JP2016180747A - 感圧センサ - Google Patents
感圧センサ Download PDFInfo
- Publication number
- JP2016180747A JP2016180747A JP2016017259A JP2016017259A JP2016180747A JP 2016180747 A JP2016180747 A JP 2016180747A JP 2016017259 A JP2016017259 A JP 2016017259A JP 2016017259 A JP2016017259 A JP 2016017259A JP 2016180747 A JP2016180747 A JP 2016180747A
- Authority
- JP
- Japan
- Prior art keywords
- conductor layer
- pressure
- layer
- sensitive sensor
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0414—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/014—Hand-worn input/output arrangements, e.g. data gloves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/14—Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
- G01L1/142—Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
- G01L1/146—Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04105—Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04107—Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2250/00—Details of telephonic subscriber devices
- H04M2250/22—Details of telephonic subscriber devices including a touch pad, a touch sensor or a touch detector
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
【課題】簡易な構造を有するにもかかわらず、誤動作を起こすことなく、接触の位置および接触による圧力の大きさを検出できる感圧センサを提供すること。【解決手段】本開示の一態様に係る感圧センサは、弾性を有し、かつ第一面および前記第一面と反対側の第二面とを有する第一誘電体層と、前記第一面上に配置された第一導体層と、前記第二面上に配置された線状の第二導体層と、前記第一導体層および前記第二導体層に接続されている第一時間領域反射測定装置とを備え、前記第一導体層は、前記第一面のうち、少なくとも前記第二導体層と対向する領域に位置する。【選択図】図1
Description
本開示は、感圧センサ、およびこの感圧センサを組み込んだタッチパネルおよびスイッチなどの感圧装置に関するものである。
近年、スマートフォン等の携帯機器の普及に伴い、指などの接触を検知する操作機器および感圧センサが広く使用されるようになっている。しかしながら、これらの機器の静電容量型タッチパネルおよび静電容量型スイッチなどにおいては、誤動作に関する課題があった。詳しくは、操作者本人がタッチもしくは押すつもりがないにもかかわらず、指が近づいただけ、もしくは、軽く接触しただけで、タッチまたは押下動作として認識して接触を検知し、操作者本人が意図しない機器の動作を引き起こすという課題があった。
また、これらの静電容量型のタッチパネルおよびスイッチは、一定の静電容量を形成するため、もしくはX−Y方向に多数の配線を形成するため、屈曲および伸縮ができないという課題、および引き出す配線が多くなりコストが高くなるという課題があった。
このような課題に対し、特許文献1に記載の入力装置では、スクリーン表面にミアンダ状に配線を形成し、ミアンダ状の配線への指の接触位置を、接地されたGNDとの間の容量変化として時間領域反射測定(Time Domain Reflectometry、以下、TDRと略称する)法で測定する方法が開示されている。
また、特許文献2に記載のセンサでは、弾性支持体上にコイルを巻きつけ、弾性支持体の伸長に伴う変形を、コイルのインピーダンス変化としてとらえ、TDR法を用いて測定することで、伸長変形の大きさと位置を検出する方法が開示されている。
本願発明者らは、鋭意検討の末、従来の感圧センサは、以下の点で改善点があることを見出した。
特許文献1の手法では対地間の容量を検出しているため、接触による圧力の大きさを検出できない;対地間の容量を検出するため、表層にシールド層を設けることができないので、外乱の影響を受けやすく感度が落ちる;ミアンダ状の配線方向の位置検出精度を上げるには、周波数を高くする必要性があり、装置が高価になる;などの課題があった。
特許文献2の手法では、伸縮の検出はできても、圧力の大きさの検出はできない;タッチスクリーン等の平坦な構成にするにはコイルを巻きつけた支持部材を平板上にミアンダ状に配置することが必要になり、コストが高くなる;外乱の影響を受けやすく検出感度が下がる;形状が複雑で透明にしにくい;などの課題が存在した。
特許文献1の手法では対地間の容量を検出しているため、接触による圧力の大きさを検出できない;対地間の容量を検出するため、表層にシールド層を設けることができないので、外乱の影響を受けやすく感度が落ちる;ミアンダ状の配線方向の位置検出精度を上げるには、周波数を高くする必要性があり、装置が高価になる;などの課題があった。
特許文献2の手法では、伸縮の検出はできても、圧力の大きさの検出はできない;タッチスクリーン等の平坦な構成にするにはコイルを巻きつけた支持部材を平板上にミアンダ状に配置することが必要になり、コストが高くなる;外乱の影響を受けやすく検出感度が下がる;形状が複雑で透明にしにくい;などの課題が存在した。
本開示は、かかる事情に鑑みて為されたものであり、その課題は、簡易な構造を有するにもかかわらず、誤動作を起こすことなく、接触の位置および接触による圧力の大きさを検出できる感圧センサを提供することである。
本開示の一態様に係る感圧センサは、弾性を有し、かつ第一面および前記第一面と反対側の第二面とを有する第一誘電体層と、前記第一面上に配置された第一導体層と、前記第二面上に配置された線状の第二導体層と、前記第一導体層および前記第二導体層に接続されている第一時間領域反射測定装置とを備え、前記第一導体層は、前記第一面のうち、少なくとも前記第二導体層と対向する領域に位置する。
本開示の感圧センサは、簡易な構造を有するにもかかわらず、誤動作を起こすことなく、接触の位置および接触による圧力の大きさを検出できる。
本開示の一態様に係る感圧センサは、弾性を有し、かつ第一面および前記第一面と反対側の第二面とを有する第一誘電体層と、前記第一面上に配置された第一導体層と、前記第二面上に配置された線状の第二導体層と、前記第一導体層および前記第二導体層に接続されている第一時間領域反射測定装置とを備え、前記第一導体層は、前記第一面のうち、少なくとも前記第二導体層と対向する領域に位置する。
本開示の一態様に係る感圧センサにおいて、前記第一導体層がメッシュ形状またはシート形状を有していてもよい。
本開示の一態様に係る感圧センサにおいて、前記第一時間領域反射測定装置は、外部からの応力が前記第一誘電体層の少なくとも一部に印加されているときに、前記第一導体層および第二導体層に第一信号を入力し、かつ前記第一信号が前記第一誘電体層の前記少なくとも一部で反射することにより生じた第一反射波の大きさ、および前記第一信号が前記第一導体層および第二導体層に入力されてから前記第一反射波が前記第一時間領域反射測定装置に到達するまでの時間である第一反射時間を測定してもよい。
本開示の一態様に係る感圧センサにおいて、前記第一時間領域反射測定装置が、前記第一導体層および第二導体層に第一信号を入力する第一信号入力装置と、前記第一信号が前記第一誘電体層の少なくとも一部で反射することにより生じた第一反射波を検出する第一反射波検出装置と、前記第一信号が前記第一導体層および第二導体層に入力されてから前記第一反射波が前記第一時間領域反射測定装置に到達するまでの時間である第一反射時間を測定する第一反射時間測定装置とを含み、前記第一信号入力装置および前記第一反射波検出装置がいずれも前記第一導体層および第二導体層に接続されており、前記第一反射時間測定装置が前記第一反射波検出装置に接続されていてもよい。
本開示の一態様に係る感圧センサにおいて、前記第一導体層は前記第一面の全面を覆っており、前記第二導体層はミアンダ形状を有していてもよい。
本開示の一態様に係る感圧センサは、前記第二導体層上および前記第一誘電体層の前記第二面上に配置された、弾性を有する第二誘電体層と、前記第二誘電体層上に配置された、導電性を有するシールド層とをさらに備えていてもよい。
本開示の一態様に係る感圧センサは、前記第二導体層上および前記第一誘電体層の前記第二面上に配置された、弾性を有する第二誘電体層と、前記第二誘電体層上に配置された線状の第三導体層とをさらに備えていてもよい。
本開示の一態様に係る感圧センサにおいて、前記第二導体層および前記第三導体層はミアンダ形状を有していてもよい。
本開示の一態様に係る感圧センサにおいて、前記第二導体層は、第一方向に延びる複数の第一直線部と、各々が前記複数の第一直線部の各々よりも短い複数の第一接続部を含み、前記複数の第一接続部の各々は、前記複数の第一直線部のうち隣接する2つの第一直線部の端を結んでおり、前記第三導体層は、前記第一方向と異なる第二方向に延びる複数の第二直線部と、各々が前記複数の第二直線部の各々よりも短い複数の第二接続部を含み、前記複数の第二接続部の各々は、前記複数の第二直線部のうち隣接する2つの第二直線部の端を結んでいてもよい。
本開示の一態様に係る感圧センサは、前記第一導体層および第三導体層に接続されている第二時間領域反射測定装置をさらに備えていてもよい。
本開示の一態様に係る感圧センサにおいて、前記第二時間領域反射測定装置が、前記第一導体層および第三導体層に第二信号を入力する第二信号入力装置と、前記第二信号が前記第一誘電体層および前記第二誘電体層の少なくとも一部で反射することにより生じた第二反射波を検出する第二反射波検出装置と、前記第二信号が前記第一導体層および第三導体層に入力されてから前記第二反射波が前記第二時間領域反射測定装置に到達するまでの時間である第二反射時間を測定する第二反射時間測定装置とを含み、前記第二信号入力装置および前記第二反射波検出装置がいずれも前記第一導体層および第三導体層に接続されており、前記第二反射時間測定装置が前記第二反射波検出装置に接続されていてもよい。
本開示の一態様に係る感圧センサは、前記第一時間領域反射測定装置と前記第二導体層との間に配置され、前記第一時間領域反射測定装置と前記第二導体層とが接続されている状態と、前記第一時間領域反射測定装置と前記第三導体層とが接続されている状態との間で切り替えるスイッチをさらに備えていてもよい。
本開示の一態様に係る感圧センサは、前記第三導体層上および前記第三導体層が配置された前記第二誘電体層上に配置された、弾性を有する第三誘電体層と、前記第三誘電体層上に配置された、導電性を有するシールド層とをさらに備えていてもよい。
本開示の一態様に係る感圧センサは、前記第二誘電体層内に配置された、導電性を有するシールド層をさらに備えていてもよい。
本開示の一態様に係る感圧センサにおいて、前記第一導体層および前記第二導体層のうち少なくとも1つが酸化インジウムスズを含んでいてもよい。
本開示の一態様に係る感圧センサにおいて、前記第一誘電体層が透明な樹脂を含んでいてもよい。
[感圧センサ]
本開示の感圧センサは、少なくとも1つの導体層として1本の線状の配線を用いることにより、接触の位置および接触圧力の大きさを検出することができる検出器である。
本開示の感圧センサは、少なくとも1つの導体層として1本の線状の配線を用いることにより、接触の位置および接触圧力の大きさを検出することができる検出器である。
以下にて、本開示の一実施態様に係る感圧センサについて図面を参照しながら説明する。図面に示す各種の要素および部材は、本開示の理解のために模式的に示したにすぎず、寸法比および外観などは実物と異なり得ることに留意されたい。尚、本明細書で直接的または間接的に用いる“上下方向”は、図中における上下方向に対応した方向に相当する。また特記しない限り、同じ符号または記号は、形状が異なること以外、同じ部材または同じ意味内容を示すものとする。
本開示の感圧センサは、時間領域反射測定法(Time Domain Reflectrometry)(以下、単に「TDR法」という)に基づいて、外部からの応力による誘電体層の弾性変形により反射波を発生させ、この反射波を測定することにより、接触による変形位置および接触圧力の大きさを検出するものである。本開示の感圧センサによる検出原理を、図1を用いて説明する。
図1は、本開示の最も単純な構成の感圧センサ100を模式的に示す断面図である。本開示の感圧センサ100は、誘電体層1、第一導体層10、第二導体層20および時間領域反射測定装置60を備える。
本開示の感圧センサ100において、誘電体層1は弾性体からなり、当該誘電体層1の異なる両面それぞれに第一導体層10および第二導体層20が形成されている。第二導体層20は線状の配線として形成されており、第一導体層10は少なくとも第二導体層20の形成領域に対向する領域に形成されている。このような第一導体層10および第二導体層20には、時間領域反射測定装置60が接続されている。
このような感圧センサ100において、所定の電圧が印加されるように、時間領域反射測定装置60から第一導体層10および第二導体層20に信号80を入力すると、インピーダンス不整合部分である弾性変形部71において起こる反射波を測定することができる。すなわち、外部からの応力70による誘電体層の弾性変形部71に基づいて反射波81を発生させることができる。この反射波81は、時間領域反射測定装置60において電圧の経時的変化を測定したとき、電圧の変動により観測することができる。電圧が変動するときの変動幅を反射波の大きさとして測定し、また電圧が印加されてから変動するまでの時間(反射波81が戻ってくる時間(反射時間))を測定することにより、接触による変形位置および接触圧力の大きさを検出することができる。
電圧の経時的変化を、図2A〜図2Cを用いて具体的に説明する。図2Aは感圧センサ100に対して何も応力を加えなかった場合のグラフである。図2Bは、全長L1の第二導体層20における時間領域反射測定装置60との接続部分から距離L1/2の部分XにF1の応力を加えた場合のグラフである。図2Cは第二導体層20における前記と同様の部分XにF1/2の応力を加えた場合のグラフである。
図2Aにおいては、応力を加えていないため、誘電体層1の厚みは変化しない。このため、第二導体層20と第一導体層10との距離は第二導体層20のすべての部分において一定のインピーダンスを有する伝送線路とみなすことができる。従って、時間領域反射測定装置60から時間0においてV1の電圧がかかるように信号を入力すると、時間領域反射測定装置60において時間0からT1までV1の電圧を測定できる。時間T1において電圧がV1より大きな値を示すのは、第二導体層20における領域反射測定装置60との接続部分とは反対側の端部において反射した信号が測定されたためである。
時間T1において反射波が観測できるということは、前記第二導体層20の長さL1を電気信号が往復するのに必要な時間がT1ということである。この様な電気信号が往復するのに必要な時間T1は誘電体層1の比誘電率および厚みならびに第二導体層20の配線幅などにより決定される。
次に、第二導体層20における時間領域反射測定装置60との接続部分から距離L1/2の部分Xに垂直にF1の応力を加えた場合、誘電体層1が応力により変形し、厚みが減少する。このため、第二導体層20と第一導体層10との距離が短くなり、この部分の静電容量が増加する。これはインピーダンスが低くなったことを示し、このインピーダンスの不整合部分で反射波が発生する。
この様子を示したグラフが図2Bである。時間T2において電圧が低くなっているのが反射波の発生を示す。時間T2は図2Aの時間T1の半分の時間を示す(T2=T1/2)。このため、第二導体層20における時間領域反射測定装置60との接続部分から距離L1/2の点に応力が加えられていることがわかる。
また、図2Bと同じ部分XにF1/2の応力を加えた場合のグラフが図2Cであり、電圧の減少幅が図2Bと比べて小さくなっていることがわかる。この様に電圧の変動幅を測定することにより、加えられた応力を測定することが可能になる。
本開示の感圧センサ100を構成する各部材について説明する。
誘電体層1は「弾性特性」を有する弾性体からなる。「弾性特性」とは、外力によって局所的に凹み変形し、除力すると元の形状へと戻る特性のことである。誘電体層1は、感圧センサに対して加えられる通常の押圧力(例えば約1N〜10Nの押圧力)によって弾性変形可能な程度の弾性率を有していればよく、例えば約104Pa〜1010Paの弾性率を有していてもよい。
誘電体層1は「弾性特性」を有する弾性体からなる。「弾性特性」とは、外力によって局所的に凹み変形し、除力すると元の形状へと戻る特性のことである。誘電体層1は、感圧センサに対して加えられる通常の押圧力(例えば約1N〜10Nの押圧力)によって弾性変形可能な程度の弾性率を有していればよく、例えば約104Pa〜1010Paの弾性率を有していてもよい。
誘電体層1は、「誘電体」としての性質を有するとともに、上記のような「弾性特性」を有していれば、いずれの材質から成るものであってよい。例えば、誘電体層1は、シリコーン樹脂(例えば、ポリジメチルポリシロキサン(PDMS)等)、スチレン系樹脂、アクリル系樹脂、ロタキサン系樹脂等のポリマー材料を含んで成るものであってよい。弾性率はポリマー材料の重合度および/または架橋度などを変更することによって調整できる。
誘電体層1の厚みは通常の押圧力範囲において弾性変形可能な程度の厚みであればよい。
誘電体層1は、予め公知の方法により合成されたポリマー材料を切り出すことによって得ることができる。また誘電体層1はエレクトロニクス実装分野で常套的に用いられているポリマー層の形成方法によって形成することもできる。
第一導体層10は、誘電体層1の一方の面に形成される導体層であり、静電容量型感圧センサの分野でいわゆる電極を構成し得る程度の導電特性を有していれば、いずれの材料から成るものであってよい。第一導体層10を構成する材料としては、例えば、銅、アルミニウム、銀、ステンレスおよび酸化インジウムスズ(ITO)などが挙げられる。
第一導体層10は、外部からの電磁的および/または静電的な干渉(ノイズ)を遮断するためのシールド機能を有するシールド層であってもよい。第一導体層10はいわゆるグランド層であってもよい。
第一導体層10は、少なくとも第二導体層20の形成領域に対向する領域に形成される限り、あらゆる形状で形成されてよい。第二導体層20の形成領域に対向する領域とは、誘電体層1の他方の面において形成される後述の第二導体層20の形成領域の直下に対応する誘電体層1の一方の面の領域のことである。第一導体層10は、少なくともこのような対応領域に形成されればよい。第一導体層10は、例えば、網状に目が開いてなるメッシュ形態を有していてもよいし、または当該目が詰まったシート形態(すなわち、所定の領域の実質的全面に構成材料が存在してなる形態)を有していてもよい。第一導体層10がこのような形状を有していれば、通常、シールド機能を有する。
第一導体層10は誘電体層1の面に全面的に形成されていてもよい。第一導体層10は通常、誘電体層1の全面に形成されるが、誘電体層1の他方の面における第二導体層20の形成状況に応じて、第一導体層10は必ずしも誘電体層1の全面に形成されなくてもよい。例えば、誘電体層1の他方の面において第二導体層20が全く形成されていない非形成領域部分が存在する場合、第一導体層10は当該非形成領域部分の直下に対応する領域部分に形成されていてもよいし、または形成されていなくてもよい。
第一導体層10の厚みは、TDR法による反射波の検出が可能な限り特に限定されない。
第一導体層10は、めっき法または接着法などにより誘電体層1の表面に形成することができる。後述する第二導体層、第三導体層、シールド層についても、同様の方法により形成することができる。めっき法は、乾式めっき法および湿式めっき法を含む概念で用いる。乾式めっき法として、例えば、スパッタリング法、真空蒸着法およびイオンプレーティング法などの真空めっき法(PVD法);化学気相めっき法(CVD法)が挙げられる。湿式めっき法として、例えば、電気めっき法、例えば電解めっき法;化学めっき法;溶融めっき法が挙げられる。めっき法としては乾式めっき法、例えばスパッタリング法が挙げられる。接着法は、予め形成された第一導体層10を接着剤により誘電体層の表面に貼付する方法である。
第二導体層20は、誘電体層1の他方の面に線状の配線として形成される導体層である。第二導体層20は、静電容量型感圧センサの分野でいわゆる電極を構成し得る程度の導電特性を有していれば、いずれの材料から成るものであってよい。第二導体層20を構成する材料としては、例えば、銅、アルミニウム、銀、ステンレスおよびITOなどが挙げられる。
第二導体層20の配線幅は、TDR法による反射波の検出が可能な限り特に限定されない。第二導体層20の配線長さは、所望のセンサ領域の広さに応じて適宜設定されればよい。
第二導体層20の厚みは、TDR法による反射波の検出が可能な限り特に限定されない。
第二導体層20は、図1中、直線形状を有しているが、所望のセンサ領域を網羅する形状であれば特に限定されない。第二導体層20は、例えば、後述の実施態様1に示すようなミアンダ形状を有していてもよいし、実施態様6に示すような密集領域が局所的に存在する粗密形状を有していてもよい。
第二導体層20は、第一導体層10と同様の方法により形成することができる。例えば、めっき層を形成した後、パターニング処理することにより、線状とすることができる。パターニング処理方法自体は、エレクトロニクス実装分野で用いられている処理方法であれば特に限定されない。例えば、フォトリソグラフィー法を採用する。フォトリソグラフィー法においては、例えば、めっき層の上にレジスト層を形成し、露光および現像を行い、エッチングを行う。
一方の面に第一導体層10を有し、かつ他方の面に第二導体層20を有する誘導体層1は、市販の両面銅張積層板の一方の銅箔に対して上記と同様のパターニング処理を行うことにより得ることもできる。両面銅張積層板は、ポリマー板の両面に銅箔を接着または形成した積層板である。そのような両面銅張積層板の市販品の中から、特にポリマー板として所望の弾性率を有する両面銅張積層板を選択して使用すればよい。
時間領域反射測定装置60は通常、信号入力装置、反射波検出装置および反射時間測定装置からなる。信号入力装置および反射波検出装置はいずれも第一導体層および第二導体層に接続されている。詳しくは信号入力装置の陽極側出力端子が第一導体層10に接続される場合、反射波検出装置の陽極側入力端子も同様に第一導体層10に接続され、信号入力装置の陰極側出力側端子および反射波検出装置の陰極側入力端子は第二導体層20に接続される。これとは反対に、信号入力装置の陽極側出力端子が第二導体層20に接続される場合、反射波検出装置の陽極側入力端子も同様に第二導体層20に接続され、信号入力装置の陰極側出力端子および反射波検出装置の陰極側入力端子は第一導体層10に接続される。
反射時間測定装置は反射波検出装置に接続される。詳しくは反射時間測定装置の陽極端子は反射波検出装置の陽極側入力端子に接続され、反射時間測定装置の陰極端子は反射波検出装置の陰極側入力端子に接続される。
信号入力装置から入力される信号はいかなる波形を有していてもよく、例えば、ステップ波形、インパルス波形、矩形波、台形波、三角波を用いることも可能である。
感圧センサ100は、図1中、第二導体層20が表面に露出しているが、後述の実施態様3に示すように、第二導体層20および誘電体層1の表面に、弾性体からなる誘電体層35およびシールド層40がさらに形成されていてもよいし、または絶縁性材料によるコーティング層が形成されていてもよい。
感圧センサ100は、図1中、導体層として、第一導体層10以外に、第二導体層20しか有さないが、後述の実施態様2に示すように、第三導体層30を線状の配線として、第二導体層20の配線とは異なる主方向でさらに形成してもよい。このとき、後述の実施態様5に示すように、第二誘電体層25、25A、25B内に、第二導体層20と第三導体層30との電磁的および/または静電的な干渉を遮断するためのシールド層50がさらに形成されてもよい。
本開示の感圧センサは簡易かつ単純な構造を有している。
本開示の感圧センサは、TDR法に基づいて、外部からの応力による誘電体層の弾性変形により発生する反射波を測定するため、非接触による誤動作、および意図しない誤った接触による誤動作を起こさない。
本開示の感圧センサは、外部からの応力による誘電体層の弾性変形により発生する反射波の大きさおよび反射時間に基づいて測定を行うため、接触の位置だけでなく、接触圧力の大きさも検出できる。
第三導体層を線状の配線として、第二導体層の配線とは異なる主方向でさらに形成することにより、入力信号の周波数を高く設定しなくても、検出精度を向上させることができる。
表面にシールド層を設けることが可能で、これにより外乱の影響(例えば、電磁的および/または静電的な干渉(ノイズ))を簡便に遮断できる。
本開示の感圧センサは、TDR法に基づいて、外部からの応力による誘電体層の弾性変形により発生する反射波を測定するため、非接触による誤動作、および意図しない誤った接触による誤動作を起こさない。
本開示の感圧センサは、外部からの応力による誘電体層の弾性変形により発生する反射波の大きさおよび反射時間に基づいて測定を行うため、接触の位置だけでなく、接触圧力の大きさも検出できる。
第三導体層を線状の配線として、第二導体層の配線とは異なる主方向でさらに形成することにより、入力信号の周波数を高く設定しなくても、検出精度を向上させることができる。
表面にシールド層を設けることが可能で、これにより外乱の影響(例えば、電磁的および/または静電的な干渉(ノイズ))を簡便に遮断できる。
本開示においては、TDR法の代わりに時間領域伝送測定法(Time Domain Transmission)(以下、単に「TDT法」という)を用いても、第二導体層20の一端に信号入力装置を接続し、他端に検出装置および時間測定装置を接続する点、ならびに反射波を観測する代わりに、伝送してきた信号(伝送波)を観測する点を除いて、TDR法と同様の構成で圧力の大きさと位置を測定することが可能であることは明らかである。
以下、本開示の感圧センサの実施態様についてさらに詳しく説明する。
(実施態様1)
本実施態様の感圧センサ100Aを、図3A〜図3Dおよび図4A〜図4Dを用いて説明する。
本実施態様の感圧センサ100Aを、図3A〜図3Dおよび図4A〜図4Dを用いて説明する。
本実施態様の感圧センサ100Aは、誘電体層1、第一導体層10、第二導体層20および時間領域反射測定装置60を有して成る。本実施態様においては、第一導体層10は当該第一導体層10が形成される面のほぼ全面、例えば全面、に形成されており、第二導体層20はミアンダ形状の配線として形成されている。本実施態様の感圧センサ100Aおよびその構成部材は、特記しない限り、上記感圧センサ100およびその構成部材と同様である。
図3A〜図3Dは本開示の実施態様1における感圧センサ100Aの構造を示す図である。図3Aは感圧センサ100Aの斜視図である。図3Bは図3Aに示す感圧センサ100Aの3B−3B断面を矢印方向で見たときの模式的断面図である。図3Cは図3Aに示す感圧センサ100Aの3C−3C断面を矢印方向で見たときの模式的断面図である。図3Dは図3Aに示す感圧センサを用いて圧力を検出するときの回路構成図である。第二導体層20、誘電体層1、第一導体層10の各層はこの順に層構成をなすように積層されている。
図3A〜図3Dにおいて誘電体層1は厚さ1mm×縦20cm×横20cmのシリコーン樹脂による弾性体であるが、前記誘電体層1の説明で例示した同様の材料が使用可能である。第二導体層20は厚さ12μm、幅2.8mm、長さ60cmの銅からなる配線であるが、前記第二導体層20の説明で例示した同様の材料が使用可能である。第一導体層10は厚さ12μmの銅からなるグランド層であるが、前記第一導体層10の説明で例示した同様の材料が使用可能である。反射測定装置62は、半導体素子からなる反射波検出装置と反射時間測定装置からなる。半導体素子からなる信号入力装置61と、反射測定装置62とにより、時間領域反射測定装置60が構成される。第二導体層20は引き出し部21を通じて信号入力装置61の陽極側出力端子63および反射測定装置62の陽極側入力端子65に接続されており、第一導体層10は引き出し部11を通じて信号入力装置61の陰極側出力端子64および反射測定装置62の陰極側入力端子66に接続されている。
図4A〜図4Dは本開示の実施態様1における感圧センサ100Aを用いて圧力を検出するときの動作を示す図である。図4Aは圧力が印加されていない場合の電圧の経時的変化を示すグラフである。図4Bは特定の場所で圧力が印加された場合の電圧の経時的変化を示すグラフである。図4Cは図4Bと同様の場所で異なる圧力が印加された場合の電圧の経時的変化を示すグラフである。図4Dは図4Bと異なる場所で同様の圧力が印加された場合の電圧の経時的変化を示すグラフである。
図3A〜図3Dの構成において、信号入力装置61より電圧0.5Vのステップ波形を入力した場合に、反射測定装置62で電圧を測定し時間軸に沿ってグラフにしたものが図4A〜図4Dである。
図4Aは、感圧センサ100Aに対して何も応力を加えなかった場合の測定結果である。図4Bは第二導体層20の引き出し部21から30cmの部分に3Nの応力を加えた場合の測定結果である。図4Cは第二導体層20の引き出し部21から30cmの部分に1.5Nの応力を加えた場合の測定結果である。図4Dは第二導体層20の引き出し部21から36cmの部分に3Nの応力を加えた場合の測定結果である。
図4Aにおいては、応力を加えていないため、誘電体層1の厚みは変化せず、第二導体層20と第一導体層10の距離は第二導体層20のすべての部分において一定のインピーダンスを有する伝送線路とみなすことができる。そのため、入力装置4から時間0nsにおいて0.5Vの電圧がかかるようにステップ信号を入力すると、反射測定装置62において時間0.0nsから9.5nsまで0.5Vの電圧を測定できる。時間9.5nsにおいて電圧が0.5Vより大きな値を示すのは、第二導体層20の引き出し部21とは反対側の端部において反射してきた信号が測定されたためである。このように、一様の伝送線路では反射波は起こらず、インピーダンス不整合部分において起こる反射波を測定することができる。
時間9.5nsにおいて反射波が観測できるということは、第二導体層20の長さ30cmを電気信号が往復するのに必要な時間が9.5nsということであり、必要な時間は誘電体層1の比誘電率および厚み、第二導体層20の配線幅などにより決定される。
次に、第二導体層20における引き出し部21から30cmの部分に垂直に3Nの応力を加えた場合、誘電体層1が応力により変形し厚みが減少する。このため、第二導体層20と第一導体層10の距離が短くなり、この部分の静電容量が増加する。これはインピーダンスが低くなったことを示し、インピーダンスの不整合部分で反射が発生する。この様子を示した図が図4Bである。時間4.75nsにおいて電圧が低くなっているのがこのことを示し、図4Aの半分の時間であり、30cm第二導体層20の引き出し部21から30cmの点に応力が加えられていることがわかる。
また、図4Bと同じ部分に1.5Nの応力を加えた場合の測定波形が図4Cである。電圧の減少幅が図4Bと比べて小さくなっていることがわかる。この様に電圧の変動幅を測定することにより、加えられた応力を測定することが可能になる。
さらに、図4Bからさらに6cm、引き出し部21より遠い部分に応力3Nを加えた測定結果が図4Dである。反射波が帰ってくるまでの時間が長くなっていることが見て取れる。この様に反射波が帰ってくるまでの時間を測定することにより、第二導体層20のどの位置に応力が加えられたかを測定することが可能になる。
また、第一導体層10をシールド層として用いることにより、シールド層の側からのノイズを遮断することが可能になり、より高い測定精度が得られる。
本実施態様において測定装置等に接続することが必要な配線は2本であり、一般的なタッチパネルで使用される10数本以上の配線と比較すると少ない配線で済む。このため、コネクタ等もピン数が少なく小型で安価なもの、高信頼性を有するものを使用することができ、機器を小型化・低価格化・高信頼性化することが可能になる。
測定波形として、0.5Vのステップ波形を用いたが、前記したいずれの信号波形を用いてもよい。所望の電気特性を得るためにはこれに限らず、より高い電圧を用いても良いし、より低い電圧を用いてもよい。一般的には高い電圧を用いることによりS/N比が向上しより高い精度が得られる。また、より低い電圧を用いることにより、消費電力の低減とより高速な半導体素子を安価に利用することができる。
本実施態様においては、それぞれ1つの信号入力装置61と反射測定装置62を用いたが、2個以上の信号入力装置61と2個以上の反射測定装置62を使用し、スイッチで第二導体層20等への接続を切り替えて使用することができる。これにより、測定を並行処理することができ、高速化が達成される。
また、回路上は信号入力装置61と反射測定装置62を分離して図示したが、1個の半導体装置で構成してもなんら動作は変わらないことは明らかである。
(実施態様2)
本実施態様においては、第三導体層を線状の配線として、第二導体層の配線とは異なる主方向でさらに形成することにより、検出精度を向上させることができる。
本実施態様においては、第三導体層を線状の配線として、第二導体層の配線とは異なる主方向でさらに形成することにより、検出精度を向上させることができる。
本実施態様の感圧センサ100Bを、図5A〜図5Dおよび図6A〜図6Bを用いて説明する。図5A〜図5Dは本開示の実施態様2における感圧センサ100Bの構造を示す図である。図5Aは感圧センサ100Bの斜視図である。図5Bは図5Aに示す感圧センサ100Bの5B−5B断面を矢印方向で見たときの模式的断面図である。図5Cは図5Aに示す感圧センサ100Bの5C−5C断面を矢印方向で見たときの模式的断面図である。図5Dは図5Aに示す感圧センサを用いて圧力を検出するときの回路構成図である。
本実施態様の感圧センサ100Bは、第二誘電体層25および第三導体層30を有すること、および2つの時間領域反射測定装置60、60aを有すること以外、実施態様1の感圧センサ100Aと同様の構成を有している。実施態様2の感圧センサ100Bにおいて、実施態様1の感圧センサ100Bが有していた誘電体層1、時間領域反射測定装置60、信号入力装置61、反射測定装置62、陽極側出力端子63、陰極側出力端子64、陽極側入力端子65および陰極側入力端子66はそれぞれ、第一誘電体層1、第一時間領域反射測定装置60、第一信号入力装置61、第一反射測定装置62、第一陽極側出力端子63、第一陰極側出力端子64、第一陽極側入力端子65および第一陰極側入力端子66と呼ぶものとする。本実施態様の感圧センサ100Bおよびその構成部材は、特記しない限り、上記感圧センサ100Aおよびその構成部材と同様である。
第二誘電体層25は、第三導体層30の形成に必要な誘電体層である。第二誘電体層25は、弾性体からなり、第二導体層20および第一誘電体層1の表面に形成されている。第二誘電体層25は、前記した誘電体層1と同様であり、前記誘電体層1の中から、当該誘電体層1より独立して選択されればよい。第二誘電体層25の厚みは、感圧センサに対して加えられる通常の押圧力によっても第二導体層20と第三導体層30との接触が起こらない程度の厚みであればよい。第二誘電体層25は、予め公知の方法により合成されたポリマー材料を、第二導体層20および第一誘電体層1の表面に、接着剤により接着することにより形成することができる。また第二誘電体層25はエレクトロニクス実装分野で常套的に用いられているポリマー層の形成方法によって形成することもできる。
第三導体層30は、第二誘電体層25の表面にミアンダ形状の配線として形成されている。第三導体層30は、前記した第二導体層20と同様であり、前記第二導体層20の中から、当該第二導体層20より独立して選択されればよい。第三導体層30の配線の主方向は、第二導体層20の配線の主方向と異なっていてもよい。
時間領域反射測定装置60aは、第二時間領域反射測定装置に相当する。第二時間領域反射測定装置60aは、第一時間領域反射測定装置60と同様の構成を有していてよく、通常、第二信号入力装置61a、第二反射波検出装置および第二反射時間測定装置からなる。反射測定装置62aは第二反射波検出装置および第二反射時間測定装置からなる。第二反射時間測定装置は第二反射波検出装置に接続される。第二時間領域反射測定装置60aにおける第二信号入力装置、第二反射波検出装置および第二反射時間測定装置の接続方法は、前記した時間領域反射測定装置60における信号入力装置、反射波検出装置および反射時間測定装置の接続方法と同様である。
第二信号入力装置61aから入力される信号はいかなる波形を有していてもよく、例えば、第一信号入力装置61の説明で例示した同様の波形が挙げられる。
第二時間領域反射測定装置60aを第一時間領域反射測定装置60と共通化し、ひとつの時間領域反射測定装置を、スイッチにより、第二導体層への接続と第三導体層への接続との間で切り替えて使用してもよい。すなわち第二時間領域反射測定装置60aまたは第一時間領域反射測定装置60の一方のみを使用し、使用される時間領域反射測定装置において、第一導体層10への接続を維持しながら、第二導体層への接続と第三導体層への接続とを、スイッチにより、切り替えればよい。
図5A〜図5Cにおいて、第一誘電体層1および第二誘電体層25はいずれも厚さ1mm×縦20cm×横20cmのシリコーン樹脂である。第二導体層20および第三導体層30は厚さ12μm、幅2.8mm、長さ60cmの銅からなる配線である。第一導体層10は厚さ12μmの銅からなるグランド層である。第二導体層20および第三導体層30は引き出し部21、31を通じてそれぞれ異なる信号入力装置61、61aの陽極側出力端子63、63a、および反射測定装置62、62aの陽極側入力端子65、65aに接続されている。第一導体層10は引き出し部11を通じて異なる信号入力装置61、61aの陰極側出力端子64、64a、および反射測定装置62、62aの陰極側入力端子66、66aに接続されている。第三導体層30、第二誘電体層25、第二導体層20、第一誘電体層1、第一導体層10の各層はこの順に層構成をなすように積層されている。
TDR法において、検出位置精度はその周波数と大きな関係がある。周波数が低い場合、1波長が長くなり、そのため1波長に対し短い長さで反射してくる反射波の違いの検出が困難になる。このため、波長の長さλに対し検出位置精度はその1/100程度が限界となる。逆に位置を高精度で検出するには、短い波長の信号を使用する必要があり、つまり、周波数の高い信号を使用する必要がある。ステップ波形およびインパルス波形においては、その周波数帯域fは立ち上がり時間trを用いて、tr=0.35/fであらわされる。つまり、検出位置精度を上げるには立ち上がり時間の短い信号を使用する必要がある。
本実施態様においては、第二導体層20と第三導体層30の主配線方向を異なる方向にすることで、より遅い立ち上がり時間で高い位置検出精度を得ることが可能である。
この原理を、図6A〜図6Bを用いて説明する。
この原理を、図6A〜図6Bを用いて説明する。
図6A〜図6Bにおいて30は第三導体層を、20は第二導体層を模式的に表したものであり、本来は厚み方向に重なっているものである。第三導体層30はそのミアンダ状の配線の主方向がX軸であり、第二導体層20はそのミアンダ状の配線の主方向がY軸となっている。すなわち、第二導体層20は、主方向であるY軸方向に延びる複数の第一直線部20Aと、各々が前記複数の第一直線部20Aの各々よりも短い複数の第一接続部20Bを含む。複数の第一接続部20Bの各々は、前記複数の第一直線部20Aのうち隣接する2つの第一直線部20Aの端を結んでいる。第三導体層30は、主方向であるX軸方向に延びる複数の第二直線部30Aと、各々が前記複数の第二直線部30Aの各々よりも短い複数の第二接続部30Bを含む。前記複数の第二接続部30Bの各々は、前記複数の第二直線部30Aのうち隣接する2つの第二直線部30Aの端を結んでいる。
例えば、約100MHz〜1GHzの周波数を採用することにより、第三導体層30上で10cm程度の検出精度があれば、Y軸上の位置を決定することが出きる。同様に第二導体層20上で10cm程度の検出精度があればX軸上の位置を決定することが出きる。このように主方向の異なる2つの配線を用いることで、10cm程度の検出精度でX−Y軸それぞれの位置を高精度に検出することができる。
仮に、第三導体層30だけを用いて(第二導体層20を使用せずに)、同様の検出精度を得るためには、第三導体層30上で0.1cm程度の検出精度がないとX方向の位置精度が得られない。つまり、1/100の立ち上がり時間の信号を用いることが必要になる。
本実施態様においては、それぞれ2つの信号入力装置61、61aと反射測定装置62、62aを用いたが、それぞれ一つの信号入力装置61と反射測定装置62を用いてスイッチで第二導体層20および第三導体層30への接続を切り替えて使用しても良い。
また、逆にそれぞれ3個以上の信号入力装置と反射測定装置を切り替えて使用することにより、測定を並行処理することにより高速化を行っても良い。
また、回路上は信号入力装置と反射測定装置を分離して図示したが、1個の半導体装置で構成してもなんら動作は変わらないことは明らかである。
また、回路上は信号入力装置と反射測定装置を分離して図示したが、1個の半導体装置で構成してもなんら動作は変わらないことは明らかである。
(実施態様3)
本実施態様においては、表面にシールド層を設けることにより、外部からの電磁的および/または静電的な干渉(ノイズ)を簡便に遮断でき、結果として検出精度を向上させることができる。
本実施態様においては、表面にシールド層を設けることにより、外部からの電磁的および/または静電的な干渉(ノイズ)を簡便に遮断でき、結果として検出精度を向上させることができる。
本実施態様の感圧センサ100Cを、図7A〜図7Bを用いて説明する。図7Aは、本実施態様の感圧センサ100Cの断面図であり、本実施態様の感圧センサ100Cを図5Aに示す感圧センサと仮定したときの、5B−5B断面を矢印方向で見たときの模式的断面図である。図7Bは、本実施態様の感圧センサ100Cの断面図であり、本実施態様の感圧センサ100Cを図5Aに示す感圧センサと仮定したときの、5C−5C断面を矢印方向で見たときの模式的断面図である。
本実施態様の感圧センサ100Cは、シールド層形成用誘電体層35およびシールド層40を有すること以外、実施態様1の感圧センサ100Aと同様の構成を有している。本実施態様の感圧センサ100Cおよびその構成部材は、特記しない限り、上記感圧センサ100Aおよびその構成部材と同様である。
シールド層形成用誘電体層35は、シールド層40の形成に用いる誘電体層である。シールド層形成用誘電体層35は、弾性体からなり、第二導体層20および第一誘電体層1の表面に形成されている。シールド層形成用誘電体層35は、前記した誘電体層1と同様であり、前記誘電体層1の中から、当該誘電体層1より独立して選択されればよい。シールド層形成用誘電体層35は、感圧センサに対して加えられる通常の押圧力によっても第二導体層20とシールド層40との接触が起こらない程度の厚みであればよい。シールド層形成用誘電体層35は、第二誘電体層25と同様の方法により形成することができる。
シールド層40は、外部からの電磁的および/または静電的な干渉(ノイズ)を遮断することができる限り特に限定されない。シールド層40の構成材料として、例えば、前記第二導体層20の説明で例示した同様の構成材料が挙げられる。
シールド層40は、網状に目が開いてなるメッシュ形態を有していてもよいし、または当該目が詰まったシート形態(すなわち、所定の領域の実質的全面に構成材料が存在してなる形態)を有していてもよい。シールド層40は誘電体層1の全面に形成されていてもよい。
シールド層40の厚みは、ノイズを遮断する限り特に限定されない。
シールド層がない場合、感圧センサは外部の影響によりインピーダンスの変化を起こすおそれがある。例えば、外部からの電磁波の入射により、ノイズの混入などが発生する。シールド層を有する場合、これらの影響を抑えることができる。
具体的には、例えば、実施態様1の感圧センサでは、裏面(第一導体層10)をシールド層として利用することができる。当該シールド層を機器表面側にして利用した場合、表面から外乱の影響を抑えることは可能であるが、裏面側(機器側)からの外乱を抑えることは困難である。特に機器の回路の動作によるノイズの混入を抑えることが困難である。また、シールド層を裏面側にし、表面に配線層(第二導体層20)が配置されるようにした場合、逆に機器外からの影響を抑えることが困難である。
本実施態様においては、裏面の第一導体層10をシールド層として利用することにより、感圧センサの両面にシールド層を有する。このため本実施態様の感圧センサ100Cは、機器内部からのノイズも、機器外部からのノイズも防ぐことが可能であり、感圧センサとしての精度が向上し、感度の向上を図ることが可能である。実際に裏面側にのみシールド層を配した場合と比較して、両面にシールド層を配した場合、S/N比で3dBの向上が見られた。
(実施態様4)
本実施態様においては、第三導体層を線状の配線として、第二導体層の配線とは異なる主方向でさらに形成すること、および表面にシールド層を設けることにより、検出精度をより一層、十分に向上させることができる。
本実施態様においては、第三導体層を線状の配線として、第二導体層の配線とは異なる主方向でさらに形成すること、および表面にシールド層を設けることにより、検出精度をより一層、十分に向上させることができる。
本実施態様の感圧センサ100Dを、図8A〜図8Cを用いて説明する。図8Aは感圧センサ100Dの斜視図である。図8Bは図8Aに示す感圧センサ100Dの8B−8B断面を矢印方向で見たときの模式的断面図である。図8Cは図8Aに示す感圧センサ100Dの8C−8C断面を矢印方向で見たときの模式的断面図である。
本実施態様の感圧センサ100Dは、シールド層形成用誘電体層35およびシールド層40を有すること以外、実施態様2の感圧センサ100Bと同様の構成を有している。本実施態様の感圧センサ100Dおよびその構成部材は、特記しない限り、上記感圧センサ100Bおよびその構成部材と同様である。
本実施態様のシールド層形成用誘電体層35は、第三導体層30および第二誘電体層25の表面に形成されていること以外、実施態様3のシールド層形成用誘電体層35と同様である。本実施態様のシールド層形成用誘電体層35は、感圧センサに対して加えられる通常の押圧力によっても第三導体層30とシールド層40との接触が起こらない程度の厚みであればよい。
本実施態様のシールド層40は、実施態様3のシールド層40と同様である。
(実施態様5)
本実施態様においては、第二導体層20と第三導体層30との間にシールド層50を設けることにより、第二導体層20と第三導体層30との電磁的および/または静電的な干渉(ノイズ)を簡便に遮断でき、結果として検出精度を向上させることができる。
本実施態様においては、第二導体層20と第三導体層30との間にシールド層50を設けることにより、第二導体層20と第三導体層30との電磁的および/または静電的な干渉(ノイズ)を簡便に遮断でき、結果として検出精度を向上させることができる。
本実施態様の感圧センサ100Eを、図9A〜図9Bを用いて説明する。図9Aは、本実施態様の感圧センサ100Eの断面図であり、本実施態様の感圧センサ100Eを図8Aに示す感圧センサと仮定したときの、8B−8B断面を矢印方向で見たときの模式的断面図である。図9Bは、本実施態様の感圧センサ100Eの断面図であり、本実施態様の感圧センサ100Eを図8Aに示す感圧センサと仮定したときの、8C−8C断面を矢印方向で見たときの模式的断面図である。
本実施態様の感圧センサ100Eは、第二誘電体層25A、25B内にシールド層50をさらに有すること以外、実施態様4の感圧センサ100Dと同様の構成を有している。本実施態様の感圧センサ100Eおよびその構成部材は、特記しない限り、上記感圧センサ100Dおよびその構成部材と同様である。
本実施態様のシールド層50は、第二導体層20と第三導体層30との電磁的および/または静電的な干渉(ノイズ)を遮断すること以外、実施態様3のシールド層40と同様である。
本実施態様の第二誘電体層25A、25Bはそれぞれ、実施態様2の第二誘電体層25と同様である。第二誘電体層25A、25Bの厚みはそれぞれ、感圧センサに対して加えられる通常の押圧力によっても第二導体層20とシールド層50との接触およびシールド層50と第三導体層30との接触が起こらない程度の厚みであればよい。
(実施態様6)
本実施態様においては、第二導体層20(配線)の形状を工夫することにより、より一層、簡易な構造の感圧センサを得ることができる。
本実施態様においては、第二導体層20(配線)の形状を工夫することにより、より一層、簡易な構造の感圧センサを得ることができる。
本実施態様の感圧センサ100Fを、図10A〜図10Bを用いて説明する。図10Aは、本実施態様の感圧センサ100Fの上面図である。図10Bは図10Aに示す感圧センサ100Fの10B−10B断面を矢印方向で見たときの模式的断面図である。
本実施態様の感圧センサ100Fは、第二導体層20の形状を図10Aに示すような形状にしたこと以外、実施態様1の感圧センサ100Aと同様の構成を有している。本実施態様の感圧センサ100Fおよびその構成部材は、特記しない限り、上記感圧センサ100Aおよびその構成部材と同様である。
本実施態様の第二導体層20が有する形状は、図10Aに示すように、第二導体層20の密集領域が局所的に存在する粗密形状である。このような密集領域をタッチパネルなどの判別エリア(ボタン領域)として利用することにより、複数のボタンへの圧力を一本の配線および一個の時間領域反射測定装置で検出することができる。
本実施態様の第二導体層20は、全体形状が異なること以外、実施態様1の第二導体層20と同様である。
本実施態様の誘電体層1および第一導体層10はそれぞれ、実施態様1の誘電体層1および第一導体層10と同様である。
本実施態様の感圧センサ100Fは、特に、家電機器(電気ポット、電子レンジ、IHクッキングヒーターなど)の操作スイッチとして有用である。
感圧センサ100Fが図10Aに示す配線構造をとることにより、遅い立ち上がり時間の信号を用いても、判別エリア毎に加えられた圧力をセンスすることが可能になる。これは、ある判別エリアから他の判別エリアへの配線長を長く取ることができ、TDRの周波数が低くても、かつ/または立ち上がり時間が遅くても、十分な位置分解能を得ることが可能であるためである。
(透明感圧素子の実施態様)
かかる実施態様は、感圧センサが透明となっている態様である。かかる実施態様によれば、誘電体層1、第一導体層10および第二導体層20の少なくとも1つが光透過性を有している。つまり、感圧センサの構成要素の少なくとも1つが可視光領域において透明となっている。
かかる実施態様は、感圧センサが透明となっている態様である。かかる実施態様によれば、誘電体層1、第一導体層10および第二導体層20の少なくとも1つが光透過性を有している。つまり、感圧センサの構成要素の少なくとも1つが可視光領域において透明となっている。
感圧センサの構成要素の全てが透明要素となっていてもよい。すなわち、誘電体層1、第一導体層10および第二導体層20の全てが光透過性を有していてもよい。第二誘電体層25、第三導体層30、シールド層形成用誘電体層35、シールド層40およびシールド層50も光透過性を有していてもよい。
本開示の感圧センサ100および100A〜100Fの上記の構成要素は、透明性を担保するため例えば以下の材料的特徴を有している。
導体層(例えば、第一導体層10、第二導体層20および第三導体層30)は、透明導体層の形態を有していてもよい。当該透明導体層は、ITO等の透明導電性材料を含んでいてもよい。
シールド層(例えば、シールド層40およびシールド層50)は、透明シールド層の形態を有していてもよい。当該透明シールド層は、ITO等の透明導電性材料を含んでいてもよい。
誘電体層(例えば、誘電体層1、誘電体層25、誘電体層25A、誘電体層25B、誘電体層35)は、透明誘電体層の形態を有していてもよい。当該誘電体層は、透明な樹脂などの透明誘電体材料を含んでいてもよい。透明な樹脂の誘電体材料として、例えば、ポリエチレンテレフテレート樹脂および/またはポリイミド樹脂が挙げられる。
[感圧装置]
本開示は、上記した感圧センサを備えたあらゆる感圧装置にも提供する。
本開示は、上記した感圧センサを備えたあらゆる感圧装置にも提供する。
本開示の上記した感圧センサ100(100A〜100Fを包含する)は、それ自体が可撓性を有する平板状であり、かつ配線が1次元状あり、引き出し配線が少ないという特徴を有する。この特徴を活かして、本開示の感圧センサ100自体を様々な形状に屈曲および湾曲させ、感圧装置に加工することができる。本開示の感圧センサ100を可撓性支持体に貼り付けて、得られた可撓性材料を様々な形状に屈曲および湾曲させ、感圧装置に加工することもできる。このため、本開示の感圧センサおよび当該感圧センサを備えた感圧装置はそれぞれ、フレキシブル感圧センサおよびフレキシブル感圧装置としても有用である。可撓性とは、外力によって撓み変形し、除力すると元の形状へと戻る特性をいう。
本開示の感圧装置が有し得る形状として、例えば、図11に示すような半球形状、図12に示すような球形状、図13Aおよび図13Bに示すような円錐形状、図14に示すような手袋形状、図15に示すような伸縮性平板形状およびこれらの複合形状が挙げられる。
図11、図12、図13Aおよび13B、図14ならびに図15に示す形状は、本開示の感圧センサを含む可撓性材料に適切な切れ目を入れることにより、形成することができる。例えば、図13Aは、切れ目131を有する円形の可撓性材料130を示す。図13Bは、図13Aに示す可撓性材料の中心部分をつまみ上げたときに形成される立体的円錐形状の見取り図である。また例えば、図14は、本開示の感圧センサを含む可撓性材料がさらに柔軟性を有する場合に当該可撓性材料を縫製してなる手袋の外観形状を示す。
本開示の感圧センサおよび感圧装置は、絶縁性材料によりコーティング処理または埋封処理されていてもよい。例えば、図15は、本開示の感圧センサを含む可撓性材料に適切な切れ目を入れることにより、伸縮性を付与された平板が、絶縁性ポリマー材料中に埋封されてなる感圧装置の一例を示す。
また、上記図に示した形状に限らず、様々な形状での圧力分布測定が可能であることは、その構成上、明らかである。
以上、本開示の実施形態について説明してきたが、本開示はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。
本開示の感圧センサは各種電子機器のセンサ素子として好適に利用できる。具体的にいえば、本開示の感圧センサは、携帯機器(スマートフォン)、コンピュータ機器(電子ペーパー、電子ブックリーダー)、ロボット機器(介護ロボット、工業用ロボット)、車載機器(カーナビゲーション・システム、音響機器など)、家電機器(電気ポット、電子レンジ、IHクッキングヒーターなど)などの種々の電子機器に適用され、これまで以上にユーザーの利便性が図られたタッチセンサ素子(操作パネル・操作スイッチ)として利用できる。
1:誘電体層(第一誘電体層)
10:第一導体層
11:引き出し部
20:第二導体層
21:引き出し部
25:25A:25B:第二誘電体層
30:第三導体層
35:シールド層形成用誘電体層
40:シールド層
50:シールド層
60:60a:時間領域反射測定装置
61:61a:信号入力装置
62:62a:反射測定装置
63:63a:陽極側出力端子
64:64a:陰極側出力端子
65:65a:陽極側入力端子
66:66a:陰極側入力端子
10:第一導体層
11:引き出し部
20:第二導体層
21:引き出し部
25:25A:25B:第二誘電体層
30:第三導体層
35:シールド層形成用誘電体層
40:シールド層
50:シールド層
60:60a:時間領域反射測定装置
61:61a:信号入力装置
62:62a:反射測定装置
63:63a:陽極側出力端子
64:64a:陰極側出力端子
65:65a:陽極側入力端子
66:66a:陰極側入力端子
Claims (16)
- 弾性を有し、かつ第一面および前記第一面と反対側の第二面とを有する第一誘電体層と;
前記第一面上に配置された第一導体層と;
前記第二面上に配置された線状の第二導体層と;
前記第一導体層および前記第二導体層に接続されている第一時間領域反射測定装置とを備え、
前記第一導体層は、前記第一面のうち、少なくとも前記第二導体層と対向する領域に位置する、感圧センサ。 - 前記第一導体層がメッシュ形状またはシート形状を有する、請求項1に記載の感圧センサ。
- 前記第一時間領域反射測定装置は、
外部からの応力が前記第一誘電体層の少なくとも一部に印加されているときに、前記第一導体層および第二導体層に第一信号を入力し、かつ
前記第一信号が前記第一誘電体層の前記少なくとも一部で反射することにより生じた第一反射波の大きさ、および前記第一信号が前記第一導体層および第二導体層に入力されてから前記第一反射波が前記第一時間領域反射測定装置に到達するまでの時間である第一反射時間を測定する、請求項1または2に記載の感圧センサ。 - 前記第一時間領域反射測定装置が、
前記第一導体層および第二導体層に第一信号を入力する第一信号入力装置と、
前記第一信号が前記第一誘電体層の少なくとも一部で反射することにより生じた第一反射波を検出する第一反射波検出装置と、
前記第一信号が前記第一導体層および第二導体層に入力されてから前記第一反射波が前記第一時間領域反射測定装置に到達するまでの時間である第一反射時間を測定する第一反射時間測定装置とを含み、
前記第一信号入力装置および前記第一反射波検出装置がいずれも前記第一導体層および第二導体層に接続されており、
前記第一反射時間測定装置が前記第一反射波検出装置に接続されている、請求項1〜3のいずれか1項に記載の感圧センサ。 - 前記第一導体層は前記第一面の全面を覆っており、
前記第二導体層はミアンダ形状を有する、請求項1〜4のいずれか1項に記載の感圧センサ。 - 前記第二導体層上および前記第一誘電体層の前記第二面上に配置された、弾性を有する第二誘電体層と、
前記第二誘電体層上に配置された、導電性を有するシールド層とをさらに備える、請求項1〜5のいずれか1項に記載の感圧センサ。 - 前記第二導体層上および前記第一誘電体層の前記第二面上に配置された、弾性を有する第二誘電体層と、
前記第二誘電体層上に配置された線状の第三導体層とをさらに備える、請求項1〜5のいずれか1項に記載の感圧センサ。 - 前記第二導体層および前記第三導体層はミアンダ形状を有する、請求項7に記載の感圧センサ。
- 前記第二導体層は、第一方向に延びる複数の第一直線部と、各々が前記複数の第一直線部の各々よりも短い複数の第一接続部を含み、前記複数の第一接続部の各々は、前記複数の第一直線部のうち隣接する2つの第一直線部の端を結んでおり、
前記第三導体層は、前記第一方向と異なる第二方向に延びる複数の第二直線部と、各々が前記複数の第二直線部の各々よりも短い複数の第二接続部を含み、前記複数の第二接続部の各々は、前記複数の第二直線部のうち隣接する2つの第二直線部の端を結んでいる、請求項8に記載の感圧センサ。 - 前記第一導体層および第三導体層に接続されている第二時間領域反射測定装置をさらに備える、請求項7〜9のいずれか1項に記載の感圧センサ。
- 前記第二時間領域反射測定装置が、
前記第一導体層および第三導体層に第二信号を入力する第二信号入力装置と、
前記第二信号が前記第一誘電体層および前記第二誘電体層の少なくとも一部で反射することにより生じた第二反射波を検出する第二反射波検出装置と、
前記第二信号が前記第一導体層および第三導体層に入力されてから前記第二反射波が前記第二時間領域反射測定装置に到達するまでの時間である第二反射時間を測定する第二反射時間測定装置とを含み、
前記第二信号入力装置および前記第二反射波検出装置がいずれも前記第一導体層および第三導体層に接続されており、
前記第二反射時間測定装置が前記第二反射波検出装置に接続されている、請求項10に記載の感圧センサ。 - 前記第一時間領域反射測定装置と前記第二導体層との間に配置され、前記第一時間領域反射測定装置と前記第二導体層とが接続されている状態と、前記第一時間領域反射測定装置と前記第三導体層とが接続されている状態との間で切り替えるスイッチをさらに備える、請求項7〜9のいずれか1項に記載の感圧センサ。
- 前記第三導体層上および前記第三導体層が配置された前記第二誘電体層上に配置された、弾性を有する第三誘電体層と、
前記第三誘電体層上に配置された、導電性を有するシールド層とをさらに備える、請求項7〜12のいずれか1項に記載の感圧センサ。 - 前記第二誘電体層内に配置された、導電性を有するシールド層をさらに備える、請求項7〜12のいずれか1項に記載の感圧センサ。
- 前記第一導体層および前記第二導体層のうち少なくとも1つが酸化インジウムスズを含む、請求項1〜14のいずれか1項に記載の感圧センサ。
- 前記第一誘電体層が透明な樹脂を含む、請求項1〜15のいずれか1項に記載の感圧センサ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015061374 | 2015-03-24 | ||
JP2015061374 | 2015-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016180747A true JP2016180747A (ja) | 2016-10-13 |
Family
ID=56975293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016017259A Pending JP2016180747A (ja) | 2015-03-24 | 2016-02-01 | 感圧センサ |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160283006A1 (ja) |
JP (1) | JP2016180747A (ja) |
CN (1) | CN106020522A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019039734A1 (ko) * | 2017-08-21 | 2019-02-28 | 삼성전자 주식회사 | 센서 및 센서의 신호를 이용하여 구동하기 위한 하나 이상의 도전층들을 포함하는 전자 장치 |
JPWO2021140967A1 (ja) * | 2020-01-06 | 2021-07-15 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015108290A1 (en) * | 2014-01-17 | 2015-07-23 | Lg Innotek Co., Ltd. | Touch window and touch device |
KR102440208B1 (ko) * | 2015-09-03 | 2022-09-05 | 엘지이노텍 주식회사 | 압력 감지 소자 |
US10422637B1 (en) * | 2016-06-10 | 2019-09-24 | Facebook Technologies, Llc | Wave reflection deformation sensing apparatus |
CN107562269B (zh) | 2017-08-28 | 2020-04-17 | 京东方科技集团股份有限公司 | 压力触控结构和显示装置 |
CN107562285B (zh) * | 2017-10-25 | 2020-08-14 | 厦门天马微电子有限公司 | 一种显示面板及其压力检测方法、以及显示装置 |
WO2019172781A1 (en) * | 2018-03-05 | 2019-09-12 | Stretchsense Limited | A soft electronic component with improved connection |
JP7281630B2 (ja) * | 2018-10-18 | 2023-05-26 | パナソニックIpマネジメント株式会社 | 感圧素子および電子機器 |
DE102019124825B4 (de) * | 2019-09-16 | 2024-03-07 | Endress+Hauser SE+Co. KG | Messgerät zur Bestimmung eines Dielelektrizitätswertes |
WO2023159297A1 (en) | 2022-02-22 | 2023-08-31 | Myant Inc. | Textile pressure sensing system and method |
US12299225B2 (en) | 2022-03-04 | 2025-05-13 | Kureha America, Inc. | Touch sensing using polyvinylidene fluoride piezoelectric film |
EP4312374A1 (de) * | 2022-07-25 | 2024-01-31 | Sick Ag | Vorrichtung und verfahren zur erkennung einer berührung sowie roboter |
DE102022210258A1 (de) * | 2022-09-28 | 2024-03-28 | Contitech Ag | Drucksensorsystem |
CN115979469A (zh) * | 2022-12-14 | 2023-04-18 | 北大荒集团总医院 | 一种基于时域反射法的人体压力分布测量装置及测量方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4705919A (en) * | 1985-02-21 | 1987-11-10 | Dhawan Satish K | Electrostatic pattern-coupled digitizer |
US4771138A (en) * | 1985-02-21 | 1988-09-13 | Dhawan Satish K | Electrostatic pattern-coupled digitizer |
TW350026B (en) * | 1995-07-28 | 1999-01-11 | Hokushin Ind | Pressure sensor |
US5819582A (en) * | 1997-03-31 | 1998-10-13 | Kelly; John M. | Slow wave time-domain reflectometer point level sensor |
US20040239616A1 (en) * | 2003-05-28 | 2004-12-02 | Collins Ryan V. | Methods and apparatus for receiving user input via time domain reflectometry |
US7339579B2 (en) * | 2003-12-15 | 2008-03-04 | 3M Innovative Properties Company | Wiring harness and touch sensor incorporating same |
US8286489B2 (en) * | 2006-03-29 | 2012-10-16 | Nec Corporation | Input apparatus and input method |
TWI356630B (en) * | 2006-04-17 | 2012-01-11 | Panasonic Corp | Input device, electronic apparatus and method for |
US8117460B2 (en) * | 2007-02-14 | 2012-02-14 | Intel Corporation | Time-domain reflectometry used to provide biometric authentication |
US20090273352A1 (en) * | 2008-04-30 | 2009-11-05 | Xiong Yu | Sensor apparatus and system for time domain reflectometry |
JP5267932B2 (ja) * | 2008-11-11 | 2013-08-21 | 株式会社フジクラ | 位置検出装置 |
JP5493739B2 (ja) * | 2009-03-19 | 2014-05-14 | ソニー株式会社 | センサ装置及び情報処理装置 |
US8736582B2 (en) * | 2009-11-29 | 2014-05-27 | Kihong (Joshua) Kim | Time domain reflectometer touch screen sensor |
US8972214B2 (en) * | 2011-04-21 | 2015-03-03 | Microchip Technology Incorporated | Touch sense determined by characterizing impedance changes in a transmission line |
JP2013152581A (ja) * | 2012-01-25 | 2013-08-08 | Japan Display West Co Ltd | 検出装置、検出方法、および表示装置 |
US20160018252A1 (en) * | 2013-03-04 | 2016-01-21 | International Road Dynamics, Inc. | Sensor including electrical transmission-line parameter that changes responsive to vehicular load |
US9429463B2 (en) * | 2013-03-04 | 2016-08-30 | International Road Dynamics, Inc. | System and method for measuring moving vehicle information using electrical time domain reflectometry |
US10261631B2 (en) * | 2014-05-08 | 2019-04-16 | Lg Innotek Co., Ltd. | Electronic device |
KR102500994B1 (ko) * | 2014-10-17 | 2023-02-16 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 터치 패널 |
-
2016
- 2016-02-01 JP JP2016017259A patent/JP2016180747A/ja active Pending
- 2016-02-03 CN CN201610076754.4A patent/CN106020522A/zh active Pending
- 2016-03-18 US US15/074,887 patent/US20160283006A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019039734A1 (ko) * | 2017-08-21 | 2019-02-28 | 삼성전자 주식회사 | 센서 및 센서의 신호를 이용하여 구동하기 위한 하나 이상의 도전층들을 포함하는 전자 장치 |
JPWO2021140967A1 (ja) * | 2020-01-06 | 2021-07-15 | ||
JP7571736B2 (ja) | 2020-01-06 | 2024-10-23 | ソニーグループ株式会社 | 圧力センサおよび電子機器 |
US12203817B2 (en) | 2020-01-06 | 2025-01-21 | Sony Group Corporation | Convex surface shaped electrostatic capacitance type pressure sensor used in electronic devices |
Also Published As
Publication number | Publication date |
---|---|
US20160283006A1 (en) | 2016-09-29 |
CN106020522A (zh) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016180747A (ja) | 感圧センサ | |
US9948297B2 (en) | Pressure dependent capacitive sensing circuit switch construction | |
KR102028783B1 (ko) | 링킹 트랙들의 배치를 가지는 용량성 검출을 위한 장치 및 이러한 장치를 구현하는 방법 | |
US10379666B2 (en) | Position measuring apparatus, pen and position measuring method | |
US8546705B2 (en) | Device and method for preventing the influence of conducting material from point detection of projected capacitive touch panel | |
US20150022224A1 (en) | Touch sensing device and a detection method | |
US20030067451A1 (en) | Capacitive touch detectors | |
EP2542952A1 (en) | A touch sensitive film and a touch sensing device | |
JP2014510974A (ja) | タッチセンシティブスクリーン | |
US20130321003A1 (en) | Electrostatic capacitance detection device | |
CN104303136B (zh) | 电容式传感器、用于读取电容式传感器阵的方法和用于制造电容式传感器阵的方法 | |
JP6817586B2 (ja) | タッチパネル用部材 | |
US20210006246A1 (en) | Switching operation sensing apparatus with touch input member identification | |
US20110012853A1 (en) | Touch panel | |
JP2009026151A (ja) | 入力装置及び電子機器 | |
KR20080092633A (ko) | 터치스크린 | |
CN202737844U (zh) | 一种触摸按键 | |
US9996206B2 (en) | Touch panel | |
KR20160022620A (ko) | 터치 패널 | |
KR20120018096A (ko) | 지시체 검출 장치, 위치 검출 센서 및 위치 검출 센서의 제조 방법 | |
JP2019196904A (ja) | 感圧装置およびこれに用いられる感圧部品 | |
KR101184330B1 (ko) | 캐패시티브 방식의 터치스크린의 터치 감지 패널 | |
US20130342503A1 (en) | Signal Enhancing Method for Capacitive Touch Panel of Mobile Device | |
US9703442B2 (en) | Position detection device | |
US20200293147A1 (en) | Methods and apparatus for a capacitive touch sensor |