[go: up one dir, main page]

JP2016178065A - Electrolytic solution for lithium ion secondary batteries and lithium ion secondary battery arranged by use thereof - Google Patents

Electrolytic solution for lithium ion secondary batteries and lithium ion secondary battery arranged by use thereof Download PDF

Info

Publication number
JP2016178065A
JP2016178065A JP2015059233A JP2015059233A JP2016178065A JP 2016178065 A JP2016178065 A JP 2016178065A JP 2015059233 A JP2015059233 A JP 2015059233A JP 2015059233 A JP2015059233 A JP 2015059233A JP 2016178065 A JP2016178065 A JP 2016178065A
Authority
JP
Japan
Prior art keywords
ion secondary
lithium ion
secondary battery
lithium
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015059233A
Other languages
Japanese (ja)
Inventor
長谷川 智彦
Tomohiko Hasegawa
智彦 長谷川
長 鈴木
Takeru Suzuki
長 鈴木
未来 石田
Mirai Ishida
未来 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015059233A priority Critical patent/JP2016178065A/en
Publication of JP2016178065A publication Critical patent/JP2016178065A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an electrolytic solution for lithium ion secondary batteries which enables the formation of a lithium ion secondary battery superior in rate characteristic; and a lithium ion secondary battery arranged by use of such an electrolytic solution.SOLUTION: The means for solving the problem is an electrolytic solution for lithium ion secondary batteries which comprises an ordinary temperature molten salt and an electrolyte. The ordinary temperature molten salt is a sulfonium salt. In the electrolytic solution, the content of anions expressed by the formula (1) is less than 100 ppm in total.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池用電解液およびこれを用いたリチウムイオン二次電池に関する。   The present invention relates to an electrolyte for a lithium ion secondary battery and a lithium ion secondary battery using the same.

リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池等と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。また、ハイブリッド自動車や、電気自動車用に搭載される電源として有力な候補ともなっている。そして、近年の携帯電子機器の小型化、高機能化に伴い、これらの電源となるリチウムイオン二次電池への更なる高容量化が期待されている。   Lithium ion secondary batteries are widely applied as power sources for portable electronic devices because they are lighter and have a higher capacity than nickel cadmium batteries, nickel metal hydride batteries, and the like. It is also a promising candidate as a power source for use in hybrid vehicles and electric vehicles. With the recent miniaturization and higher functionality of portable electronic devices, further increase in capacity is expected for lithium ion secondary batteries that serve as these power sources.

リチウムイオン二次電池における非水系の電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、N,N−ジメチルホルムアミド、テトラヒドロフラン、あるいはアセトニトリル等の有機溶媒に電解質を溶解させた電解質溶液が用いられてきた。しかし、これらの電解質溶液に用いられる有機溶媒は揮発しやすく、それ自体が危険物であることから、長期の信頼性、耐久性、および安全性に課題を有している。   Examples of non-aqueous electrolytes in lithium ion secondary batteries include electrolyte solutions in which an electrolyte is dissolved in an organic solvent such as ethylene carbonate, propylene carbonate, dimethoxyethane, γ-butyrolactone, N, N-dimethylformamide, tetrahydrofuran, or acetonitrile. Has been used. However, since the organic solvent used in these electrolyte solutions is volatile and is itself a dangerous substance, it has problems in long-term reliability, durability, and safety.

そこで、電解質に有機溶媒を含む電解質溶液を用いず、高い難燃性を有する常温溶融塩を使用することが提案されている(特許文献1)。常温溶融塩の中でも、スルホニウム塩は粘性が低く、かつイオン伝導性が高いため(特許文献2)、リチウムイオン二次電池用の電解液として有望視されている。   Therefore, it has been proposed to use a room temperature molten salt having high flame retardancy without using an electrolyte solution containing an organic solvent in the electrolyte (Patent Document 1). Among the room temperature molten salts, the sulfonium salt has low viscosity and high ionic conductivity (Patent Document 2), and therefore is considered promising as an electrolyte for a lithium ion secondary battery.

特開平4−349365号公報JP-A-4-349365 特開2004−203763号公報JP 2004-203763 A

しかしながら、スルホニウム塩を電解液に用いたリチウムイオン二次電池は電池特性において必ずしも満足できるものではなく、特にレート特性の悪化が顕著であった。これについて鋭意研究を重ねた結果、スルホニウム塩を合成する過程で残留するルイス酸由来のアニオンが特性悪化の原因となっていることを見出した。   However, a lithium ion secondary battery using a sulfonium salt as an electrolyte is not always satisfactory in battery characteristics, and the rate characteristics are particularly deteriorated. As a result of extensive research on this, it was found that the anion derived from a Lewis acid remaining in the process of synthesizing a sulfonium salt causes deterioration of the characteristics.

本発明は上記従来技術の有する課題に鑑みてなされたものであり、レート特性に優れたリチウムイオン二次電池を構成できるリチウムイオン二次電池用電解液およびこれを用いたリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and provides an electrolyte for a lithium ion secondary battery that can constitute a lithium ion secondary battery having excellent rate characteristics, and a lithium ion secondary battery using the same. The purpose is to provide.

上記課題を解決するため、本発明のリチウムイオン二次電池用電解液は、常温溶融塩と電解質とを有し、前記常温溶融塩がスルホニウム塩であり、電解液中の下記式(1)で示されるアニオンの含有量の合計が100ppm未満であることを特徴とする。
式(1):CO 2−、NO 、CHCOO、SO 2−、PO 3−、ClO 、ClO
In order to solve the above-mentioned problems, an electrolyte solution for a lithium ion secondary battery of the present invention has a room temperature molten salt and an electrolyte, and the room temperature molten salt is a sulfonium salt, and is represented by the following formula (1) in the electrolyte solution. The total content of anions shown is less than 100 ppm.
Formula (1): CO 3 2− , NO 3 , CH 3 COO , SO 4 2− , PO 4 3− , ClO 3 , ClO 4

これによれば、式(1)で示されるアニオンとスルホニウムカチオンとの間の強い相互作用の形成が抑制されることで系の自由度が向上し、電池を構成した際のレート特性が向上する。   According to this, since the formation of a strong interaction between the anion represented by the formula (1) and the sulfonium cation is suppressed, the degree of freedom of the system is improved, and the rate characteristic when the battery is configured is improved. .

本発明のリチウムイオン二次電池用電解液は、さらに前記式(1)で示されるアニオンの含有量の合計が10ppm未満であることが好ましい。   In the electrolyte solution for a lithium ion secondary battery of the present invention, the total content of anions represented by the formula (1) is preferably less than 10 ppm.

これによれば、式(1)で示されるアニオンとスルホニウムカチオンとの間の強い相互作用の形成がより抑制され、電池を構成した際のレート特性がより向上する。   According to this, formation of a strong interaction between the anion represented by the formula (1) and the sulfonium cation is further suppressed, and the rate characteristics when the battery is configured are further improved.

また、本発明のリチウムイオン二次電池は、前記リチウムイオン二次電池用電解液を用いることを特徴とする。   Moreover, the lithium ion secondary battery of the present invention is characterized by using the above-described electrolyte for lithium ion secondary batteries.

これによれば、レート特性に優れたリチウムイオン二次電池が提供される。   According to this, a lithium ion secondary battery excellent in rate characteristics is provided.

本発明によれば、レート特性に優れたリチウムイオン二次電池を構成できるリチウムイオン二次電池用電解液およびこれを用いたリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrolyte solution for lithium ion secondary batteries which can comprise the lithium ion secondary battery excellent in the rate characteristic, and a lithium ion secondary battery using the same can be provided.

本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of this embodiment.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

<リチウムイオン二次電池>
図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える発電要素30と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出される負極リード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出される正極リード60とを備える。
<Lithium ion secondary battery>
As shown in FIG. 1, a lithium ion secondary battery 100 according to the present embodiment is disposed adjacent to each other between a plate-like negative electrode 20 and a plate-like positive electrode 10 facing each other, and the negative electrode 20 and the positive electrode 10. A plate-like separator 18, an electrolyte solution containing lithium ions, a case 50 containing these in a sealed state, and one end of the negative electrode 20 being electrically connected. A negative electrode lead 62 whose other end protrudes outside the case, and a positive electrode lead 60 whose one end is electrically connected to the positive electrode 10 and whose other end protrudes outside the case are provided. .

負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24と、を有する。また、正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。   The negative electrode 20 includes a negative electrode current collector 22 and a negative electrode active material layer 24 formed on the negative electrode current collector 22. The positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 formed on the positive electrode current collector 12. The separator 18 is located between the negative electrode active material layer 24 and the positive electrode active material layer 14.

<正極>
(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
<Positive electrode>
(Positive electrode current collector)
The positive electrode current collector 12 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as aluminum, an alloy thereof, or stainless steel can be used.

(正極活物質層)
正極活物質層14は、正極活物質、正極用バインダー、及び、必要に応じた量の正極用導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a necessary amount of positive electrode conductive additive.

(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンと該リチウムイオンのカウンターアニオン(例えば、PF )とのドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMnMaO(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物が挙げられる。
(Positive electrode active material)
Examples of the positive electrode active material include occlusion and release of lithium ions, desorption and insertion (intercalation) of lithium ions, or doping and dedoping of lithium ions and counter anions (for example, PF 6 ) of the lithium ions. The electrode is not particularly limited as long as it can be reversibly advanced, and a known electrode active material can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and the general formula: LiNi x Co y Mn z MaO 2 (x + y + z + a = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, and M is one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr) Oxide, lithium vanadium compound (LiV 2 O 5 ), olivine type LiMPO 4 (where M is one or more elements selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr, or VO) shown), and composite metal oxides of lithium titanate (Li 4 Ti 5 O 12) , LiNi x Co y Al z O 2 (0.9 <x + y + z <1.1) , etc.

(正極用バインダー)
正極用バインダーは、正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO、LiBF、LiPF等のリチウム塩とを複合化させたもの等が挙げられる。
(Binder for positive electrode)
The positive electrode binder bonds the positive electrode active materials to each other and bonds the positive electrode active material layer 14 to the positive electrode current collector 12. The binder is not particularly limited as long as it can be bonded as described above. For example, fluorine resin such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide A resin, a polyamideimide resin, or the like may be used. Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene, polythiophene, and polyaniline. Examples of the ion conductive conductive polymer include those obtained by combining a polyether polymer compound such as polyethylene oxide and polypropylene oxide and a lithium salt such as LiClO 4 , LiBF 4 , and LiPF 6. It is done.

正極活物質層14中のバインダーの含有量は特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量部であることが好ましい。   Although content of the binder in the positive electrode active material layer 14 is not specifically limited, When adding, it is preferable that it is 0.5-5 mass parts with respect to the mass of a positive electrode active material.

(正極用導電助剤)
正極用導電助剤は、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、ITO等の導電性酸化物が挙げられる。
(Conductive aid for positive electrode)
The conductive aid for positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive aid can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metal fine powders such as copper, nickel, stainless steel, and iron, and conductive oxides such as ITO.

<負極>
(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
<Negative electrode>
(Negative electrode current collector)
The negative electrode current collector 22 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as copper can be used.

(負極活物質層)
負極活物質層24は、負極活物質、負極用バインダー、及び、必要に応じた量の負極用導電助剤から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a negative electrode binder, and an amount of a negative electrode conductive additive as required.

(負極活物質)
負極活物質としても、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンと該リチウムイオンのカウンターアニオン(例えば、PF )とのドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、グラファイト、ハードカーボン等の炭素系材料、酸化シリコン(SiO)金属シリコン(Si)等の珪素系材料、チタン酸リチウム(LTO)等の金属酸化物、リチウム、スズ、亜鉛等の金属材料が挙げられる。
(Negative electrode active material)
Also as the negative electrode active material, insertion and extraction of lithium ions, desorption and insertion (intercalation) of lithium ions, or doping and dedoping of lithium ions and a counter anion (for example, PF 6 ) of the lithium ions. The electrode is not particularly limited as long as it can be reversibly advanced, and a known electrode active material can be used. For example, carbon materials such as graphite and hard carbon, silicon materials such as silicon oxide (SiO x ) metal silicon (Si), metal oxides such as lithium titanate (LTO), metal materials such as lithium, tin, and zinc Is mentioned.

(負極用バインダー)
負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
(Binder for negative electrode)
There is no limitation in particular as a binder for negative electrodes, The thing similar to the binder for positive electrodes described above can be used.

(負極用導電助剤)
負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
(Conductive aid for negative electrode)
There is no limitation in particular as a conductive support agent for negative electrodes, The thing similar to the conductive support agent for positive electrodes described above can be used.

<リチウムイオン二次電池用電解液>
本実施形態に係るリチウムイオン二次電池用電解液は、常温溶融塩であるスルホニウム塩と電解質とを含み、電解液中の式(1)で示されるアニオンの含有量が100ppm未満であるものである。
<Electrolyte for lithium ion secondary battery>
The electrolyte for a lithium ion secondary battery according to this embodiment includes a sulfonium salt that is a room temperature molten salt and an electrolyte, and the content of an anion represented by the formula (1) in the electrolyte is less than 100 ppm. is there.

上記スルホニウム塩はアンモニウム塩やホスホニウム塩等の常温溶融塩と同様に四面体型構造を取るが、そのうちの一つの軌道が非共有電子対で占められているので、中心の硫黄カチオン周辺が立体的に疎な構造となっており、アニオンとの相互作用を形成しやすい。本実施形態に係るリチウムイオン二次電池用電解液は、配位子しても知られる多原子アニオンである式(1)で示されるアニオンの含有量の合計が100ppm未満であり、スルホニウムとの強い相互作用の形成が抑制されることで系の自由度が向上し、電池を構成した際のレート特性を改善させることが可能となる。   The sulfonium salt has a tetrahedral structure similar to room temperature molten salts such as ammonium salts and phosphonium salts, but one orbital of them is occupied by unshared electron pairs, so the central sulfur cation is three-dimensional. It has a sparse structure and tends to form an interaction with an anion. The electrolyte solution for a lithium ion secondary battery according to this embodiment has a total content of anions represented by the formula (1), which is a polyatomic anion also known as a ligand, of less than 100 ppm. By suppressing the formation of strong interaction, the degree of freedom of the system is improved, and the rate characteristics when the battery is configured can be improved.

更に、相互作用形成抑制の観点から、上記解液中の式(1)で示されるアニオンの含有量の合計が10ppm未満であることがより好ましい。   Furthermore, from the viewpoint of suppressing interaction formation, the total content of anions represented by formula (1) in the solution is more preferably less than 10 ppm.

上記スルホニウム塩としては特に限定は無く、例えば下記式(1)で表されるものを使用することができる。   There is no limitation in particular as said sulfonium salt, For example, what is represented by following formula (1) can be used.

Figure 2016178065
Figure 2016178065

ただし、上記式(1)において、R、RおよびRは、直鎖状乃至分岐状のアルキル基、フェニル基、シクロアルキル基、アルキルオキシ基、アルキルチア基、ジアルキルアザ基等が挙げられる。これらの置換基の任意の水素は、フッ素や塩素等の任意の原子や、パーフルオロアルキル基やアルキルオキシ基等の任意の原子団で置換されていても良い。また、R及びRが互いに縮環した環構造であっても良い。Xは陰イオンを示す。 However, in the above formula (1), examples of R 1 , R 2 and R 3 include linear or branched alkyl groups, phenyl groups, cycloalkyl groups, alkyloxy groups, alkylthia groups, dialkylaza groups, and the like. . Any hydrogen of these substituents may be substituted with any atom such as fluorine or chlorine, or any atomic group such as a perfluoroalkyl group or an alkyloxy group. In addition, a ring structure in which R 1 and R 2 are condensed with each other may be used. X represents an anion.

、RおよびRをアルキル基とする場合、例えば、炭素数を1以上8以下とすることができる。 When R 1 , R 2 and R 3 are alkyl groups, for example, the number of carbon atoms can be 1 or more and 8 or less.

、RおよびRをシクロアルキル基とする場合、例えば、炭素数を5以上7以下とすることができる。 When R 1 , R 2 and R 3 are cycloalkyl groups, for example, the number of carbon atoms can be 5 or more and 7 or less.

、RおよびRをアルキルオキシ基またはアルキルチア基とする場合、例えば、炭素数を1以上4以下とすることができる。 When R 1 , R 2 and R 3 are alkyloxy groups or alkylthia groups, for example, the number of carbon atoms can be 1 or more and 4 or less.

、RおよびRをジアルキルアザ基とする場合、例えば、炭素数を2以上4以下とすることができる。 When R 1 , R 2 and R 3 are dialkylaza groups, for example, the number of carbon atoms can be 2 or more and 4 or less.

およびRが互いに縮合した環構造である場合、RおよびRを併せて炭素数4以上7以下のα,ω−アルキレン基とすることができる。また、Rは一般式(1)の場合と同様の構造の中から選択することができる。 When R 1 and R 2 are ring structures condensed with each other, R 1 and R 2 can be combined to form an α, ω-alkylene group having 4 to 7 carbon atoms. R 3 can be selected from the same structure as in the general formula (1).

上記式(1)において、Xで表される陰イオンは、PF 、BF 、AsF 、SbF 、イミドアニオンを含むことができる。また、Xをイミドアニオンから選択する場合、例えば、N(C2n+1SO)(F2m+1SO)(n、mは独立した1以上4以下の自然数)で示される化合物とすることができる。 In the formula (1), the anion represented by X can include PF 6 , BF 4 , AsF 6 , SbF 6 , and an imide anion. Further, X - a case of selecting the anion, e.g., - N (C n F 2n + 1 SO 2) (F m F 2m + 1 SO 2) (n, m is 1 or more independent 4 following a natural number), a compound represented by It can be.

上記電解質としても特に限定は無く、リチウムイオン二次電池の電解質として用いられるリチウム塩を用いることができる。例えば、LiPF、LiBF、LiClO、LiBOB等の無機酸陰イオン塩、LiCFSO、(CFSONLi、(FSONLi等の有機酸陰イオン塩等を用いることができる。 There is no limitation in particular also as said electrolyte, The lithium salt used as an electrolyte of a lithium ion secondary battery can be used. For example, inorganic acid anion salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiBOB, and organic acid anion salts such as LiCF 3 SO 3 , (CF 3 SO 2 ) 2 NLi, and (FSO 2 ) 2 NLi are used. be able to.

上記式(1)の化合物の代表例を、式(2)〜式(6)に具体的に例示するが、本実施形態において用いることができるスルホニウム塩はこれらに限定されるものではない。   Representative examples of the compound of the above formula (1) are specifically exemplified by the formulas (2) to (6), but the sulfonium salts that can be used in the present embodiment are not limited to these.

Figure 2016178065
(以下、本文中で化合物No.1と標記する。)
Figure 2016178065
(Hereinafter referred to as Compound No. 1 in the text.)

Figure 2016178065
Figure 2016178065

Figure 2016178065
(以下、本文中で化合物No.2と標記する。)
Figure 2016178065
(Hereinafter referred to as Compound No. 2 in the text.)

Figure 2016178065
Figure 2016178065

Figure 2016178065
(以下、本文中で化合物No.3と標記する。)
Figure 2016178065
(Hereinafter referred to as Compound No. 3 in the text.)

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[合成実施例1]
(S,S,S−トリメチルスルホニウムカルボネート(中間化合物A)の合成)
Ar雰囲気下、乾燥エタノール500mLに炭酸リチウム29.6g(0.400mol)を溶解させ、次いでジメチルスルフィド59.2mL(0.800mol)を30分かけて滴下した。この溶液を氷浴下で1時間撹拌し、その後ヨードメタン49.8mL(0.800mol)を30分かけて滴下した。一晩撹拌し、得られた溶液から沈殿物をろ過後、水−ジエチルエーテルで分液を行った。水相を回収、乾燥し、81.4g(0.380mol)の中間化合物Aを得た。
[Synthesis Example 1]
(Synthesis of S, S, S-trimethylsulfonium carbonate (intermediate compound A))
Under Ar atmosphere, 29.6 g (0.400 mol) of lithium carbonate was dissolved in 500 mL of dry ethanol, and then 59.2 mL (0.800 mol) of dimethyl sulfide was added dropwise over 30 minutes. This solution was stirred for 1 hour in an ice bath, and then 49.8 mL (0.800 mol) of iodomethane was added dropwise over 30 minutes. The mixture was stirred overnight, and the precipitate was filtered from the resulting solution, followed by liquid separation with water-diethyl ether. The aqueous phase was recovered and dried to obtain 81.4 g (0.380 mol) of intermediate compound A.

(化合物No.1(A法)の合成)
中間化合物A32.1g(0.150mol)を水300mLに溶解させ、次いでS,S,S−トリメチルスルホニウムカチオンに対して1.50等量となるヘキサフルオロリン酸カリウム82.8g(0.450mol)を徐々に加えた。この溶液を一晩撹拌し、得られた溶液を1wt%HTFSI水溶液−ジクロロメタンで分液を行った。有機相を回収、乾燥し、31.5g(0.142mol)の化合物No.1(A法)を得た。
(Synthesis of Compound No. 1 (Method A))
Intermediate compound A 32.1 g (0.150 mol) is dissolved in 300 mL of water, and then 82.8 g (0.450 mol) of potassium hexafluorophosphate which is 1.50 equivalents relative to S, S, S-trimethylsulfonium cation. Was gradually added. This solution was stirred overnight, and the obtained solution was subjected to liquid separation with 1 wt% HTFSI aqueous solution-dichloromethane. The organic phase was recovered and dried, and 31.5 g (0.142 mol) of Compound No. 1 (Method A) was obtained.

[合成実施例2]
(化合物No.1(B法)の合成)
炭酸リチウムの代わりに硝酸リチウムを用いた以外は合成実施例1と同様の手順で合成を行い、45.1g(0.203mol)の化合物No.1(B法)を得た。
[Synthesis Example 2]
(Synthesis of Compound No. 1 (Method B))
The synthesis was performed in the same procedure as in Synthesis Example 1 except that lithium nitrate was used instead of lithium carbonate, and 45.1 g (0.203 mol) of Compound No. 1 (Method B) was obtained.

[合成実施例3]
(化合物No.1(C法)の合成)
炭酸リチウムの代わりに酢酸リチウムを用いた以外は合成実施例1と同様の手順で合成を行い、28.9g(0.130mol)の化合物No.1(C法)を得た。
[Synthesis Example 3]
(Synthesis of Compound No. 1 (Method C))
The synthesis was performed in the same procedure as in Synthesis Example 1 except that lithium acetate was used instead of lithium carbonate, and 28.9 g (0.130 mol) of Compound No. 1 (Method C) was obtained.

[合成実施例4]
(化合物No.1(D法)の合成)
炭酸リチウムの代わりに硫酸リチウムを用いた以外は合成実施例1と同様の手順で合成を行い、27.5g(0.124mol)の化合物No.1(D法)を得た。
[Synthesis Example 4]
(Synthesis of Compound No. 1 (Method D))
Synthesis was performed in the same procedure as in Synthesis Example 1 except that lithium sulfate was used instead of lithium carbonate, and 27.5 g (0.124 mol) of Compound No. 1 (Method D) was obtained.

[合成実施例5]
(化合物No.1(E法)の合成)
炭酸リチウムの代わりにリン酸リチウムを用いた以外は合成実施例1と同様の手順で合成を行い、30.6g(0.138mol)の化合物No.1(E法)を得た。
[Synthesis Example 5]
(Synthesis of Compound No. 1 (Method E))
The synthesis was performed in the same procedure as in Synthesis Example 1 except that lithium phosphate was used instead of lithium carbonate, and 30.6 g (0.138 mol) of Compound No. 1 (Method E) was obtained.

[合成実施例6]
(化合物No.1(F法)の合成)
炭酸リチウムの代わりに塩素酸カリウムを用いた以外は合成実施例1と同様の手順で合成を行い、29.5g(0.133mol)の化合物No.1(F法)を得た。
[合成実施例7]
(化合物No.1(G法)の合成)
炭酸リチウムの代わりに過塩素酸リチウムを用いた以外は合成実施例1と同様の手順で合成を行い、5.5g(0.0251mol)の化合物No.1(G法)を得た。
[Synthesis Example 6]
(Synthesis of Compound No. 1 (Method F))
The synthesis was performed in the same procedure as in Synthesis Example 1 except that potassium chlorate was used instead of lithium carbonate, and 29.5 g (0.133 mol) of Compound No. 1 (Method F) was obtained.
[Synthesis Example 7]
(Synthesis of Compound No. 1 (Method G))
The synthesis was performed in the same procedure as in Synthesis Example 1 except that lithium perchlorate was used instead of lithium carbonate, and 5.5 g (0.0251 mol) of Compound No. 1 (Method G) was obtained.

[合成実施例8]
(化合物No.2の合成)
中間化合物A32.1g(0.150mol)を水300mLに溶解させ、次いでリチウムビス(トリフルオロメタンスルホニル)イミド129g(0.450mol)を徐々に加えた。この溶液を一晩撹拌し、得られた溶液を1wt%HTFSI水溶液−ジクロロメタンで分液を行った。有機相を回収、乾燥し、43.5g(0.138mol)の化合物No.2を得た。
[Synthesis Example 8]
(Synthesis of Compound No. 2)
Intermediate compound A 32.1 g (0.150 mol) was dissolved in 300 mL of water, and then 129 g (0.450 mol) of lithium bis (trifluoromethanesulfonyl) imide was gradually added. This solution was stirred overnight, and the obtained solution was subjected to liquid separation with 1 wt% HTFSI aqueous solution-dichloromethane. The organic phase was recovered and dried, and 43.5 g (0.138 mol) of Compound No. 2 was obtained.

[合成実施例9]
(S,S−ジメチル−S−フェニルスルホニウムカルボネート(中間化合物B)の合成)
Ar雰囲気下、乾燥エタノール500mLに炭酸リチウム14.8g(0.200mol)を溶解させ、次いでチオアニソール46.9mL(0.400mol)を30分かけて滴下した。この溶液を氷浴下で1時間撹拌し、その後ヨードメタン24.9mL(0.400mol)を30分かけて滴下した。一晩撹拌し、得られた溶液から沈殿物をろ過後、水−ジエチルエーテルで分液を行った。水相を回収、乾燥し、48.7g(0.175mol)の中間化合物Aを得た。
[Synthesis Example 9]
(Synthesis of S, S-dimethyl-S-phenylsulfonium carbonate (intermediate compound B))
Under Ar atmosphere, 14.8 g (0.200 mol) of lithium carbonate was dissolved in 500 mL of dry ethanol, and then 46.9 mL (0.400 mol) of thioanisole was added dropwise over 30 minutes. This solution was stirred for 1 hour in an ice bath, and then 24.9 mL (0.400 mol) of iodomethane was added dropwise over 30 minutes. The mixture was stirred overnight, and the precipitate was filtered from the resulting solution, followed by liquid separation with water-diethyl ether. The aqueous phase was collected and dried to obtain 48.7 g (0.175 mol) of intermediate compound A.

(化合物No.3の合成)
中間化合物B41.7g(0.150mol)を水300mLに溶解させ、次いでヘキサフルオロリン酸カリウム82.8g(0.450mol)を徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、70.8g(0.279mol)の化合物No.3(A法)を得た。
(Synthesis of Compound No. 3)
41.7 g (0.150 mol) of intermediate compound B was dissolved in 300 mL of water, and then 82.8 g (0.450 mol) of potassium hexafluorophosphate was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried, and 70.8 g (0.279 mol) of Compound No. 3 (Method A) was obtained.

[合成実施例10]
(化合物No.1(H法)の合成)
化合物No.1の合成において、0.1wt%HTFSI水溶液−ジクロロメタンで分液を行った以外は合成実施例1と同様の手順で合成を行い、30.6g(0.138mol)の化合物No.1(H法)を得た。
[Synthesis Example 10]
(Synthesis of Compound No. 1 (Method H))
Compound No. 1 was synthesized in the same procedure as in Synthesis Example 1 except that the solution was separated with 0.1 wt% HTFSI aqueous solution-dichloromethane, and 30.6 g (0.138 mol) of Compound No. 1 was synthesized. 1 (Method H) was obtained.

[合成比較例1]
(化合物No.1(I法)の合成)
化合物No.1の合成において、回収した有機相に鉄粉を入れて更に一晩撹拌し、ろ過、乾燥を行い、6.92g(0.0312mol)の化合物No.1(I法)を得た。
[Synthesis Comparative Example 1]
(Synthesis of Compound No. 1 (Method I))
Compound No. In the synthesis of No. 1, iron powder was added to the recovered organic phase, and the mixture was further stirred overnight, filtered and dried, and 6.92 g (0.0312 mol) of Compound No. 1 (Method I) was obtained.

[合成比較例2]
(化合物No.1(J法)の合成)
化合物No.1の合成において、水−ジクロロメタンで分液を行った以外は合成実施例1と同様の手順で合成を行い、28.9g(0.130mol)の化合物No.1(J法)を得た。
[Synthesis Comparative Example 2]
(Synthesis of Compound No. 1 (Method J))
Compound No. 1 was synthesized in the same procedure as in Synthesis Example 1 except that water-dichloromethane was used for separation, and 28.9 g (0.130 mol) of Compound No. 1 was synthesized. 1 (Method J) was obtained.

[実施例1]
(電極の作製)
LiNi1/3Co1/3Mn1/3(NCM):カーボンブラック:PVDF=80:10:10(質量%)の比率となるように混合し、N−メチル−2−ピロリドン(NMP)中に均一に分散させたスラリーを、厚さ20μmのアルミ金属箔上に塗布後、NMPを蒸発させることで正極シートを得た。同様に、グラファイト:PVDF=90:10(質量%)の比率となるように混合し、NMP中に分散させたスラリーを厚さ16μmの銅箔上に塗布することで負極シートを得た。
[Example 1]
(Production of electrodes)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM): carbon black: PVDF = 80: 10: 10 (mass%) The mixture was mixed to obtain N-methyl-2-pyrrolidone (NMP ) Was applied to an aluminum metal foil having a thickness of 20 μm, and NMP was evaporated to obtain a positive electrode sheet. Similarly, the negative electrode sheet was obtained by apply | coating the slurry which mixed so that it might become a ratio of graphite: PVDF = 90: 10 (mass%), and was disperse | distributed in NMP on copper foil of thickness 16 micrometers.

(電解液の作製)
化合物No.1(A法)に1mol/LとなるようにLiPFを溶解させ、電解液を調整した。
(Preparation of electrolyte)
Compound No. LiPF 6 was dissolved in 1 (Method A) so as to be 1 mol / L to prepare an electrolytic solution.

(評価用リチウムイオン二次電池の作製)
上記で作製した正極および負極と、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れ、このアルミラミネートパックに、上記で調整した電解液を注入した後、真空シールし、評価用のリチウムイオン二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
The positive electrode and negative electrode prepared above, and a separator made of a polyethylene microporous film sandwiched between them and put in an aluminum laminate pack, and after injecting the electrolyte solution prepared above into this aluminum laminate pack, vacuum-sealed, A lithium ion secondary battery for evaluation was produced.

(電解液中の式(1)で示されるアニオン含有量の測定)
上記で作製した電解液を、ThermoSCIENTFIC社のイオンクロマトグラフィー装置DX−500、陰イオン分析用カラムIonPacAS20を用い、、流量1.0mLmin−1、溶離液5mmolL−1(〜5min)、30mmolL−1(〜15min)、60mmolL−1(15min〜)KOHのグラジエント条件で測定を行ったところ、CO 2−(保持時間15.7min)が9ppm検出され、NO (14.9min)、CHCOO(7.4min)、SO 2−(16.3min)、PO 3−(20.1min)、ClO (13.3min)、ClO (28.1min)は検出されなかった。
(Measurement of anion content represented by formula (1) in electrolyte)
Using the ion chromatography device DX-500 manufactured by Thermo SCIENTFIC and the anion analysis column IonPacAS20, the electrolyte solution prepared above was flowed at 1.0 mL min −1 , eluent 5 mmol L −1 (˜5 min), 30 mmol L −1 ( ˜15 min), 60 mmol L −1 (15 min˜) When measurement was performed under a KOH gradient, 9 ppm of CO 3 2− (retention time 15.7 min) was detected, and NO 3 (14.9 min), CH 3 COO (7.4 min), SO 4 2− (16.3 min), PO 4 3− (20.1 min), ClO 3 (13.3 min), ClO 4 (28.1 min) were not detected.

(レート容量維持率の測定)
上記で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、電圧範囲を2.5Vから4.2Vまでとし、1C=170mAh/gとしたときの0.05Cでの電流値で充放電を行い、初期放電容量を求めた。 続いて、0.5Cの電流値での充放電を行い、レート容量維持率(0.5C放電容量/初期放電容量×100)を求めた。得られた結果を表1に示す。
(Measurement of rate capacity maintenance rate)
About the lithium ion secondary battery for evaluation produced above, using a secondary battery charge / discharge test apparatus (manufactured by Hokuto Denko Co., Ltd.), the voltage range was 2.5 V to 4.2 V, and 1 C = 170 mAh / g. The battery was charged and discharged at a current value of 0.05 C, and the initial discharge capacity was determined. Subsequently, charge and discharge were performed at a current value of 0.5 C, and a rate capacity retention rate (0.5 C discharge capacity / initial discharge capacity × 100) was obtained. The obtained results are shown in Table 1.

[実施例2〜10]
電解液として用いたスルホニウム塩を表1に示すものに変更した以外は実施例1と同様として、実施例2〜10の評価用リチウムイオン二次電池を作製した。
[実施例11]
(電解液の作製)においてリチウムビストリフルオロメタンスルホンイミドを用いた以外は実施例1と同様として、実施例11の評価用リチウムイオン二次電池を作製した。
[Examples 2 to 10]
Lithium ion secondary batteries for evaluation of Examples 2 to 10 were produced in the same manner as in Example 1 except that the sulfonium salt used as the electrolytic solution was changed to that shown in Table 1.
[Example 11]
A lithium ion secondary battery for evaluation of Example 11 was produced in the same manner as in Example 1 except that lithium bistrifluoromethanesulfonimide was used in (Production of Electrolytic Solution).

実施例2〜4の評価用リチウムイオン二次電池に対し、実施例1に記載される各種測定を実施した結果を表1に示す。なお、表中の“−”は各イオンが検出されなかったことを示す。電解液中の式(1)で示されるアニオンの合計が10ppm未満であった実施例2〜9および実施例11では、実施例1と同様に優れたレート容量維持率を示した。また、カルボネートアニオンが96ppm測定された実施例10でも良いレート容量維持率を示した。   Table 1 shows the results of various measurements described in Example 1 performed on the evaluation lithium ion secondary batteries of Examples 2 to 4. In the table, “-” indicates that each ion was not detected. In Examples 2 to 9 and Example 11 in which the total amount of anions represented by the formula (1) in the electrolytic solution was less than 10 ppm, excellent rate capacity retention ratios were exhibited as in Example 1. Moreover, the rate capacity | capacitance maintenance factor which was good also in Example 10 in which the carbonate anion was measured at 96 ppm was shown.

[比較例1〜2]
電解液として用いたスルホニウム塩を表1に示すものに変更した以外は実施例1と同様として、比較例1〜2の評価用リチウムイオン二次電池を作製した。
[Comparative Examples 1-2]
Lithium ion secondary batteries for evaluation of Comparative Examples 1 and 2 were produced in the same manner as in Example 1 except that the sulfonium salt used as the electrolytic solution was changed to that shown in Table 1.

実施例1の評価用リチウムイオン二次電池に対し、実施例1に記載される各種測定を実施した結果を同様に表1に示す。カルボネートアニオンが100ppm以上測定された比較例1〜2では、実施例1に比べてレート容量維持率が悪化した。   Table 1 similarly shows the results of various measurements described in Example 1 performed on the evaluation lithium ion secondary battery of Example 1. In Comparative Examples 1 and 2 in which the carbonate anion was measured at 100 ppm or more, the rate capacity retention rate was worse than that in Example 1.

Figure 2016178065
Figure 2016178065

本発明のリチウムイオン二次電池用電解液を用いることで、レート特性を改善したリチウムイオン二次電池を提供することができる。   By using the electrolytic solution for a lithium ion secondary battery of the present invention, a lithium ion secondary battery with improved rate characteristics can be provided.

10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。   DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminate, 50 ... Case, 60 62 ... Lead, 100 ... Lithium ion secondary battery.

Claims (3)

常温溶融塩と電解質とを有するリチウムイオン二次電池用電解液であって、前記常温溶融塩がスルホニウム塩であり、電解液中の下記式(1)で示されるアニオンの含有量の合計が100ppm未満であることを特徴とするリチウムイオン二次電池用電解液。
式(1):CO 2−、NO 、CHCOO、SO 2−、PO 3−、ClO 、ClO
An electrolyte for a lithium ion secondary battery having a room temperature molten salt and an electrolyte, wherein the room temperature molten salt is a sulfonium salt, and the total content of anions represented by the following formula (1) in the electrolyte is 100 ppm. An electrolyte for a lithium ion secondary battery, wherein
Formula (1): CO 3 2− , NO 3 , CH 3 COO , SO 4 2− , PO 4 3− , ClO 3 , ClO 4
前記式(1)で示されるアニオンの含有量の合計が10ppm未満であることを特徴とする請求項1に記載のリチウムイオン二次電池用電解液。   2. The electrolyte solution for a lithium ion secondary battery according to claim 1, wherein the total content of anions represented by the formula (1) is less than 10 ppm. 請求項1または2に記載のリチウムイオン二次電池用電解液を用いることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the electrolyte solution for a lithium ion secondary battery according to claim 1 or 2.
JP2015059233A 2015-03-23 2015-03-23 Electrolytic solution for lithium ion secondary batteries and lithium ion secondary battery arranged by use thereof Pending JP2016178065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059233A JP2016178065A (en) 2015-03-23 2015-03-23 Electrolytic solution for lithium ion secondary batteries and lithium ion secondary battery arranged by use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059233A JP2016178065A (en) 2015-03-23 2015-03-23 Electrolytic solution for lithium ion secondary batteries and lithium ion secondary battery arranged by use thereof

Publications (1)

Publication Number Publication Date
JP2016178065A true JP2016178065A (en) 2016-10-06

Family

ID=57071283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059233A Pending JP2016178065A (en) 2015-03-23 2015-03-23 Electrolytic solution for lithium ion secondary batteries and lithium ion secondary battery arranged by use thereof

Country Status (1)

Country Link
JP (1) JP2016178065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586303A (en) * 2018-06-11 2018-09-28 湖北大学 A kind of synthetic method of trimethyl bicarbonate sulfonium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123653A (en) * 2002-10-04 2004-04-22 Nippon Shokubai Co Ltd Method for producing ionic material
JP2010287380A (en) * 2009-06-10 2010-12-24 Dai Ichi Kogyo Seiyaku Co Ltd Lithium secondary battery using ionic liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123653A (en) * 2002-10-04 2004-04-22 Nippon Shokubai Co Ltd Method for producing ionic material
JP2010287380A (en) * 2009-06-10 2010-12-24 Dai Ichi Kogyo Seiyaku Co Ltd Lithium secondary battery using ionic liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586303A (en) * 2018-06-11 2018-09-28 湖北大学 A kind of synthetic method of trimethyl bicarbonate sulfonium
CN108586303B (en) * 2018-06-11 2020-07-31 湖北大学 Synthesis method of trimethyl sulfonium bicarbonate

Similar Documents

Publication Publication Date Title
KR102469213B1 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP5429631B2 (en) Non-aqueous electrolyte battery
JP6110951B2 (en) Negative electrode material for lithium ion secondary battery, and negative electrode for lithium ion secondary battery, lithium ion secondary battery, and battery system using the same
JP6218413B2 (en) Pre-doping agent, power storage device using the same, and manufacturing method thereof
WO2016117279A1 (en) Electrolyte solution for nonaqueous electrolyte solution cell and nonaqueous electrolyte solution cell
JP6372823B2 (en) Lithium secondary battery, electrolyte solution for lithium secondary battery, and additive for electrolyte solution of lithium secondary battery
CN113841280A (en) Electrolyte composition, solvent composition, nonaqueous electrolyte solution and use thereof
JP5893517B2 (en) Non-aqueous electrolyte
WO2016204278A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
WO2011117992A1 (en) Active material for battery, and battery
WO2016021596A1 (en) Lithium secondary battery and production method for same
JP2015097179A (en) Secondary battery
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP2012014973A (en) Electrolyte composition for secondary battery and secondary battery
JPWO2019235469A1 (en) Reduced graphene material
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP6270634B2 (en) Active material, sodium ion battery and lithium ion battery using the same
JP2018133335A (en) Nonaqueous electrolyte battery
JP2019061826A (en) Lithium ion secondary battery
JP2016178065A (en) Electrolytic solution for lithium ion secondary batteries and lithium ion secondary battery arranged by use thereof
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2018133285A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
CN108352571A (en) Non-aqueous electrolyte for secondary battery and secondary cell
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2016178064A (en) Electrolytic solution for lithium ion secondary batteries and lithium ion secondary battery arranged by use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702