JP2016199792A - Copper alloy wire material for spring, manufacturing method of the copper alloy wire material for spring, spring and manufacturing method of the spring - Google Patents
Copper alloy wire material for spring, manufacturing method of the copper alloy wire material for spring, spring and manufacturing method of the spring Download PDFInfo
- Publication number
- JP2016199792A JP2016199792A JP2015081281A JP2015081281A JP2016199792A JP 2016199792 A JP2016199792 A JP 2016199792A JP 2015081281 A JP2015081281 A JP 2015081281A JP 2015081281 A JP2015081281 A JP 2015081281A JP 2016199792 A JP2016199792 A JP 2016199792A
- Authority
- JP
- Japan
- Prior art keywords
- spring
- wire
- copper alloy
- mass
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- 239000000463 material Substances 0.000 title abstract description 18
- 239000013078 crystal Substances 0.000 claims abstract description 43
- 239000010949 copper Substances 0.000 claims abstract description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 229910018098 Ni-Si Inorganic materials 0.000 claims abstract description 10
- 229910018529 Ni—Si Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims description 60
- 230000032683 aging Effects 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 25
- 230000035882 stress Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 10
- 238000005266 casting Methods 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 abstract description 10
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 229910052749 magnesium Inorganic materials 0.000 abstract description 3
- 239000002245 particle Substances 0.000 abstract description 3
- 229910052718 tin Inorganic materials 0.000 abstract description 3
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 30
- 229910045601 alloy Inorganic materials 0.000 description 18
- 239000000956 alloy Substances 0.000 description 18
- 238000005482 strain hardening Methods 0.000 description 17
- 238000000137 annealing Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000005491 wire drawing Methods 0.000 description 11
- 229910017876 Cu—Ni—Si Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 9
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910017532 Cu-Be Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910008071 Si-Ni Inorganic materials 0.000 description 1
- 229910006300 Si—Ni Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Springs (AREA)
Abstract
Description
本発明は、車載用途などの大電流分野で使用される、高い導電性、熱伝導性、高い強度、優れた耐へたり性を有するばね用銅合金線材、該ばね用銅合金線材の製造方法、並びにばね、該ばねの製造方法に関する。 The present invention relates to a copper alloy wire for a spring having high conductivity, thermal conductivity, high strength, and excellent sag resistance used in a large current field such as an in-vehicle application, and a method for producing the copper alloy wire for a spring. And a spring, and a method of manufacturing the spring.
近年、ガソリンエンジン、ディーゼル内燃機関だけを搭載して駆動する車両(車、バス、トラックなど)の増加率よりも、電気モーターを併用させて駆動させるハイブリッド車両、および、電気モーターのみで駆動する電気自動車など多岐にわたる様々な駆動方式の増加率の方が高く、多くの駆動方式が提案、実用化されている。 In recent years, compared to the rate of increase in vehicles (cars, buses, trucks, etc.) driven only by gasoline engines and diesel internal combustion engines, hybrid vehicles driven by using an electric motor together with electricity driven only by an electric motor The increase rate of various drive systems such as automobiles is higher, and many drive systems have been proposed and put into practical use.
その中で、電気モーター駆動を活用する方式では、その効率を向上させる目的で、数百ボルトの高い電圧、かつ、同時に細かな制御を行う目的で数百から数千ヘルツの周波数を持つ制御された電流が用いられている。 Among them, the method using an electric motor drive is controlled with a high voltage of several hundred volts for the purpose of improving its efficiency and a frequency of several hundred to several thousand hertz for the purpose of performing fine control at the same time. Current is used.
その電流を作り出しているのがいわゆるパワー半導体であり、例えば、IGBT(Insulated Gate Bipolar Transistor)がそれらの車両に搭載されている。なお、このIGBTは、高速動作が可能で、且つ高耐圧、低オン抵抗である点で優れており、また、直流を交流に、あるいは交流を直流に変換する機能も有している。 A so-called power semiconductor generates the current, and for example, an IGBT (Insulated Gate Bipolar Transistor) is mounted on these vehicles. The IGBT is excellent in that it can operate at high speed, has a high breakdown voltage, and a low on-resistance, and has a function of converting direct current into alternating current or alternating current into direct current.
IGBTは、パワー半導体の集合体であり、従来、それら複数のパワー半導体に対して、はんだ付けやワイヤーボンディングなどを施すことにより、外部回路との電気的な接続を確保していた。しかしながら、はんだに含まれる物質の環境に与える影響への対策や、ワイヤーボンディングによる組立および交換工数の削減などの技術が求められている。そこで、はんだ付けやワイヤーボンディングに代えて、ばねを用いた端子による電気的接続が検討されてきたが、従来のばね端子による電気的接続は、そのばねの性能上信頼性が低く、ばね端子による電気的接続を採用した例は少なかった。これは、上記電気的接続に用いられるばね用線材では、十分な導電性(抵抗が低い)及び長期的なばね性(耐へたり性)を確保することができず、結果として信頼性の高い電気的接続を確保することができないという問題があったためである。そこで近年、高導電性及び耐へたり性の双方の特性を具備するばね用線材の研究が進められている。 The IGBT is an aggregate of power semiconductors, and conventionally, electrical connection with an external circuit has been ensured by soldering or wire bonding to the plurality of power semiconductors. However, there are demands for technologies such as countermeasures against the environmental impact of substances contained in solder, and reduction of assembly and replacement man-hours by wire bonding. Therefore, instead of soldering or wire bonding, electrical connection using a terminal using a spring has been studied. However, the electrical connection using a conventional spring terminal is low in reliability in terms of the performance of the spring, and the spring terminal is used. Few examples have adopted electrical connections. This is because the spring wire used for the above electrical connection cannot ensure sufficient conductivity (low resistance) and long-term spring property (sag resistance), resulting in high reliability. This is because there is a problem that electrical connection cannot be secured. In recent years, therefore, research on spring wires having both high conductivity and sag resistance has been underway.
従来、上記のような電気的接続に使われるばね用線材の材料の一例として、導電性に優れた銅および銅合金が有利であることが知られている。例えば、純銅のJIS C1100Wは、タフピッチ銅と呼ばれ、優れた導電性を示し、100%IACS(International Annealed Copper Standard)であるが、引張強度が約200MPa〜250MPa程度しか得られない。一方、銅合金のJIS−C2600Wは黄銅と呼ばれ、引張強度は強加工を施した材料では1000MPaを越えるものの、導電率は28%IACSしか得られない。同様に、JIS C5191W(りん青銅)も導電率が低い。なお、JIS C1100W、C2600W、C5191Wも、パワー半導体の発生する熱によりへたりが発生する。そこで、これらの純銅および銅合金以外の材料が必要である。 Conventionally, it has been known that copper and copper alloys having excellent conductivity are advantageous as an example of a material for a spring wire used for electrical connection as described above. For example, JIS C1100W, which is pure copper, is called tough pitch copper and exhibits excellent conductivity and is 100% IACS (International Annealed Copper Standard), but a tensile strength of only about 200 MPa to 250 MPa is obtained. On the other hand, JIS-C2600W, a copper alloy, is called brass, and although the tensile strength exceeds 1000 MPa for a material that has been subjected to strong processing, the electrical conductivity is only 28% IACS. Similarly, JIS C5191W (phosphor bronze) also has low conductivity. Note that JIS C1100W, C2600W, and C5191W also have sag due to the heat generated by the power semiconductor. Therefore, materials other than these pure copper and copper alloys are necessary.
なお、上記純銅および銅合金以外に、ステンレス、チタン合金などもばね用線材の候補であったが、これらは銅合金等と比較して強度が高いものの、導電性が著しく低い。
また、近年の車両制御の更なる複雑化、高速化に伴い、パワー半導体の高速スイッチングによって生じる熱への対策を講じる必要がある。
In addition to the above pure copper and copper alloy, stainless steel, titanium alloy, and the like were also candidates for spring wires, but these have higher strength than copper alloys and the like, but their conductivity is extremely low.
In addition, as vehicle control becomes more complex and faster in recent years, it is necessary to take measures against heat generated by high-speed switching of power semiconductors.
車両内のパワー半導体と外部回路との電気的接続に使用されるばね用線材に求められる特性を整理すると、下記となる。すなわち(1)高い接圧を維持するための高い強度、(2)電流をロスなく通達するための高い導電性、(3)半導体で発生した熱を逃がすための高い熱伝導性、及び(4)熱による耐へたり性である。よって、これらをバランスよく有することが、ばね用線材で用いられる最適な材料と考えられる。なお、銅合金の場合、導電率と熱伝導率は、ヴィーマンフランツの法則に基づく下記式で比例関係にあるため、上記(2)と(3)は、同等の特性とみなすことができる。
λ/σ=LT
(但し、λ:熱伝導度、σ:電気伝導度、L:ローレンツ数、T:絶対温度)
The characteristics required for a spring wire used for electrical connection between a power semiconductor in a vehicle and an external circuit are summarized as follows. (1) high strength for maintaining high contact pressure, (2) high conductivity for passing current without loss, (3) high thermal conductivity for releasing heat generated in the semiconductor, and (4 ) Heat sag resistance. Therefore, having these in a well-balanced state is considered to be the optimum material used in the spring wire. In the case of a copper alloy, the electrical conductivity and the thermal conductivity are proportional to each other by the following formula based on the Viehman Franz law. Therefore, the above (2) and (3) can be regarded as equivalent characteristics.
λ / σ = LT
(Where λ: thermal conductivity, σ: electrical conductivity, L: Lorentz number, T: absolute temperature)
また、熱によるへたりあるいは耐へたり性は、熱クリープ特性、または、応力緩和特性として言い換えることができ、同意語、同等の機能を示しているとみなせる。そこで本明細書では、上記(4)熱による耐へたり性の評価として、荷重ロス試験で数値化を行った。 In addition, heat sag or sag resistance can be rephrased as thermal creep characteristics or stress relaxation characteristics, and can be regarded as synonymous terms and equivalent functions. Therefore, in this specification, as an evaluation of the sag resistance due to the above (4) heat, a numerical value was obtained by a load loss test.
上記4つの特性を満たすことができるかを、市販の銅合金を調査した結果、Cu−Ni−Si系合金(コルソン銅)がいずれの特性も優れていると判断された。なお、Cu−Be合金(ベリリウム銅)もこれらの特性を満足する可能性があるが、Cu−Be合金は、その生産過程、あるいは安易に破棄して燃焼した場合、空気中の酸素によりベリリウムが酸化されてベリリア(酸化ベリリウム)となる。国際化学物質安全性カードによれば、このベリリアは発がん性物質であり、水生生物に対して毒性が非常に強いとあり、環境負荷物質の一つと考えられる。 As a result of investigating a commercially available copper alloy as to whether the above four characteristics can be satisfied, it was determined that a Cu—Ni—Si based alloy (Corson copper) was excellent in all characteristics. Cu-Be alloy (beryllium copper) may also satisfy these characteristics. However, when Cu-Be alloy is burned in the production process or easily discarded, beryllium is formed by oxygen in the air. Oxidized to beryllia (beryllium oxide). According to the International Chemical Safety Card, this beryllia is a carcinogen and is extremely toxic to aquatic organisms and is considered one of the environmentally hazardous substances.
よって、発明者らは市販のCu−Ni−Si系合金に焦点を当て調査したが、本発明者らの求める特性、並びにその評価基準となる値を満たす合金は、市販(従来)のCu−Ni−Si系合金では見つからなかった。そこで本発明者らは、Cu−Ni−Si系合金に焦点を絞って、各特性を満たすCu−Ni−Si系合金の材料開発を進めるに至った。 Therefore, the inventors focused on a commercially available Cu—Ni—Si alloy, but the alloys satisfying the characteristics required by the inventors and the values serving as the evaluation criteria are commercially available (conventional) Cu— It was not found in Ni-Si alloys. Therefore, the present inventors have focused on the Cu—Ni—Si based alloy and have advanced the material development of the Cu—Ni—Si based alloy satisfying each characteristic.
Cu−Ni−Si合金からなる従来のばね用線材、および該線材を巻回したばねとしては、下記のようなものが提案されている。 The following are proposed as a conventional spring wire made of a Cu—Ni—Si alloy and a spring around which the wire is wound.
例えば、特許417726号公報では、Cu−Ni−Si系合金で導電率が20〜60%IACS、引張強度が1000MPa〜1300MPaの線材である。耐応力緩和特性に優れる特徴が記載されている。また、これらの特性を達成するために溶体化処理→時効処理、溶体化処理→時効処理→伸線加工、溶体化処理→伸線加工、溶体化処理→伸線加工→時効処理、溶体化処理→伸線加工→時効処理→伸線加工の工程が記載されている。この溶体化処理では、線材を700〜950℃で10分以上、より好ましくは800℃以上950℃以下で10分以上180分以下、さらに好ましくは850〜950℃で10分以上120分以下保持している。 For example, in Japanese Patent No. 417726, a wire is a Cu—Ni—Si alloy having a conductivity of 20 to 60% IACS and a tensile strength of 1000 MPa to 1300 MPa. The characteristic which is excellent in the stress relaxation resistance is described. In order to achieve these properties, solution treatment → aging treatment, solution treatment → aging treatment → wire drawing, solution treatment → wire drawing, solution treatment → wire drawing → aging treatment, solution treatment → Drawing process → Aging process → Drawing process is described. In this solution treatment, the wire is held at 700 to 950 ° C. for 10 minutes or more, more preferably 800 to 950 ° C. for 10 to 180 minutes, and further preferably 850 to 950 ° C. for 10 to 120 minutes. ing.
特許5578991号公報では、Cu−Ni−Si系合金で引張強度が1300MPa以上で、耐応力緩和特性と疲労特性に優れた線材が記載されている。また、これらの特性を達成するために、溶体化処理、伸線加工、時効処理を行うが、この溶体化処理では、線材を700〜950℃で10分以上、より好ましくは800℃以上950℃以下で10分以上、好ましくは10分〜30分間保持している。 Japanese Patent No. 5578991 describes a Cu—Ni—Si alloy having a tensile strength of 1300 MPa or more and excellent stress relaxation resistance and fatigue characteristics. Moreover, in order to achieve these characteristics, solution treatment, wire drawing, and aging treatment are performed. In this solution treatment, the wire is treated at 700 to 950 ° C. for 10 minutes or more, more preferably 800 ° C. or more and 950 ° C. The following is maintained for 10 minutes or more, preferably 10 minutes to 30 minutes.
特許5306591号公報では、Cu−Ni−Si系合金で平均結晶粒径が2.2〜5.0μmとし、屈曲性が優れる配線用電線導体が記載されている。この結晶粒径を小さくするために、好ましくは700〜1000℃、より好ましくは800〜950℃に加熱して熱間押出し、直ちに水中焼入れを行っている。 Japanese Patent No. 53066591 describes a wire conductor for wiring which is a Cu—Ni—Si alloy and has an average crystal grain size of 2.2 to 5.0 μm and excellent flexibility. In order to reduce the crystal grain size, it is preferably heated to 700 to 1000 ° C., more preferably 800 to 950 ° C., followed by hot extrusion and immediate quenching in water.
特許5520438号公報では、様々な銅合金の製法が記載され、その中にCu−Ni−Si系合金がある。この製法では、800℃以上の温度で5秒以下の時間、次いで、300℃から600℃の範囲の温度で5秒以下の時間、さらに、300℃から600℃の範囲の温度で10秒超から1200秒間、走間加熱する。また、連続焼鈍を繰り返すことによって時効処理を行うことができることが記載されている。なお、生産性の高い線材の焼鈍方式として、加熱した炉内に線材を連続的に通す走間焼鈍、および、線材に電流を流し自身から発生するジュール熱により焼鈍を行う電流焼鈍が記載されている。 Japanese Patent No. 5520438 describes various copper alloy manufacturing methods, among which are Cu—Ni—Si based alloys. In this production method, a temperature of 800 ° C. or more is 5 seconds or less, then a temperature in the range of 300 ° C. to 600 ° C. is 5 seconds or less, and a temperature in the range of 300 ° C. to 600 ° C. Heat for a run for 1200 seconds. Moreover, it describes that aging treatment can be performed by repeating continuous annealing. In addition, as annealing methods for highly productive wires, there are described running annealing in which a wire is continuously passed through a heated furnace, and current annealing in which current is passed through the wire and annealing is performed by Joule heat generated from itself. Yes.
また、特開2014―196564号公報には、合金の系は異なるが、結晶粒径が5μm以下の材料と、その材料を用いて得られたばねを、加熱温度250〜550℃で、30時間以下の範囲で加熱後、冷却速度30℃/sec、以上で急速処理する時効処理の段階を含むことが記載されている。 Japanese Patent Application Laid-Open No. 2014-196564 discloses a material having a crystal grain size of 5 μm or less and a spring obtained using the material at a heating temperature of 250 to 550 ° C. for 30 hours or less, although the alloy system is different. It includes a stage of an aging treatment in which a rapid treatment is performed at a cooling rate of 30 ° C./sec or more after heating in the above range.
しかしながら、上記特許文献に記載されたいずれの技術でも、発明者らが要求する特性を有する銅合金を得ることができず、また、製造原価についても発明者らの意図より高額であることが分かった。その理由は次の通りである。 However, with any of the techniques described in the above-mentioned patent documents, it is not possible to obtain a copper alloy having the characteristics required by the inventors, and the manufacturing cost is higher than the intentions of the inventors. It was. The reason is as follows.
先ず、特許4177266号公報の技術では、引張強度が1000MPaを越えるためには、結晶粒径を5μm以下にするまで強加工を行う必要がある。一方、結晶粒径は耐へたり性と相関があり、結晶粒径が5μm以下では耐へたり性を満足できない。よって本技術では、所望の引張強度、耐へたり性の双方を得ることができず、また、この溶体化処理では、線材を高温で10分間以上加熱することが必要であり、コスト高になる。 First, in the technique of Japanese Patent No. 4177266, in order for the tensile strength to exceed 1000 MPa, it is necessary to perform strong processing until the crystal grain size is 5 μm or less. On the other hand, the crystal grain size correlates with sag resistance, and when the crystal grain size is 5 μm or less, sag resistance cannot be satisfied. Therefore, in this technique, it is not possible to obtain both desired tensile strength and sag resistance, and in this solution treatment, it is necessary to heat the wire at a high temperature for 10 minutes or more, resulting in high costs. .
同様に、特許5578991号公報の技術でも、引張強度が1300MPaを超えるためには、結晶粒径を5μm以下にするまで強加工を行う必要がある。一方、結晶粒径は耐へたり性と相関があり、結晶粒径が5μm以下では耐へたり性を満足できない。よって本技術では、所望の引張強度、耐へたり性の双方を得ることができず、また、この溶体化処理では、線材を高温で10分間以上の加熱が必要であり、コスト高になる。 Similarly, even in the technology of Japanese Patent No. 5578991, in order for the tensile strength to exceed 1300 MPa, it is necessary to perform strong processing until the crystal grain size is 5 μm or less. On the other hand, the crystal grain size correlates with sag resistance, and when the crystal grain size is 5 μm or less, sag resistance cannot be satisfied. Therefore, in this technique, it is not possible to obtain both desired tensile strength and sag resistance, and this solution treatment requires heating the wire at a high temperature for 10 minutes or more, resulting in high costs.
また、特許5306591号公報の技術では、結晶粒径が5μm以下であり、耐へたり性を満足できない。 In the technique of Japanese Patent No. 5306591, the crystal grain size is 5 μm or less, and the sag resistance cannot be satisfied.
特許5520438号公報の技術では、連続焼鈍を繰り返し、実施例では900秒と長時間の熱処理時間が必要なことから、コスト高となる。 In the technique of Japanese Patent No. 5520438, continuous annealing is repeated, and in the embodiment, a long heat treatment time of 900 seconds is required, resulting in high cost.
なお、特開2014―196564号公報の技術は、Cu−Ni−Si系合金以外の合金に関するものであり、本発明の参考にすることはできない。 The technique disclosed in Japanese Patent Application Laid-Open No. 2014-196564 relates to an alloy other than a Cu—Ni—Si alloy, and cannot be used as a reference for the present invention.
上記のような課題に鑑み、本発明の目的は、(1)高い接圧を維持するための高い強度、(2)電流をロスなく通達するための高い導電性、(3)半導体で発生した熱を逃がすための高い熱伝導性、及び(4)熱による耐へたり性をバランスよく有するばね用銅合金線材、該ばね用銅合金線材の製造方法、並びにばね、該ばねの製造方法を提供することにある。 In view of the above problems, the object of the present invention is (1) high strength for maintaining high contact pressure, (2) high conductivity for passing current without loss, and (3) generated in a semiconductor. Provided are a copper alloy wire for springs having a high thermal conductivity for escaping heat and (4) heat sag resistance in a balanced manner, a method for producing the copper alloy wire for springs, a spring, and a method for producing the spring There is to do.
なお、ここで耐へたり性ついて定義する。耐へたり性は数値化しにくい特性であるため、本明細書では荷重ロスの測定を行うことで評価した。 Here, we define the sag resistance. Since sag resistance is a characteristic that is difficult to quantify, it was evaluated in this specification by measuring load loss.
本発明者らは、鋭意研究・開発を行うことにより、耐へたり性と結晶粒径との関係を新たに知見し、種々の検討を重ねた結果、上記目的を達成するばね用銅合金線材は以下の通りである。
(1)Niを3.4〜4.2質量%、Siを0.7〜1.0質量%含有し、Znを0.4〜0.6質量%、Snを0.1〜0.5質量%、Mgを0.05〜0.25質量%を含み、残部が銅及び不可避不純物からなるばね用銅合金線材であって、
平均結晶粒径が5μm超50μm以下、Ni−Si金属間化合物の平均サイズが5nm〜50nmであり、
引張強度が800MPa〜1100MPa、且つ導電率が30〜45%IACSであることを特徴とする、ばね用銅合金線材。
(2)Cr、Mn、Zr、Fe、CoおよびAgの1種以上を合計で0.03〜1.0質量%含有する、上記(1)記載のばね用銅合金線材。
(3)上記(1)又は(2)記載のばね用銅合金線材を巻回して形成されたことを特徴とするばね。
(4)コイルばね又は異形線ばねである、上記(3)記載のばね。
(5)上記(4)記載のコイルばねに、初期応力を付与し、一旦徐荷した後、前記初期応力を再び付与し、150℃、1000時間で保持した後、荷重ロスが20%以下となることを特徴とするばね。
(6)前記初期応力は、400〜500MPaであることを特徴とする、上記(5)記載のばね。
(7)上記(1)又は(2)記載のばね用銅合金線材の製造方法であって、
溶解、鋳造後に、熱間加工を経て荒引線を形成し、その後、少なくとも溶体化熱処理および時効熱処理の各工程を行い、
前記溶体化熱処理は、800〜1000℃、1秒〜10秒の熱処理を1回行い、
前記時効熱処理は、300〜500℃、0.5時間〜5時間で行われることを特徴とする、ばね用銅合金線材の製造方法。
(8)上記(7)記載の製造方法における前記溶体化処理後に、所定の線径を有する線材を巻回してばねを成形するコイル加工を更に有することを特徴とする、ばねの製造方法。
The present inventors have conducted extensive research and development to newly discover the relationship between sag resistance and crystal grain size, and as a result of various studies, the copper alloy wire for springs that achieves the above-described object Is as follows.
(1) Ni is contained in 3.4 to 4.2% by mass, Si is contained in 0.7 to 1.0% by mass, Zn is contained in 0.4 to 0.6% by mass, and Sn is contained in 0.1 to 0.5%. A copper alloy wire for springs comprising 0.05% to 0.25% by mass of Mg and 0.05% by mass of the balance, copper and inevitable impurities,
The average crystal grain size is more than 5 μm and not more than 50 μm, the average size of the Ni—Si intermetallic compound is 5 nm to 50 nm,
A copper alloy wire for springs having a tensile strength of 800 MPa to 1100 MPa and an electrical conductivity of 30 to 45% IACS.
(2) The copper alloy wire for a spring according to the above (1), containing 0.03 to 1.0% by mass in total of one or more of Cr, Mn, Zr, Fe, Co and Ag.
(3) A spring formed by winding the copper alloy wire for a spring according to the above (1) or (2).
(4) The spring according to (3) above, which is a coil spring or a deformed wire spring.
(5) After applying initial stress to the coil spring according to the above (4) and temporarily loading it, the initial stress is applied again and held at 150 ° C. for 1000 hours, and then the load loss is 20% or less. A spring characterized by
(6) The spring according to (5) above, wherein the initial stress is 400 to 500 MPa.
(7) A method for producing a copper alloy wire for a spring according to (1) or (2) above,
After melting and casting, a hot wire is formed to form a rough drawn wire, and then at least each process of solution heat treatment and aging heat treatment is performed,
The solution heat treatment is performed once at 800 to 1000 ° C. for 1 second to 10 seconds,
The method for producing a copper alloy wire for a spring, wherein the aging heat treatment is performed at 300 to 500 ° C. for 0.5 to 5 hours.
(8) A method for manufacturing a spring, further comprising coil processing for forming a spring by winding a wire having a predetermined wire diameter after the solution treatment in the manufacturing method according to (7).
本発明によれば、車載用途などの導電性を有するばね用銅合金線材において、(1)高い接圧を維持するため高い強度、(2)電流をロスなく通達するための高い導電性、(3)半導体で発生した熱を逃がすための高い熱伝導性、及び(4)熱による耐へたり性をバランスよく有する銅合金を提供することができる。 According to the present invention, in a copper alloy wire for springs having electrical conductivity such as in-vehicle use, (1) high strength to maintain high contact pressure, (2) high conductivity to pass current without loss, ( 3) It is possible to provide a copper alloy having a high balance between high thermal conductivity for releasing heat generated in a semiconductor and (4) sag resistance due to heat.
以下、本発明の実施形態を、図面を参照しながら詳細に説明する。なお、本実施形態に係るばね用銅合金の形状は特に制限されないが、「線材」が好ましい。ばね用銅合金が線材である場合、その線経または円相当直径は0.1〜2.0mm、好ましくは0.5〜1.0mmである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The shape of the spring copper alloy according to this embodiment is not particularly limited, but “wire” is preferable. When the spring copper alloy is a wire, the wire diameter or equivalent circle diameter is 0.1 to 2.0 mm, preferably 0.5 to 1.0 mm.
(1)化学組成及び結晶組織
[Ni、及びSi]
Niを3.4〜4.2質量%、Siを0.7〜1.0質量%をCu中に含有することで、NiとSiからなる化合物を生じ、強度、硬度が向上すると共に導電率も回復できる。いわゆる析出強化を発現する元素である。その比率(Ni/Si)は3〜5が望ましい。Ni量が3.4質量%以下、Si量が0.7質量%以下では、析出強化量が少なく、逆に、Ni量が4.2質量%以上、Si量が1.0質量%以上では、その効果が飽和すると共に、伸線加工の割れが顕著となる。
(1) Chemical composition and crystal structure [Ni and Si]
By containing 3.4 to 4.2% by mass of Ni and 0.7 to 1.0% by mass of Si in Cu, a compound composed of Ni and Si is produced, and the strength and hardness are improved and the conductivity is increased. Can also recover. It is an element that develops so-called precipitation strengthening. The ratio (Ni / Si) is preferably 3-5. When the Ni content is 3.4 mass% or less and the Si content is 0.7 mass% or less, the precipitation strengthening amount is small. Conversely, when the Ni content is 4.2 mass% or more and the Si content is 1.0 mass% or more, The effect is saturated and cracks in the wire drawing become prominent.
[Zn]
Znは加熱によりはんだとの密着性が低下することを防止する効果を有する。その効果は0.4質量%未満では不十分で、0.6質量%を超えると、その効果が飽和する。
また、過剰な添加は導電率の低下を招く。
[Zn]
Zn has the effect of preventing the adhesiveness with the solder from being lowered by heating. The effect is insufficient if it is less than 0.4% by mass, and if it exceeds 0.6% by mass, the effect is saturated.
Further, excessive addition causes a decrease in conductivity.
[Sn]
Snは固溶強化と耐へたり性(荷重ロス)に寄与する。0.1質量%未満ではその効果が見られず、0.5質量%を超えると、導電性を阻害する。
[Sn]
Sn contributes to solid solution strengthening and sag resistance (load loss). If it is less than 0.1% by mass, the effect is not observed, and if it exceeds 0.5% by mass, the conductivity is inhibited.
[Mg]
Mgは固溶強化と耐へたり性(荷重ロス)に寄与する。0.05質量%未満ではその効果が現れず、0.25質量%を超えるとその効果が飽和する。また、Mg添加により鋳造時の鋳塊の割れを防止する効果があり、その効果にはこの添加量が最適である。
[Mg]
Mg contributes to solid solution strengthening and sag resistance (load loss). If it is less than 0.05% by mass, the effect does not appear, and if it exceeds 0.25% by mass, the effect is saturated. Further, the addition of Mg has an effect of preventing cracking of the ingot at the time of casting, and this addition amount is optimal for the effect.
[Cr、Mn、Zr、Fe、Co及びAg]
任意成分として、Cr、Mn、Zr、Fe、Co及びAgの1種以上を合計で0.03〜1.0質量%の範囲で添加してもよい。これらの元素は、固溶強化により特性向上に寄与する。0.03質量%未満ではその効果が認められず、1.0質量%以上では導電率を低下させる。
[Cr, Mn, Zr, Fe, Co and Ag]
As an optional component, one or more of Cr, Mn, Zr, Fe, Co, and Ag may be added in the range of 0.03 to 1.0 mass% in total. These elements contribute to the improvement of properties by solid solution strengthening. If it is less than 0.03% by mass, the effect is not recognized, and if it is 1.0% by mass or more, the conductivity is lowered.
[平均結晶粒径]
結晶粒径は、耐へたり性(荷重ロス)と関係する。本実施形態では、結晶粒径の平均値(平均結晶粒径)が5μm以下であれば、耐へたり性(荷重ロス)が悪くなり、50μmを超えると所望の強度を得ることができない。したがって平均結晶粒径は、5μmを超え50μm以下とする。
[Average crystal grain size]
The crystal grain size is related to sag resistance (load loss). In the present embodiment, if the average value of the crystal grain size (average crystal grain size) is 5 μm or less, the sag resistance (load loss) deteriorates, and if it exceeds 50 μm, the desired strength cannot be obtained. Therefore, the average crystal grain size is more than 5 μm and not more than 50 μm.
[Ni−Si析出物の平均サイズ]
Ni−Si析出物の平均サイズは、5nm〜50nmである。Ni−Si析出物の平均サイズが5nm未満であると、導電率が低く、所望の強度も得られず、また、50nmを超えると所望の強度を得ることができない。なおここでサイズとは、Ni−Si析出物の断面をみたときの長径の長さを指し、平均サイズとはその平均値をとったものである。
[Average size of Ni-Si precipitates]
The average size of the Ni—Si precipitate is 5 nm to 50 nm. If the average size of the Ni—Si precipitates is less than 5 nm, the electrical conductivity is low and the desired strength cannot be obtained, and if it exceeds 50 nm, the desired strength cannot be obtained. Here, the size refers to the length of the major axis when the cross section of the Ni—Si precipitate is viewed, and the average size is the average value.
(2)ばね用銅合金線材の特性
[引張強度]
ばね材として最適な特性を得るためには、800MPa未満では強度不足で、1100MPaを超えると、下記に示す耐へたり性の劣化が著しい。よって引張強度は、800MPa〜1100MPaの範囲内の値とする。なお、この特性を得るためには、Ni−Si析出物の平均サイズが5nm〜50nmで、且つ平均結晶粒径が5μm超50μm以下の金属組織を呈する。
(2) Properties of spring copper alloy wire [Tensile strength]
In order to obtain the optimum characteristics as a spring material, the strength is insufficient when it is less than 800 MPa, and when it exceeds 1100 MPa, the deterioration of sag resistance shown below is remarkable. Accordingly, the tensile strength is set to a value within the range of 800 MPa to 1100 MPa. In order to obtain this characteristic, the Ni—Si precipitate has an average size of 5 nm to 50 nm and an average crystal grain size of more than 5 μm and 50 μm or less.
[導電率]
導電率は30%IACS以下では、その熱を逃がす効果が不足する。もちろん、導電率は高い程良いが、コルソン合金の場合、45%IACS以上になるとNi−Si化合物の平均サイズが50nmを超えて粗大化し、強度とのバランスが悪くなる。よって導電率は30〜45%IACSの範囲内の値とする。
[conductivity]
If the conductivity is 30% IACS or less, the effect of releasing the heat is insufficient. Of course, the higher the electrical conductivity, the better. However, in the case of a Corson alloy, when it becomes 45% IACS or more, the average size of the Ni-Si compound becomes larger than 50 nm, and the balance with the strength becomes worse. Therefore, the conductivity is set to a value within the range of 30 to 45% IACS.
[荷重ロス]
耐へたり性の数値化のため、ばねの荷重ロス試験を行う。本実施形態では、初期応力400〜500MPa、150℃、1000時間の環境条件とする。荷重ロスは、後述する式(1)を用いて算出され、30%以下であれば、ばね用銅合金線材として十分である。
[Load loss]
A spring load loss test is performed to quantify the sag resistance. In this embodiment, it is set as the environmental conditions of initial stress 400-500 MPa, 150 degreeC, and 1000 hours. The load loss is calculated using the formula (1) described later, and if it is 30% or less, it is sufficient as a copper alloy wire for a spring.
ばねの荷重ロスと平均結晶粒径との関係をプロットしたものを図1に示す。同図において、平均結晶粒径が大きくなるにつれて、荷重ロスが小さくなる傾向があり、特に10μm以上の粒径では、荷重ロス10〜13%と低い値になっていることが分かる。本実施形態のばね用銅合金線材は、5μmを超える平均結晶粒径を有するため、荷重ロス20%以下とすることができる。 A plot of the relationship between spring load loss and average grain size is shown in FIG. In the figure, it can be seen that the load loss tends to decrease as the average crystal grain size increases, and in particular, the load loss is as low as 10 to 13% at a particle size of 10 μm or more. Since the copper alloy wire for springs of this embodiment has an average crystal grain size exceeding 5 μm, the load loss can be 20% or less.
図2は、ばねの荷重ロスと導電率との関係を示す図である。同図において、グループG1は、本実施形態の代表例を示す。
また、グループG2は、従来材料であるベリリウム銅、グループG3は、従来材料であるエレメタル(登録商標)を示す。他のプロットは、本実施形態のコルソン合金以外の、従来材料である他のコルソン合金である。
FIG. 2 is a diagram showing the relationship between the load loss of the spring and the conductivity. In the figure, a group G1 shows a representative example of this embodiment.
Group G2 represents beryllium copper, which is a conventional material, and group G3 represents Elemetal (registered trademark), which is a conventional material. Other plots are other Corson alloys which are conventional materials other than the Corson alloy of this embodiment.
図2に示すように、導電率を上げるためには、一般に純銅に近い成分を選択する必要があり、また、破線A〜C(破線A:平均結晶粒径0.2μm、破線B:平均結晶粒径1μm、破線C:平均結晶粒径4μm)で示す通り、同じ結晶粒径である場合には、ばねのへたり、すなわち荷重ロスが増加する傾向にある。一方、本実施形態では、同図に示すように、従来材料よりも高い導電率を確保しながら、低い荷重ロスを達成することができ、用途を大幅に広げることができる。 As shown in FIG. 2, in order to increase the conductivity, it is generally necessary to select a component close to pure copper, and broken lines A to C (broken line A: average crystal grain size 0.2 μm, broken line B: average crystal) As shown by a grain size of 1 μm, a broken line C: an average crystal grain size of 4 μm), when the crystal grain size is the same, spring sag, that is, load loss tends to increase. On the other hand, in this embodiment, as shown in the figure, a low load loss can be achieved while securing a higher conductivity than that of the conventional material, and the application can be greatly expanded.
(3)ばね用銅合金線材およびばねの製造方法
本実施形態のばね用銅合金線材及びばねの製造方法は、[1]溶解、[2]鋳造、[3]熱間加工、[4]伸線加工、[5]第1熱処理(溶体化熱処理)、[6]冷間加工、[7]第2熱処理(時効熱処理)及び[8]コイル加工の各工程を、順次行うことを含む製造方法により製造することができる。
(3) Copper alloy wire for spring and method for producing spring The copper alloy wire for spring and the method for producing the spring of the present embodiment include [1] melting, [2] casting, [3] hot working, [4] elongation. Manufacturing method including sequentially performing each step of wire processing, [5] first heat treatment (solution heat treatment), [6] cold work, [7] second heat treatment (aging heat treatment) and [8] coil processing Can be manufactured.
[1]溶解
溶解は、上述した銅合金組成になるように各成分の分量を調整して溶製する。
[1] Melting Melting is performed by adjusting the amount of each component so that the copper alloy composition described above is obtained.
[2]鋳造及び[3]熱間加工
溶解鋳造温度は1200〜1300℃が望ましく、直径100mm〜300mmの円柱状のビレットを製造する。次いで、800〜1000℃で1時間〜5時間保持された後、熱間押出機にて直径10〜50mm(荒引線)へ加工する。
[2] Casting and [3] Hot working The melting casting temperature is desirably 1200 to 1300 ° C., and a cylindrical billet having a diameter of 100 mm to 300 mm is manufactured. Subsequently, after hold | maintaining at 800-1000 degreeC for 1 hour-5 hours, it processes to a diameter of 10-50 mm (rough drawing line) with a hot extruder.
[4]伸線加工
伸線と表面研削(皮むき)を少なくとも1回行い、例えば線径または円相当直径0.5〜2.6mmの線材に仕上げる。
[4] Wire drawing The wire drawing and surface grinding (peeling) are performed at least once to finish, for example, a wire having a wire diameter or equivalent circle diameter of 0.5 to 2.6 mm.
[5]第1熱処理(溶体化熱処理)
800〜1000℃の温度で、1秒〜10秒の熱処理(溶体化熱処理)を1回行う。800℃以下では再結晶せず、結晶粒径のばらつきが大きい。1000℃以上では粒径が所望のサイズ以上に粗大化して、次の伸線工程で表面の微細な割れや模様を発生させる。また、1秒以下では同様に再結晶せず、10秒以上では粒径の粗大化を起こす。また、生産性・生産効率の面、省エネルギーの面からも10秒以下で行い、それも1回することを特徴としている。
[5] First heat treatment (solution heat treatment)
Heat treatment (solution heat treatment) is performed once at a temperature of 800 to 1000 ° C. for 1 to 10 seconds. At 800 ° C. or lower, recrystallization does not occur and the crystal grain size varies greatly. Above 1000 ° C., the particle size becomes coarser than the desired size, and fine cracks and patterns on the surface are generated in the next wire drawing step. Similarly, recrystallization does not occur in 1 second or less, and coarsening occurs in 10 seconds or more. In terms of productivity, production efficiency and energy saving, it is performed in 10 seconds or less, and it is also performed once.
なお、この熱処理は連続焼鈍で行われることが望ましい。連続焼鈍は生産性の高い線材の焼鈍方式で、加熱した炉内に線材を連続的に通す走間焼鈍、あるいは、線材に電流を流し自身から発生するジュール熱により焼鈍を行う電流焼鈍である。 This heat treatment is desirably performed by continuous annealing. Continuous annealing is a highly productive annealing method of wire rods, and is a running annealing in which a wire rod is continuously passed through a heated furnace, or a current annealing in which an electric current is passed through a wire rod and annealing is performed by Joule heat generated from itself.
[6]冷間加工(伸線)
次いで、冷間加工を加工率0〜99%で行って線材を形成することができる。冷間加工率は、好ましくは0〜90%、更に好ましくは、0〜50%である。この冷間加工では、溶体化熱処理で形成された結晶粒が延伸すると、伸線方向に垂直方向の断面の結晶粒径が次第に小さくなっていく。つまり、断面減少率に従って、結晶粒径が細かく、小さくなることになる。例えば、冷間加工率50%での結晶粒径は、冷間加工率0%の場合と比較して約1/2に低下する。よって、最適な冷間加工率を選択することにより、所望の結晶粒径を得ることができる。
[6] Cold working (drawing)
Then, cold working can be performed at a working rate of 0 to 99% to form a wire. The cold working rate is preferably 0 to 90%, and more preferably 0 to 50%. In this cold working, when the crystal grains formed by the solution heat treatment are stretched, the crystal grain diameter in the cross section perpendicular to the wire drawing direction is gradually reduced. That is, the crystal grain size becomes fine and small according to the cross-sectional reduction rate. For example, the crystal grain size at a cold work rate of 50% is reduced to about ½ compared to the case of a cold work rate of 0%. Therefore, a desired crystal grain size can be obtained by selecting an optimum cold working rate.
[7]第2熱処理(時効熱処理)
1回の第1熱処理(溶体化熱処理)と冷間加工(伸線)を行った線材を300〜500℃で時効熱処理を行う。前工程の冷間加工率が0〜90%の場合は時効熱処理温度350〜450℃、冷間加工率が0〜50%の場合は400〜500℃であるのが好ましい。その際、±10℃以内の均熱時間(保持時間)は0.5時間〜5時間、好ましくは1時間〜4時間、より好ましくは1時間〜2時間である。
[7] Second heat treatment (aging heat treatment)
An aging heat treatment is performed at 300 to 500 ° C. on the wire subjected to the first heat treatment (solution heat treatment) and the cold working (drawing). When the cold working rate in the previous step is 0 to 90%, the aging heat treatment temperature is preferably 350 to 450 ° C., and when the cold working rate is 0 to 50%, it is preferably 400 to 500 ° C. At that time, the soaking time (holding time) within ± 10 ° C. is 0.5 hour to 5 hours, preferably 1 hour to 4 hours, more preferably 1 hour to 2 hours.
本時効熱処理温度が上記の温度範囲より低い場合、あるいは本時効熱処理時間が上記処理時間よりも短い場合は、所望の強度と導電率を得ることができない。また、逆に本時効熱処理温度が上記の温度範囲より高い場合、あるいは本時効熱処理時間が上記処理時間よりも長い場合は、析出状態が過時効となり、所望の強度を得ることができない。なお、この第2熱処理では結晶粒径は変化しない。 When the aging heat treatment temperature is lower than the above temperature range, or when the aging heat treatment time is shorter than the treatment time, desired strength and conductivity cannot be obtained. On the contrary, when the aging heat treatment temperature is higher than the above temperature range, or when the aging heat treatment time is longer than the treatment time, the precipitation state is overaged, and a desired strength cannot be obtained. In this second heat treatment, the crystal grain size does not change.
その後、必要に応じて加工率0〜90%で冷間加工(第2冷間加工)を行ってもよい。このときの冷間加工率は、好ましくは0〜50%である。 Thereafter, cold working (second cold working) may be performed at a working rate of 0 to 90% as necessary. The cold working rate at this time is preferably 0 to 50%.
[8]コイル加工
上記工程により所定の線径に仕上げた線材を巻回して、ばねを成形する。ばねの形状に制限はないが、後述するコイルばねや、異形線ばねなどに成形することができる。
[8] Coil processing The wire finished to a predetermined wire diameter by the above process is wound to form a spring. Although there is no restriction | limiting in the shape of a spring, It can shape | mold to the coil spring mentioned later, a deformed wire spring, etc.
[製造方法の変形例]
ばね用銅合金線材の製造方法を説明したが、製造方法はこれに限られず、例えば上記製造方法の[5]第1熱処理〜[8]コイル加工(以下、製造工程(I)という)において、[6]冷間加工を省略しても良い。すなわち、溶体化熱処理→時効熱処理→コイル加工(以下、製造工程(II)という)の順序で各工程が行われてもよい。
[Modification of manufacturing method]
Although the manufacturing method of the copper alloy wire for springs was demonstrated, a manufacturing method is not restricted to this, For example, in [5] 1st heat processing-[8] coil processing (henceforth manufacturing process (I)) of the said manufacturing method, [6] Cold working may be omitted. That is, each process may be performed in the order of solution heat treatment → aging heat treatment → coil processing (hereinafter referred to as manufacturing process (II)).
また、上記製造方法の[5]第1熱処理〜[8]コイル加工において、[7]第2熱処理と[8]コイル加工の順序を入れ替えてもよい。すなわち、溶体化熱処理→冷間加工(伸線)→コイル加工→時効熱処理(以下、製造工程(III)という)の順序で各工程が行われてもよい。この場合にも、コイル加工後に、300〜500℃で0.5時間〜5時間の時効熱処理が行われる。上記温度及び時間の範囲外であると、所望の強度ができない。また、この順序で行われる製法における時効熱処理でも、結晶粒径は変化しない。また、用途に応じて、コイル加工後の時効熱処理を行わなくてもよい。 In the [5] first heat treatment to [8] coil processing of the above manufacturing method, the order of [7] second heat treatment and [8] coil processing may be switched. That is, each process may be performed in the order of solution heat treatment → cold working (drawing) → coil processing → aging heat treatment (hereinafter referred to as manufacturing process (III)). Also in this case, after coil processing, an aging heat treatment is performed at 300 to 500 ° C. for 0.5 to 5 hours. If the temperature and time are out of the ranges, the desired strength cannot be obtained. In addition, the crystal grain size does not change even in the aging heat treatment in the manufacturing method performed in this order. Moreover, it is not necessary to perform the aging heat processing after coil processing according to a use.
また、上記製造方法の[5]第1熱処理〜[8]コイル加工において、[6]冷間加工と[7]第2熱処理の順序を入れ替えてもよい。すなわち、溶体化熱処理→時効熱処理→冷間加工(伸線)→コイル加工(以下、製造工程(IV)という)の順序で各工程が行われてもよい。 Moreover, in [5] 1st heat treatment-[8] coil processing of the above-mentioned manufacturing method, the order of [6] cold work and [7] 2nd heat treatment may be changed. That is, each process may be performed in the order of solution heat treatment → aging heat treatment → cold processing (drawing) → coil processing (hereinafter referred to as manufacturing process (IV)).
また、上記いずれかの製造方法によって作製されたばねを、還元雰囲気にて更に熱処理(第3熱処理)することもでき、例えば窒素雰囲気で、400℃、2時間で熱処理することができる。これにより、より優れた導電率および引張強度を確保することが可能となる。 Further, the spring produced by any one of the above manufacturing methods can be further heat-treated (third heat treatment) in a reducing atmosphere, for example, heat-treated in a nitrogen atmosphere at 400 ° C. for 2 hours. Thereby, it becomes possible to ensure more excellent electrical conductivity and tensile strength.
(4)ばね用銅合金線材で形成されたばねの構成
上記ばね用銅合金線材によって得られたばねの構成を、図3(a)〜(f)に示す。ばねは、図3(a)に示すような円筒形コイルばね1であってもよいし、円錐形コイルばね2であってもよい(図3(b))。また、部分的にコイル径が変化するばね、例えば鼓形コイルばね3(図3(c))や、樽形コイルばね4(図3(d))であってもよい。また、楕円状に巻回された楕円形コイルばね5(図3(e))であってもよい。更に、コイルピッチが変化している不等ピッチばね、例えば片絞り形コイルばね6(図3(f))であってもよい。このようなコイルばねの断面形状は、丸形(真円、楕円)や角形などがあるが、これに限られない。
(4) Structure of spring formed of copper alloy wire for spring The structure of the spring obtained by the copper alloy wire for spring is shown in FIGS. The spring may be a
また、上記ばね用銅合金線材によって得られたばねは、片持ち梁のような、片端が固定され且つ反対側の端部付近に荷重が掛かる異形線ばねにも適用される。例えば、ばねは、ストレート形ばね7(図4(a))であってもよいし、一段曲げ形ばね8や(図4(b))、二段曲げ形ばね9(図4(c))、フック形ばね10(図4(d))であってもよい。また、ダブルトーション形ばね11(図4(e))であってもよい。このような異形線ばねの断面形状は、角形、平丸形、テーパ形などがあるが、これに限られない。 The spring obtained by the copper alloy wire for spring is also applied to a deformed wire spring having one end fixed and a load applied to the vicinity of the opposite end, such as a cantilever beam. For example, the spring may be a straight spring 7 (FIG. 4A), a one-stage bending spring 8 (FIG. 4B), or a two-stage bending spring 9 (FIG. 4C). The hook-shaped spring 10 (FIG. 4D) may be used. Further, it may be a double torsion spring 11 (FIG. 4E). The cross-sectional shape of such a deformed wire spring includes, but is not limited to, a square shape, a flat round shape, and a tapered shape.
ここでばね指数は、図3(a)に代表例として示すように、線材の線径または円相当直径dと、コイル中心径Dとの比(D/d)で表される。本実施形態のばねにおいて、線径または円相当直径dは、0.1mm〜2.0mm、好ましくは0.5mm〜1.0mmであり、かつばね指数D/dは、5〜15の範囲であることが望ましい。線径または円相当直径d及びばね指数D/dがそれぞれ上記範囲内であれば、高強度導電性ばねとして十分な性能が発揮される。 Here, the spring index is represented by the ratio (D / d) of the wire diameter or equivalent circle diameter d of the wire to the coil center diameter D, as shown as a representative example in FIG. In the spring of this embodiment, the wire diameter or equivalent circle diameter d is 0.1 mm to 2.0 mm, preferably 0.5 mm to 1.0 mm, and the spring index D / d is in the range of 5 to 15. It is desirable to be. If the wire diameter or equivalent circle diameter d and the spring index D / d are within the above ranges, sufficient performance as a high-strength conductive spring is exhibited.
以下、本発明の実施例を説明する。
Ni、Si、Zn、Sn、Mgと、選択的に添加するCr、Mn、Zr、Fe、CoおよびAgを、表1に示す含有量(質量%)になるように溶製し、溶解鋳造温度1200〜1300℃で、直径100mm〜300mmの円柱状のビレットを製造した。次いで、800〜1000℃で1〜5時間保持した後、熱間押出機にて直径10mm〜50mmへ加工した。
Examples of the present invention will be described below.
Ni, Si, Zn, Sn, Mg, and selectively added Cr, Mn, Zr, Fe, Co, and Ag are melted so as to have the contents (mass%) shown in Table 1, and melt casting temperature A cylindrical billet having a diameter of 100 mm to 300 mm was manufactured at 1200 to 1300 ° C. Subsequently, after hold | maintaining at 800-1000 degreeC for 1 to 5 hours, it processed into the diameter 10mm-50mm with the hot extruder.
伸線と表面研削(皮むき)を繰り返し、線径または円相当直径0.5mm〜2.6mmの線材に仕上げて、800〜1000℃、好ましくは、850〜940℃、1〜10秒の熱処理(溶体化熱処理)を1回行った。 Wire drawing and surface grinding (peeling) are repeated to finish the wire with a wire diameter or equivalent circle diameter of 0.5 mm to 2.6 mm, and heat treatment of 800 to 1000 ° C., preferably 850 to 940 ° C., 1 to 10 seconds (Solution heat treatment) was performed once.
次いで、時効熱処理を300〜500℃、0.5時間〜5時間行い、最終伸線加工を行って、直径0.5mm〜0.8mmの線材に仕上げた。 Next, aging heat treatment was performed at 300 to 500 ° C. for 0.5 to 5 hours, and final wire drawing was performed to finish a wire having a diameter of 0.5 to 0.8 mm.
得られた線材を、専用のコイリングマシンにて、所定のばね指数を持つコイルばねへ加工した。 The obtained wire was processed into a coil spring having a predetermined spring index by a dedicated coiling machine.
また、上記の製造工程の他、溶体化熱処理、時効熱処理及びコイル加工の各工程の間のいずれかに冷間加工を加えたもの、あるいは時効熱処理とコイル加工の順序を入れ替えたものを実施した。線材作製からコイルまでの工程を以下に示す。
(I)溶体化熱処理→冷間加工→時効熱処理→コイル加工
(II)溶体化熱処理→時効熱処理→コイル加工
(III)溶体化熱処理→冷間加工(伸線)→コイル加工→時効熱処理
(IV)溶体化熱処理→時効熱処理→冷間加工(伸線)→コイル加工
上記いずれの工程でも、材料の結晶粒径と特性の荷重ロスとの関係が整理できた。
In addition to the above manufacturing steps, a solution obtained by adding cold working to any of the steps of solution heat treatment, aging heat treatment and coil processing, or changing the order of aging heat treatment and coil processing was performed. . The process from wire preparation to coil is shown below.
(I) Solution heat treatment → Cold working → Aging heat treatment → Coil processing (II) Solution heat treatment → Aging heat treatment → Coil processing (III) Solution heat treatment → Cold working (drawing) → Coil processing → Aging heat treatment (IV ) Solution heat treatment-> aging heat treatment-> cold working (drawing)-> coil processing In any of the above steps, the relationship between the crystal grain size of the material and the load loss of the characteristics could be arranged.
更に、比較例として、元素の含有量や処理条件を表2に示す値に変えたこと以外は、上記実施例と同様の方法にてコイルばねをそれぞれ製造した。 Further, as comparative examples, coil springs were produced in the same manner as in the above examples, except that the element content and processing conditions were changed to the values shown in Table 2.
次に、実施例及び比較例を、以下に示す方法により測定、評価した。
(A)引張強度
JIS Z 2241に準拠して引張強度測定を実施した。各実施例(比較例)について3本測定し、その平均値を求めた。引張強度は、800MPa以上1100MPa以下を合格レベルとした。
Next, Examples and Comparative Examples were measured and evaluated by the following methods.
(A) Tensile strength Tensile strength was measured according to JIS Z 2241. Three samples were measured for each example (comparative example), and the average value was determined. A tensile strength of 800 MPa to 1100 MPa was regarded as an acceptable level.
(B)導電率
JIS Z 0505に準拠して導電率測定を実施した。各実施例(比較例)についてそれぞれ3本測定し、その平均値を求めた。導電率は、30%IACS以上45%IACS以下を合格レベルとした。
(B) Conductivity Conductivity was measured according to JIS Z 0505. Three samples were measured for each example (comparative example), and the average value was determined. The electrical conductivity was 30% IACS or more and 45% IACS or less as an acceptable level.
(C)結晶粒径測定
JIS Z 0501に準拠して結晶粒径測定を実施した。しかし、さらに精度を高めるため、このJISに記載されている切断法を線材の長手方向に垂直な面に実施し、測定した。測定には光学顕微鏡(オリンパス社製、装置名「GX51」)、走査型電子顕微鏡(日立製作所社製、装置名「SEMEDX TypeM」)を用いて、最適な倍率(×100〜×1000)で任意の三カ所の写真を撮影して50〜200個の結晶粒の測定を行って解析し、その平均値を算出した。平均結晶粒径は、5μm超50μm以下を合格レベルとした。
(C) Crystal grain size measurement Crystal grain size measurement was performed in accordance with JIS Z 0501. However, in order to further improve the accuracy, the cutting method described in this JIS was performed on a surface perpendicular to the longitudinal direction of the wire rod and measured. For measurement, an optical microscope (Olympus, device name “GX51”) and a scanning electron microscope (Hitachi, Ltd., device name “SEMEDX TypeM”) are used at an optimum magnification (× 100 to × 1000). The three places were photographed, 50 to 200 crystal grains were measured and analyzed, and the average value was calculated. The average crystal grain size was more than 5 μm and 50 μm or less.
(D)Si−Ni析出物のサイズ測定
ウルトラミクロトーム(Leica社製、装置名「EM UC7」)を用いて観察用の試験片を作成し、透過電子顕微鏡(日本電子社製、装置名「JEM−3010」)にて10000〜50000倍の写真を撮影し、10〜100個の析出物の平均サイズを画像処理ソフト(日本電子社製、ソフトウェア名「イメージΣ」)にて二値化処理を行って求めた。Ni−Si析出物の平均サイズは、5nm以上50nm以下を合格レベルとした。
(D) Size measurement of Si-Ni precipitates An observation specimen was prepared using an ultramicrotome (manufactured by Leica, device name “EM UC7”), and a transmission electron microscope (manufactured by JEOL Ltd., device name “JEM”). -3010 "), and photographed 10,000 to 50,000 times, and the average size of 10 to 100 precipitates was binarized with image processing software (manufactured by JEOL Ltd., software name" Image Σ "). I went and asked. The average size of the Ni—Si precipitates was determined to be an acceptable level from 5 nm to 50 nm.
(E)荷重ロス試験
図5に示すように、得られたコイルばねAを、ばね単体で荷重試験機にセットし、所定の締付荷重P1(実使用応力:400MPa)となるように初期応力を加え、その時のばね高さH1(以下、初期ばねセット高さという)を測定した。そして、一旦除荷した後、上記初期応力を再び付与し実際に使用する状態でH1の高さとなるように治具などを使用してばねを室温で締付けてセットした。そのセット状態のまま、150℃の大気圧雰囲気中に投入して1000時間保持し、その後、取り出して室温まで冷却した後、セット状態から治具を外し、除荷した。
(E) Load Loss Test As shown in FIG. 5, the obtained coil spring A is set in a load tester as a single spring, and the initial stress is set to a predetermined tightening load P1 (actual use stress: 400 MPa). The spring height H1 at that time (hereinafter referred to as the initial spring set height) was measured. Then, after unloading once, the initial stress was reapplied, and the spring was tightened at room temperature using a jig or the like so as to have a height of H1 when actually used. In the set state, it was put into an atmospheric pressure atmosphere at 150 ° C. and held for 1000 hours, then taken out and cooled to room temperature, and then the jig was removed from the set state and unloaded.
ばねを再び荷重試験機にセットして初期ばねセット高さH1における試験後の締付荷重P2を測定した。これらの値P1,P2から、下記式(1)を用いて荷重ロスを算出した。荷重ロスは、30%以下を合格レベルとした。
(荷重ロス)=(P1−P2)/P1×100 … 式(1)
The spring was set on the load tester again, and the tightening load P2 after the test at the initial spring set height H1 was measured. From these values P1 and P2, the load loss was calculated using the following formula (1). The load loss was 30% or less as an acceptable level.
(Load loss) = (P1−P2) / P1 × 100 (1)
上記方法により測定した結果を、表1及び表2に示す。
表1から、次のことが明らかである。すなわち、実施例1〜10のばねはいずれも、高い引張強度、高い導電率(高熱伝導率)、且つ高い耐へたり性を示し、これら特性をバランス良く有することが分かった。 From Table 1, the following is clear. That is, it was found that all the springs of Examples 1 to 10 exhibited high tensile strength, high electrical conductivity (high thermal conductivity), and high sag resistance, and had these characteristics in a well-balanced manner.
これに対し、表2に示すように、比較例1では、結晶粒径及び析出物のサイズが本発明の範囲外であり、引張強度が劣り、荷重ロスが大きかった。比較例2では、溶体化熱処理の温度及び時間が本発明の範囲外であり、引張強度及び導電率が劣り、荷重ロスが大きかった。比較例3では、Ni、Si、Zn及びMgの含有量が本発明の範囲外であり、引張強度が劣り、荷重ロスが大きかった。比較例4では、Ni及びSiの含有量が本発明の範囲外であり、加工割れが生じた。比較例5では、Sn及びMnの添加量が過剰であり、導電率が劣り、荷重ロスが大きかった。比較例6では、溶体化熱処理温度及び結晶粒径が本発明の範囲外であり、荷重ロスが大きかった。 On the other hand, as shown in Table 2, in Comparative Example 1, the crystal grain size and the size of the precipitate were outside the range of the present invention, the tensile strength was inferior, and the load loss was large. In Comparative Example 2, the solution heat treatment temperature and time were outside the scope of the present invention, the tensile strength and conductivity were inferior, and the load loss was large. In Comparative Example 3, the contents of Ni, Si, Zn and Mg were outside the range of the present invention, the tensile strength was inferior, and the load loss was large. In Comparative Example 4, the content of Ni and Si was outside the scope of the present invention, and processing cracks occurred. In Comparative Example 5, the amount of Sn and Mn added was excessive, the conductivity was inferior, and the load loss was large. In Comparative Example 6, the solution heat treatment temperature and the crystal grain size were outside the scope of the present invention, and the load loss was large.
1 円筒形コイルばね
2 円錐形コイルばね
3 鼓形コイルばね
4 樽形コイルばね
5 楕円形コイルばね
6 片絞り形コイルばね
7 ストレート形ばね
8 一段曲げ形ばね
9 二段曲げ形ばね
10 フック形ばね
11 ダブルトーション形ばね
DESCRIPTION OF
Claims (8)
平均結晶粒径が5μm超50μm以下、Ni−Si金属間化合物の平均サイズが5nm〜50nmであり、
引張強度が800MPa〜1100MPa、且つ導電率が30〜45%IACSであることを特徴とする、ばね用銅合金線材。 It contains 3.4 to 4.2% by mass of Ni, 0.7 to 1.0% by mass of Si, 0.4 to 0.6% by mass of Zn, 0.1 to 0.5% by mass of Sn, A copper alloy wire for spring comprising 0.05 to 0.25% by mass of Mg, the balance being made of copper and inevitable impurities,
The average crystal grain size is more than 5 μm and not more than 50 μm, the average size of the Ni—Si intermetallic compound is 5 nm to 50 nm,
A copper alloy wire for springs having a tensile strength of 800 MPa to 1100 MPa and an electrical conductivity of 30 to 45% IACS.
溶解、鋳造後に、熱間加工を経て荒引線を形成し、その後、少なくとも溶体化熱処理および時効熱処理の各工程を行い、
前記溶体化熱処理は、800〜1000℃、1秒〜10秒の熱処理を1回行い、
前記時効熱処理は、300〜500℃、0.5時間〜5時間で行われることを特徴とする、ばね用銅合金線材の製造方法。 It is a manufacturing method of the copper alloy wire for springs according to claim 1 or 2,
After melting and casting, a hot wire is formed to form a rough drawn wire, and then at least each process of solution heat treatment and aging heat treatment is performed,
The solution heat treatment is performed once at 800 to 1000 ° C. for 1 second to 10 seconds,
The method for producing a copper alloy wire for a spring, wherein the aging heat treatment is performed at 300 to 500 ° C. for 0.5 to 5 hours.
8. The method for manufacturing a spring according to claim 7, further comprising coil processing for forming a spring by winding a wire having a predetermined wire diameter after the solution treatment in the manufacturing method according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015081281A JP6210563B2 (en) | 2015-04-10 | 2015-04-10 | Copper alloy wire for spring, method for producing copper alloy wire for spring, spring, and method for producing spring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015081281A JP6210563B2 (en) | 2015-04-10 | 2015-04-10 | Copper alloy wire for spring, method for producing copper alloy wire for spring, spring, and method for producing spring |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016199792A true JP2016199792A (en) | 2016-12-01 |
JP6210563B2 JP6210563B2 (en) | 2017-10-11 |
Family
ID=57423376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015081281A Active JP6210563B2 (en) | 2015-04-10 | 2015-04-10 | Copper alloy wire for spring, method for producing copper alloy wire for spring, spring, and method for producing spring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6210563B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7434991B2 (en) | 2020-02-13 | 2024-02-21 | 三菱マテリアル株式会社 | Copper alloy rods and wires, parts for electronic and electrical equipment, terminals and coil springs |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003076672A1 (en) * | 2002-03-12 | 2003-09-18 | The Furukawa Electric Co., Ltd. | High-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics |
JP2006104539A (en) * | 2004-10-06 | 2006-04-20 | Furukawa Electric Co Ltd:The | Copper alloy for coaxial connector excellent in machinability and method for producing the same |
JP2007246931A (en) * | 2006-03-13 | 2007-09-27 | Furukawa Electric Co Ltd:The | Copper alloy for electrical and electronic equipment parts having excellent electric conductivity |
JP2008095186A (en) * | 2006-09-13 | 2008-04-24 | Furukawa Electric Co Ltd:The | Copper-based deposited alloy board for contact material and process for producing the same |
WO2009057788A1 (en) * | 2007-11-01 | 2009-05-07 | The Furukawa Electric Co., Ltd. | Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same |
WO2009104615A1 (en) * | 2008-02-18 | 2009-08-27 | 古河電気工業株式会社 | Copper alloy material |
JP2015034336A (en) * | 2013-07-11 | 2015-02-19 | 古河電気工業株式会社 | Copper alloy sheet material and production method thereof |
-
2015
- 2015-04-10 JP JP2015081281A patent/JP6210563B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003076672A1 (en) * | 2002-03-12 | 2003-09-18 | The Furukawa Electric Co., Ltd. | High-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics |
JP2006104539A (en) * | 2004-10-06 | 2006-04-20 | Furukawa Electric Co Ltd:The | Copper alloy for coaxial connector excellent in machinability and method for producing the same |
JP2007246931A (en) * | 2006-03-13 | 2007-09-27 | Furukawa Electric Co Ltd:The | Copper alloy for electrical and electronic equipment parts having excellent electric conductivity |
JP2008095186A (en) * | 2006-09-13 | 2008-04-24 | Furukawa Electric Co Ltd:The | Copper-based deposited alloy board for contact material and process for producing the same |
US20090202861A1 (en) * | 2006-09-13 | 2009-08-13 | Kuniteru Mihara | Copper-based deposited alloy strip for contact material and process for producing the same |
WO2009057788A1 (en) * | 2007-11-01 | 2009-05-07 | The Furukawa Electric Co., Ltd. | Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same |
WO2009104615A1 (en) * | 2008-02-18 | 2009-08-27 | 古河電気工業株式会社 | Copper alloy material |
JP2015034336A (en) * | 2013-07-11 | 2015-02-19 | 古河電気工業株式会社 | Copper alloy sheet material and production method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7434991B2 (en) | 2020-02-13 | 2024-02-21 | 三菱マテリアル株式会社 | Copper alloy rods and wires, parts for electronic and electrical equipment, terminals and coil springs |
Also Published As
Publication number | Publication date |
---|---|
JP6210563B2 (en) | 2017-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101813772B1 (en) | Aluminum alloy conductor, alum1inum alloy stranded wire, sheathed wire, wire harness, and method for manufacturing aluminum alloy conductor | |
KR101990225B1 (en) | Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material | |
JP6499190B2 (en) | Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method | |
CN114645165B (en) | Aluminum alloy material, and fastening member, structural member, spring member, conductive member, and battery member each made of the same | |
JP5607856B1 (en) | Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method | |
JP4986251B2 (en) | Aluminum alloy conductor | |
WO2016088888A1 (en) | Aluminum alloy wire rod, aluminum alloy stranded conductor, covered conductor, and wire harness, and method for manufacturing aluminum alloy wire rod | |
JP6535019B2 (en) | Terminal Wire | |
US9875822B2 (en) | Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire | |
WO2009119222A1 (en) | High-strength and high-electroconductivity copper alloy pipe, bar, and wire rod | |
KR102474538B1 (en) | Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material | |
JP6147167B2 (en) | Aluminum alloy conductor, aluminum alloy stranded wire, covered electric wire and wire harness | |
JP6440476B2 (en) | Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire and wire harness, and method for producing aluminum alloy wire | |
CN108538426B (en) | Aluminum alloy conductor, insulated wire using same, and method for manufacturing insulated wire | |
KR102453495B1 (en) | Stranded conductors for insulated wires, insulated wires, cords and cables | |
JP2013044038A (en) | Aluminum alloy conductor | |
JPWO2012133634A1 (en) | Aluminum alloy conductor | |
KR20200089653A (en) | Aluminum alloy and cables, wires and spring members using the same | |
WO2017002304A1 (en) | Aluminum alloy wire manufacturing method and alluminum alloy wire | |
US10553327B2 (en) | Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire | |
JP6212946B2 (en) | Aluminum alloy wire excellent in bendability and manufacturing method thereof | |
JP6210563B2 (en) | Copper alloy wire for spring, method for producing copper alloy wire for spring, spring, and method for producing spring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170814 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170907 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6210563 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |