために、プレス加工された特徴部および封止材注入デバイスを利用することが、本開示の目的である。本発明の一態様によれば、燃料セルシステムは、双極板組立体と協働するMEAを各々含む多数のセルで構成される、燃料セルスタックを含む。双極板組立体は、1つまたは複数の反応物質チャネルおよび冷却剤チャネルが形成される流体相互作用表面を各々画定する1つまたは複数の板を含む。同様に、入口流路および出口流路が、各々が反応物質チャネルおよび冷却剤チャネルのうちのそれぞれ1つと流体連通するように、流体相互作用表面に形成される。反応物質または冷却剤それぞれがチャネルを通過している間流体的に分離された状態に維持するために、板の流体相互作用表面上に、1つまたは複数の封止部が配設される。このように、板が隣接する板または他の全体的に平坦な表面に対面して配置されるとき、封止部は実質的な流体分離を提供する。ビードチャネル、空洞、または関連する容積内に配設された栓材料は、封止部の内部容積内に画定されたチャネル状流路を閉塞することによって、封止を増強する。
[0008]好ましい形態では、栓のために使用される材料は、封止部のチャネル状流路内への導入前および導入中には、流動性の(すなわち液体状のまたは半液体状の)状態である。硬化すると、栓は完全に固まって、実質的に剛性の十分に定着された材料として、容積の少なくとも一部分を占有する。したがって、封止部のチャネル状流路の全長にわたる実質的に完全な充填が、容積の所望の閉塞を達成することになる一方、完全な充填と関連付けられる費用または複雑さを伴わずに同様の結果が達成されるように、(たとえば材料が容積へと導入される場所である出入口または孔に隣接する領域内に)戦略的に配置されたより小さい量が使用され得る。
[0009]この文脈では、隣接する封止部領域を構成することになる充填材の軸方向長さの量は、双極板の寸法によって決まる。たとえば、栓長さは、封止部の剛性、封止されている流体の圧力条件、および栓の材料特性に見合ったその他の要因(たとえば、耐食性、製造要件を緩和するための硬化時間、熱適合性、など)に関する局所要件を満たすように選択され得る。これらが、材料、および封止部の内部壁の金属表面への材料の接着特性を規定することになる。接着特徴、スタックの組立工程によって加えられる圧縮の量、封止部通路の大きさ、および動作圧力は全て、栓がチャネル内でその位置を保持するために必要とされることになる栓の長さに影響を及ぼすことになる。同様にこの文脈では、「剛性の」および十分に定着されたという用語は、MBSによって形成されたビードチャネルまたは3次元的な空間内に配設される栓が、冷却剤、反応物質、または双極板を通して容積に導入される他の漏れを起しやすい物質によってそこに付与される流体圧に応じて容易にずれるのを回避するのに十分である、これらの材料特性および幾何学形状のうちの1つまたは複数を包含することが意図されている。したがって、その全体的な強度、剛性、および関連する構造特性は、板を形成する金属材料の剛性ほどの剛性のものである必要はない。そのような剛性の栓にとって有用な材料の種類の例は、シリコーン、ポリマーなどを、これらが他の望ましい腐食特性、汚染特性、または関連する特性を呈する限りにおいて含む。好ましくは、前駆体物質は、双極板が組み立てられ1つに溶接された後で導入され硬化される。このことは、組立工程中の不良の可能性を低減するのを助ける。(1つの形態ではMBSの側壁にプレス加工またはそれ以外の方法で形成され得る)孔は、チャネル栓が所定位置にあることを明確に目で見て確認することを可能にし、また流動性物質の適切な配置およびスタックされた板の整列を保証するための製造時の位置指示物としての役割も果たし得る。T字形状の交差特徴部の形態の、MBSにおける別個の突出部は、(硬化するとMBSの容積と交差部によって画定される容積の両方を充填する)チャネル栓を定着させて、MBSの容積またはチャネル内に形成された長手の軸に沿った栓の移動を限定するための、機械的停止部を提供する。別の形態では、硬化された栓は、特定の封止部が充填されていることを目で見て検査することをさらに容易にするための視覚的表示(たとえば対照的な色によってなど)を提供する材料から製作され得る。
[0010]本発明の別の態様によれば、燃料セル双極板が開示される。板は、反応物質チャネルまたは冷却剤チャネルのいずれかが表面に形成される流体相互作用表面を画定し、これにより流体(すなわち反応物質または冷却剤)が板表面にわたって搬送されている。この表面には入口流路および出口流路も画定されて、各々は、反応物質チャネルおよび冷却剤チャネルのうちのそれぞれ1つと流体連通するようになっている。少なくとも1つの封止部またはMBSが、表面上に配設されて、封止部は、板のうちの隣接して配置されたものと協働的に相互作用するときに、反応物質チャネルおよび冷却剤チャネルのうちのそれぞれ1つを通って搬送されている反応物質または冷却剤の実質的な流体分離を提供するようになっている。封止部は、硬化して栓となる流動性物質が中に嵌まる、実質的に中空の容積を形成する。1つの好ましい形態では、板の流体相互作用表面は、2つの主要な領域へと分解される。領域の第1のものは、隣接して配置された板における対となるチャネルとの熱的連通または流体連通が確立される場所である反応物質チャネルおよび流路チャネルに対応し、一方、領域の第2のものは、冷却剤または反応物質を作用領域に送達する入口流路、および作用領域から冷却剤または反応物質を受容する出口流路に対応する多岐管を形成する。より好ましい形態では、封止部は多数の封止部で構成され、各々が、作用領域および多岐管領域それぞれの中の反応物質チャネルおよび流路チャネルならびに入口流路および出口流路のうちの1つの周りに、実質的に周縁にある経路を形成する。先行する実施形態の場合のように、封止部は、中に栓が配置され得る3次元的な空洞を画定し、一方で、別個の突出部が、栓を定着させるための機械的停止部を提供するための交差特徴部の形態で、MBSから離れる方向に延在する。
[0011]本発明のさらに別の態様によれば、燃料セルシステム内で双極板を封止する方法が開示される。方法は、1対の板をスタックされた構成で互いの上に配置して、これらの表面の一部分上に形成された封止部が、双極板内に導入された冷却剤または反応物質が漏れる傾向を低減するようにするステップを含む。やはり、板の表面は、これが1つまたは複数の反応物質チャネルおよび冷却剤チャネル、ならびに反応物質チャネルおよび冷却剤チャネルのうちのそれぞれ1つとの流体連通を提供するための入口流路および出口流路を画定するという点で、流体を相互作用させるものである。その面外の突出部に基づいて、封止部は、実質的に中空の容積を画定し、この封止部の中には、流動性物質が導入され、その後この物質は硬化して、封止部の少なくとも流体物質導入箇所の直接の近傍にある部分の全体にわたって、実質的に剛性の栓を形成する。1つの好ましい形態では、板は冷却剤板であり、一方、別の好ましい形態では、流体相互作用表面は、反応物質チャネルおよび流路チャネルに対応する作用領域、ならびに入口流路および出口流路に対応する多岐管領域を画定する。より具体的には、反応物質または冷却剤の分離を容易にするために、各々が反応物質チャネルおよび流路チャネルならびに入口流路および出口流路のうちの1つの周りに、実質的に独立した周縁経路を画定するようにして、多数の封止部が形成される。上で検討されたように、封止部は、内部封止部容積と流体的に協働しかつ導入された流動性物質を受け入れるための孔を中に画定する、流体出入口交差部をさらに画定する。封止はまた、適切な装備を有するコンピュータに基づく制御装置または分析装置システムを通してなど、視覚的な手段によって確認され得、この例は、2014年11月19日に出願されて、本発明の譲受人によって所有されその全体が参照によって本明細書に組み込まれている、METHOD TO INCORPORATE SKIN AND CORE MATERIAL PROPERTIES IN PERFORMANCE ANALYSIS OF HIGH PRESSURE DIE CASTING ALUMINUM COMPONENTSと題された、同時継続中の出願番号第14/547,308号において見出され得る。当業者には諒解されるであろうように、適切に構成されたセンサを含めることにより、板のスタッキング、組立、および関連する製造品質保証のそのような視覚的表示を得、次いでそのような表示をコンピュータに搬送して、封止部施栓作業またはスタック組立作業の品質についての情報を提供することができる。
[0012]これらのおよび他の態様または実施形態は、以下の詳細な説明および付属の特許請求の範囲を読むことにより、当業者に明らかになるであろう。
[0013]以下の本発明の好ましい実施形態の詳細な説明は、以下の図面と併せて読まれるとき最もよく理解され得、これらの図面においては、同様の構造は同様の参照符号を用いて示され、図面の様々な構成要素は必ずしも縮尺通りに示されていない。
周りを囲む双極板を有する燃料セルの一部分の部分的に分解された断面図の、簡略化された図である。 本発明の態様による金属ビード封止部を含む、図1からの双極板の上面詳細図である。 本発明の態様による充填された栓を有する図2の金属ビード封止部の実施形態の、簡略化された斜視図である。
[0014]最初に図1を参照すると、PEM燃料セル1の簡略化された図が分解された形態で示されている。燃料セル1は、実質的に平坦なプロトン交換膜10と、プロトン交換膜10の一方の面と対面接触するアノード触媒層20と、他方の面と対面接触するカソード触媒層30と、を含む。まとめると、プロトン交換膜10ならびに触媒層20および30は、MEA40と呼ばれる。アノード拡散層50が、アノード触媒層20と対面接触して配置され、一方、カソード拡散層60が、カソード触媒層30と対面接触して配置される。拡散層50および60の各々は、気体状の反応物質が触媒層20および30へと通過するのを容易にするために、全体的に多孔性の構造を有して製作される。まとめると、アノード触媒層20およびカソード触媒層30は、電極と呼ばれ、示されるような別個の異なる層として、または代替形態では(上述のように)、拡散層50もしくは60内にそれぞれ少なくとも部分的に埋め込まれ、さらにプロトン交換膜10の対向する面内に部分的に埋め込まれるものとして、形成され得る。1つの形態では、MEA40の縁部を保護するため、補助ガスケット45の形態のプラスチック枠も含まれ得る。この補助ガスケット45は多くの場合、触媒層20と触媒層30との間の気体と電子の切り離しを、MEA40の縁部まで延長するために使用され、また多くの場合、エラストマー製の封止部がMEA40と接触するところに配置される。このことは、気体および冷却剤の外への漏れ、ならびに多岐管領域における気体と冷却剤の互いの混合を低減するのを助ける。いくつかの場合には、エラストマー製の封止部は、MEA40の一部または延長として、補助ガスケット45上に取り付けられ得るか、またはそこに直接形成され得る。いずれの変形形態も、本発明の範囲内にあるものと見なされる。
[0015]反応物質の気体がプロトン交換膜10の適切な側面に達するための、実質的に多孔性の流路を提供することに加えて、拡散層50および60は、電極触媒層20、30と、結果的に集電部として働く双極板70との間の電気的接触を提供する。さらに、その全体的に多孔性の性状により、拡散層50および60は、触媒層20、30で生成された生成物ガスの除去のための管路も形成する。さらに、カソード拡散層60は、カソード拡散層においてかなりの量の水蒸気を生成する。そのような特徴は、プロトン交換膜10を水分補給された状態に維持するのを助けるために重要である。拡散層における水の浸透は、小量のポリテトラフルオロエチレン(PTFE)または関連する物質の導入を通して調整され得る。
[0016]概念的には厚い壁状とされる属性を有するものとして示されているが、双極板70は好ましくは、(以下でより詳細に示され記載されるような)薄板状のまたは薄片状の構造を採用する。したがって図1は、チャネル72とそのようなチャネルを画定する板構造との間の相対厚さを推測するために使用されるべきではない。さらに、チャネル72の全体的に蛇行した流路の形式(図2においてより詳細に示されている)は、例示的なものであることを理解される。したがって、特定の燃料セル構成の性能に関して最適化され得る他の形式も、本開示の範囲内にある。さらに、双極板70が(定型化する目的で)、純粋に矩形の反応物質気体流チャネル72および構造74を画定して示されているが、より正確な(および好ましい)実施形態が以下で示され、そこでは全体的に蛇行した形状のチャネル72が(ランド74Bに対応する、それらのそれぞれの全体的に平坦な頂部とともに)形成されることが、当業者により諒解されるであろう。示されるように、スタックにおいて、各々のMEA40および付属する拡散層50、60を、隣接するMEAおよび層(これらのいずれも示されていない)から切り離すために、1対の双極板70の簡略化された対向する表面70Aおよび70Bが提供される。1つの板70Aは、アノード拡散層50と係合し、一方、第2の板70Bは、カソード拡散層60と係合する。(組み立てると単一の全体として双極板70を構成することになる)各板70Aおよび70Bは、それぞれの板面に沿って多数の反応物質気体流チャネル72を画定する。3次元の(すなわち面外の)構造74は、壁74Aおよびランド74Bで構成され、これらは、拡散層50、60それぞれに向かって突出しこれらと直接接触することによって、反応物質気体流チャネル72の隣接する区画を切り離す。
[0017]動作時、第1の気体状の反応物質、たとえばHは、板70Aからチャネル72を通してMEA40のアノード20側に送達され、一方、第2の気体状の反応物質、たとえば(典型的には空気の形態の)Oは、板70Bからチャネル72を通してMEA40のカソード30側に送達される。アノード20およびカソード30においてそれぞれ触媒反応が起こり、アノード20においてプロトン交換膜10を通って移動するプロトンを、およびカソード30において電子を、それぞれ生成し、これらの電子は結果的に、ランド74Bと層50および60との間の接触に基づき、拡散層50および60ならびに双極板70を通して伝達され得る電流をもたらす。
[0018]示される反応物質搬送チャネルに概ね似ている様式で、関連するチャネル(図示されない)が、燃料セル1により生成される温度の制御を助けるための冷却剤を搬送するために使用され得る。そのような板は、第1の板70Aおよび第2の板70Bの別個の表面上に(たとえば上部表面および下部表面それぞれの上に)形成され得る。同様に、板70A、70Bは、複数の構築された薄板で(たとえばより薄いスタックされた層の積層体によってなどで)形成され得る。このことは、以下でより詳細に検討されるように、封止部内で実質的に包囲された容積の形成を容易にするのを助け得る。構造に関係なく、このような多様な板(冷却剤を運ぶものであれ他の流体を運ぶものであれ)は、この文脈の中で、反応物質搬送板側のそれらに対応する部分と類似の特徴を含むものと理解される。したがって、表面を画定する特徴と関連付けられる構造的な詳細は、類似のものと見なされる。さらに、当業者は、本発明において記載されるチャネル封止設計が、形成された幾何学的封止表面の背部を通って冷却剤流が分流される、燃料セル以外の用途にも適用可能であることを認識するであろう。
[0019]次に図2を参照すると、図1の双極板70が、より詳細に示されている。特に、板70は、作用区域70ACTおよび多岐管区域70の両方を含み、前者はMEA40に対応する電気化学的な作用区域ならびに拡散層50および60との平坦対面関係を確立し、後者は、板70を通って形成された開口部が反応物質、冷却剤、または副産物の、スタックされた燃料セルへの(またはからの)送達および除去のための管路として働き得る場所である、(図示されるような)縁部また周縁(図示されない)区域に対応する。図1の分解された図から見られ得るように、これらの2つの板70A、70Bは、MEA40とアノード拡散層50およびカソード拡散層60とともにサンドイッチ状の構造を形成するように使用され、次いで燃料セルスタック(図示されない)を形成するのに必要な回数だけ繰り返され得る。1つの形態では、アノード板70Aおよびカソード板70Bの一方または両方は、耐食性材料(たとえば304SSなど)から製作される。全体的に蛇行した気体流チャネル72は、双極板70の一方の多岐管区域70に隣接する一方の縁部Eの近くから反対側の多岐管区域70に隣接する反対側の縁部Eの近くまで、曲がりくねった経路を形成する。図2において見られ得るように、反応物質(MEA40と対面関係で配置された板70の場合)または冷却剤(冷却剤チャネルが形成される場所である別の板70の背部と、対面関係で配置された板70の場合)は、作用区域70ACTと一方の(たとえば供給)縁部Eの多岐管区域70との間に存在する管寄せ70を形成する一連の反復する開口または溝からチャネル72に供給される。同様の構成が反対側の(たとえば排出)縁部E上に存在する。代替の実施形態では(図示されない)、供給多岐管区域および排出多岐管区域は、双極板70の同じ縁部(すなわちEまたはE)に隣接して存在し得る。双極板70が形成自在の材料(たとえば前述されたステンレス鋼)から製作される状況では、様々な表面特徴部(溝、チャネルなどを含む)が、プレス加工され得るか、またはそれ以外の方法でよく知られている技法を通して形成され得る。矢印Aは、最も左の多岐管区域70の入口から作用区域70ACTを通って最も右の多岐管区域70内への、反応物質または冷却剤の全体的な流れの方向を示す。このようにして、最も左の多岐管区域70に形成される入口と最も右の多岐管区域70における出口の両方の間に、作用区域70ACTを構成するそれぞれの気体流チャネル72(冷却剤であれ反応物質であれ)を通して、専用の直接的な流体連通が確立されている。
[0020]この文脈では、燃料セル1のスタック軸は、実質的に垂直な(すなわちZ)デカルト軸に沿っていてよく、この結果、双極板70の各々の表面の大部分は、X−Y平面内にある。いずれにせよ、セル1、板70、およびスタックの特定の配向は決定的なものではなく、むしろ板70の表面上に形成される地形を可視化するための便利な方法を提供することが、当業者によって諒解されるであろう。
[0021]次に図3を図2と併せて参照すると、1つまたは複数の封止部(すなわちMBS)70が、双極板70の流体相互作用表面内に形成される。上述された溝、チャネル、および他の特徴部の場合のように、封止部70は、プレス加工または他の形成作業によって形成され得、板70の表面にわたって形成される様々な領域を構成する様々な入口、出口、および蛇行したチャネルの周りに、流体的に分離可能な領域を提供するような形状とされる。1つの好ましい形態では、封止部70は、幅約2.8mm、深さ約1.3mmである半円形の断面形状を有する、樋状の内部容積70を画定するが、双極板70の封止に関する要請に応じて他の形状および大きさが使用され得る。上述のように、1つの形態では、双極板70は、薄い薄板の積層されたスタック71から製作され得る。以下でより詳細に検討されるように、本発明は、充填材材料で容積70を閉塞することによって、分流される漏れ流体70(図2の頂部および底部において矢印によって示される)の問題を回避する。
[0022]封止部70は全体として、板70の流体相互作用表面のXY平面からZ軸に沿って突出する、競争路状の周縁の特徴部を形成して、板70に僅かに3次元的な属性を与える。対面して隣接する板70が互いに対してスタックされるとき、封止部70は互いと接触して、冷却剤または反応物質の境界を横切るこれらの漏れに対する抵抗を高める。同様の様式で、隣接して配置された板70(図示されない)上の全体的に平坦な下側表面も、類似の接触部を作り出すように、Z軸に沿って突出する封止部70の頂部に接触させられ得る。いずれの接触部の変形形態も、本発明の範囲内にあると見なされる。加えて、微小封止部90が、封止部70の長さの一部または全てに沿って形成され得る。
[0023]示される型式では、交差部70が、封止部70の軸方向長さに沿った1つまたは複数の場所において、封止部70に対して側方に(すなわちY軸に沿って)形成される。示される実施形態では、交差部70が、側方に分岐するT字形状を画定し、このとき、その内部空洞および容積70の内部空洞の切れ目のない性状は、材料が−硬化して栓80になると−組み合わされた容積70内でのその確実な定着を促進して、加圧された反応物質、冷却剤、または他の流体作用物質による衝突に応じて栓80が軸方向に移動する傾向を、さらに低減するための形状または関連する幾何学的特徴を有することになることを保証するのを助ける。1つの形態では、交差部70は、封止部70の一体の部分を画定し得、このとき、その開いた空洞状の構造は、封止部70の軸方向寸法に沿って形成される容積70と切れ目のないことを保証するのを助ける。このようにして、交差部70は、栓80を構成する流動性物質の切れ目のない塊を受け入れる別個の行き止まりの枝部を形成する。ここではT字形状の接続部が形成されるように実質的に垂直な交差部を有するものとして示されるが、封止部70と交差部70との間の接合角度は変更され得、全てのそのような形態は、本発明の範囲内にあるものと見なされる。交差部70は、封止部70の幾何学形状の封止機能性との干渉を回避するように構築される。たとえば、交差部70のZ軸突出部は好ましくは、隣接する封止部70以下であり、さらにより詳細には、それ未満である。加えて、交差部70は好ましくは、封止部70の外周の繊細でない部分において配置される。このことは図2において最もよく描かれており、この場合、交差部70は、封止部70によって形成されたチャネルの長い直線部分の中央の近くに、より繊細な多岐管70から離して、位置付けられる。当然ながら、示される「T字形状の」注入部位以外の注入部位が使用されない場合には、封止部70の所望の位置内に栓を定着させるのを助けるために、湾曲した区画が必要とされる場合がある。
[0024]交差部70が完全に除去されるような構成(図示されない)に関しては、(たとえば孔70と同様だが代わりにX−Yにおいて封止部70の側部に配置された孔を介する)直接注入部位が形成される。技術的には封止部70の内壁と栓80との間には干渉は存在しないとはいえ、エラストマーは、70内に注入されると、代わりに線対線の密着を形成することになる。材料によっては、エラストマーは、硬化の工程において収縮する可能性さえある。いずれにせよ、流れの通路の軸(すなわち図3において示されるようなX軸方向)に沿って、幾何学形状の変化が生じることになる。ただし、スタックが組み立てられ圧縮下で配置されるときは、圧縮力が70をZ軸方向において変形させることになり、このことは、栓80を圧縮された状態にするという効果を有することになる。そのような圧縮は、交差部70の前述された「T字形状の」幾何学形状が使用される構成においてさえも、栓を定着させるのを助け得る。したがって、容積70によって画定される内壁同士の間の密着は、栓80を定着させるのに十分である。さらにこの密着は、好適な高さの摩擦係数を有する前駆体物質を使用して、栓80とそのような内壁との間の定着をもたらす接触がさらに強化されるようにすることによって、増強され得る。したがって、また側方に分岐する交差部70が含まれるかどうかに関わらず、本発明人は、漏れによって課された何らかの負荷の下で移動に抵抗するための方法として、栓80と容積70の内壁との間の摩擦が、栓80を所定位置に定着させるのに十分であると結論付けた。したがって、特定の形状の定着特徴部を有するまたは有さない型式は、本発明の範囲内にあると見なされる。
[0025]栓80は好ましくは、注入されると硬化され得る、注入可能な弾性の追従性のある材料(前述されたシリコーン、エラストマー、ポリマーなど)から製作される。好適な高さの摩擦係数を有することに加えて、前駆体物質の他の望ましい特性は、耐食性、汚染回避性、スタックの圧縮中に付与される機械的変形量の関数としての剛性特性(デュロメータ硬さ)、および、硬化したときの栓形成を促進するための、封止部70を構成するビードチャネルの内部容積の金属表面との十分な接着性を、好ましくは含む。重要なことは、栓80の存在が容積70内の閉塞作用を促進し、この結果、栓80が、普通であれば存在し得る、封止部70から離れたいわゆる「最も抵抗の少ない経路」を、変更することである。特に、封止部70によって形成された容積70内の栓80の存在は、容積70によって画定される競争路状の流路またはチャネルが、冷却剤流または反応物質流が作用領域70ACTの周りで分流する(すなわち迂回する)のを可能にする、という傾向を低減するのを助ける。栓形成作業中、十分な量の流動性の封止材材料が、これが容積70内へと流れ封止部70内に画定された断面積の影響力のある全体を占有するように注入されることになり、この結果、この封止材材料は、封止部70の中に入った反応物質または冷却剤(双極板70内のどちらのチャネル72が利用されているかに応じて)が栓80が配置される場所を越えて封止部70の軸方向長さに沿って移動するのを防止する。
[0026]栓80は、好ましくは比較的追従性のある材料から製作されるが、封止部70の剛性を変えることができる。このことは、栓80が封止部70の短い区画にわたってのみ注入される構成において、より大きな要因となり得、この場合、このことは、栓80が封止部70の全長にわたって注入される構成においては存在しない場合のある、剛性および封止特性の局所化された変化を引き起こし得る。そのような状況では、前駆体物質の特性を適切に選択することが、ある特性(たとえば剛性または硬度に関するデュロメータ硬さ値)が封止部70の要件に適切に適合されるという点で有益である。したがって、容積70内の異なる場所に沿って、栓は、異なる材料硬度値で構成され得る。他の実施形態(図示されない)では、封止部70に関する幾何学形状および封止要件は、双極板70の表面にわたって変化することになる。さらに別の実施形態では、複数の異なる前駆体物質が、(たとえば封止部70の長さまたは周縁に沿って分布された様々な孔70を通して)様々な場所において注入され得る。このようにして、封止部70およびその封止特性は、双極板70の幾何学形状および板70の周りの様々な位置における材料の剛性要件に従って「調整」され得る。たとえば、多岐管区域70の周りの大きい封止部70は、作用区域70ACTに沿った長い通路とは異なる封止部特性を必要とする場合がある。
[0027]上述したように、孔(すなわち開口部)70が、(図示されるような)交差部70または封止部70に画定された側壁のいずれかを通って形成されて、チャネル栓80となる前駆体物質を注入するための出入口を画定する。この孔70は、製造工程中にチャネル栓が作り出されたことを確認するためのアクセス箇所を提供する、ならびに、板の組立および整列されたスタッキングを支援するための製造時の位置指示物として働く、という、追加の機能も果たす。このことは、続く検査行動(視覚によるものかまたは好適なコンピュータもしくは関連する制御装置に結合された自動化された検出器によるもののいずれか)の容易さを高める。上で追加的に述べられたように、栓80は、圧縮性、導電性などと関連するセル間の封止部70の機能的要件と干渉することなく、その意図される機能に見合った好適な材料特性(たとえば機械的強度、耐食性、硬化時間など)を採用する。好ましい形態では、孔70を介して流動性の前駆体物質が注入されて、T字形状の交差部70と、封止部70の主要なチャネルまたは容積の少なくとも隣接する部分の、両方を充填し、このことにより、所望の定着およびその結果としての漏れ流体流に対するチャネルの閉塞を作り出す。上述されたように、そのような定着の性状は(交差部70における追加の切れ目のない材料の存在に起因する追加の定着が存在するかどうかに関わらず)、栓80がチャネル内への漏れから生じる軸方向の流体負荷(たとえば漏れた冷却剤、反応物質など)の下で移動する、という傾向を低減するのに十分な程度に確実である。上述されたように、図面において描かれた構成では、容積70を封止部70の流路の全長にわたって完全に充填することと関連付けられる費用または複雑さを伴うことなく所望の閉塞効果を達成するために、物質が容積70に導入される場所である孔70に直接隣接する領域のみが、使用される必要がある。
[0028]図示されていないが、PEM燃料セル1のスタックに基づくシステムに関する1つの特定の用途は、自動車または関連する車両であり得る。この文脈内では、「車両」という用語が、乗用車、トラック、バン、スポーツ多目的車(SUV)、またはバス、航空機、船舶、航宙機、および自動二輪車などのような他の自動推進の形態のものに適用できることが、諒解されるであろう。全ては、推進力または原動力を生成する目的で本発明と協働されるものと見なされる。
[0029]「好ましくは」、「一般に」、および「典型的には」のような用語は、本明細書においては、特許請求される発明の範囲を限定するようには、またはある特徴が特許請求される発明の構造もしくは機能にとって決定的である、必須である、もしくは重要でさえあることを示唆するようには利用されない、ということが留意される。むしろ、これらの用語は、本発明の特定の実施形態において利用され得るかまたは利用され得ない代替のまたは追加の特徴を強調することを、単に意図されている。
[0030]この文脈では、双極板70の流体相互作用表面内にまたはその上に形成された、チャネル、流路、および他の冷却剤搬送または反応物質搬送特徴部に関連する用語は、単数形または複数形で入れ替え可能に言及される。一方、そのようなものが個々のチャネルもしくは流路を指すのかまたは全体的に平行な流路に沿って整列されたこれらの組を指すのかの間の区別は、本発明の封止部70にとっては決定的なものではない。したがって、他方に対する一方の何らかの特定的な識別は、文脈から明らかになるものであり、いずれも本発明の範囲内にあると見なされる。
[0031]本発明について記載し定義する目的で、「実質的に」および「ほぼ」という用語ならびにこれらの変形形態が、本明細書においては、何らかの量的比較、値、測定値、または他の表現に原因を帰され得る固有の不確定性の度合を表すために利用されることが留意される。「実質的に」という用語は、本明細書においては、検討中の主題の基本的機能の変化を結果的にもたらすことなく、述べられた参照内容から量的表現が変動し得る度合を表すためにも利用される。
[0032]本発明について詳細にかつ具体的な実施形態を参照して記載したが、これにかかわらず、付属の特許請求の範囲において規定された本発明の範囲から逸脱することなく修正および変形が可能であることが、明らかであろう。特に、本発明の範囲が、述べられた好ましい態様および例示の実施形態に必ずしも限定されず、付属の特許請求の範囲によって規定されるものであることが、企図される。
(項目1)
スタックされた構成で配置された複数の燃料セルを画定する燃料セルシステムであって、前記システム内の前記セルの各々が、
膜電極組立体と、
前記膜電極組立体と流体的に協働するように配置された双極板であって、流体相互作用表面を画定し、かつ、
前記流体相互作用表面に画定された反応物質チャネルおよび冷却剤チャネルのうちの少なくとも1つ、
前記流体相互作用表面に、両方が前記反応物質チャネルおよび前記冷却剤チャネルのうちのそれぞれ1つと流体連通するように画定された、入口流路および出口流路、
前記板のうちの隣接して配置されたものとの協働的な相互作用時に、前記封止部が、前記反応物質チャネルおよび前記冷却剤チャネルのうちのそれぞれ1つを通って搬送されている流体の実質的な流体分離を提供するように前記流体相互作用表面上に配設された、少なくとも1つの封止部であって、実質的に中空の容積およびそこに形成された流動性物質導入孔を画定する、少なくとも1つの封止部、ならびに
前記孔に隣接する前記容積の少なくとも一部分内に配設された栓であって、前記孔を通して導入されている流動性物質の少なくとも一部分によって画定され、硬化すると前記栓が前記容積を通る漏れの流れを実質的に阻止する実質的に剛性の挿入体を形成するようになっている栓を備える双極板と、を備える、燃料セルシステム。
(項目2)
前記封止部が前記流体相互作用表面の一部として一体に形成される、項目1に記載の燃料セルシステム。
(項目3)
前記封止部が、前記流体相互作用表面内に画定される作用領域および多岐管領域の少なくとも一方の周りに、実質的に周縁にある経路を画定する、項目2に記載の燃料セルシステム。
(項目4)
前記孔が前記封止部に形成される交差部に画定され、この結果、前記交差部が側方に突出する追加の容積を前記封止部に画定する、項目3に記載の燃料セルシステム。
(項目5)
前記板が少なくとも2つの薄板の積層体で形成され、下側の薄板が実質的に平坦な下側表面を画定しかつ上側の板が前記流体相互作用表面を画定するようになっており、このことにより前記容積が前記2つの薄板の協働的な係合によって画定される、項目1に記載の燃料セルシステム。
(項目6)
前記スタックされた板の第1のものの上の前記封止部と、隣接して配置された前記スタックされた板の第2のものとの間の前記協働的な係合が、前記第1の板上に配設された前記封止部と前記第2の板の実質的に平坦な表面との間の接触を含む、項目1に記載の燃料セルシステム。
(項目7)
前記栓が、前記封止部内の様々な場所において異なる材料硬度値によって画定される、項目1に記載の燃料セルシステム。
(項目8)
項目1に記載の燃料セルシステムを備える車両。
(項目9)
実質的に平坦な流体相互作用表面を画定する燃料セル双極板であって、
前記流体相互作用表面に画定された反応物質チャネルおよび冷却剤チャネルのうちの少なくとも1つと、
両方が前記反応物質チャネルおよび前記冷却剤チャネルのうちのそれぞれ1つと流体連通するように、前記流体相互作用表面に画定された、入口流路および出口流路と、
前記流体相互作用表面上に配設された、少なくとも1つの封止部であって、前記板のうちの隣接して配置されたものとの協働的な相互作用時に、前記封止部が、前記反応物質チャネルおよび前記冷却剤チャネルのうちのそれぞれ1つを通って搬送されている流体の実質的な流体分離を提供し、実質的に中空の容積およびそこに形成された流動性物質導入孔を画定する、少なくとも1つの封止部と、
前記孔に隣接する前記容積の少なくとも一部分内に配設された栓であって、前記孔を通して導入されている流動性物質の少なくとも一部分によって画定され、硬化すると前記栓が前記容積を通る漏れの流れを実質的に阻止する実質的に剛性の挿入体を形成するようになっている栓と、を備える、燃料セル双極板。
(項目10)
前記流体相互作用表面が、(a)前記反応物質チャネルおよび前記流路チャネルに対応する作用領域、ならびに(b)前記入口流路および前記出口流路に対応する多岐管領域を画定する、項目9に記載の板。
(項目11)
前記封止部が複数の封止部を備え、各々が、作用領域および多岐管領域それぞれの中の前記反応物質チャネルおよび前記流路チャネルならびに前記入口流路および前記出口流路のうちの1つの周りに、実質的に周縁にある経路を形成する、項目10に記載の板。
(項目12)
燃料セルシステム内で双極板を封止する方法であって、
少なくとも1対の前記板をスタックされた構成で互いの上に配置するステップであって、前記板のうちの少なくとも1つが、その流体相互作用表面を画定し、かつ、
前記流体相互作用表面に画定された、反応物質チャネルおよび冷却剤チャネルのうちの少なくとも1つ、
各々が前記反応物質チャネルおよび前記冷却剤チャネルのうちのそれぞれ1つと流体連通するように前記流体相互作用表面に画定された、入口流路および出口流路、ならびに
前記流体相互作用表面上に配設された、少なくとも1つの封止部であって、前記1対の板の間の協働的な相互作用時に、前記封止部が、前記反応物質チャネルおよび前記冷却剤チャネルのうちのそれぞれ1つを通って搬送されている反応物質または冷却剤の実質的な流体分離を提供し、実質的に中空の容積を中に画定する、少なくとも1つの封止部を含む、配置するステップと、
少なくとも流動性物質が導入される前記封止部内の場所に隣接する前記封止部内の領域に、前記容積によって画定された実質的な断面全体を、前記容積が占有するように、前記容積に形成された孔内に前記流動性物質を導入するステップと、
前記物質を、これが前記封止部領域内に実質的に剛性の栓を形成するように硬化させるステップと、を含む方法。
(項目13)
前記流体相互作用表面が冷却剤経路を画定する、項目12に記載の方法。
(項目14)
前記流体相互作用表面が、(a)前記反応物質チャネルおよび前記流路チャネルに対応する作用領域、ならびに(b)前記入口流路および前記出口流路に対応する多岐管領域を画定する、項目12に記載の方法。
(項目15)
前記封止部が複数の封止部を備え、各々が、作用領域および多岐管領域それぞれの中の前記反応物質チャネルおよび前記流路チャネルならびに前記入口流路および前記出口流路のうちの1つの周りに、実質的に周縁にある経路を形成する、項目14に記載の方法。
(項目16)
前記孔が、前記容積と流体的に協働する交差部に画定される、項目15に記載の方法。
(項目17)
前記容積内の前記流動性物質の存在の視覚的表示を確立するステップをさらに含む、項目12に記載の方法。
(項目18)
前記視覚的表示が、前記封止部に対して色の対照をもたらす顔料を有して形成される前記流動性物質によって画定される、項目17に記載の方法。
(項目19)
視覚的表示を確立する前記ステップが、コンピュータ制御された視覚システムを使用するステップを含む、項目17に記載の方法。
(項目20)
前記スタックされた構成内での前記少なくとも1対の前記板の整列を示すために、前記孔を用いて視覚的表示を確立するステップをさらに含む、項目12に記載の方法。
(項目21)
少なくとも1対の前記板をスタックされた構成で互いの上に配置する前記ステップが、前記流動性物質を導入するステップの前に前記板を1つにレーザ溶接して双極板組立体とするステップを含む、項目20に記載の方法。
1 PEM燃料セル
10 プロトン交換膜
20 アノード触媒層
30 カソード触媒層
40 MEA
45 補助ガスケット
50 アノード拡散層
60 カソード拡散層
70 双極板
70A 双極板
70ACT 作用領域
70B 双極板
70 交差部
70 分流される漏れ流体
70 多岐管領域
70
70 封止部
70 容積
72 チャネル
74 構造
74A 壁
74B ランド
80 栓
90 微小封止部

Claims (10)

  1. スタックされた構成で配置された複数の燃料セルを画定する燃料セルシステムであって、前記システム内の前記セルの各々が、
    膜電極組立体と、
    前記膜電極組立体と流体的に協働するように配置された双極板であって、流体相互作用表面を画定し、かつ、
    前記流体相互作用表面に画定された反応物質チャネルおよび冷却剤チャネルのうちの少なくとも1つ、
    前記流体相互作用表面に、両方が前記反応物質チャネルおよび前記冷却剤チャネルのうちのそれぞれ1つと流体連通するように画定された、入口流路および出口流路、
    前記板のうちの隣接して配置されたものとの協働的な相互作用時に、前記封止部が、前記反応物質チャネルおよび前記冷却剤チャネルのうちのそれぞれ1つを通って搬送されている流体の実質的な流体分離を提供するように前記流体相互作用表面上に配設された、少なくとも1つの封止部であって、実質的に中空の容積およびそこに形成された流動性物質導入孔を画定する、少なくとも1つの封止部、ならびに
    前記孔に隣接する前記容積の少なくとも一部分内に配設された栓であって、前記孔を通して導入されている流動性物質の少なくとも一部分によって画定され、硬化すると前記栓が前記容積を通る漏れの流れを実質的に阻止する実質的に剛性の挿入体を形成するようになっている栓を備える双極板と、を備える、燃料セルシステム。
  2. 前記封止部が前記流体相互作用表面の一部として一体に形成される、請求項1に記載の燃料セルシステム。
  3. 前記封止部が、前記流体相互作用表面内に画定される作用領域および多岐管領域の少なくとも一方の周りに、実質的に周縁にある経路を画定する、請求項2に記載の燃料セルシステム。
  4. 前記孔が前記封止部に形成される交差部に画定され、この結果、前記交差部が側方に突出する追加の容積を前記封止部に画定する、請求項3に記載の燃料セルシステム。
  5. 前記板が少なくとも2つの薄板の積層体で形成され、下側の薄板が実質的に平坦な下側表面を画定しかつ上側の板が前記流体相互作用表面を画定するようになっており、このことにより前記容積が前記2つの薄板の協働的な係合によって画定される、請求項1に記載の燃料セルシステム。
  6. 前記スタックされた板の第1のものの上の前記封止部と、隣接して配置された前記スタックされた板の第2のものとの間の前記協働的な係合が、前記第1の板上に配設された前記封止部と前記第2の板の実質的に平坦な表面との間の接触を含む、請求項1に記載の燃料セルシステム。
  7. 前記栓が、前記封止部内の様々な場所において異なる材料硬度値によって画定される、請求項1に記載の燃料セルシステム。
  8. 実質的に平坦な流体相互作用表面を画定する燃料セル双極板であって、
    前記流体相互作用表面に画定された反応物質チャネルおよび冷却剤チャネルのうちの少なくとも1つと、
    両方が前記反応物質チャネルおよび前記冷却剤チャネルのうちのそれぞれ1つと流体連通するように、前記流体相互作用表面に画定された、入口流路および出口流路と、
    前記流体相互作用表面上に配設された、少なくとも1つの封止部であって、前記板のうちの隣接して配置されたものとの協働的な相互作用時に、前記封止部が、前記反応物質チャネルおよび前記冷却剤チャネルのうちのそれぞれ1つを通って搬送されている流体の実質的な流体分離を提供し、実質的に中空の容積およびそこに形成された流動性物質導入孔を画定する、少なくとも1つの封止部と、
    前記孔に隣接する前記容積の少なくとも一部分内に配設された栓であって、前記孔を通して導入されている流動性物質の少なくとも一部分によって画定され、硬化すると前記栓が前記容積を通る漏れの流れを実質的に阻止する実質的に剛性の挿入体を形成するようになっている栓と、を備える、燃料セル双極板。
  9. 前記流体相互作用表面が、(a)前記反応物質チャネルおよび前記流路チャネルに対応する作用領域、ならびに(b)前記入口流路および前記出口流路に対応する多岐管領域を画定する、請求項8に記載の板。
  10. 前記封止部が複数の封止部を備え、各々が、作用領域および多岐管領域それぞれの中の前記反応物質チャネルおよび前記流路チャネルならびに前記入口流路および前記出口流路のうちの1つの周りに、実質的に周縁にある経路を形成する、請求項9に記載の板。
JP2016061135A 2015-04-08 2016-03-25 燃料セル双極板上にプレス加工された板特徴部によって達成される注入式金属ビードチャネル封止部 Pending JP2016201357A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/681,504 US9847536B2 (en) 2015-04-08 2015-04-08 Injected metal bead channel seal achieved through stamped plate features on fuel cell bipolar plates
US14/681,504 2015-04-08

Publications (1)

Publication Number Publication Date
JP2016201357A true JP2016201357A (ja) 2016-12-01

Family

ID=56986304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061135A Pending JP2016201357A (ja) 2015-04-08 2016-03-25 燃料セル双極板上にプレス加工された板特徴部によって達成される注入式金属ビードチャネル封止部

Country Status (4)

Country Link
US (1) US9847536B2 (ja)
JP (1) JP2016201357A (ja)
CN (1) CN106058282B (ja)
DE (1) DE102016106391B4 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078456A1 (ko) * 2017-10-17 2019-04-25 주식회사 엘지화학 누설 냉매 유입 방지 기능을 갖는 배터리 팩
JP2019096382A (ja) * 2017-11-17 2019-06-20 本田技研工業株式会社 燃料電池用金属セパレータ及び燃料電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355289B2 (en) * 2017-02-06 2019-07-16 GM Global Technology Operations LLC Plate structure for a fuel cell
US10490829B2 (en) * 2018-02-20 2019-11-26 GM Global Technology Operations LLC Method for manufacturing a fuel cell
DE102022206520A1 (de) 2022-06-28 2023-12-28 Robert Bosch Gesellschaft mit beschränkter Haftung Fluidleitstruktur für einen elektrochemischen Energiewandler und elektrochemischer Energiewandler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200751A (ja) * 2006-01-27 2007-08-09 Nok Corp 燃料電池用セパレータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776624A (en) 1996-12-23 1998-07-07 General Motors Corporation Brazed bipolar plates for PEM fuel cells
US20050095494A1 (en) * 2003-11-03 2005-05-05 Fuss Robert L. Variable catalyst loading based on flow field geometry
US8211585B2 (en) * 2008-04-08 2012-07-03 GM Global Technology Operations LLC Seal for PEM fuel cell plate
US8679697B1 (en) 2012-08-30 2014-03-25 GM Global Technology Operations LLC Compressible fuel cell subgasket with integrated seal
US10797276B2 (en) * 2013-12-30 2020-10-06 Gridtential Energy, Inc. Sealed bipolar battery assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200751A (ja) * 2006-01-27 2007-08-09 Nok Corp 燃料電池用セパレータ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078456A1 (ko) * 2017-10-17 2019-04-25 주식회사 엘지화학 누설 냉매 유입 방지 기능을 갖는 배터리 팩
US11398655B2 (en) 2017-10-17 2022-07-26 Lg Energy Solution, Ltd. Battery pack having function of preventing inflow of leaking coolant
JP2019096382A (ja) * 2017-11-17 2019-06-20 本田技研工業株式会社 燃料電池用金属セパレータ及び燃料電池

Also Published As

Publication number Publication date
DE102016106391B4 (de) 2024-06-13
US9847536B2 (en) 2017-12-19
CN106058282A (zh) 2016-10-26
US20160301088A1 (en) 2016-10-13
DE102016106391A1 (de) 2016-10-13
CN106058282B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
KR100907781B1 (ko) 연료전지용 막전극 접합체, 고분자 전해질형 연료전지용셀, 고분자 전해질형 연료전지 및 막전극 접합체의제조방법
CN101364648B (zh) 燃料电池
JP2016201357A (ja) 燃料セル双極板上にプレス加工された板特徴部によって達成される注入式金属ビードチャネル封止部
KR101134429B1 (ko) 기밀 유지용 가스켓을 갖는 연료전지용 분리판
EP2916046B1 (en) Seal with integral base material and method for manufacturing same
CA2653450C (en) Fuel cell having seal formed integrally with diffusion layer, and method of manufacturing same
CN102738493B (zh) 燃料电池及其制造装置
CN106165174B (zh) 燃料电池子组件及其制造方法
CN106611864B (zh) 燃料电池用带树脂框的电解质膜-电极构造体
EP3503273B1 (en) Production method for separator integrated gasket for fuel cells
CN102468456B (zh) 具有衬垫的燃料电池隔板和用于制造其的方法
KR20160054399A (ko) 연료 전지용 세퍼레이터, 연료 전지 셀 및 연료 전지
US8313680B2 (en) Method of producing fuel cell
KR20180008899A (ko) 연료 전지
US20150207164A1 (en) Fuel cell
JP2014504789A (ja) 燃料電池のシール
JP7382258B2 (ja) 金属セパレータ、燃料電池及び金属セパレータの製造方法
US9972850B2 (en) Fuel cell component having dimensions selected to maximize a useful area
US20160104901A1 (en) Method for making complex bipolar plates for fuel cells using extrusion
JP5809614B2 (ja) 燃料電池スタック
JP2009043492A (ja) 燃料電池
JP6619646B2 (ja) 燃料電池用ガスケット及びその製造方法
CN117317285A (zh) 用于电化学电池的板组件及其生产方法以及电化学电池
CN120239910A (zh) 分离板、双极板、生产方法和电化学电池
KR20110080552A (ko) 가스켓 일체형 분리판 및 이를 위한 금형

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171221