[go: up one dir, main page]

JP2016183871A - Method for quantifying stable glycated hemoglobin A1c - Google Patents

Method for quantifying stable glycated hemoglobin A1c Download PDF

Info

Publication number
JP2016183871A
JP2016183871A JP2015063213A JP2015063213A JP2016183871A JP 2016183871 A JP2016183871 A JP 2016183871A JP 2015063213 A JP2015063213 A JP 2015063213A JP 2015063213 A JP2015063213 A JP 2015063213A JP 2016183871 A JP2016183871 A JP 2016183871A
Authority
JP
Japan
Prior art keywords
hemoglobin
peak
hbe
hba1c
glycated hemoglobin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015063213A
Other languages
Japanese (ja)
Other versions
JP6492856B2 (en
Inventor
卓司 村上
Takuji Murakami
卓司 村上
義之 新藤
Yoshiyuki Shindo
義之 新藤
大昭 印藤
Hiroaki Indo
大昭 印藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015063213A priority Critical patent/JP6492856B2/en
Publication of JP2016183871A publication Critical patent/JP2016183871A/en
Application granted granted Critical
Publication of JP6492856B2 publication Critical patent/JP6492856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of measuring easily in a short time, HbA1c% in a blood sample containing HbE, by using HPLC.SOLUTION: In analysis of stable type glycosylated hemoglobin A1c using cation exchange liquid chromatography, when a peak appearing between a stable type glycosylated hemoglobin A1c peak and an adult type hemoglobin A0 peak is separated and detected, a stable type glycosylated hemoglobin A1c value is corrected by being multiplied by a coefficient in the range of 1.1-1.4.SELECTED DRAWING: Figure 6

Description

本発明は、液体クロマトグラフィーにより血液試料中の糖化ヘモグロビンを測定する方法に関するものである。より詳しくは、異常ヘモグロビンを含有する血液試料が混在する可能性のある血液試料群において、糖尿病診断の指標となる糖化ヘモグロビンの測定に関するものである。   The present invention relates to a method for measuring glycated hemoglobin in a blood sample by liquid chromatography. More specifically, the present invention relates to measurement of glycated hemoglobin, which is an index for diabetes diagnosis, in a blood sample group in which blood samples containing abnormal hemoglobin may be mixed.

HPLC法による陽イオンクロマトグラフィー法を用いたヘモグロビン類の分析は、糖尿病、先天性溶血性貧血の一種である異常ヘモグロビン症、サラセミア症などの血色素異常症の診断方法として広く利用されている。   Analysis of hemoglobins using a cation chromatography method by HPLC is widely used as a method for diagnosing hemoglobin disorders such as diabetes, congenital hemolytic anemia, abnormal hemoglobin disease and thalassemia.

HPLC法を用いた糖尿病診断では、ヘモグロビンの糖化率を求めるため、血液中の総ヘモグロビン量と安定型糖化ヘモグロビンA1c(以下HbA1cとする)量を定量し、その比から安定型糖化ヘモグロビンA1cの存在率(以下HbA1c%とする)を得ている。より具体的には、検出したすべてのピークのピーク面積を加算した総ピーク面積とHbA1cピークのピーク面積の比よりHbA1c%を算出している。健常人では血液中のヘモグロビンの95%以上は成人型ヘモグロビン(HbA0)であるため、HbA1c%を得るには検体中の総ヘモグロビン量とHbA0由来の安定型糖化ヘモグロビン量を定量するのみでよい。   In diabetes diagnosis using the HPLC method, in order to determine the glycation rate of hemoglobin, the amount of total hemoglobin in blood and the amount of stable glycated hemoglobin A1c (hereinafter referred to as HbA1c) are quantified, and the presence of stable glycated hemoglobin A1c is determined from the ratio. The rate (hereinafter referred to as HbA1c%) is obtained. More specifically, HbA1c% is calculated from the ratio of the total peak area obtained by adding the peak areas of all detected peaks to the peak area of the HbA1c peak. In healthy individuals, 95% or more of hemoglobin in blood is adult hemoglobin (HbA0). Therefore, in order to obtain HbA1c%, it is only necessary to determine the total amount of hemoglobin in the sample and the amount of stable glycated hemoglobin derived from HbA0.

HbA0はα鎖とβ鎖の2種類のグロブリン鎖からなっている。しかし、先天性遺伝子疾患である異常ヘモグロビン症の患者は、先天性のグロブリン鎖の合成異常により、HbA0のほかに、突然変異による異常グロビン鎖からなる異常ヘモグロビンも有している。代表的な異常ヘモグロビン種として知られているヘモグロビンS(以下、HbSとする)はβ鎖6残基目GluがValに置き換わったものであり、ヘモグロビンC(以下、HbCとする)はβ鎖6残基目GluがLysに、異常ヘモグロビンD(以下、HbDとする)はβ鎖121残基目GluがGlnに置き換わったものである。   HbA0 consists of two types of globulin chains, an α chain and a β chain. However, patients with abnormal hemoglobin disease, which is a congenital genetic disease, have abnormal hemoglobin composed of abnormal globin chains due to mutations in addition to HbA0 due to the congenital abnormality of globulin chain synthesis. Hemoglobin S (hereinafter referred to as HbS), which is known as a typical abnormal hemoglobin species, is obtained by replacing the 6th residue Glu of β chain with Val, and hemoglobin C (hereinafter referred to as HbC) is β chain 6 Residue Glu is replaced with Lys, and abnormal hemoglobin D (hereinafter referred to as HbD) is obtained by replacing β-chain 121st residue Glu with Gln.

HPLC法で異常ヘモグロビン症患者のHbA1c%を測定する方法として、検体中の異常ヘモグロビンを定量し、総ヘモグロビン量から異常ヘモグロビン量を減じて補正をする方法や、異常ヘモグロビン由来の糖化ヘモグロビン成分も同定・定量測定し、測定値を補正する方法が利用されている。   As a method of measuring HbA1c% of patients with abnormal hemoglobin disease by HPLC method, a method of quantifying abnormal hemoglobin in a sample and correcting by subtracting the abnormal hemoglobin amount from the total hemoglobin amount, and identifying glycated hemoglobin components derived from abnormal hemoglobin are also identified -A method of measuring the quantity and correcting the measured value is used.

HbD、HbS、HbCおよびこれらの糖化成分は、陽イオンクロマトグラフィーに用いられるカラム充填剤との相互作用がHbA0あるいはHbA1cと大きく異なるため容易にHPLCで分離でき、各成分を定量することが可能であることから上記補正を行うことも比較的容易である。   HbD, HbS, HbC and their saccharified components can be easily separated by HPLC because their interaction with the column packing used in cation chromatography is significantly different from HbA0 or HbA1c, and each component can be quantified. Therefore, it is relatively easy to perform the correction.

しかし、東南アジア地域・インド地域で多くみられる異常ヘモグロビンであるヘモグロビンE(以下、HbEとする)はβ鎖26残基目GluがLysに置き換わった異常ヘモグロビンであり、陽イオン交換体との相互作用がHbA0と近いため、HbD、HbSおよびHbCのように簡単に分離し成分を定量する事が困難であった。このため、HbEを含む検体のHbA1c%を得るためには、分析時間を長くしてHbA0とHbEを分離するか、HbA0とHbEが十分に分離できていない状態から高度な積分計算を用いて、HbEを定量する必要があった。   However, hemoglobin E (hereinafter referred to as HbE), which is an abnormal hemoglobin often found in Southeast Asia and India, is an abnormal hemoglobin in which the β-chain 26th residue Glu is replaced with Lys, and its interaction with the cation exchanger. Is close to HbA0, it was difficult to easily separate and quantify the components as in HbD, HbS, and HbC. Therefore, in order to obtain HbA1c% of the specimen containing HbE, the analysis time is lengthened to separate HbA0 and HbE, or from the state where HbA0 and HbE are not sufficiently separated, It was necessary to quantify HbE.

HPLC法の先行技術として、HbEを含有する血液試料に特有なピークを用いて、このピーク面積に基づいてHbA1cのピーク面積又は全ヘモグロビンのピーク面積を補正してHbA1c%を算出する方法も報告されている(特許文献1)。しかし、この方法では、HbE含有血液試料に特有なピークを分離すること、更にそのピーク面積を正確に算出することが必要であるため、臨床診断の精度を維持したまま、分析時間の短縮を実現することは困難であった。   As a prior art of the HPLC method, using a peak peculiar to a blood sample containing HbE, a method of calculating HbA1c% by correcting the peak area of HbA1c or the peak area of all hemoglobin based on this peak area is also reported. (Patent Document 1). However, with this method, it is necessary to separate the peaks peculiar to the HbE-containing blood sample and to calculate the peak area accurately, so the analysis time can be shortened while maintaining the accuracy of clinical diagnosis. It was difficult to do.

特開2012−215470号公報JP 2012-215470 A 特開平3−255360号公報JP-A-3-255360

HbA1c%の測定を実施すべき血液試料がHbEを含有する場合、これまでのHPLC法では、HbEを含有する血液試料に特有なピークを分離し、このピーク面積を正確に算出する必要があった。しかしながら臨床診断の精度を維持したまま、分析時間の短縮を実現することは困難であり、課題であった。更に免疫法(以下、AIA法と記載することがある)等と比較して、陽イオンクロマトグラフィー法はHbEを特異的に短時間で分離することが困難であるという課題があった。   When a blood sample to be measured for HbA1c% contains HbE, it has been necessary to separate a peak peculiar to the blood sample containing HbE and accurately calculate the peak area in the conventional HPLC method. . However, it has been difficult and difficult to reduce the analysis time while maintaining the accuracy of clinical diagnosis. Furthermore, as compared with immunization methods (hereinafter sometimes referred to as AIA methods) and the like, the cation chromatography method has a problem that it is difficult to specifically separate HbE in a short time.

そこで本発明では、HbEを含む血液試料中のHbA1c%をHPLC法によって測定する際に、不可欠な要素とされていたHbA0からHbEを分離しヘモグロビン定量することや、HbEを含有する血液試料に特有なピークを正確に定量しなくとも、短時間かつ簡便に正確なHbA1c%を測定する方法を見出し、本発明を完成するに至った。   Therefore, in the present invention, when HbA1c% in a blood sample containing HbE is measured by the HPLC method, HbE is separated from HbA0, which has been an indispensable element, and hemoglobin is quantified, or is specific to a blood sample containing HbE. Thus, the present inventors have completed the present invention by finding a method for measuring HbA1c% accurately in a short time and simply without accurately quantifying a simple peak.

すなわち本発明は、
[1]陽イオン交換液体クロマトグラフィーを用いた安定型糖化ヘモグロビンA1cの分析において、安定型糖化ヘモグロビンA1cピークと成人型ヘモグロビンA0ピークの間に出現するピークを分離し検出した際に、陽イオン交換液体クロマトグラフィーによって得られた安定型糖化ヘモグロビンA1c値に1.1〜1.4の範囲にある係数を乗じて補正することを特徴とする安定型糖化ヘモグロビンA1cの定量方法。
[2]前記安定型糖化ヘモグロビンA1cピークと成人型ヘモグロビンA0ピークの間に出現するピークが、異常ヘモグロビンEである[1]記載の安定型糖化ヘモグロビンA1cの定量方法。
に関するものである。
That is, the present invention
[1] In the analysis of stable glycated hemoglobin A1c using cation exchange liquid chromatography, cation exchange is performed when a peak appearing between the stable glycated hemoglobin A1c peak and the adult hemoglobin A0 peak is separated and detected. A method for quantifying stable glycated hemoglobin A1c, which comprises correcting the stable glycated hemoglobin A1c value obtained by liquid chromatography by a coefficient in the range of 1.1 to 1.4.
[2] The method for quantifying stable glycated hemoglobin A1c according to [1], wherein the peak appearing between the stable glycated hemoglobin A1c peak and the adult hemoglobin A0 peak is abnormal hemoglobin E.
It is about.

本発明のような安定型糖化ヘモグロビンA1cピークと成人型ヘモグロビンA0ピークの間にピークが存在する場合にはHbA1c%に係数を乗じて補正することで、短時間で、かつ連続して異常ヘモグロビンを含む、または含まない検体をランダムに測定するヘモグロビン分析計が提供可能となった。従って、短時間かつ簡単にヘモグロビンE保有者のHbA1c%を他の検体と同様に測定することが可能となった。   When there is a peak between the stable glycated hemoglobin A1c peak and the adult hemoglobin A0 peak as in the present invention, it is possible to correct abnormal hemoglobin continuously in a short time by multiplying HbA1c% by a coefficient. It has become possible to provide a hemoglobin analyzer that randomly measures samples that contain or do not contain. Therefore, HbA1c% of hemoglobin E holders can be measured in the same manner as other samples in a short time.

健常人検体のクロマトグラム例を示す図であるIt is a figure which shows the chromatogram example of a healthy subject sample. 異常ヘモグロビン症(ヘモグロビンAE)のクロマトグラム例を示す(例1)図である(Example 1) which shows the example of a chromatogram of abnormal hemoglobinosis (hemoglobin AE). 異常ヘモグロビン症(ヘモグロビンAE)のクロマトグラム例を示す(例2)図である(Example 2) which shows the example of a chromatogram of abnormal hemoglobinosis (hemoglobin AE). 異常ヘモグロビン症(ヘモグロビンAS)のクロマトグラム例を示す図であるIt is a figure which shows the example of a chromatogram of abnormal hemoglobinosis (hemoglobin AS). 参考例1でのHbE検体測定値と免疫法の測定値との差を示す図であるIt is a figure which shows the difference of the measured value of the HbE sample in the reference example 1, and the measured value of an immunity method 実施例1でのHbE検体測定値と免疫法の測定値との差を示す図であるIt is a figure which shows the difference of the measured value of the HbE sample in Example 1, and the measured value of an immunity method. 比較例1での異常ヘモグロビン症を含む検体群での免疫法の測定値との相関を示す図であるIt is a figure which shows the correlation with the measured value of the immunity method in the sample group containing abnormal hemoglobinosis in the comparative example 1. 実施例2での異常ヘモグロビン症を含む検体群での免疫法の測定値との相関を示す図であるIt is a figure which shows the correlation with the measured value of the immunity method in the sample group containing abnormal hemoglobin disease in Example 2.

以下に本発明を詳細に説明する。本明細書における陽イオン交換液体クロマトグラフィーについて説明する。陽イオン交換カラムは非多孔性架橋ポリマー粒子に陽イオン交換基を導入した充填剤より作製されるが、非多孔性架橋ポリマー粒子の合成方法は限定されず公知の懸濁重合法、乳化重合法、シード重合法、沈殿重合法などが利用できる。また本発明において非多孔性架橋ポリマー粒子に限らず、多孔性架橋ポリマーを使用することができる。   The present invention is described in detail below. The cation exchange liquid chromatography in this specification will be described. The cation exchange column is prepared from a filler in which cation exchange groups are introduced into non-porous crosslinked polymer particles. However, the synthesis method of the non-porous crosslinked polymer particles is not limited, and known suspension polymerization methods and emulsion polymerization methods. , Seed polymerization method, precipitation polymerization method and the like can be used. In the present invention, not only non-porous crosslinked polymer particles but also a porous crosslinked polymer can be used.

また合成に用いるモノマーおよび架橋剤は特に限定されるものではないが、親水性メタクリル酸およびアクリルエステル類が望ましい。モノマーとしてヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、グリセリンメタクリレート、ポリエチレングリコールメタクリレート、ポリエチレングリコールアクリレートなどを挙げることができる。   The monomer and crosslinking agent used in the synthesis are not particularly limited, but hydrophilic methacrylic acid and acrylic esters are desirable. Examples of the monomer include hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, glycerin methacrylate, polyethylene glycol methacrylate, and polyethylene glycol acrylate.

架橋剤としては、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、グリセリンジメタクリレートなどが挙げられる。   Examples of the crosslinking agent include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and glycerin dimethacrylate.

非多孔性架橋ポリマー粒子を使用する場合は表面に陽イオン交換基を導入する方法に特に限定はなく、公知の導入方法が利用可能である。導入する陽イオン交換基としてはスルホプロピル基、スルホエチル基、カルボキシルメチル基などが挙げられる。多孔性架橋ポリマーを使用する際も同様の例示を挙げることができる。   When non-porous crosslinked polymer particles are used, the method for introducing a cation exchange group onto the surface is not particularly limited, and a known introduction method can be used. Examples of the cation exchange group to be introduced include a sulfopropyl group, a sulfoethyl group, and a carboxylmethyl group. Similar examples can be given when using a porous crosslinked polymer.

また、使用するHPLC法は限定されないが、短い分析時間でHbE由来成分が同定できるHPLC法が望ましい。溶離液も特に限定されず、コハク酸、クエン酸などの有機酸とその塩からなる緩衝液およびリン酸などの無機酸とその塩からなる緩衝液、もしくは有機酸と無機酸の両者を混同して使用することができる。必要に応じで緩衝液にその他の塩、たとえば塩化ナトリウム、硝酸ナトリウム、硫酸ナトリウムなどを加えることもできる。   Moreover, although the HPLC method to be used is not limited, the HPLC method which can identify a component derived from HbE in a short analysis time is desirable. The eluent is not particularly limited, and a buffer solution composed of an organic acid such as succinic acid or citric acid and a salt thereof and a buffer solution composed of an inorganic acid such as phosphoric acid or a salt thereof, or both an organic acid and an inorganic acid are confused. Can be used. If necessary, other salts such as sodium chloride, sodium nitrate, sodium sulfate and the like can be added to the buffer.

HbA1cは、糖尿病診断に用いられ、ヘモグロビンの糖化率は、血液中の総ヘモグロビン量とHbA1c量を定量することで求められる。   HbA1c is used for diabetes diagnosis, and the glycation rate of hemoglobin is determined by quantifying the total hemoglobin amount and HbA1c amount in blood.

成人型ヘモグロビンA0は、HbD、HbE、HbS、HbC等の先天性の変異型が存在することが知られており、陽イオン交換クロマトグラフィーにおいて、HbA1cよりも遅れて溶出することが一般的である。また、本発明の態様において同一検体中に、HbEに加えてHbD、HbS、HbCの少なくとも一つが一つの検体において検出された場合は、本発明の方法を用いてHbA1c値を補正するのと同時又はその前後に公知の方法によってHbD、HbS、HbCを考慮する補正をしても良い。   Adult hemoglobin A0 is known to have congenital mutants such as HbD, HbE, HbS, and HbC, and is generally eluted later than HbA1c in cation exchange chromatography. . In the embodiment of the present invention, when at least one of HbD, HbS, and HbC is detected in one sample in addition to HbE in the same sample, the HbA1c value is corrected simultaneously using the method of the present invention. Or before and after that, you may correct | amend considering HbD, HbS, and HbC by a well-known method.

安定型糖化ヘモグロビンA1c値を1.1〜1.4の範囲にある係数を乗じて補正する手段として、好ましい係数の範囲は1.1から1.4、より好ましくは1.2から1.3の値、更に好ましくは1.25を用いると良い。なお、前記係数の範囲は、本発明者らは前記課題を達成するために鋭意検討した結果、HbEとHbA0を有する検体(HbAE)のHbEの存在率は20−30%でありほぼ25%とみなせる事(Seema Rao et.al.,Indian J Med Re 、2010年11月、132巻、p.513−519.、Martin H.Steinberg,Hemoglobinopathies,p.453−473.等)、そしてHbEが存在する検体のHbA1c%が免疫法などに比べて約25%低い事を見出したことから導き出した範囲である。   As means for correcting the stable glycated hemoglobin A1c value by multiplying by a coefficient in the range of 1.1 to 1.4, the preferable coefficient range is 1.1 to 1.4, more preferably 1.2 to 1.3. Value, more preferably 1.25. In addition, as a result of the present inventors diligently studying to achieve the above-mentioned problem, the range of the coefficient is as follows. The specimen having HbE and HbA0 (HbAE) has a ratio of HbE of 20-30%, which is almost 25%. Things that can be seen (Seama Rao et.al., Indian J Med Re, November 2010, 132, p.513-519, Martin H. Steinberg, Hemoglobinopathy, p.453-473., Etc.) and HbE This is a range derived from finding that HbA1c% of the specimen to be tested is about 25% lower than that of immunization.

次に本発明を実施例及び参考例によってさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example and a reference example demonstrate this invention further in detail, this invention is not limited to these.

参考例1
遺伝子分析によりHbEの存在が確認された検体を代表的なHPLC法と免疫法でHbA1c%を求めた。HPLC法には非多孔性陽イオン交換体カラムを装備した東ソー製自動グリコヘモグロビン分析計HLC−723G8を使用し、免疫法にはHbEを含む異常ヘモグロビンの影響を受けずHbA1c%が測定可能なRoche製の分析機を使用した。なお、いずれの測定法においてもHbA1c値の補正は行わなかった。
Reference example 1
A specimen in which the presence of HbE was confirmed by genetic analysis was determined for HbA1c% by a typical HPLC method and immunization method. The HPLC method uses a Tosoh automated glycohemoglobin analyzer HLC-723G8 equipped with a non-porous cation exchanger column, and the immunization method is Roche capable of measuring HbA1c% without being affected by abnormal hemoglobin including HbE. A manufactured analyzer was used. In any measurement method, the HbA1c value was not corrected.

図1及に健常人のクロマトグラム例を示し、図2及び図3にHbEを保有する患者検体のクロマトグラム例を示す。図2及び図3中の矢印の位置に健常人にはなく、HbE保有者のみに出現するピークがある。
図4に別の異常ヘモグロビン症患者(HbS)のクロマトグラム例を示す。ここではHbA0ピークから大きくはなれた位置にHbSのピークが出現しているが、図2及び図3中の矢印の位置に見られるピークはなく、図2及び図3中の矢印で示したピークがHbEに特定のピークであると判断できる。このピーク(図2及び図3中の矢印)を検出することで、HbEを含む検体を容易に識別でき、他の検体と分けることが可能となる。
図5に示すようにHPLC法は免疫法と比べてすべての検体で低値を示していた。
FIG. 1 shows an example of a chromatogram of a healthy person, and FIGS. 2 and 3 show examples of a chromatogram of a patient specimen having HbE. There is a peak that appears only in the HbE holder but not in the healthy person at the position of the arrow in FIGS.
FIG. 4 shows an example of a chromatogram of another patient with abnormal hemoglobinosis (HbS). Here, an HbS peak appears at a position far from the HbA0 peak, but there is no peak at the position of the arrow in FIGS. 2 and 3, and the peak indicated by the arrow in FIGS. It can be determined that the peak is specific to HbE. By detecting this peak (the arrow in FIGS. 2 and 3), the specimen containing HbE can be easily identified and can be separated from other specimens.
As shown in FIG. 5, the HPLC method showed a low value in all samples compared to the immunization method.

実施例1
後述の比較例1のHPLC法のHbA1c%に補正係数1.25を乗じ、補正したHbA1c値よりHbA1c%を求めた。結果を図6に示す。
HbA1c%の値に関係なくすべての検体でHPLC法と免疫法の差は0.1%以内となった。
Example 1
HbA1c% was calculated from the corrected HbA1c value by multiplying HbA1c% in the HPLC method of Comparative Example 1 described later by a correction factor of 1.25. The results are shown in FIG.
Regardless of the value of HbA1c%, the difference between the HPLC method and the immunization method was within 0.1% for all samples.

比較例1
HbEを含む検体とHbEを含まない検体からなる検体群をHPLC法と免疫法で測定した。
測定条件は参考例1と同じ。図7に両者を比較したHbA1c%の相関図を示す。良好な相関性を示す群(図中、白丸)とHPLC法が低値を示す群(図中、黒丸)に分かれた。HbEを含む検体群で両者の乖離がある。
Comparative Example 1
A sample group consisting of a sample containing HbE and a sample not containing HbE was measured by the HPLC method and the immunization method.
The measurement conditions are the same as in Reference Example 1. FIG. 7 shows a correlation diagram of HbA1c% comparing the two. It was divided into a group showing a good correlation (white circle in the figure) and a group showing a low HPLC method (black circle in the figure). There is a discrepancy between the two in the sample group containing HbE.

実施例2
HPLC法の東ソー製自動グリコヘモグロビン分析計HLC−723G8にHbA1cピークとHbA0ピーク間に出現するHbEに特有なピークを検出させ、検出した場合にHbA1c%を自動補正させるようにし、比較例1と同じ検体群を測定した。補正条件は実施例1と同じとした。
図8に相関性の結果を示す。比較例1で乖離していた検体群(図7中、黒丸)はすべてHbE含有検体を認識され自動補正により免疫法とほぼ同値を示した。
Example 2
The same as in Comparative Example 1 in which an HPLC specific Tohso glycohemoglobin analyzer HLC-723G8 detects a HbE-specific peak appearing between the HbA1c peak and the HbA0 peak, and automatically detects HbA1c% when detected. Sample groups were measured. The correction conditions were the same as in Example 1.
FIG. 8 shows the correlation results. All of the sample groups (black circles in FIG. 7) that were different in Comparative Example 1 recognized HbE-containing samples and showed almost the same value as the immunization method by automatic correction.

従来のHbEとHbA0を分離するよりも分離が簡単で、短時間にHbEの存在を検出でき、ピークが検出された検体をHbE検体として扱い、本発明の方法により補正することでHbEを含まない検体には影響をあたえることなく、HbEを含む検体を補正することができる。   Separation is easier than conventional separation of HbE and HbA0, the presence of HbE can be detected in a short period of time, a sample in which a peak is detected is treated as an HbE sample, and HbE is not included by correcting by the method of the present invention A specimen containing HbE can be corrected without affecting the specimen.

Claims (2)

陽イオン交換液体クロマトグラフィーを用いた安定型糖化ヘモグロビンA1cの分析において、安定型糖化ヘモグロビンA1cピークと成人型ヘモグロビンA0ピークの間に出現するピークを分離し検出した際に、陽イオン交換液体クロマトグラフィーによって得られた安定型糖化ヘモグロビンA1c値に1.1〜1.4の範囲にある係数を乗じて補正することを特徴とする安定型糖化ヘモグロビンA1cの定量方法。 In the analysis of stable glycated hemoglobin A1c using cation exchange liquid chromatography, when a peak appearing between stable glycated hemoglobin A1c peak and adult hemoglobin A0 peak is separated and detected, cation exchange liquid chromatography A method for quantifying stable glycated hemoglobin A1c, wherein the value is corrected by multiplying the stable glycated hemoglobin A1c value obtained by the above by a coefficient in the range of 1.1 to 1.4. 前記安定型糖化ヘモグロビンA1cピークと成人型ヘモグロビンA0ピークの間に出現するピークが、異常ヘモグロビンEである請求項1記載の安定型糖化ヘモグロビンA1cの定量方法。 The method for quantifying stable glycated hemoglobin A1c according to claim 1, wherein the peak that appears between the stable glycated hemoglobin A1c peak and the adult hemoglobin A0 peak is abnormal hemoglobin E.
JP2015063213A 2015-03-25 2015-03-25 Method for quantifying stable glycated hemoglobin A1c Active JP6492856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063213A JP6492856B2 (en) 2015-03-25 2015-03-25 Method for quantifying stable glycated hemoglobin A1c

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063213A JP6492856B2 (en) 2015-03-25 2015-03-25 Method for quantifying stable glycated hemoglobin A1c

Publications (2)

Publication Number Publication Date
JP2016183871A true JP2016183871A (en) 2016-10-20
JP6492856B2 JP6492856B2 (en) 2019-04-03

Family

ID=57241797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063213A Active JP6492856B2 (en) 2015-03-25 2015-03-25 Method for quantifying stable glycated hemoglobin A1c

Country Status (1)

Country Link
JP (1) JP6492856B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198212A (en) * 2019-06-21 2021-01-08 爱科来株式会社 Method for measuring stable form A1c
JP7171959B1 (en) 2022-04-08 2022-11-15 積水メディカル株式会社 Method for calculating stable HbA1c ratio, liquid chromatography device and program
JP7171960B1 (en) 2022-04-08 2022-11-15 積水メディカル株式会社 Method for detecting glycated hemoglobin, method for measuring glycated hemoglobin, liquid chromatography device and program
EP4312025A1 (en) 2022-07-26 2024-01-31 ARKRAY, Inc. Method of measuring stable hemoglobin a1c and measurement device therefor
EP4386001A1 (en) * 2022-12-16 2024-06-19 ARKRAY, Inc. Method for estimating hemoglobin a1c level, information processing apparatus, and computer-readable storage medium
JP7556279B2 (en) 2020-12-08 2024-09-26 東ソー株式会社 Hemoglobin Analyzer
WO2024242127A1 (en) * 2023-05-24 2024-11-28 東ソー株式会社 Method of analyzing hemoglobin and system for analyzing hemoglobin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2025006639A (en) 2023-06-29 2025-01-17 アークレイ株式会社 Method for distinguishing hemoglobin types, method for generating trained model, trained model, hemoglobin analysis system, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801053A (en) * 1996-05-06 1998-09-01 Primus Corporation Chromatographic method for the identification and characterization of hemoglobin variants in blood
JP2012215470A (en) * 2011-03-31 2012-11-08 Tosoh Corp Method and device for measuring glycosylated hemoglobin
JP2013511717A (en) * 2009-11-18 2013-04-04 バイオ−ラッド ラボラトリーズ,インコーポレイティド Multiple immunoassays for hemoglobin, hemoglobin variants, and glycated forms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801053A (en) * 1996-05-06 1998-09-01 Primus Corporation Chromatographic method for the identification and characterization of hemoglobin variants in blood
JP2013511717A (en) * 2009-11-18 2013-04-04 バイオ−ラッド ラボラトリーズ,インコーポレイティド Multiple immunoassays for hemoglobin, hemoglobin variants, and glycated forms
JP2012215470A (en) * 2011-03-31 2012-11-08 Tosoh Corp Method and device for measuring glycosylated hemoglobin

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LEE, E.S. AND FUKUI, Y.: "Synergistic effect of alanine and glycine on bovine embryos cultured in a chemically defined medium", BIOL. REPROD., vol. 55, no. 6, JPN6015000861, December 1996 (1996-12-01), pages 1383 - 1389, ISSN: 0003961638 *
MOORE, K. AND BONDIOLI, K.R.: "Glycine and alanine supplementation of culture medium enhances development of in vitro matured and f", BIOL. REPROD., vol. 48, no. 4, JPN6015000860, April 1993 (1993-04-01), pages 833 - 840, ISSN: 0003961639 *
P.PRAVATMUANG ET AL.: "Effect of HbE and HbH on HbA1C level by ionic exchange HPLC comparing to immunoturbidimetry", CLINICA CHIMICA ACTA, vol. 313, JPN6014032014, 2001, pages 171 - 178, ISSN: 0003961637 *
STHANESHWAR P ET AL.: "Effect of HbE heterozygosity on the measurement of HbA1c", PATHOLOGY, vol. 45(4), JPN6019001713, June 2013 (2013-06-01), pages 417 - 419, ISSN: 0003961641 *
TSAI, LY ET AL.: "Effect of hemoglobin variants (Hb J, Hb G, Hb E) on HbA1c values as measured by cation-exchange HPLC", CLINICAL CHEMISTRY, vol. 47, no. 4, JPN6019001710, 2001, pages 756 - 758, ISSN: 0003961640 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198212A (en) * 2019-06-21 2021-01-08 爱科来株式会社 Method for measuring stable form A1c
CN112198212B (en) * 2019-06-21 2024-04-12 爱科来株式会社 Method for measuring stable A1c
JP7556279B2 (en) 2020-12-08 2024-09-26 東ソー株式会社 Hemoglobin Analyzer
JP7171959B1 (en) 2022-04-08 2022-11-15 積水メディカル株式会社 Method for calculating stable HbA1c ratio, liquid chromatography device and program
JP7171960B1 (en) 2022-04-08 2022-11-15 積水メディカル株式会社 Method for detecting glycated hemoglobin, method for measuring glycated hemoglobin, liquid chromatography device and program
JP2023154867A (en) * 2022-04-08 2023-10-20 積水メディカル株式会社 Detection method of glycated hemoglobin, measurement method of glycated hemoglobin, liquid chromatography device, and program
JP2023154865A (en) * 2022-04-08 2023-10-20 積水メディカル株式会社 CALCULATION METHOD FOR STABLE HbA1c PERCENTAGE, LIQUID CHROMATOGRAPHY DEVICE, AND PROGRAM
EP4312025A1 (en) 2022-07-26 2024-01-31 ARKRAY, Inc. Method of measuring stable hemoglobin a1c and measurement device therefor
EP4386001A1 (en) * 2022-12-16 2024-06-19 ARKRAY, Inc. Method for estimating hemoglobin a1c level, information processing apparatus, and computer-readable storage medium
WO2024242127A1 (en) * 2023-05-24 2024-11-28 東ソー株式会社 Method of analyzing hemoglobin and system for analyzing hemoglobin

Also Published As

Publication number Publication date
JP6492856B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6492856B2 (en) Method for quantifying stable glycated hemoglobin A1c
US10393749B2 (en) Marker for early diagnosis of kidney failure
Jaisson et al. Interference of the most frequent haemoglobin variants on quantification of HbA1c: comparison between the LC–MS (IFCC reference method) and three routinely used methods
EP2447712B1 (en) One-point calibration method for measurement of hemoglobin A1c
JP7081385B2 (en) How to calculate the similarity of chromatograms
US12203945B2 (en) Haemoglobin analysis method for detecting abnormal haemoglobins and/or thalassemia markers
Alauddin et al. HbA2 levels in normal,-thalassaemia and haemoglobin E carriers by capillary electrophoresis
JP6711087B2 (en) Background correction method by section division
JP5395005B2 (en) Method for measuring glycated protein
Unger et al. Measurements of free hemoglobin and hemolysis index: EDTA-or lithium-heparinate plasma?
AU2018317438B2 (en) Image capillary isoelectric focusing to analyze protein variants in a sample matrix
JP2023154867A (en) Detection method of glycated hemoglobin, measurement method of glycated hemoglobin, liquid chromatography device, and program
Genc et al. The analytical performances of four different glycated hemoglobin methods
Asadi et al. Use of capillary electrophoresis for detection of hemoglobinopathies in individuals referred to health centers in Masjed-Soleiman
Tangvarasittichai et al. Comparison of fast protein liquid chromatography (FPLC) with HPLC, electrophoresis & microcolumn chromatography techniques for the diagnosis of β-thalassaemia
JP2011209040A (en) COLUMN FILLER FOR MEASURING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c, AND METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS
CN115754047A (en) Method for detecting residual quantity of glycerin and glycerin chloride in glycerophosphorylcholine
JP2008232775A (en) Method for accurately determining glycemic control state and liver function in liver disease
JP5248257B2 (en) Protein analysis method using ion exchange liquid chromatography, and separation and quantification method of hemoglobins
WO2024242125A1 (en) Method for analyzing hemoglobin and system for analyzing hemoglobin
JP2018194453A (en) Oxidation-type albumin formation agent, albumin measuring kit, and method for measuring albumin
US20240201206A1 (en) METHOD FOR ESTIMATING HEMOGLOBIN A1c LEVEL, INFORMATION PROCESSING APPARATUS, AND COMPUTER-READABLE STORAGE MEDIUM
Zhu et al. Enantioseparation and determination of sibutramine in pharmaceutical formulations by capillary electrophoresis
JP7070137B2 (en) How to calculate the similarity of chromatograms
JP4854651B2 (en) Hemoglobin measuring device and hemoglobin measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6492856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151