[go: up one dir, main page]

JP2016194051A - Manufacturing method of epoxy resin granular body for semiconductor sealing, and manufacturing method of semiconductor device - Google Patents

Manufacturing method of epoxy resin granular body for semiconductor sealing, and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2016194051A
JP2016194051A JP2016054863A JP2016054863A JP2016194051A JP 2016194051 A JP2016194051 A JP 2016194051A JP 2016054863 A JP2016054863 A JP 2016054863A JP 2016054863 A JP2016054863 A JP 2016054863A JP 2016194051 A JP2016194051 A JP 2016194051A
Authority
JP
Japan
Prior art keywords
epoxy resin
semiconductor
sealing
manufacturing
granule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016054863A
Other languages
Japanese (ja)
Other versions
JP6520779B2 (en
Inventor
伊藤 祐輔
Yusuke Ito
祐輔 伊藤
格 渡部
Itaru Watabe
格 渡部
林 博之
Hiroyuki Hayashi
博之 林
毅 齊藤
Takeshi Saito
毅 齊藤
成哉 東野
Seiya Higashino
成哉 東野
水野 恭宏
Yasuhiro Mizuno
恭宏 水野
住吉 孝文
Takafumi Sumiyoshi
孝文 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Publication of JP2016194051A publication Critical patent/JP2016194051A/en
Application granted granted Critical
Publication of JP6520779B2 publication Critical patent/JP6520779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/852Encapsulations
    • H10H20/854Encapsulations characterised by their material, e.g. epoxy or silicone resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

【課題】生産性に優れ、かつ信頼性に優れた半導体装置を実現することができる半導体封止用エポキシ樹脂粒状体の製造方法と、上記製造方法により得られる半導体封止用エポキシ樹脂粒状体を提供する。
【解決手段】圧縮成形により半導体素子を封止してなる半導体装置に用いる半導体封止用エポキシ樹脂粒状体の製造方法であって、半導体封止用エポキシ樹脂組成物を準備する工程と、前記半導体封止用エポキシ樹脂組成物を押出成形機に設置する工程と、前記押出成形機から押し出された前記半導体封止用エポキシ樹脂組成物からなる樹脂塊の先端部をホットカット法により切断して半導体封止用エポキシ樹脂粒状体を得る工程と、を有し、前記半導体封止用エポキシ樹脂組成物について、高化式フローテスターを用いて測定される175℃における溶融粘度が0.5Pa・S以上20Pa・S以下である。
【選択図】なし
A method for producing an epoxy resin granule for semiconductor encapsulation capable of realizing a semiconductor device having excellent productivity and excellent reliability, and an epoxy resin granule for semiconductor encapsulation obtained by the above production method are provided. provide.
A method for producing an epoxy resin granule for semiconductor encapsulation used in a semiconductor device in which a semiconductor element is encapsulated by compression molding, the step of preparing an epoxy resin composition for semiconductor encapsulation, and the semiconductor A step of installing an epoxy resin composition for sealing in an extrusion molding machine, and cutting the tip of a resin block made of the epoxy resin composition for semiconductor sealing extruded from the extrusion molding machine by a hot cut method A step of obtaining an epoxy resin granule for sealing, and the melt viscosity at 175 ° C. measured using a Koka flow tester is 0.5 Pa · S or more for the epoxy resin composition for semiconductor sealing 20 Pa · S or less.
[Selection figure] None

Description

本発明は、半導体封止用エポキシ樹脂粒状体の製造方法、および半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor sealing epoxy resin granule and a method for manufacturing a semiconductor device.

顆粒状の半導体封止用エポキシ樹脂組成物(以下、「エポキシ樹脂組成物」または「樹脂組成物」とも称す)を用いて圧縮成形を行うことにより半導体素子を封止する工程を含む半導体装置の製造方法に関する技術としては、たとえば、以下のものがある。   A semiconductor device including a step of sealing a semiconductor element by compression molding using a granular epoxy resin composition for semiconductor encapsulation (hereinafter also referred to as “epoxy resin composition” or “resin composition”) Examples of techniques related to the manufacturing method include the following.

特許文献1には、金型内を減圧下にしつつ圧縮成形して半導体素子を樹脂で封止する方法が記載されている。特許文献2には、厚さ3.0mm以下のペレット状又はシート状の封止用成形材料を用いる方法が記載されている。特許文献3には、顆粒状の樹脂組成物をキャビティに供給し、樹脂組成物を溶融させ、これに半導体素子を浸漬した後、樹脂組成物を硬化することによる封止方法が記載されている。   Patent Document 1 describes a method in which a semiconductor element is sealed with a resin by compression molding while reducing the pressure inside the mold. Patent Document 2 describes a method of using a pellet-shaped or sheet-shaped sealing molding material having a thickness of 3.0 mm or less. Patent Document 3 describes a sealing method in which a granular resin composition is supplied to a cavity, the resin composition is melted, a semiconductor element is immersed in the resin composition, and then the resin composition is cured. .

ただし、従来の圧縮成形による半導体素子の封止プロセスでは、封止用樹脂組成物が、搬送および計量中に目詰まりしたり、固着したりする場合があった。こうした不都合が生じた場合に危惧される点として、以下の2つがある。第1は、目詰まりや固着した樹脂組成物が、圧縮成形装置の可動部に付着して固化することにより、当該装置の動作不良が生じるという、生産性の問題である。第2は、目詰まりや固着した樹脂組成物が、成形品に付着することにより、当該成型品が汚染されるという、信頼性の問題である。   However, in the conventional semiconductor element sealing process by compression molding, the sealing resin composition may be clogged or fixed during transportation and weighing. There are the following two points of concern when such inconvenience occurs. The first is a productivity problem that the clogged or fixed resin composition adheres to the movable part of the compression molding apparatus and solidifies, causing a malfunction of the apparatus. Second, there is a problem of reliability in that the molded product is contaminated when the clogged or adhered resin composition adheres to the molded product.

そこで、上記不都合が生じることを抑制する手法としては、たとえば、目詰まりの発生を抑制すべく、粒度分布を制御するプロセス(特許文献4)や、固着の発生を抑制すべく、樹脂特性を制御するプロセス(特許文献5)等が提案されている。   Therefore, as a technique for suppressing the occurrence of the inconvenience, for example, a process for controlling the particle size distribution (Patent Document 4) to suppress the occurrence of clogging, or the control of the resin characteristics to suppress the occurrence of sticking. The process (patent document 5) etc. which do is proposed.

特開2000−021908号公報JP 2000-021908 A 特開2006−216899号公報JP 2006-216899 A 特開2004−216558号公報JP 2004-216558 A 特許第3135926号公報Japanese Patent No. 3135926 特開2008−121003号公報JP 2008-112003 A

しかしながら、本発明者らは、圧縮成形による半導体素子の封止プロセスの中でも、近年、市場に流通している極薄型の半導体パッケージ成形や大面積のパネル成形を行う製造プロセスにおいては、上記背景技術の項で述べた従来の対策を施したとしても、使用する樹脂組成物の微細な蒔きむらによる影響により、半導体装置の生産性という観点において不都合が生じる可能性があることを知見した。本発明者らはさらに、従来の封止プロセスにおいて、固着の発生防止という観点から使用可能な樹脂を限定した場合、材料設計の自由度が小さくなり、対象となる半導体装置が制限されるという不都合が生じることを知見した。   However, the present inventors have disclosed the above-mentioned background art in the manufacturing process for forming an ultra-thin semiconductor package or a large-area panel which has been distributed in the market in recent years, among the sealing process of semiconductor elements by compression molding. It has been found that even if the conventional measures described in the section are taken, there is a possibility that inconvenience may occur in terms of productivity of the semiconductor device due to the influence of the fine unevenness of the resin composition to be used. Furthermore, in the conventional sealing process, when the resin that can be used is limited from the viewpoint of preventing the occurrence of sticking, the degree of freedom in material design is reduced, and the target semiconductor device is limited. It was found that occurs.

以上を踏まえ、本発明は、生産性に優れ、かつ信頼性に優れた半導体装置を実現することができる半導体封止用エポキシ樹脂粒状体の製造方法と、上記製造方法により得られる半導体封止用エポキシ樹脂粒状体を提供するものである。   Based on the above, the present invention provides a method for producing an epoxy resin granule for semiconductor encapsulation that can realize a semiconductor device that is excellent in productivity and excellent in reliability, and for semiconductor encapsulation obtained by the above production method. An epoxy resin granule is provided.

本発明者らは、蒔きむらに起因する生産性の問題について鋭意検討した結果、樹脂粒状体の形状が不定形である場合、当該樹脂粒状体の互着、すなわち、樹脂粒状体同士の固着が起こりやすいことを知見した。かかる樹脂粒状体の互着を抑制するための設計指針について本発明者らが鋭意検討した結果、高化式フローテスターを用いて測定される175℃における溶融粘度が所定の値である樹脂組成物を、押出成形機から押し出してその樹脂塊の先端部をホットカット法により切断する手法を用いて樹脂粒状体を作製することが有効であることを見出し、本発明に至った。   As a result of earnestly examining the problem of productivity caused by unevenness, the present inventors have found that when the shape of the resin particles is indefinite, the resin particles are attached to each other, that is, the resin particles are fixed to each other. I found that it was easy to happen. As a result of intensive studies by the present inventors on design guidelines for suppressing such adhesion of resin granules, a resin composition having a predetermined value of melt viscosity at 175 ° C. measured using a Koka flow tester. The present inventors have found that it is effective to produce a resin granule by using a technique of extruding a resin mass from an extrusion molding machine and cutting the tip of the resin mass by a hot cut method.

本発明によれば、圧縮成形により半導体素子を封止してなる半導体装置に用いる半導体封止用エポキシ樹脂粒状体の製造方法であって、
半導体封止用エポキシ樹脂組成物を準備する工程と、
前記半導体封止用エポキシ樹脂組成物を押出成形機に設置する工程と、
前記押出成形機から押し出された前記半導体封止用エポキシ樹脂組成物からなる樹脂塊の先端部をホットカット法により切断して半導体封止用エポキシ樹脂粒状体を得る工程と、
を含み、
前記半導体封止用エポキシ樹脂組成物の、高化式フローテスターを用いて測定される175℃における溶融粘度が、0.5Pa・S以上20Pa・S以下である、半導体封止用エポキシ樹脂粒状体の製造方法が提供される。
According to the present invention, there is provided a method for producing an epoxy resin granule for semiconductor encapsulation used in a semiconductor device obtained by encapsulating a semiconductor element by compression molding,
A step of preparing an epoxy resin composition for semiconductor encapsulation;
Installing the semiconductor sealing epoxy resin composition in an extruder;
Cutting the tip of the resin block made of the epoxy resin composition for semiconductor sealing extruded from the extrusion molding machine by a hot cut method to obtain an epoxy resin granule for semiconductor sealing;
Including
The epoxy resin granular material for semiconductor sealing whose melt viscosity in 175 degreeC of the said epoxy resin composition for semiconductor sealing measured at 175 degreeC using a Koka type flow tester is 0.5 Pa.S or more and 20 Pa.S or less A manufacturing method is provided.

さらに、本発明によれば、上記半導体封止用エポキシ樹脂粒状体の製造方法により、半導体封止用エポキシ樹脂粒状体を準備する工程と、
前記半導体封止用エポキシ樹脂粒状体を用いて、圧縮成形により半導体素子を封止する工程と、
を含む半導体装置の製造方法が提供される。
Furthermore, according to the present invention, by the method for producing an epoxy resin granule for semiconductor encapsulation, a step of preparing an epoxy resin granule for semiconductor encapsulation,
Using the epoxy resin granular material for semiconductor sealing, sealing the semiconductor element by compression molding,
A method for manufacturing a semiconductor device is provided.

本発明によれば、生産性に優れ、かつ信頼性に優れた半導体装置を実現することができる半導体封止用エポキシ樹脂粒状体の製造方法と、上記製造方法により得られる半導体封止用エポキシ樹脂粒状体を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the epoxy resin granule for semiconductor sealing which can implement | achieve the semiconductor device excellent in productivity and excellent in reliability, and the epoxy resin for semiconductor sealing obtained by the said manufacturing method Granules can be provided.

本実施形態に係る半導体封止用エポキシ樹脂粒状体の立体形状の一例を説明するための図である。It is a figure for demonstrating an example of the three-dimensional shape of the epoxy resin granule for semiconductor sealing which concerns on this embodiment. 本実施形態に係る半導体封止用エポキシ樹脂粒状体の断面形状の一例を説明するための図である。It is a figure for demonstrating an example of the cross-sectional shape of the epoxy resin granule for semiconductor sealing which concerns on this embodiment. 安息角(φ)の測定方法を示した概略図である。It is the schematic which showed the measuring method of the angle of repose ((phi)). 本実施形態に係る半導体装置の一例について、断面構造を示した図である。It is the figure which showed the cross-sectional structure about an example of the semiconductor device which concerns on this embodiment. 本実施形態に係る半導体装置の一例について、断面構造を示した図である。It is the figure which showed the cross-sectional structure about an example of the semiconductor device which concerns on this embodiment. 実施例1の半導体封止用エポキシ樹脂粒状体の外観形状を示す図である。It is a figure which shows the external appearance shape of the epoxy resin granular material for semiconductor sealing of Example 1. FIG. 比較例1の半導体封止用エポキシ樹脂粒状体の外観形状を示す図である。It is a figure which shows the external appearance shape of the epoxy resin granule for semiconductor sealing of the comparative example 1. 充填性の評価において、半導体封止用エポキシ樹脂粒状体を圧縮成形金型へ供給する方法を示す概略図である。In evaluation of filling property, it is the schematic which shows the method of supplying the epoxy resin granular material for semiconductor sealing to a compression molding die.

<半導体封止用エポキシ樹脂粒状体の製造方法>
本実施形態に係るエポキシ樹脂粒状体の製造方法は、圧縮成形により半導体素子を封止してなる半導体装置の製造において封止材として用いるエポキシ樹脂粒状体を製造するための方法である。この方法は、以下の3工程を含む。第1の工程は、高化式フローテスターを用いて測定される175℃における溶融粘度が0.5Pa・S以上20Pa・S以下であるエポキシ樹脂組成物を準備する工程である。第2の工程は、エポキシ樹脂組成物を押出成形機に設置する工程である。第3の工程は、押出成形機から押し出されたエポキシ樹脂組成物からなる樹脂塊の先端部をホットカット法により切断してエポキシ樹脂粒状体を得る工程である。上記方法で得られるエポキシ樹脂粒状体を用いることにより、上記発明が解決しようとする課題の項で述べた、蒔きむらに起因する半導体装置の生産性の問題を解消できる。本実施形態に係る製造方法によれば、従来の製造方法と比べて、生産性に優れ、かつ信頼性に優れた半導体装置を製造するために使用できる半導体封止用エポキシ樹脂粒状体を製造できる。
<Method for Producing Epoxy Resin Granule for Semiconductor Encapsulation>
The method for producing an epoxy resin granule according to the present embodiment is a method for producing an epoxy resin granule used as a sealing material in the production of a semiconductor device in which a semiconductor element is encapsulated by compression molding. This method includes the following three steps. The first step is a step of preparing an epoxy resin composition having a melt viscosity at 175 ° C. of 0.5 Pa · S or more and 20 Pa · S or less as measured using a Koka flow tester. The second step is a step of installing the epoxy resin composition in an extruder. The third step is a step of obtaining an epoxy resin granule by cutting the tip of a resin block made of an epoxy resin composition extruded from an extrusion molding machine by a hot cut method. By using the epoxy resin granular material obtained by the above method, the problem of the productivity of the semiconductor device due to the unevenness described in the section of the problem to be solved by the invention can be solved. According to the manufacturing method concerning this embodiment, compared with the conventional manufacturing method, the epoxy resin granular material for semiconductor sealing which can be used in order to manufacture the semiconductor device excellent in productivity and excellent in reliability can be manufactured. .

ここで、上記「ホットカット法」とは、押出成形機を用いて樹脂組成物を成形して樹脂粒を作製する際に、押出成形機から押し出される樹脂塊を冷却水により冷却することなく、加熱された状態の樹脂塊を切断して樹脂粒を作製する方法を指す。具体的には、「ホットカット法」とは、スクリュー先端部に複数の小孔が設けられたダイを備える押出成形機を用いて、上記ダイに設けられた小孔からストランド状に押し出される溶融樹脂を、ダイ面に略平行に摺動回転するカッターで切断する方法を指す。   Here, the “hot cut method” means that when a resin composition is formed by molding a resin composition using an extruder, the resin mass extruded from the extruder is not cooled with cooling water, It refers to a method of producing resin grains by cutting a heated resin mass. Specifically, the “hot-cut method” refers to melting that is extruded in a strand form from the small holes provided in the die using an extrusion molding machine that includes a die provided with a plurality of small holes at the screw tip. It refers to a method of cutting resin with a cutter that slides and rotates substantially parallel to the die surface.

本発明者らは、近年、市場に流通している極薄型の半導体パッケージや、大面積のパネル成形を行う大型の半導体パッケージの製造プロセスは、使用する封止用樹脂組成物の微細な蒔きむらによる影響を受けやすく、半導体装置の生産性という観点において不都合が生じる可能性があることを知見した。ここで、上述した生産性という観点において生じる不都合としては、半導体素子のワイヤ流れや、樹脂組成物の量が少ない場所に巣やボイド等が生じる充填不良といった問題が挙げられる。具体的には、極薄型の半導体パッケージ成形を行う製造プロセスや、大面積のパネル成形を行う大型の半導体パッケージの製造プロセスにおいては、従来の圧縮成形により半導体素子を封止するプロセスと比べて使用される樹脂組成物の量が極めて少なくなったり、従来に比べ大幅に成形面積が大きくなるなどの要因から圧縮成形金型の下型キャビティへの蒔きむらの影響が顕著となり、ワイヤ流れや充填不足の問題がより一層生じ易くなる傾向にあった。   In recent years, the present inventors have developed a process for manufacturing an ultra-thin semiconductor package distributed in the market and a large-sized semiconductor package for forming a large-area panel. It has been found that there is a possibility of inconvenience in terms of productivity of semiconductor devices. Here, inconveniences that arise from the viewpoint of productivity described above include problems such as a wire flow of a semiconductor element and a filling failure in which a nest or a void is formed in a place where the amount of the resin composition is small. Specifically, it is used in manufacturing processes that form ultra-thin semiconductor packages and large-scale semiconductor packages that form large-area panels, compared to the process of sealing semiconductor elements by conventional compression molding. The amount of resin composition to be reduced is extremely small and the molding area is significantly larger than before, so the effect of unevenness on the lower mold cavity of the compression mold becomes significant, resulting in insufficient wire flow and filling. This problem tends to occur more easily.

本発明者らは、こうした蒔きむらに起因する生産性の問題を引き起こす原因について鋭意検討した結果、顆粒状の樹脂組成物の形状が不定形である場合、当該粒子同士の固着が生じやすいことを見出した。   As a result of earnestly examining the cause of the productivity problem due to such whispering, the present inventors have found that when the granular resin composition has an indefinite shape, the particles tend to stick to each other. I found it.

本実施形態に係る製造方法は、上述したように、所定の溶融粘度を有する樹脂組成物を用い、かつ押出成形機から押し出された上記樹脂組成物の樹脂塊の先端部を、ホットカット法という特定の手法で切断する工程を含む。このような工程を用いることにより、従来の方法により得られる粒子形状と異なり、所望の形状を有した樹脂粒状体を得ることができる。そのため、圧縮成形金型の下型キャビティの底面に樹脂粒状体を蒔いた時、当該樹脂粒状体同士の接触面積を、従来の方法により得られた樹脂粒子と比べて低減させることができる。このように、本実施形態に係る製造方法によれば、樹脂組成物粒子の互着を抑制することが可能となるため、蒔きむらに起因する半導体装置の生産性の低下を防ぐことができる。
樹脂粉粒体の形状は、樹脂塊の先端部を切断する際に用いるホットカット法の条件を適切に設定することにより調整することができる。樹脂粉粒体は、円柱形状、円錐状、球体状、米粒状、コーヒー豆状等の形状を有し得る。ホットカット法の条件としては、押出成形機による樹脂塊の吐出量、押出成形機による樹脂塊の吐出温度、切断刃の回転数、樹脂組成物の組成と刃の材質との組み合わせ、切断刃の樹脂塊への挿入角度、押出成形機に備わるスクリュー軸の温度等が挙げられる。特に、所望の形状を有する樹脂粒状体を再現性良く得るためには、上述した押出成形機による樹脂塊の吐出量、押出成形機による樹脂塊の吐出温度、および押出成形機に備わるスクリュー軸の温度に係る条件を適切に設定することが重要となる。特に、押出成形機に備えられたスクリュー軸の温度は、冷風を用いて80℃以下に制御することが好ましく、70℃以下に制御するとさらに好ましく、50℃以下に制御するとさらに好ましい。くわえて、押出成形機による樹脂塊の吐出温度は、90℃以下に制御することが好ましく、80℃以下に制御するとさらに好ましく、70℃以下に制御するとさらに好ましい。
As described above, the manufacturing method according to this embodiment uses a resin composition having a predetermined melt viscosity, and the front end portion of the resin mass of the resin composition extruded from an extruder is referred to as a hot cut method. A step of cutting by a specific method. By using such a process, unlike the particle shape obtained by the conventional method, a resin granule having a desired shape can be obtained. Therefore, when resin granules are put on the bottom surface of the lower mold cavity of the compression mold, the contact area between the resin granules can be reduced as compared with the resin particles obtained by the conventional method. As described above, according to the manufacturing method according to the present embodiment, it is possible to suppress the mutual adhesion of the resin composition particles, and thus it is possible to prevent the productivity of the semiconductor device from being lowered due to the unevenness of the burning.
The shape of the resin powder can be adjusted by appropriately setting the conditions of the hot cut method used when cutting the tip of the resin lump. The resin powder may have a cylindrical shape, a conical shape, a spherical shape, a rice granular shape, a coffee bean shape, or the like. The conditions of the hot-cut method are: the amount of resin mass discharged by an extruder, the temperature of resin mass discharged by an extruder, the number of revolutions of the cutting blade, the combination of the resin composition and blade material, the cutting blade The insertion angle into the resin block, the temperature of the screw shaft provided in the extruder, and the like can be mentioned. In particular, in order to obtain a resin granule having a desired shape with good reproducibility, the amount of resin lump discharged by the above-described extruder, the discharge temperature of the resin lump by the extruder, and the screw shaft provided in the extruder It is important to properly set the temperature-related conditions. In particular, the temperature of the screw shaft provided in the extruder is preferably controlled to 80 ° C. or lower using cold air, more preferably 70 ° C. or lower, and further preferably 50 ° C. or lower. In addition, the resin block discharge temperature by the extruder is preferably controlled to 90 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 70 ° C. or lower.

上述したように、本実施形態に係る樹脂粒状体の立体形状は、球体状(図1(a))、円柱形状(図1(b))、米粒のような紡錘形状(図1(c))、または円錐状であり得る。中でも、充填不良の問題が生じることなく、かつ半導体装置の生産性を改善する観点から、米粒のような紡錘形状であることが好ましい。   As described above, the three-dimensional shape of the resin granule according to the present embodiment is spherical (FIG. 1 (a)), cylindrical (FIG. 1 (b)), spindle shape like rice grains (FIG. 1 (c)). ), Or conical. Among them, a spindle shape such as a rice grain is preferable from the viewpoint of improving the productivity of the semiconductor device without causing the problem of poor filling.

ここで、本実施形態に係る製造方法に使用するエポキシ樹脂組成物は、高化式フローテスターを用いて測定される175℃における溶融粘度が0.5Pa・S以上20Pa・S以下である。所望の形状を有する樹脂粒状体を再現性良く得る観点から、この溶融粘度は、好ましくは、1Pa・S以上17Pa・S以下であり、さらに好ましくは3Pa・S以上15Pa・S以下である。   Here, the epoxy resin composition used for the manufacturing method according to the present embodiment has a melt viscosity at 175 ° C. of 0.5 Pa · S or more and 20 Pa · S or less measured using a Koka flow tester. From the viewpoint of obtaining resin granules having a desired shape with good reproducibility, the melt viscosity is preferably 1 Pa · S or more and 17 Pa · S or less, and more preferably 3 Pa · S or more and 15 Pa · S or less.

図2は、本実施形態に係る半導体封止用エポキシ樹脂粒状体の断面形状の一例を説明するための図である。
図2に示すように、本実施形態に係る半導体封止用エポキシ樹脂粒状体は、略円形の形状を含む種々の断面形状をとり得る。この樹脂粒状体は、当該樹脂粒状体の互着を低減するために、アスペクト比(長径/短径)が、好ましくは、1以上3以下であり、さらに好ましくは、1以上2.5以下である。
FIG. 2 is a view for explaining an example of a cross-sectional shape of the semiconductor sealing epoxy resin granular material according to the present embodiment.
As shown in FIG. 2, the epoxy resin granular material for semiconductor encapsulation according to this embodiment can have various cross-sectional shapes including a substantially circular shape. In order to reduce mutual adhesion of the resin granules, the resin granules preferably have an aspect ratio (major axis / minor axis) of 1 or more and 3 or less, and more preferably 1 or more and 2.5 or less. is there.

本実施形態に係る製造方法により作製される半導体封止用エポキシ樹脂粒状体は、安定した搬送性、生産性、安定した秤量精度を得るため、JIS標準篩を用いて篩分により測定した粒度分布における、100μm未満の微粉の割合が、樹脂粒状体全量に対して5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であると特に好ましい。100μm未満の微粉は、樹脂粒状体の保管中における固着、搬送経路上での粒子同士の固着や搬送装置への付着を生じ、その結果、半導体装置の連続生産性や生産のタクトタイムに支障をきたす。100μm未満の微粉の割合が上記上限値以下であると、粒子同士の固着や搬送装置への付着が殆どなく、半導体装置の良好な連続生産性や安定した生産性が得られる。また、粒径100μm未満の微粉の割合の下限値については、特に限定されるものではなく、0質量%であってもよい。   Particle size distribution measured by sieving using a JIS standard sieve in order to obtain stable transportability, productivity, and stable weighing accuracy of the epoxy resin granules for semiconductor encapsulation produced by the production method according to this embodiment The proportion of fine powder of less than 100 μm is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less based on the total amount of the resin granules. Fine powders of less than 100 μm cause sticking of resin granules during storage, sticking of particles on the transport path, and adhesion to the transport device. As a result, the continuous productivity of semiconductor devices and the tact time of production are hindered. Come on. When the proportion of fine powder of less than 100 μm is not more than the above upper limit value, there is almost no adhesion between particles and adhesion to a transport device, and good continuous productivity and stable productivity of a semiconductor device can be obtained. Further, the lower limit value of the proportion of fine powder having a particle size of less than 100 μm is not particularly limited, and may be 0% by mass.

ここで、100μm未満の微粉の割合が上述した条件を満たす樹脂粒状体を得るためには、使用する樹脂組成物の組成と、上述した樹脂塊の先端部をホットカット法で切断する条件との組み合わせを高度に制御することが重要である。上述した樹脂塊の先端部をホットカット法で切断する条件は、使用する樹脂組成物の組成(添加剤の種類、添加剤の配合割合、熱硬化性樹脂の種類等)に基づいて適宜調整できる。   Here, in order to obtain a resin granule in which the proportion of fine powder of less than 100 μm satisfies the above-described conditions, the composition of the resin composition to be used and the conditions for cutting the tip of the resin mass described above by the hot cut method It is important to control the combination highly. Conditions for cutting the tip of the resin mass by the hot cut method can be adjusted as appropriate based on the composition of the resin composition to be used (type of additive, blending ratio of additive, type of thermosetting resin, etc.). .

なお、半導体封止用エポキシ樹脂粒状体の粒度分布を測定する方法としては、ロータップ型篩振動機に備え付けた目開き2.00mm及び106μmのJIS標準篩を用い、これらの篩を20分間に亘って振動(ハンマー打数:120回/分)させながら、40gの試料を篩に通して分級し、分級前の試料質量に対する2.00mmの篩に残る粗粒の質量%、および106μmの篩を通過する微粉の質量%を求める方法が挙げられる。なお、この方法を用いる場合、アスペクト比の高い粒子(短径は篩の目開きより小さく、長径は大きいもの)は、それぞれの篩を通過する可能性があるが、便宜上、上記方法により分級した成分の質量%を、顆粒状の樹脂組成物の粒度分布と定義する。   In addition, as a method for measuring the particle size distribution of the epoxy resin granule for semiconductor sealing, JIS standard sieves having a mesh size of 2.00 mm and 106 μm provided in a low-tap type sieve vibrator were used, and these sieves were used for 20 minutes. While vibrating (hammer strike rate: 120 times / minute), a 40 g sample was passed through a sieve and classified, and passed through a sieve of 106 μm and the mass% of coarse particles remaining on the 2.00 mm sieve with respect to the sample weight before classification. The method of calculating | requiring the mass% of fine powder to do is mentioned. In addition, when this method is used, particles having a high aspect ratio (the minor axis is smaller than the sieve opening and the major axis is larger) may pass through the respective sieves. The mass% of the component is defined as the particle size distribution of the granular resin composition.

また、従来の圧縮成形用の半導体封止用樹脂組成物は、各原料成分をミキサーで予備混合した後、ロール、ニーダー又は押出機等の混練機により加熱混練し、冷却、粉砕工程を経た粉砕物である。このような粉砕物は、JIS標準篩を用いて篩分により測定した粒度分布における106μm未満の微粉量が、全樹脂組成物に対して、10質量%を越え、2mm以上の粗粒量は4〜6質量%程度であり、広い粒度分布を有する。   In addition, a conventional resin composition for encapsulating a semiconductor for compression molding is prepared by premixing each raw material component with a mixer, followed by heating and kneading with a kneader such as a roll, a kneader or an extruder, followed by cooling and pulverization. It is a thing. In such a pulverized product, the amount of fine powder of less than 106 μm in the particle size distribution measured by sieving using a JIS standard sieve exceeds 10% by mass with respect to the total resin composition, and the amount of coarse particles of 2 mm or more is 4%. It is about ˜6% by mass and has a wide particle size distribution.

本実施形態に係る製造方法により作製される半導体封止用エポキシ樹脂粒状体の平均粒径(D50)は、好ましくは、100μm以上1000μm以下であり、さらに好ましくは、200μm以上500μm以下である。このような範囲の平均粒径を有する樹脂粒状体を用いることにより、蒔きむらに起因する生産性の低下を防ぐことができる。   The average particle diameter (D50) of the epoxy resin granule for semiconductor encapsulation produced by the production method according to this embodiment is preferably 100 μm or more and 1000 μm or less, and more preferably 200 μm or more and 500 μm or less. By using a resin granular material having an average particle diameter in such a range, it is possible to prevent a decrease in productivity caused by unevenness in rolling.

本実施形態に係る製造方法により作製される半導体封止用エポキシ樹脂粒状体は、振動フィーダー等の搬送手段による搬送性の観点から、安息角が、好ましくは、20°以上60°以下であり、さらに好ましくは、30°以上50°以下である。上記数値範囲内の樹脂粒状体は、振動フィーダー等の搬送手段を用いて搬送される際、固着や目詰まり等を起こしにくい。安息角の測定方法としては、図3に示すように、半導体封止用エポキシ樹脂粒状体202を、漏斗201の孔から一定面積の水平板205の上に投下し、円錐形に堆積させる。崩れることなく一定の形状を保つ粒状体204の仰角を安息角という。次いで、水平板205と同じ台座206上にある所定の重さの分銅203を落下させることにより、顆粒体204に衝撃を与える。崩れた後の粒状体204の仰角を崩壊角という。安息角および崩壊角の測定装置としては、パウダーテスター(ホソカワミクロン(株)製)が挙げられる。   From the viewpoint of transportability by transport means such as a vibration feeder, the repose angle of the epoxy resin granular material for semiconductor encapsulation produced by the manufacturing method according to the present embodiment is preferably 20 ° or more and 60 ° or less, More preferably, they are 30 degrees or more and 50 degrees or less. Resin granules within the above numerical range are less likely to be stuck or clogged when transported using transport means such as a vibration feeder. As a method for measuring the angle of repose, as shown in FIG. 3, the semiconductor sealing epoxy resin granules 202 are dropped from a hole of the funnel 201 onto a horizontal plate 205 having a certain area and deposited in a conical shape. The elevation angle of the granular material 204 that maintains a certain shape without collapsing is called the repose angle. Next, the granule 204 is impacted by dropping a weight 203 having a predetermined weight on the same base 206 as the horizontal plate 205. The elevation angle of the granular material 204 after collapse is referred to as the collapse angle. A powder tester (manufactured by Hosokawa Micron Corporation) can be used as an apparatus for measuring the repose angle and the collapse angle.

以下、上述した半導体封止用エポキシ樹脂粒状体を作製するために用いる、押出成形機に設置するエポキシ樹脂組成物について説明する。   Hereinafter, the epoxy resin composition installed in an extrusion molding machine used for producing the above-described epoxy resin granule for semiconductor encapsulation will be described.

本実施形態に係る製造方法において準備する半導体封止用エポキシ樹脂組成物(以下、「エポキシ樹脂組成物」とも云う。)は、その名の通り、エポキシ樹脂を含む。上記エポキシ樹脂は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマーであり、その分子量、分子構造は限定されない。上記エポキシ樹脂としては、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の3官能型エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂等の変性フェノール型エポキシ樹脂;トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂が挙げられ、これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。   The epoxy resin composition for semiconductor encapsulation (hereinafter, also referred to as “epoxy resin composition”) prepared in the manufacturing method according to the present embodiment includes an epoxy resin as the name suggests. The epoxy resin is a monomer, oligomer, or polymer having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not limited. Examples of the epoxy resins include biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, stilbene type epoxy resins, hydroquinone type epoxy resins and the like; cresol novolac type epoxy resins, phenol novolac type epoxy resins Novolak type epoxy resins such as naphthol novolak type epoxy resins; Phenol aralkyl type epoxy resins such as phenylene skeleton-containing phenol aralkyl type epoxy resins, biphenylene skeleton containing phenol aralkyl type epoxy resins, phenylene skeleton containing naphthol aralkyl type epoxy resins; Type epoxy resin, trifunctional epoxy resin such as alkyl-modified triphenol methane type epoxy resin, dicyclopentadiene modified resin Examples include modified phenolic epoxy resins such as diol-type epoxy resins and terpene-modified phenolic epoxy resins; and heterocyclic-containing epoxy resins such as triazine nucleus-containing epoxy resins. These can be used alone or in combination of two or more. May be used.

また、上記エポキシ樹脂組成物には、硬化剤を含有させてもよい。この硬化剤は、エポキシ樹脂と反応して硬化させるものであればよい。上記硬化剤としては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の炭素数2〜20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルプロパン、4,4'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルスルホン、4,4'−ジアミノジシクロヘキサン、ビス(4−アミノフェニル)フェニルメタン、1,5−ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1−ビス(4−アミノフェニル)シクロヘキサン、ジシアノジアミド等のアミノ類;アニリン変性レゾール樹脂やジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、tert−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂;フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル樹脂等のフェノールアラルキル樹脂;ナフタレン骨格やアントラセン骨格のような縮合多環構造を有するフェノール樹脂;ポリパラオキシスチレン等のポリオキシスチレン;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物等;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類が挙げられる。これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。また、これらの内、半導体封止材料に用いる硬化剤としては、耐湿性、信頼性等の点から、1分子内に少なくとも2個のフェノール性水酸基を有する化合物を用いることが好ましい。このような硬化剤としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、tert−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂;レゾール型フェノール樹脂;ポリパラオキシスチレン等のポリオキシスチレン;フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル樹脂が挙げられる。   Further, the epoxy resin composition may contain a curing agent. Any curing agent may be used as long as it reacts with the epoxy resin to be cured. Examples of the curing agent include linear aliphatic diamines having 2 to 20 carbon atoms such as ethylenediamine, trimethylenediamine, tetramethylenediamine, and hexamethylenediamine, metaphenylenediamine, paraphenylenediamine, paraxylenediamine, and 4,4. '-Diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodicyclohexane, bis (4-aminophenyl) phenylmethane, Aminos such as 1,5-diaminonaphthalene, metaxylenediamine, paraxylenediamine, 1,1-bis (4-aminophenyl) cyclohexane, dicyanodiamide; resol type such as aniline-modified resole resin and dimethyl ether resole resin Enol resin; phenol novolak resin, cresol novolak resin, tert-butylphenol novolak resin, novolak type phenol resin such as nonylphenol novolak resin; phenol aralkyl resin such as phenylene skeleton-containing phenol aralkyl resin, biphenylene skeleton-containing phenol aralkyl resin; Phenolic resins having a condensed polycyclic structure such as a skeleton; polyoxystyrenes such as polyparaoxystyrene; alicyclic acid anhydrides such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA); trimellitic anhydride Acid anhydrides including aromatic acid anhydrides such as acid (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA), etc .; Examples thereof include polymercaptan compounds such as sulfide, thioester and thioether; isocyanate compounds such as isocyanate prepolymer and blocked isocyanate; and organic acids such as carboxylic acid-containing polyester resins. These may be used alone or in combination of two or more. Of these, as the curing agent used for the semiconductor sealing material, it is preferable to use a compound having at least two phenolic hydroxyl groups in one molecule from the viewpoint of moisture resistance, reliability and the like. Examples of such curing agents include phenol novolak resins, cresol novolak resins, tert-butylphenol novolak resins, nonylphenol novolak resins and other novolak type phenol resins; resol type phenol resins; polyoxystyrenes such as polyparaoxystyrene; phenylene skeleton-containing phenols. Examples include aralkyl resins and biphenylene skeleton-containing phenol aralkyl resins.

上記エポキシ樹脂組成物には、無機充填剤を含有させてもよい。無機充填剤としては、一般に半導体封止材料に用いられている無機充填剤を使用できる。上記無機充填剤としては、例えば、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ等のシリカ;アルミナ;チタンホワイト;水酸化アルミニウム;タルク;クレー;マイカ;ガラス繊維が挙げられる。これらの中でも、溶融球状シリカが好ましい。また、粒子形状は限りなく真球状であることが好ましい。また、粒子の大きさの異なるものを混合することにより無機充填量を多くすることができ、その粒径としては、金型キャビティ内での半導体素子周辺への充填性を考慮すると0.01μm以上、150μm以下であることが望ましい。   The epoxy resin composition may contain an inorganic filler. As an inorganic filler, the inorganic filler generally used for the semiconductor sealing material can be used. Examples of the inorganic filler include silica such as fused crushed silica, fused spherical silica, crystalline silica, and secondary agglomerated silica; alumina; titanium white; aluminum hydroxide; talc; clay; mica; glass fiber. Among these, fused spherical silica is preferable. Further, the particle shape is preferably infinitely spherical. In addition, it is possible to increase the inorganic filling amount by mixing particles having different particle sizes, and the particle size is 0.01 μm or more in consideration of the filling property around the semiconductor element in the mold cavity. , 150 μm or less is desirable.

上記エポキシ樹脂組成物には、硬化促進剤を含有させてもよい。この硬化促進剤は、エポキシ基と硬化剤との硬化反応を促進させるものであればよい。上記硬化促進剤としては、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体;トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物;2−メチルイミダゾール等のイミダゾール化合物;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ベンゾキノンをアダクトしたトリフェニルホスフィンが挙げられる。これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。半導体封止用エポキシ樹脂粒状体が金型キャビティ内で溶融した後の急激な増粘が少ない硬化促進剤を用いることが好ましい。   The epoxy resin composition may contain a curing accelerator. This hardening accelerator should just be what accelerates | stimulates the hardening reaction of an epoxy group and a hardening | curing agent. Examples of the curing accelerator include diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof; amine compounds such as tributylamine and benzyldimethylamine; 2-methylimidazole Imidazole compounds such as triphenylphosphine and methyldiphenylphosphine; tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetrabenzoic acid borate, tetraphenylphosphonium / tetranaphthoic acid borate, tetraphenylphosphonium / tetra Tetra-substituted phosphonium / tetra-substituted borates such as naphthoyloxyborate and tetraphenylphosphonium / tetranaphthyloxyborate; It includes nil phosphine. These may be used alone or in combination of two or more. It is preferable to use a curing accelerator that has less rapid thickening after the epoxy resin granule for semiconductor encapsulation is melted in the mold cavity.

上記エポキシ樹脂組成物には、上述した各種成分の他に、必要に応じて、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤;カーボンブラック等の着色剤;天然ワックス、合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン、酸化ポリエチレン等の離型剤;シリコーンオイル、シリコーンゴム等の低応力剤;ハイドロタルサイト等のイオン捕捉剤;水酸化アルミニウム等の難燃剤;酸化防止剤等の添加剤を配合することができる。   In addition to the above-mentioned various components, the epoxy resin composition includes, if necessary, a coupling agent such as γ-glycidoxypropyltrimethoxysilane; a colorant such as carbon black; a natural wax, a synthetic wax, and a higher grade. Release agents such as fatty acids or metal salts thereof, paraffin and oxidized polyethylene; low stress agents such as silicone oil and silicone rubber; ion scavengers such as hydrotalcite; flame retardants such as aluminum hydroxide; addition of antioxidants An agent can be blended.

<半導体装置の製造方法>
本実施形態に係る半導体装置の製造方法は、上述した方法により半導体封止用エポキシ樹脂粒状体を準備する工程と、得られた半導体封止用エポキシ樹脂粒状体を用いて、圧縮成形により半導体素子を封止する工程と、を含む。本発明のエポキシ樹脂粒状体を用いることにより、極薄型の半導体パッケージや大面積のパネル成形を行う大型の半導体パッケージの製造プロセスにおいても、信頼性に優れた半導体装置を製造することができる。
<Method for Manufacturing Semiconductor Device>
The semiconductor device manufacturing method according to the present embodiment includes a step of preparing an epoxy resin granule for semiconductor encapsulation by the above-described method, and a semiconductor element by compression molding using the obtained epoxy resin granule for semiconductor encapsulation. Sealing. By using the epoxy resin granular material of the present invention, a highly reliable semiconductor device can be manufactured even in a manufacturing process of an ultra-thin semiconductor package or a large-sized semiconductor package for forming a large-area panel.

半導体封止用エポキシ樹脂粒状体で封止される半導体素子としては、たとえば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子が挙げられる。本実施形態の製造方法により得られる半導体装置としては、例えば、ボール・グリッド・アレイ(BGA)、MAPタイプのBGAが挙げられる。本発明の方法は、例えば、チップ・サイズ・パッケージ(CSP)、クワッド・フラット・ノンリーデッド・パッケージ(QFN)、スモールアウトライン・ノンリーデッド・パッケージ(SON)、リードフレーム・BGA(LF−BGA)に適用できる。   Examples of the semiconductor element sealed with the epoxy resin granular material for semiconductor sealing include an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element. Examples of the semiconductor device obtained by the manufacturing method of the present embodiment include a ball grid array (BGA) and a MAP type BGA. The method of the present invention can be applied to, for example, a chip size package (CSP), a quad flat non-ready package (QFN), a small outline non-ready package (SON), and a lead frame BGA (LF-BGA). Applicable.

また、本実施形態に係る製造方法により得られる半導体装置は、そのまま、あるいは80℃から200℃程度の温度で、10分から10時間程度の時間をかけて完全硬化させた後、電子機器等に搭載することができる。   In addition, the semiconductor device obtained by the manufacturing method according to this embodiment is mounted on an electronic device or the like as it is or after being completely cured at a temperature of about 80 ° C. to 200 ° C. over a period of about 10 minutes to 10 hours. can do.

以下に、本実施形態に係る製造方法により得られる半導体装置について、リードフレーム又は回路基板と、リードフレーム又は回路基板上に積層又は並列して搭載された1以上の半導体素子と、リードフレーム又は回路基板と半導体素子とを電気的に接続するボンディングワイヤと、半導体素子とボンディングワイヤを封止する封止材とを備えた半導体装置を例に挙げて説明するが、本発明はボンディングワイヤを用いたものに限定されるものではない。   Hereinafter, for a semiconductor device obtained by the manufacturing method according to the present embodiment, a lead frame or a circuit board, one or more semiconductor elements stacked or mounted in parallel on the lead frame or the circuit board, and a lead frame or a circuit A semiconductor device including a bonding wire that electrically connects a substrate and a semiconductor element and a sealing material that seals the semiconductor element and the bonding wire will be described as an example. The present invention uses a bonding wire. It is not limited to things.

図4および5は、本実施形態に係る半導体装置の一例について、断面構造を示した図である。
図4に示す半導体装置は、リードフレームに搭載した半導体素子を封止して得られる。詳細には、ダイパッド403上に、ダイボンド材硬化体402を介して半導体素子401が固定される。半導体素子401の電極パッド(不図示)とリードフレーム405との間はワイヤ404によって接続される。上記半導体素子401は、半導体封止用エポキシ樹脂粒状体の硬化体で構成される封止材406によって封止される。
4 and 5 are views showing a cross-sectional structure of an example of the semiconductor device according to the present embodiment.
The semiconductor device shown in FIG. 4 is obtained by sealing a semiconductor element mounted on a lead frame. Specifically, the semiconductor element 401 is fixed on the die pad 403 via the die bond material cured body 402. An electrode pad (not shown) of the semiconductor element 401 and the lead frame 405 are connected by a wire 404. The semiconductor element 401 is sealed with a sealing material 406 formed of a cured body of epoxy resin granules for semiconductor sealing.

図5に示す半導体装置は、回路基板に搭載した半導体素子を封止して得られる。詳細には、回路基板408上にダイボンド材硬化体402を介して半導体素子401が固定される。この半導体素子401の電極パッド(不図示)と回路基板408上の電極パッド407との間はワイヤ404によって接続されている。半導体封止用エポキシ樹脂粒状体の硬化体で構成される封止材406によって、回路基板408の半導体素子401が搭載された面のみが封止されている。回路基板408上の電極パッド407は回路基板408上の非封止面側の半田ボール409と内部で接合されている。   The semiconductor device shown in FIG. 5 is obtained by sealing a semiconductor element mounted on a circuit board. Specifically, the semiconductor element 401 is fixed on the circuit board 408 via the die bond material cured body 402. An electrode pad (not shown) of the semiconductor element 401 and an electrode pad 407 on the circuit board 408 are connected by a wire 404. Only the surface of the circuit board 408 on which the semiconductor element 401 is mounted is sealed with a sealing material 406 formed of a cured epoxy resin granular material for semiconductor sealing. The electrode pad 407 on the circuit board 408 is bonded to the solder ball 409 on the non-sealing surface side on the circuit board 408 inside.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

以下、本発明を、実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。特に記載しない限り、以下に記載の「部」は「質量部」、「%」は「質量%」を示す。   EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited to description of these Examples at all. Unless otherwise specified, “part” described below indicates “part by mass” and “%” indicates “% by mass”.

各実施例及び各比較例で用いた原料成分を下記に示した。
<エポキシ樹脂>
・エポキシ樹脂1:フェニレン骨格含有フェノールアラルキル型エポキシ樹脂(日本化薬社製、NC−3000。軟化点58℃、エポキシ当量277。)
・エポキシ樹脂2:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製、YX4000。融点45℃、エポキシ当量172。)
The raw material components used in each example and each comparative example are shown below.
<Epoxy resin>
Epoxy resin 1: Phenol aralkyl type epoxy resin containing phenylene skeleton (Nippon Kayaku Co., Ltd., NC-3000, softening point 58 ° C., epoxy equivalent 277)
Epoxy resin 2: biphenyl type epoxy resin (manufactured by Japan Epoxy Resin, YX4000, melting point 45 ° C., epoxy equivalent 172)

<硬化剤>
・硬化剤1:ビフェニレン骨格含有フェノールアラルキル樹脂MEH7851S(明和化成社製、MEH7851S)
・硬化剤2:フェニレン骨格含有フェノールアラルキル樹脂(三井化学社製、XLC−4L。軟化点65℃、水酸基当量165。)
<Curing agent>
Curing agent 1: Biphenylene skeleton-containing phenol aralkyl resin MEH7851S (Maywa Kasei Co., Ltd., MEH7851S)
Curing agent 2: phenylene skeleton-containing phenol aralkyl resin (Mitsui Chemicals, XLC-4L, softening point 65 ° C., hydroxyl equivalent 165)

<その他成分>
・硬化促進剤:トリフェニルホスフィン
・無機充填剤:平均粒径16μmの溶融球状シリカ
・カルナバワックス
・カーボンブラック
・カップリング剤
<Other ingredients>
・ Curing accelerator: Triphenylphosphine ・ Inorganic filler: Fused spherical silica with an average particle size of 16 μm ・ Carnauba wax ・ Carbon black ・ Coupling agent

<半導体封止用エポキシ樹脂粒状体の製造>
(実施例1〜4)
表1に示す配合量の各成分を、二軸混練機に投入して溶融混練して樹脂組成物を得た。次いで、得られた樹脂組成物を1軸押出成形機を用いて押し出し、この押し出された樹脂塊の先端部を、表1に示す回転数の切断刃により切断して樹脂粒状体を得た。用いた1軸押出成形機の条件は、以下の表1に示す。なお、1軸押出成形機は、孔径1mm、回転数94rpm、ダイス温度65℃、吐出温度64℃、吐出量7.8kg/hrとなるように設定した。さらに、1軸押出成形機に備わるスクリュー軸は、冷風を用いてスクリュー軸温度が30℃となるように冷却した。
<Manufacture of epoxy resin granules for semiconductor encapsulation>
(Examples 1-4)
Each component of the compounding amount shown in Table 1 was put into a biaxial kneader and melt kneaded to obtain a resin composition. Next, the obtained resin composition was extruded using a single screw extruder, and the tip of the extruded resin mass was cut with a cutting blade having the number of rotations shown in Table 1 to obtain a resin granule. The conditions of the single screw extruder used are shown in Table 1 below. The single screw extruder was set to have a hole diameter of 1 mm, a rotation speed of 94 rpm, a die temperature of 65 ° C., a discharge temperature of 64 ° C., and a discharge amount of 7.8 kg / hr. Furthermore, the screw shaft provided in the single screw extruder was cooled using cold air so that the screw shaft temperature was 30 ° C.

(比較例1)
表1に示す配合量の各成分をスーパーミキサーにより5分間粉砕混合したのち、得られた混合物を直径65mmのシリンダー内径を備える同方向回転二軸押出機で、スクリュー回転数30rpm、樹脂温度100℃の条件下で溶融混練して樹脂組成物を得た。次に、得られた樹脂組成物を、直径20cmの回転子の上方より、2kg/hrで供給し、回転子を3000rpmで回転させて得られる遠心力によって、115℃に加熱された円筒状外周部の複数の小孔(孔径2.5mm)を通過させた。その後、冷却することで顆粒状のエポキシ樹脂組成物を得た。得られた顆粒状のエポキシ樹脂組成物を、温度15℃、相対湿度55%RHの条件下、空気気流下で3時間撹拌した。
(Comparative Example 1)
Each component of the blending amount shown in Table 1 was pulverized and mixed for 5 minutes with a supermixer, and the obtained mixture was rotated in a co-rotating twin screw extruder having a cylinder inner diameter of 65 mm with a screw rotation speed of 30 rpm and a resin temperature of 100 ° C. The resin composition was obtained by melt-kneading under these conditions. Next, the obtained resin composition was supplied from above the rotor having a diameter of 20 cm at 2 kg / hr, and the cylindrical outer periphery heated to 115 ° C. by centrifugal force obtained by rotating the rotor at 3000 rpm. A plurality of small holes (hole diameter: 2.5 mm) were passed through. Then, the granular epoxy resin composition was obtained by cooling. The obtained granular epoxy resin composition was stirred for 3 hours under an air stream under conditions of a temperature of 15 ° C. and a relative humidity of 55% RH.

(比較例2)
比較例1と同様の手法で得られた顆粒状のエポキシ樹脂組成物を、摩砕式粉砕機(増幸産業(株)製スーパーマスコロイダー)により、1800rpm回転で10回微細化処理を行い、得られた粉砕物を、ロータップ型篩振動機(丸菱科学機械製作所製、型式−SS−100A)に備え付けた目開き1000μmのJIS標準篩を用い、これらの篩を20分間に亘って振動(ハンマー打数:120回/分)させながら篩に通して分級し、粒状の樹脂組成物を得た。比較例2においては、このようにして、粒状の封止用エポキシ樹脂組成物を得た。
(Comparative Example 2)
A granular epoxy resin composition obtained in the same manner as in Comparative Example 1 was subjected to a 10-minute refining treatment at 1800 rpm rotation by a grinding-type pulverizer (Supermass Colloid manufactured by Masuko Sangyo Co., Ltd.). The pulverized product was subjected to vibration (hammer) for 20 minutes using a JIS standard sieve having a mesh size of 1000 μm provided to a low-tap type sieve vibrator (manufactured by Maruhishi Kagaku Seisakusho, Model-SS-100A). (Number of strokes: 120 times / minute), and passed through a sieve for classification to obtain a granular resin composition. In Comparative Example 2, a granular sealing epoxy resin composition was thus obtained.

ここで、上述した実施例および比較例の半導体封止用エポキシ樹脂粒状体を製造するために用いた樹脂組成物について、高化式フローテスター(島津製作所社製、CFT−500)を用いて、175℃、圧力40kgf/cm、キャピラリー径0.5mmの条件で溶融粘度を測定した結果、いずれの樹脂組成物についても175℃における溶融粘度の値は、3Pa・s以上8Pa・s以下であった。 Here, about the resin composition used in order to manufacture the epoxy resin granule for semiconductor sealing of the Example and comparative example which were mentioned above, using a Koka type flow tester (Shimadzu Corporation CFT-500), As a result of measuring the melt viscosity under the conditions of 175 ° C., pressure of 40 kgf / cm 2 , and capillary diameter of 0.5 mm, the melt viscosity value at 175 ° C. of any resin composition was 3 Pa · s or more and 8 Pa · s or less. It was.

得られた半導体封止用エポキシ樹脂粒状体について、下記に示す測定及び評価を行った。   About the obtained epoxy resin granular material for semiconductor sealing, the measurement and evaluation shown below were performed.

・アスペクト比(長径/短径):得られた樹脂粒状体の投影像から測定される長径を短径で除した値を算出した。 Aspect ratio (major axis / minor axis): A value obtained by dividing the major axis measured from the projected image of the obtained resin granule by the minor axis was calculated.

・1mm以上の粒子の割合:得られた樹脂粒状体40gを、1mgまで秤量したものを試料とした。ロータップ型篩振動機(丸菱科学機械製作所製、型式−SS−100A)に備え付けた目開き1000μm及び100μmのJIS標準篩を用い、これらの篩を20分間に亘って振動(ハンマー打数:120回/分)させながら試料を篩に通して分級した。次いで、1000μmの篩上の残った粒子の質量を測定し、分級前の全試料質量に対する質量比を求めた。 -Ratio of particles of 1 mm or more: What weighed 40 g of the obtained resin granules to 1 mg was used as a sample. Using JIS standard sieves with a mesh size of 1000 μm and 100 μm provided in a low-tap type sieve vibrator (manufactured by Maruhishi Kagaku Seisakusho, Model-SS-100A), these sieves were vibrated over 20 minutes (hammer strikes: 120 times) The sample was passed through a sieve while being classified. Next, the mass of the remaining particles on the 1000 μm sieve was measured, and the mass ratio to the total sample mass before classification was determined.

・100μm未満の微粉量:得られた樹脂粒状体40gを、1mgまで秤量したものを試料とした。ロータップ型篩振動機(丸菱科学機械製作所製、型式−SS−100A)に備え付けた目開き106μmのJIS標準篩を用い、これらの篩を20分間に亘って振動(ハンマー打数:120回/分)させながら試料を篩に通して分級した。次いで、100μmの篩を通過した微粉の質量を測定し、分級前の全試料質量に対する質量比を求めた。 -Amount of fine powder of less than 100 µm: A sample of 40 g of the obtained resin granules was weighed to 1 mg. Using a JIS standard sieve with a mesh size of 106 μm provided in a low-tap type sieve vibrator (manufactured by Maruhishi Kagaku Seisakusho, Model-SS-100A), these sieves were vibrated for 20 minutes (hammer strike rate: 120 times / minute). The sample was passed through a sieve and classified. Subsequently, the mass of the fine powder which passed the 100-micrometer sieve was measured, and mass ratio with respect to the total sample mass before classification was calculated | required.

・安息角:図3に示したとおり、パウダーテスター(ホソカワミクロン(株)製、型式―PT−E)に備え付けた直径80mmの円板状水平板205の中心に向けて、漏斗201を用いて垂直方向から樹脂粒状体を投下し、水平板205上に円錐状の樹脂粒状体204を形成させた。樹脂粒状体の投下は円錐が一定形状となるまで続け、次いで、分度器を用いて図3のように、この円錐の仰角(φ)を求め安息角とした。なお、単位は、°である。 ・ An angle of repose: As shown in FIG. 3, using a funnel 201, vertical to the center of a disk-shaped horizontal plate 205 with a diameter of 80 mm provided in a powder tester (Model-PT-E, manufactured by Hosokawa Micron Corporation) The resin granules were dropped from the direction, and conical resin granules 204 were formed on the horizontal plate 205. The dropping of the resin granules was continued until the cone became a fixed shape, and then the elevation angle (φ) of this cone was obtained as a repose angle using a protractor as shown in FIG. The unit is °.

・粒子形状:得られた樹脂粒状体の形状を目視にて確認した。なお、実施例1および比較例1のエポキシ樹脂粒状体の形状は、それぞれ、図6および図7に示す。 -Particle shape: The shape of the obtained resin granule was confirmed visually. In addition, the shape of the epoxy resin granular material of Example 1 and Comparative Example 1 is shown in FIGS. 6 and 7, respectively.

・充填性:図8に示すように、振動フィーダーを用いて所定量搬送することで、樹脂粒状体606が入れられた樹脂材料供給容器607を準備した。この供給容器607を、圧縮成形金型の上型601と下型609の間に配置した。さらに、厚み0.15mm、4mm角の半導体素子604が12個銀ペーストで接着された回路基板603(厚み0.1mm、幅77.5mm、長さ240mm。耐熱性グレードがFR−4のガラス基材エポキシ樹脂銅張り積層板からなる)を、半導体素子604を搭載した面が下向きになるようにして、基板固定手段602により上型601に固定した。次いで、樹脂材料供給容器607の底面に設けられたシャッター608を横方向にスライドさせることで、樹脂粒状体606を下型キャビティ610内に供給し、その後、樹脂材料供給容器607を金型外へ搬出した。次いで、上型601と下型609とを合わせ、金型内を減圧にしながら、圧縮成形機(TOWA株式会社製)により、192個の半導体素子604をパネル成形し、成形品を得た。この成形条件は、金型温度175℃、成形圧力3.9MPa、硬化時間120秒であった。得られた成形品を個片化せず、そのまま、超音波探傷装置(日立建機ファインテック株式会社製、mi−scope hyper II)を用いて充填性を評価した。全ての模擬素子の周辺が完全に樹脂組成物で充填されているものを○、いずれかの素子周辺において巣やボイド等の充填不良が起きているものを×と判定した。得られた結果を表1に示した。 -Fillability: As shown in FIG. 8, the resin material supply container 607 in which the resin granular material 606 was put was prepared by conveying a predetermined amount using a vibration feeder. The supply container 607 was disposed between the upper mold 601 and the lower mold 609 of the compression molding mold. Further, a circuit board 603 (thickness 0.1 mm, width 77.5 mm, length 240 mm, glass base of FR-4 having a heat resistance grade of 0.15 mm, 4 mm square semiconductor element 604 bonded with silver paste) Material epoxy resin copper-clad laminate) was fixed to the upper mold 601 by the substrate fixing means 602 so that the surface on which the semiconductor element 604 was mounted faced downward. Next, by sliding a shutter 608 provided on the bottom surface of the resin material supply container 607 in the horizontal direction, the resin granular material 606 is supplied into the lower mold cavity 610, and then the resin material supply container 607 is moved out of the mold. Carried out. Next, the upper mold 601 and the lower mold 609 were combined, and 192 semiconductor elements 604 were panel-molded by a compression molding machine (manufactured by TOWA Corporation) while reducing the pressure inside the mold, thereby obtaining molded products. The molding conditions were a mold temperature of 175 ° C., a molding pressure of 3.9 MPa, and a curing time of 120 seconds. The obtained molded product was not separated into pieces, and the fillability was evaluated as it was using an ultrasonic flaw detector (manufactured by Hitachi Construction Machinery Finetech Co., Ltd., mi-scope hyper II). A case where the periphery of all the simulated elements was completely filled with the resin composition was evaluated as ◯, and a case where defective filling such as a nest or a void occurred around any element was determined as X. The obtained results are shown in Table 1.

上記評価項目に関する結果を、樹脂組成物に用いた材料とともに、以下の表1に示す。   The result regarding the said evaluation item is shown in the following Table 1 with the material used for the resin composition.

図6に示した通り、実施例1の樹脂粒状体は、その立体形状が紡錘形状であり、かつ形状にばらつきがなく均一性のあるものであった。なお、実施例2〜4の樹脂粒状体についても、実施例1と同様に、均一性のある紡錘形状の粒子であった。また、かかる樹脂粒状体を用いて上記実施形態で述べた方法で作製した半導体装置は、生産性および信頼性に優れたものであった。さらに、実施例の樹脂粒状体を用いて大面積のパネル成形を行った場合、圧縮成形時に蒔きむらが生じることも樹脂粒状体の互着が生じることもなかった。一方、比較例1の樹脂粒状体は、図7に示した通り、その形状が不定形なものであった。また、比較例2の樹脂粒状体もまた、その形状が不定形なものであった。比較例の樹脂粒状体を用いて大面積のパネル成形を行った場合、圧縮成形時に微細な蒔きむらや、樹脂粒状体の互着が生じた。そのため、比較例の樹脂粒状体は、生産性に優れかつ信頼性に優れた半導体装置の製造に使用可能な水準を満たすものではなかった。   As shown in FIG. 6, the three-dimensional shape of the resin granular material of Example 1 was a spindle shape, and the shape was uniform and uniform. The resin granules of Examples 2 to 4 were also spindle-shaped particles having uniformity, as in Example 1. In addition, a semiconductor device manufactured by the method described in the above embodiment using such a resin granule is excellent in productivity and reliability. Furthermore, when panel molding of a large area was performed using the resin granule of the example, no unevenness occurred at the time of compression molding, and neither adhesion of the resin granule occurred. On the other hand, the resin granule of Comparative Example 1 had an irregular shape as shown in FIG. Moreover, the resin granule of Comparative Example 2 was also irregular in shape. When panel molding of a large area was performed using the resin granule of the comparative example, fine cracking irregularities and mutual adhesion of the resin granule occurred during compression molding. Therefore, the resin granular material of the comparative example did not satisfy a level that can be used for manufacturing a semiconductor device having excellent productivity and reliability.

201 漏斗
202 樹脂粒状体
203 分銅
204 顆粒体
205 水平板
206 台座
401 半導体素子
402 ダイボンド材硬化体
403 ダイパッド
404 ワイヤ
405 リードフレーム
406 封止材
407 電極パッド
408 回路基板
409 半田ボール
601 上型
603 回路基板
604 半導体素子
605 金線ワイヤ
606 樹脂粒状体
607 樹脂材料供給容器
608 シャッター
609 下型
610 下型キャビティ
201 Funnel 202 Resin granule 203 Weight 204 Granule 205 Horizontal plate 206 Base 401 Semiconductor element 402 Die bond material cured body 403 Die pad 404 Wire 405 Lead frame 406 Seal material 407 Electrode pad 408 Circuit board 409 Solder ball 601 Upper mold 603 Circuit board 604 Semiconductor element 605 Gold wire 606 Resin granule 607 Resin material supply container 608 Shutter 609 Lower mold 610 Lower mold cavity

Claims (11)

圧縮成形により半導体素子を封止してなる半導体装置に用いる半導体封止用エポキシ樹脂粒状体の製造方法であって、
半導体封止用エポキシ樹脂組成物を準備する工程と、
前記半導体封止用エポキシ樹脂組成物を押出成形機に設置する工程と、
前記押出成形機から押し出された前記半導体封止用エポキシ樹脂組成物からなる樹脂塊の先端部をホットカット法により切断して半導体封止用エポキシ樹脂粒状体を得る工程と、
を含み、
前記半導体封止用エポキシ樹脂組成物の、高化式フローテスターを用いて測定される175℃における溶融粘度が、0.5Pa・S以上20Pa・S以下である、半導体封止用エポキシ樹脂粒状体の製造方法。
A method for producing an epoxy resin granule for semiconductor encapsulation used in a semiconductor device obtained by encapsulating a semiconductor element by compression molding,
A step of preparing an epoxy resin composition for semiconductor encapsulation;
Installing the semiconductor sealing epoxy resin composition in an extruder;
Cutting the tip of the resin block made of the epoxy resin composition for semiconductor sealing extruded from the extrusion molding machine by a hot cut method to obtain an epoxy resin granule for semiconductor sealing;
Including
The epoxy resin granular material for semiconductor sealing whose melt viscosity in 175 degreeC of the said epoxy resin composition for semiconductor sealing measured at 175 degreeC using a Koka type flow tester is 0.5 Pa.S or more and 20 Pa.S or less Manufacturing method.
前記半導体封止用エポキシ樹脂粒状体の安息角が、20°以上60°以下である、請求項1に記載の半導体封止用エポキシ樹脂粒状体の製造方法。   The manufacturing method of the epoxy resin granular material for semiconductor sealing of Claim 1 whose repose angle of the said epoxy resin granular material for semiconductor sealing is 20 degrees or more and 60 degrees or less. 前記半導体封止用エポキシ樹脂粒状体が、球形、円柱形、紡錘形、または円錐形の形状を有する、請求項1または2に記載の半導体封止用エポキシ樹脂粒状体の製造方法。   The manufacturing method of the epoxy resin granular material for semiconductor sealing of Claim 1 or 2 with which the said epoxy resin granular material for semiconductor sealing has a spherical shape, a column shape, a spindle shape, or a cone shape. 前記半導体封止用エポキシ樹脂粒状体が、紡錘形の形状を有する、請求項3に記載の半導体封止用エポキシ樹脂粒状体の製造方法。   The manufacturing method of the epoxy resin granular material for semiconductor sealing of Claim 3 with which the said epoxy resin granular material for semiconductor sealing has a spindle-shaped shape. 前記半導体封止用エポキシ樹脂粒状体のアスペクト比(長径/短径)が、1以上3以下である、請求項1乃至4のいずれか一項に記載の半導体封止用エポキシ樹脂粒状体の製造方法。   The aspect ratio (major axis / minor axis) of the epoxy resin granule for semiconductor encapsulation is 1 or more and 3 or less, and the production of the epoxy resin granule for semiconductor encapsulation according to any one of claims 1 to 4. Method. 前記半導体封止用エポキシ樹脂粒状体のJIS標準篩を用いて篩分により測定した粒度分布において、100μm未満の微粉の割合が、当該半導体封止用エポキシ樹脂粒状体全体に対して5質量%以下である、請求項1乃至5のいずれか一項に記載の半導体封止用エポキシ樹脂粒状体の製造方法。   In the particle size distribution measured by sieving using the JIS standard sieve of the epoxy resin granule for semiconductor encapsulation, the proportion of fine powder of less than 100 μm is 5% by mass or less with respect to the entire epoxy resin granule for semiconductor encapsulation. The manufacturing method of the epoxy resin granule for semiconductor sealing as described in any one of Claims 1 thru | or 5 which is. 前記半導体封止用エポキシ樹脂粒状体が、100μm以上、1000μm以下の平均粒径を有する、請求項1乃至6のいずれか一項に記載の半導体封止用エポキシ樹脂粒状体の製造方法。   The manufacturing method of the epoxy resin granular material for semiconductor sealing as described in any one of Claims 1 thru | or 6 with which the said epoxy resin granular material for semiconductor sealing has an average particle diameter of 100 micrometers or more and 1000 micrometers or less. 前記半導体封止用エポキシ樹脂組成物が、エポキシ樹脂、硬化剤、硬化促進剤、および無機充填剤を含む、請求項1乃至7のいずれか一項に記載の半導体封止用エポキシ樹脂粒状体の製造方法。   The epoxy resin granule for semiconductor encapsulation according to any one of claims 1 to 7, wherein the epoxy resin composition for semiconductor encapsulation contains an epoxy resin, a curing agent, a curing accelerator, and an inorganic filler. Production method. 前記無機充填剤が、0.01μm以上、150μm以下の粒径を有する、請求項8に記載の半導体封止用エポキシ樹脂粒状体の製造方法。   The manufacturing method of the epoxy resin granule for semiconductor sealing of Claim 8 with which the said inorganic filler has a particle size of 0.01 micrometer or more and 150 micrometers or less. 前記押出成形機から押し出された前記半導体封止用エポキシ樹脂組成物からなる樹脂塊の先端部をホットカット法により切断する前記工程が、スクリュー軸を備える押出成形機を用いて、前記スクリュー軸の温度が80℃以下で実施される、請求項1乃至9のいずれか一項に記載の半導体封止用エポキシ樹脂粒状体の製造方法。   The step of cutting the tip of the resin block made of the epoxy resin composition for semiconductor encapsulation extruded from the extruder by a hot cut method is performed using an extruder having a screw shaft. The manufacturing method of the epoxy resin granule for semiconductor sealing as described in any one of Claims 1 thru | or 9 implemented by temperature at 80 degrees C or less. 請求項1乃至10のいずれか一項に記載の半導体封止用エポキシ樹脂粒状体の製造方法により、半導体封止用エポキシ樹脂粒状体を準備する工程と、
前記半導体封止用エポキシ樹脂粒状体を用いて、圧縮成形により半導体素子を封止する工程と、
を含む半導体装置の製造方法。
A step of preparing an epoxy resin granule for semiconductor encapsulation by the method for producing an epoxy resin granule for semiconductor encapsulation according to any one of claims 1 to 10,
Using the epoxy resin granular material for semiconductor sealing, sealing the semiconductor element by compression molding,
A method of manufacturing a semiconductor device including:
JP2016054863A 2015-03-31 2016-03-18 Method of manufacturing epoxy resin granular material for semiconductor encapsulation, and method of manufacturing semiconductor device Expired - Fee Related JP6520779B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071554 2015-03-31
JP2015071554 2015-03-31

Publications (2)

Publication Number Publication Date
JP2016194051A true JP2016194051A (en) 2016-11-17
JP6520779B2 JP6520779B2 (en) 2019-05-29

Family

ID=57081981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054863A Expired - Fee Related JP6520779B2 (en) 2015-03-31 2016-03-18 Method of manufacturing epoxy resin granular material for semiconductor encapsulation, and method of manufacturing semiconductor device

Country Status (4)

Country Link
JP (1) JP6520779B2 (en)
KR (1) KR20160117316A (en)
CN (1) CN106003459A (en)
TW (1) TWI692066B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097800B1 (en) 2017-06-21 2020-04-06 삼성에스디아이 주식회사 Tableted epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP6804625B1 (en) * 2019-12-17 2020-12-23 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243099A (en) * 1997-12-02 1999-09-07 Toray Ind Inc Resin pellet for sealing semiconductor, its manufacturing method, manufacturing device, and semiconductor device
JPH11286012A (en) * 1998-04-01 1999-10-19 Sumitomo Bakelite Co Ltd Manufacture of granular epoxy resin composition for sealing semiconductor and semiconductor device
JP2000040708A (en) * 1998-05-21 2000-02-08 Toray Ind Inc Semiconductor sealing resin pellet, manufacture thereof and semiconductor device
JP2012062448A (en) * 2010-09-17 2012-03-29 Kyocera Chemical Corp Resin composition for sealing semiconductor and resin-sealed semiconductor device
JP2013087137A (en) * 2011-10-13 2013-05-13 Panasonic Corp Epoxy resin composition for sealing semiconductor and manufacturing method for the same, and semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2847921B2 (en) 1989-07-18 1999-01-20 三菱化学株式会社 Dimerization of aromatic halogen compounds
JP3594489B2 (en) 1998-07-03 2004-12-02 京セラケミカル株式会社 Method for manufacturing resin-encapsulated electronic component
JP4336499B2 (en) 2003-01-09 2009-09-30 Towa株式会社 Resin sealing molding method and apparatus for electronic parts
JP2006216899A (en) 2005-02-07 2006-08-17 Kyocera Chemical Corp Molding material for compression molding and resin-sealed semiconductor device
JP2008121003A (en) 2006-10-17 2008-05-29 Hitachi Chem Co Ltd Epoxy resin molding material for use in sealing, and electronic component device using the same
MY152342A (en) * 2008-12-10 2014-09-15 Sumitomo Bakelite Co Granular epoxy resin composition for encapsulating semiconductor, semiconductor device using the same and method for producing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243099A (en) * 1997-12-02 1999-09-07 Toray Ind Inc Resin pellet for sealing semiconductor, its manufacturing method, manufacturing device, and semiconductor device
JPH11286012A (en) * 1998-04-01 1999-10-19 Sumitomo Bakelite Co Ltd Manufacture of granular epoxy resin composition for sealing semiconductor and semiconductor device
JP2000040708A (en) * 1998-05-21 2000-02-08 Toray Ind Inc Semiconductor sealing resin pellet, manufacture thereof and semiconductor device
JP2012062448A (en) * 2010-09-17 2012-03-29 Kyocera Chemical Corp Resin composition for sealing semiconductor and resin-sealed semiconductor device
JP2013087137A (en) * 2011-10-13 2013-05-13 Panasonic Corp Epoxy resin composition for sealing semiconductor and manufacturing method for the same, and semiconductor device

Also Published As

Publication number Publication date
CN106003459A (en) 2016-10-12
TWI692066B (en) 2020-04-21
JP6520779B2 (en) 2019-05-29
TW201705399A (en) 2017-02-01
KR20160117316A (en) 2016-10-10

Similar Documents

Publication Publication Date Title
JP5672335B2 (en) Manufacturing method of semiconductor device
KR101712216B1 (en) Resin composition for encapsulating semiconductor, method for producing semiconductor device and semiconductor device
WO2012121377A1 (en) Semiconductor device, and process for manufacturing semiconductor device
JP5189606B2 (en) Epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP2020125399A (en) Semiconductor sealing resin composition and semiconductor device
JP6520779B2 (en) Method of manufacturing epoxy resin granular material for semiconductor encapsulation, and method of manufacturing semiconductor device
JP6555000B2 (en) Manufacturing method of epoxy resin granular body for semiconductor sealing, and manufacturing method of semiconductor device
US11702537B2 (en) Tablet-type epoxy resin composition for sealing semiconductor device, and semiconductor device sealed using the same
JP5277569B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
KR101900549B1 (en) Granule type epoxy resin composition for encapsulating a semiconductor deviece and semiconductor device encapsuled by using the same
JP4463030B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2008303368A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP7564618B2 (en) Tablet-shaped epoxy resin composition for sealing semiconductor elements and semiconductor device sealed using the same
JP7510843B2 (en) Resin molding for sealing optical semiconductors, optical semiconductor sealing material, and optical semiconductor device
JP3132404B2 (en) Manufacturing method of granular semiconductor sealing material
JP2009203294A (en) Sealing epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees