[go: up one dir, main page]

JP2016172893A - 3次元形成装置および3次元形成方法 - Google Patents

3次元形成装置および3次元形成方法 Download PDF

Info

Publication number
JP2016172893A
JP2016172893A JP2015053023A JP2015053023A JP2016172893A JP 2016172893 A JP2016172893 A JP 2016172893A JP 2015053023 A JP2015053023 A JP 2015053023A JP 2015053023 A JP2015053023 A JP 2015053023A JP 2016172893 A JP2016172893 A JP 2016172893A
Authority
JP
Japan
Prior art keywords
sintered
dimensional
energy
unit
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015053023A
Other languages
English (en)
Inventor
知之 鎌倉
Tomoyuki Kamakura
知之 鎌倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015053023A priority Critical patent/JP2016172893A/ja
Priority to US15/066,212 priority patent/US20160271696A1/en
Priority to CN201610149575.9A priority patent/CN105983696A/zh
Publication of JP2016172893A publication Critical patent/JP2016172893A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Mechanical Engineering (AREA)

Abstract

【課題】微小粒径の金属粉末を用いることができる3次元形成装置と3次元形成方法を得
ることを目的とする。
【解決手段】ステージと、金属粉末と、バインダーと、が混練された被焼結材料を前記ス
テージに供給する材料供給手段と、前記材料供給手段から供給された前記被焼結材料に、
前記被焼結材料を焼結可能とするエネルギーを供給するエネルギー照射手段と、を備え、
前記ステージに対して、前記材料供給手段と、前記エネルギー照射手段と、が、相対的に
3次元移動が可能となる駆動手段を備え、前記材料供給手段は、前記被焼結材料を重力方
向に所定量供給する材料吐出部を備え、前記エネルギー照射手段は、前記エネルギーを出
射するエネルギー照射部を備え、前記材料吐出部と、前記エネルギー照射部と、が一つの
保持手段に保持されている3次元形成装置。
【選択図】図1

Description

本発明は、3次元形成装置および3次元形成方法に関する。
従来、金属材料を用いて3次元形状を簡便に形成する製造方法として、特許文献1に示
すような方法が開示されている。特許文献1に開示されている3次元形状造形物の製造方
法は、原料に金属粉末と、溶剤と、粘着増進剤と、を有する金属ペーストを層状の材料層
に形成して用いる。そして、層状の材料層に光ビームを照射して金属の焼結層もしくは金
属の熔融層を形成し、材料層の形成と、光ビームの照射と、を繰り返すことにより焼結層
もしくは熔融層が積層され、所望の3次元形状造形物が得られる。
しかし特許文献1に示された3次元形状造形物の製造方法では、層状に供給される材料
層の一部だけが光ビームの照射によって焼結あるいは熔融し、造形物の一部として形成さ
れ、光ビームが照射されない材料層は、除去されるだけの無駄な部分であった。また、所
定の光ビームの照射領域に対して、その近傍でも不完全ではあるが焼結あるいは熔融した
材料層が発生し、その不完全部分が所望の焼結あるいは熔融によって形成された部分に付
着することで、造形物の形状が不安定になる、といった不具合があった。
そこで、特許文献2あるいは特許文献3に開示されている所望の部位に粉末金属材料を
供給しながらレーザーを照射し、金属肉盛部を形成することができるノズルを適用するこ
とで、特許文献1の不具合を解消することが想到できる。
特許文献2,3に開示されているノズルは、ノズル中心部にレーザー照射部を備え、レ
ーザー照射部の周囲に金属粉末(パウダー)を供給するパウダー供給部を備えている。そ
してノズル中心のレーザー照射部から照射されるレーザーに向けてパウダーが供給され、
供給されたパウダーがレーザーによって熔融して施工対象物上に肉盛金属として形成され
る。
特開2008−184622号公報 特開2005−219060号公報 特開2013−75308号公報
しかし、特許文献2,3に開示されたノズルを用いて肉盛金属を形成する場合、適用さ
れる金属紛体の粒径をより微小なものにすることが困難であった。すなわち、微小粒径、
いわゆる微粉体とすることによって粒子間の付着性が増大する、いわゆる強付着性紛体と
なり、例えば圧縮空気などで搬送、噴出させると流路に付着しやすくなり、流動化を著し
く損い、噴射安定性が損なわれる。従って、パウダーの流動化を確保するためにパウダー
の粒径を小さくすることには限界があり、微小粒径のパウダーを用いなければ実現できな
い微細で高精度な3次元形状の形成に特許文献2,3に開示されたノズルを用いることは
困難であった。
そこで、微細な3次元造形物を形成することを可能とする、微小粒径の金属粉末を用い
ることができる3次元形成装置と3次元形成方法を得ることを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の
形態または適用例として実現することが可能である。
〔適用例1〕本適用例の3次元形成装置は、ステージと、金属粉末と、バインダーと、
が混練された被焼結材料を前記ステージに供給する材料供給手段と、前記材料供給手段か
ら供給された前記被焼結材料に、前記被焼結材料を焼結可能とするエネルギーを供給する
エネルギー照射手段と、を備え、前記ステージに対して、前記材料供給手段と、前記エネ
ルギー照射手段と、が、相対的に3次元移動が可能となる駆動手段を備え、前記材料供給
手段は、前記被焼結材料を重力方向に所定量供給する材料吐出部を備え、前記エネルギー
照射手段は、前記エネルギーを出射するエネルギー照射部を備え、前記材料吐出部と、前
記エネルギー照射部と、が一つの保持手段に保持されていることを特徴とする。
本適用例の3次元形成装置によれば、形成される3次元形状造形物の形状を形成する領
域に必要な量の焼結材料が供給され、供給された焼結材料に向けてエネルギー照射手段に
よってエネルギーが供給されるため、材料供給のロス、供給エネルギーのロスが削減され
る。
従来、金属粉末のみを供給し、焼結する場合に生じる、金属微粒子間での付着力が増大
し、強付着性紛体となり、圧縮空気などで搬送、噴出させる場合に流路に付着しやすくな
り、流動化を著しく損なうことがあり、金属微粒子の粒径を小さくするには限界があった
。しかし、金属粉末と、バインダーと、を混練した被焼結材料が材料供給手段からステー
ジ上に供給される構成とすることで、材料搬送の流路への付着を防止することができ、安
定した材料供給が可能になり、極微小な金属紛体を用いて3次元形状造形物を形成するこ
とができる。
なお、本適用例において、「焼結可能とする」における焼結とは、供給材料にエネルギ
ーが供給されることによって、供給材料を構成するバインダーが供給エネルギーによって
蒸散し、そして、残った金属粉末同士が供給エネルギーによって金属結合することをいう
。なお、本明細書では金属粉末が熔融結合される形態もエネルギーを供給することで金属
粉末を結合させるものとして、焼結として説明する。
〔適用例2〕上述の適用例において、前記エネルギー照射手段は、前記重力方向に交差
する方向に前記エネルギーを照射することを特徴とする。
上述の適用例によれば、材料供給手段とエネルギー照射手段とを相対的な移動を必要と
せず、材料供給手段から供給された被焼結材料に対して焼結に必要なエネルギーを照射す
ることができる。
また、エネルギー照射部から照射されるエネルギー線を、重力方向に交差させて照射さ
せることで、例えばステージ上で反射された反射エネルギー線がエネルギー照射部に向か
わせないことができる。従って、反射エネルギー線によるエネルギー照射部の損傷を防止
することができる。
〔適用例3〕上述の適用例において、前記材料吐出口は、前記被焼結材料を液滴状にし
て吐出することを特徴とする。
上述の適用例によれば、被焼結材料を微小な液滴状にしてステージ上に供給し、焼結さ
せることで、微小形状の焼結体の集合物として3次元形状造形物が形成される。従って、
微細部分の形成を行うことができ、小型で精密な3次元形状造形物を容易に得ることがで
きる。
〔適用例4〕上述の適用例において、複数の前記エネルギー照射部を備えていることを
特徴とする。
上述の適用例によれば、ステージ上に供給された被焼結材料に、均一にエネルギーを供
給することができる。
〔適用例5〕上述の適用例において、前記材料供給手段は、少なくとも前記被焼結材料
が前記ステージに対向した材料吐出口を備える前記材料吐出部まで前記被焼結材料を供給
する材料供給部を備え、前記材料供給部を複数備え、異なる組成を有する前記被焼結材料
を、少なくとも2種以上供給することを特徴とする。
上述の適用例によれば、異なる組成毎に被焼結材料を供給する材料供給手段を備えるこ
とができ、組成毎の各材料供給手段の材料供給と、エネルギー照射手段と、によって異な
る材料の焼結もしくは熔融を可能とし、2種以上の組成材料からなる造形物を容易に形成
することができる。
〔適用例6〕上述の適用例において、前記エネルギー照射手段がレーザー照射手段であ
ることを特徴とする。
上述の適用例によれば、ターゲットとなる供給材料に集中してエネルギーを照射するこ
とができ、品質の良い3次元形状造形物を形成することができる。また、例えば被焼結材
料の種類に合わせて、照射エネルギー量(パワー、走査速度)を制御することが容易に行
うことができ、所望の品質の3次元形状造形物を得ることができる。
〔適用例7〕本適用例の3次元形成方法は、金属粉末と、バインダーと、が混練された
被焼結材料を所望形状に供給する材料供給工程と、前記材料供給工程によって供給された
前記被焼結材料に向けて、前記被焼結材料を焼結可能とするエネルギーを供給し前記被焼
結材料を焼結させる焼結工程と、により単層を形成する単層形成工程と、前記単層形成工
程によって形成された第一の単層に積層させ、前記単層形成工程によって第二の単層を形
成する積層工程と、を含み、前記積層工程を所定の回数、繰り返して3次元形状造形物が
形成される3次元形成方法であって、前記単層形成工程は、前記材料供給工程において前
記被焼結材料を液滴状で吐出させ、着弾した単位液滴状材料に対して行われる前記焼結工
程を、所定の前記単層の形成領域に亘って行うことを特徴とする。
本適用例の3次元形成方法によれば、形成される3次元形状造形物の形状を形成する領
域に必要な量の焼結材料が供給され、供給された焼結材料に向けてエネルギー照射手段に
よってエネルギーが供給されるため、材料供給のロス、供給エネルギーのロスが削減され
る。
従来、金属粉末のみを供給し、焼結する場合に生じる、金属微粒子間での付着力が増大
し、強付着性紛体となり、圧縮空気などで搬送、噴出させる場合に流路に付着しやすくな
り、流動化を著しく損なうことがあり、金属微粒子の粒径を小さくするには限界があった
。しかし、金属粉末と、バインダーと、を混練した被焼結材料が材料供給手段からステー
ジ上に供給される構成とすることで、材料搬送の流路への付着を防止することができ、極
微小な金属紛体を用いて3次元形状造形物を形成することができる。
〔適用例8〕上述の適用例において、前記材料供給工程の前記被焼結材料の吐出方向は
重力方向であり、前記焼結工程の前記エネルギーの照射方向が重力方向に交差する方向で
あることを特徴とする。
上述の適用例によれば、材料供給手段とエネルギー照射手段とを相対的な移動を必要と
せず、材料供給手段から供給された被焼結材料に対して焼結に必要なエネルギーを照射す
ることができる。
〔適用例9〕上述の適用例において、前記積層工程において、前記単層を重力方向に支
持するサポート部が形成され、前記サポート部は、前記焼結工程において前記エネルギー
が照射されない未焼結部であることを特徴とする。
上述の適用例によれば、重力方向に3次元形状造形物が形成されない、いわゆるオーバ
ーハング部を形成する場合、材料供給面としてサポート部を形成することにより、オーバ
ーハング部の重力方向の変形を防止し、所望の形状を有する3次元形状造形物を形成する
ことができる。
〔適用例10〕上述の適用例において、前記サポート部を除去する、サポート部除去工
程を備えることを特徴とする。
上述の適用例によれば、サポート部は未焼結部の状態であり容易に除去することが可能
である。従って、任意の位置にサポート部を形成しても、完成品としての3次元形状造形
物の形成を損なうことがなく、正確な形状を備える3次元形状造形物を得ることができる
第1実施形態に係る3次元形成装置の構成を示す概略構成図。 第1実施形態に係る3次元形成装置の保持手段を示し、(a)は側面外観図、(b)は上面からの外観図。 レーザーの照射角度と、単体材料への照射エネルギーと、の関係を説明する概念図であり、(a)と(b)は、第1レーザー照射部の照射状態図、(c)と(d)は、第2レーザー照射部の照射状態図、(e)は、(b),(d)に示す照射領域の状態の合成図。 第1実施形態に係るレーザー照射部および材料供給部のその他の構成を示す概略構成図。 第2実施形態に係る3次元形成装置の構成を示す概略構成図。 第2実施形態に係る3次元形成装置の保持手段を示し、(a)は外観平面図、(b)は外観側面図。 (a)は第3実施形態に係る3次元形成方法を示すフローチャートであり、(b)は(a)に示す単層形成工程の詳細フローチャート。 第3実施形態に係る3次元形成方法による工程を示す部分断面図。 第3実施形態に係る3次元形成方法による工程を示す部分断面図。 第3実施形態に係る3次元形成方法による工程を示す部分断面図。 第3実施形態に係る3次元形成方法による工程を示す部分断面図。 第4実施形態に係る3次元形成方法により形成される3次元形状造形物を示す、(a)は平面外観図、(b)は(a)に示すA−A´部断面図。 第4実施形態に係る3次元形成方法を示すフローチャート。 第4実施形態に係る3次元形成方法による工程を示す断面図と平面図。
以下、図面を参照して、本発明に係る実施形態を説明する。
(第1実施形態)
図1は、第1実施形態に係る3次元形成装置の構成を示す概略構成図である。なお、本
明細書における「3次元形成」とは、いわゆる立体造形物を形成することを示すものであ
って、例えば、平板状、いわゆる2次元形状の形状であっても厚みを有する形状を形成す
ることも含まれる。
図1に示すように、3次元形成装置1000は、基台10と、基台10に備える駆動手
段としての駆動装置11によって、図示するX,Y,Z方向に駆動可能に備えられたステ
ージ20と、一方の端部が基台10に固定され、他方の端部に後述する材料供給手段とエ
ネルギー照射手段と、を保持する保持手段としてのヘッド31を保持固定する支持アーム
32と、を備えるヘッド支持部30と、を備えている。なお、本実施形態ではステージ2
0を駆動装置11によってX、Y,Z方向に駆動させる構成を説明するが、これに限定さ
れず、ステージ20と、ヘッド31と、が相対的にX,Y,Z方向に駆動可能であればよ
い。
そしてステージ20上に、3次元形状造形物200に形成される過程での部分造形物2
01,202,203が層状に形成される。3次元形状造形物200の形成には後述する
が、レーザーによる熱エネルギーの照射がされるため、ステージ20の熱からの保護のた
め、耐熱性を有する試料プレート21を用いて、試料プレート21の上に3次元形状造形
物200を形成してもよい。試料プレート21としては、例えばセラミック板を用いるこ
とで、高い耐熱性を得ることができ、更に焼結あるいは熔融される供給材料との反応性も
低く、3次元形状造形物200の変質を防止することができる。なお、図1では説明の便
宜上、部分造形物201,202,203の3層を例示したが、所望の3次元形状造形物
200の形状まで積層される。
ヘッド31には、材料供給手段としての材料供給装置40に備える材料吐出部41と、
エネルギー照射手段としてのレーザー照射装置50に備えるエネルギー照射部としてのレ
ーザー照射部51と、が保持されている。レーザー照射部51は、本実施形態では第1レ
ーザー照射部51aと、第2レーザー照射部51bと、を備えている。
3次元形成装置1000は、例えば図示しないパーソナルコンピューター等のデータ出
力装置から出力される3次元形状造形物200の造形用データに基づいて、上述したステ
ージ20、材料供給装置40に備える材料吐出部41、およびレーザー照射装置50を制
御する制御手段としての制御ユニット60を備えている。制御ユニット60には、図示さ
れないが、少なくともステージ20の駆動制御部と、材料吐出部41の作動制御部と、レ
ーザー照射装置50の作動制御部と、を備えている。そして、制御ユニット60には、ス
テージ20、材料吐出部41、およびレーザー照射装置50と、が連携して駆動、動作さ
せる制御部を備えている。
基台10に移動可能に備えられているステージ20は、制御ユニット60からの制御信
号に基づき、ステージコントローラー61においてステージ20の移動開始と停止、移動
方向、移動量、移動速度などを制御する信号が生成され、基台10に備える駆動装置11
に送られ、図示するX,Y,Z方向にステージ20が移動する。
ヘッド31に固定されている材料吐出部41では、制御ユニット60からの制御信号に
基づき、材料供給コントローラー62において材料吐出部41からの材料吐出量などを制
御する信号が生成され、生成された信号により材料吐出部41から所定量の材料が吐出さ
れる。
材料吐出部41には、材料供給装置40に備える材料供給ユニット42から材料供給経
路としての供給チューブ42aが延設され、接続されている。材料供給ユニット42には
、本実施形態に係る3次元形成装置1000によって造形される3次元形状造形物200
の原料を含む被焼結材料が供給材料として収容されている。供給材料の被焼結材料として
は、3次元形状造形物200の原料となる金属、例えばマグネシウム(Mg)、鉄(Fe
)、コバルト(Co)やクロム(Cr)、アルミニウム(Al)、チタン(Ti)、ニッ
ケル(Ni)の単体粉末、もしくはこれらを1つ以上含む合金などの混合粉末を、溶剤と
、バインダーとしての増粘剤と、に混練して得られるスラリー状(あるいはペースト状)
の混合材料である。
なお、金属粉末は、平均粒径が10μm以下のものが好ましく、溶媒または分散媒とし
ては、例えば、蒸留水、純水、RO水等の各種水の他、メタノール、エタノール、2−プ
ロパノール、1−ブタノール、2−ブタノール、オクタノール、エチレングリコール、ジ
エチレングリコール、グリセリン等のアルコール類、エチレングリコールモノメチルエー
テル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ
)、エチレングリコールモノフェニルエーテル(フェニルセロソルブ)等のエーテル類(
セロソルブ類)、酢酸メチル、酢酸エチル、酢酸ブチル、ギ酸エチル等のエステル類、ア
セトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、メチルイソプ
ロピルケトン、シクロヘキサノン等のケトン類、ぺンタン、ヘキサン、オクタン等の脂肪
族炭化水素類、シクロへキサン、メチルシクロへキサン等の環式炭化水素類、ベンゼン、
トルエン、キシレン、ヘキシルベンゼン、ヘブチルベンゼン、オクチルベンゼン、ノニル
ベンゼン、デシルベンゼン、ウンデシルベンゼン、ドデシルベンゼン、トリデシルベンゼ
ン、テトラデシルベンゼン等の長鎖アルキル基及びベンゼン環を有する芳香族炭化水素類
、塩化メチレン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン化炭
化水素類、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の
芳香族複素環類、アセトニトリル、プロピオニトリル、アクリロニトリル等のニトリル類
、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、カルボ
ン酸塩またはその他の各種油類等が挙げられる。
増粘剤としては上述の溶剤または分散媒に可溶であれば、限定されない。例えば、アク
リル樹脂、エポキシ樹脂、シリコーン樹脂、セルロース系樹脂、合成樹脂等を用いること
ができる。また、例えば、PLA(ポリ乳酸)、PA(ポリアミド)、PPS(ポリフェ
ニレンサルファイド)等の熱可塑性樹脂を用いることもできる。熱可塑性樹脂を用いる場
合には、材料吐出部41及び材料供給ユニット42を加熱することで熱可塑性樹脂の柔軟
性を維持する。また、耐熱溶剤として、シリコーンオイル等を用いることで、流動性を向
上できる。
ヘッド31に固定されているレーザー照射装置50に備えるレーザー照射部51は、制
御ユニット60からの制御信号に基づき、レーザー発振器52により所定出力のレーザー
が発振され、レーザー照射部51より、レーザーが照射される。レーザーは、材料吐出部
41から吐出された供給材料に照射され、供給材料に含まれる金属粉末を焼結、もしくは
熔融し固体化する。その時、同時に供給材料に含まれる溶剤、および増粘剤はレーザーの
熱により蒸散される。本実施形態に係る3次元形成装置1000に用いられるレーザーは
特に限定はないが、ファイバーレーザー、あるいは炭酸ガスレーザーが、波長が長く金属
の吸収効率が高い利点があることから、好適に用いられる。また、出力が高く、造形時間
の短縮ができることから、ファイバーレーザーがより好ましい。
図2は、図1に示すヘッド31と、ヘッド31に保持された材料吐出部41とレーザー
照射部51と、を示す拡大外観図であり、(a)は図1に示すY方向矢視外観図、(b)
は図1に示すZ方向矢視外観図である。
図2(a)に示すように、ヘッド31に保持される材料吐出部41は、吐出ノズル41
bと、吐出ノズル41bから所定の量の材料を吐出させる吐出駆動部41aと、を備えて
いる。吐出駆動部41aには、材料供給ユニット42に繋がれた供給チューブ42aが接
続され、供給チューブ42aを介して被焼結材料Mが供給される。吐出駆動部41aには
、図示しない吐出駆動装置が備えられ、材料供給コントローラー62からの制御信号に基
づき被焼結材料Mを吐出ノズル41bに送出する。
吐出ノズル41bの吐出口41cから吐出された被焼結材料Mは、液滴状、すなわち略
球体形状となる材料飛翔体Mfとなって試料プレート21、あるいは図1に示す最上層の
部分造形物203に向けて飛翔し、試料プレート21、あるいは部分造形物203に着弾
し単位液滴状材料Ms(以下、単位材料Msという)として試料プレート21上、あるい
は部分造形物203状に形成される。
そして、単位材料Msに向けて、第1レーザー照射部51aからレーザーL1が、第2
レーザー照射部51bからレーザーL2が、出射される。レーザーL1と、レーザーL2
と、によって単位材料Msは加熱、焼成される。
吐出口41cから吐出される材料飛翔体Mfは、吐出口41cから図示矢印の重力方向
Gに向けて吐出されることが好ましい。すなわち、材料飛翔体Mfを確実に着弾位置に向
けて飛翔させ、単位材料Msが所望の位置に配置させることが、重力方向Gに材料翔体M
fを吐出することで可能になる。そして、重力方向Gに向けて吐出され着弾した単位材料
Msに向けて照射されるレーザーL1,L2は、重力方向Gに対して交差する方向、すな
わち、第1レーザー照射部51aからは、重力方向Gと角度α1をなす図示する照射方向
L1に向けてレーザーL1が出射され、単体材料Msに照射される。同様に、第2レーザ
ー照射部51bからは、重力方向Gと角度α2をなす図示する照射方向FL2に向けてレー
ザーL2が出射され、単体材料Msに照射される。
上述したように、本実施形態に係る3次元形成装置1000に備える材料供給装置40
は、材料吐出部41から液滴状の材料飛翔体Mfを吐出するものである。従来技術の金属
微粉末を材料供給口から噴出させてレーザーなどのエネルギー線によって焼結する形態で
は、粒子間の付着力が増大する、いわゆる強付着性紛体となり、例えば圧縮空気などで搬
送、噴出させると流路に付着しやすくなり、流動化を著しく損なうこととなっていた。し
かし、本実施形態では、材料の被焼結材料Mとして平均粒径が10μm以下の金属微粉末
と、溶剤と、増粘剤と、を混練した混練材を用い、優れた流動性を付与することができる
しかも、高い流動性を付与することによって、微少量の被焼結材料Mを液滴状にして材
料吐出部41の吐出口41cから吐出することが可能となり、試料プレート21上、もし
くは部分造形物203上に単体材料Msを配置させることができる。すなわち、微少量の
造形の連続体としての微細な3次元造形物を形成することができる。
また、単体材料Msが形成された位置に向かうように重力方向に交差するFL1,FL2
向にレーザーL1,L2が照射されることから、ヘッド31と、試料プレート21もしく
は部分造形物203と、の相対的な位置を移動させることなく単体材料MsにレーザーL
1,L2を照射することができる。
図3は、レーザーL1,L2の照射角度α1,α2と、単体材料Msへの照射エネルギ
ーと、の関係を説明する概念図である。図3(a)と図3(b)は、第1レーザー照射部
51aと、第1レーザー照射部51aから出射されるレーザーL1と、の照射状態図であ
り、図3(c)と図3(d)は、第2レーザー照射部51bと、第2レーザー照射部51
bから出射されるレーザーL2と、の照射状態図である。また図3(e)は、レーザーL
1,L2が照射される照射領域の状態、すなわち図3(b),(d)を合成、描画したも
のである。
図3(a)に示すように、第1レーザー照射部51aからは試料プレート21、もしく
は部分造形物203の上面に向けて、重力方向Gに対して角度α1をなすFL1方向にレー
ザーL1が出射される。第1レーザー照射部51aから出射されるレーザーL1は、その
出射方向FL1に直交する面での断面において、略円形状のレーザー出射形L1dが形成さ
れている。レーザーL1が試料プレート21、もしくは部分造形物203の上面に到達す
ると、照射方向FL1の角度α1の傾きにより、レーザー出射形L1dは、図3(b)に示
すように楕円形状のレーザー照射形状L1sとなる。
同様に、第2レーザー照射部51bでは、図3(c)に示すように、第2レーザー照射
部51bからは試料プレート21、もしくは部分造形物203の上面に向けて、重力方向
Gに対して角度α2をなすFL2方向にレーザーL2が出射される。第2レーザー照射部5
1bから出射されるレーザーL2は、その出射方向FL2に直交する面での断面において、
略円形状のレーザー出射形L2dが形成されている。レーザーL2が試料プレート21、
もしくは部分造形物203の上面に到達すると、照射方向FL2の角度α2の傾きにより、
レーザー出射形Ld2は、図3(d)に示すように楕円形状のレーザー照射形状L2sと
なる。そして図3(e)に示すように、試料プレート21、もしくは部分造形物203の
上面に着弾した単体材料Ms(図2参照)が、レーザー照射形状L1s,L2sの領域内
に配置されるようにレーザーL1,L2が照射される。
また、上述したように、重力方向Gに対して交差する方向FL1,FL2にレーザーL1,
L2を照射することにより、試料プレート21、もしくは部分造形物203によって反射
される反射レーザーLr1,Lr2は、図3(a),(c)に示すように、重力方向Gの
軸線に対して反対角度方向に進行する。従って、レーザーL1,L2の反射レーザーLr
1,Lr2がレーザー照射部51a,51bに向かうことがなく、レーザー照射部51a
,51bの損傷を防止することができる。
なお、上述した第1実施形態に係る3次元形成装置1000は、2つのレーザー照射部
51a,51bを備える構成であるが、これに限定されない。例えば、1つのレーザー照
射部、もしくは3以上のレーザー照射部を備えていてもよい。また、レーザーL1,L2
は重力方向Gに交差する方向FL1,FL2に照射するように、レーザー照射部51a,51
bをヘッド31に装着させているが、これに限定されない。
図4は、第1実施形態に係る3次元形成装置1000に備えるレーザー照射部51、お
よび材料吐出部41の形態が異なるその他の形態を示す部分概略構成図である。なお、3
次元形成装置1000と同じ構成要素には同じ符号を付し、説明は省略する。
図4に示すヘッド131には、重力方向Gに沿ってレーザーLgを照射するレーザー照
射部151と、試料プレート21もしくは部分造形物203におけるレーザーLgの照射
位置に向けて、被焼結材料Mを液滴状の材料飛翔体Mfを重力方向に交差する図示するF
m方向に吐出する吐出口141cを備える吐出ノズル141bと、が装着されている。
吐出口141cは、Fm方向に向けて被焼結材料Mを吐出するが、材料飛翔体Mfは重
力の作用を受け、重力方向の、いわゆる放物線飛翔軌跡Fdを描きながら飛翔し、単体材
料Msとなって着弾する。従って、飛翔軌跡Fdの試料プレート21上もしくは部分造形
物203上への到達領域に、レーザーLgが照射されるように、材料吐出部141および
レーザー照射部151がヘッド131に装着されている。
レーザー照射方向と、被焼結材料の吐出方向と、をこのように交差させる構成であって
もよい。この構成では、レーザーLgが、試料プレート21もしくは部分造形物203に
反射し、レーザー照射部151にその反射レーザーが照射される虞があるが、重力方向G
にレーザーLgを照射させるため、きわめて正確にレーザー照射位置を制御することがで
き、高いエネルギー密度での照射を可能とする。従って、レーザーLgのレーザー出射形
(図3(a),(c)で説明したレーザー出射形L1d,L2dに相当)をより細く制御
することで反射レーザーが単体材料Ms表面で拡散され、レーザー照射部151への反射
レーザー光のエネルギー量を減衰させることができる。
第1実施形態に係る3次元形成装置1000は、金属微粉末と増粘剤と溶剤と、を混練
して得られた被焼結材料を液滴状に吐出し、試料プレート21、もしくは部分造形物の最
上層、例えば図1に示す部分造形物203の上部に単体液滴状材料(図2(a)に示すM
s)を形成し、レーザーによって焼結させるものである。すなわち、金属微粉末と増粘剤
と溶剤と、を混練して得られた被焼結材料を極微小の液滴状にして単位造形物として形成
し、形成された極微小の単位造形物の連続体として3次元形状造形物200が構成される
。従って、微細形状の3次元形状造形物の形成を容易に行うことができる。
また、3次元形状造形物の原料である金属微粉末が、増粘剤と溶剤と、を混練させるこ
とで、極微小の粒径で粉末であっても、被焼結材料の供給流路に付着しない、いわゆる強
付着性紛体とはならずに供給経路を流動させることができる。従って、金属微粉末の粒径
を小さくすることができ、微細な3次元形状造形物の形成を可能とする。また、緻密な造
形物を得ることができる。
なお、本実施形態に係る3次元形成装置1000では、照射されるエネルギーとしてレ
ーザーL1,L2を用いる形態を説明したが、これに限定されない。被焼結材料Mを焼結
させる熱量を供給する手段であれば、例えば高周波、ハロゲンランプなどであってもよい
(第2実施形態)
図5は、複数の被焼結材料によって3次元造形物を形成する第2実施形態に係る3次元
形成装置2000を示す概略構成図である。また、図6は、ヘッド231の詳細構成を示
し、(a)はヘッド231の図5の図面上方からZ軸に沿った外観平面図、(b)はX軸
方向の外観側面図である。なお、3次元形成装置2000は、第1実施形態に係る3次元
形成装置1000における材料供給装置40の構成が異なるものであるので、同じ構成要
素には同じ符号を付し、説明は省略する。
図5に示すように、第2実施形態に係る3次元形成装置2000は、材料供給手段とし
ての第1材料供給装置240と、第2材料供給装置250と、を備えている。第1材料供
給装置240は、第1材料供給ユニット242と、第1供給チューブ242aと、第1供
給チューブ242aが繋がれヘッド231に保持される第1材料吐出部241と、を備え
ている。同様に、第2材料供給装置250は、第2材料供給ユニット252と、第2供給
チューブ252aと、第2供給チューブ252aが繋がれヘッド231に保持される第2
材料吐出部251と、を備えている。
ヘッド231は、図6(a)に示すように、ヘッド体231aに、可動ヘッド231b
を備えている。可動ヘッド231bは、本実施形態では、ヘッド体231aに回転駆動可
能に配置された駆動ネジ軸231cと、駆動ネジ軸231cを回転駆動させる駆動装置2
32と、を備えている。可動ヘッド231bには、回転する駆動ネジ軸231cの回転方
向Rに対応して可動ヘッド231bをY軸方向の図示するS方向への往復運動をさせるネ
ジ嵌合部を備えている。
可動ヘッド231bには、第1吐出ノズル241bと、第2吐出ノズル251bと、が
保持されている。ヘッド体231aには、レーザー照射装置50に備える第1レーザー照
射部51aと、第2レーザー照射部51bと、が保持されている。
図6に示す本実施形態に係る3次元形成装置2000のヘッド231の状態は、レーザ
ー照射部51a,51bの照射位置に対応するように可動ヘッド231bを移動させて第
2吐出ノズル251bを配置させている。図6(b)に示すように、材料供給コントロー
ラー262からは、第2材料供給装置250に対して材料供給の指令に基づき、駆動装置
232に駆動ネジ軸231cを駆動させて、可動ヘッド231bを所定の位置まで移動さ
せる信号が入力され、可動ヘッド231bが移動させられる。そして、可動ヘッド231
bが所定の位置に到達した後、第2材料吐出部251に備える吐出駆動部251aに材料
吐出駆動信号が入力され、第2吐出ノズル251bから、第2材料供給ユニット252に
収容された材料が吐出される。
そして、次に第1材料供給装置240による材料供給に移行する場合には、材料供給コ
ントローラー262から、第2材料供給装置250からの材料供給を停止させる信号が出
され、駆動装置232に駆動ネジ軸231cを駆動させて、可動ヘッド231bを所定の
位置まで移動させる信号が入力され、可動ヘッド231bが移動させられる。そして、可
動ヘッド231bが所定の位置に到達した後、第1材料吐出部241に備える吐出駆動部
241aに材料吐出駆動信号が入力され、吐出ノズル241bから、第1材料供給ユニッ
ト242に収容された材料が吐出される。
このように、可動ヘッド231bをS方向に往復移動させることで、第1材料供給装置
240、あるいは第2材料供給装置250から、レーザー照射部51a,51bからのレ
ーザーL1,L2の照射領域に所望の被焼結材料を吐出させることができる。なお、本実
施形態では2種類の被焼結材料を吐出させる形態を説明したが、これに限定されず、材料
種類に応じて複数の材料供給装置を備えることができる。
また、本実施形態に係る3次元形成装置2000では2種類の被焼結材料に対応して第
1材料吐出部241と、第2材料吐出部251と、を備える形態を説明したが、図示しな
いが、例えば第1実施形態に係る3次元形成装置1000の構成の供給チュープ42aの
途中に供給材料を切り替え可能にする流路切り替え装置を設けることで、複数の被焼結材
料を1つの材料吐出部41から吐出することが可能となる。
(第3実施形態)
第3実施形態として、第1実施形態に係る3次元形成装置1000を用いて3次元形状
造形物を形成する3次元形成方法を説明する。図7(a)は第3実施形態に係る3次元形
成方法を示すフローチャートであり、図7(b)は図7(a)に示す単層形成工程(S3
00)の詳細フローチャートである。また、図8および図9は本実施形態に係る3次元形
成方法を説明する部分断面図である。
(3次元造形用データ取得工程)
図7(a)に示すように、本実施形態に係る3次元形成方法は、3次元形状造形物20
0の3次元造形用データを、図示しない、例えばパーソナルコンピューターなどから制御
ユニット60(図1参照)に取得する、3次元造形用データ取得工程(S100)が実行
される。3次元造形用データ取得工程(S100)において取得された3次元造形用デー
タは、制御ユニット60から、ステージコントローラー61と、材料供給コントローラー
62と、レーザー発振器52と、に制御データが送られ、積層開始工程に移行される。
(積層開始工程)
積層開始工程(S200)では、3次元形成方法を示す図8(a)に示すように、ステ
ージ20に載置された試料プレート21に対して、所定の相対位置にヘッド31が配置さ
れる。この時、XY平面(図1参照)において、上述した3次元造形用データに基づく造
形の起点であるステージ20の座標位置P11(x11,y11)に、材料吐出部41の吐出
ノズル41bの吐出口41cから吐出される液滴状の被焼結材料である材料飛翔体Mf(
図2参照)が着弾するように試料プレート21を備えるステージ20が移動され、3次元
造形物の形成が開始され、単層形成工程に移行される。
(単層形成工程)
単層形成工程(S300)は、図7(b)に示すように材料供給工程(S310)と、
焼結工程(S320)と、を含んでいる。先ず、材料供給工程(S310)として、図8
(b)に示すように、積層開始工程(S200)によって所定の位置としてのP11(x
11,y11)位置にヘッド31に保持された吐出ノズル41bが対向するように試料プレー
ト21が移動し、吐出ノズル41bから、被焼結材料としての供給材料70が、試料プレ
ート21上に向けて液滴状の材料飛翔体71として吐出口41cから重力方向に吐出され
る(図2参照)。供給材料70としては、3次元形状造形物200の原料となる金属、例
えばステンレス、チタン合金の単体粉末、もしくは合金化が困難なステンレスと銅(Cu
)、あるいはステンレスとチタン合金、あるいはチタン合金とコバルト(Co)やクロム
(Cr)、などの混合粉末を、溶剤と、バインダーとしての増粘剤と、に混練し、スラリ
ー状(あるいはペースト状)に調整されたものである。
材料飛翔体71は、試料プレート21の上面21aに着弾し、単位液滴状材料72(以
下、単位材料72という)として上面21a上のP11(x11,y11)位置で形成され、
材料供給工程(S310)が終了する。材料飛翔体71は、吐出口41cから重力方向に
吐出され、飛翔することにより、単位材料72は着弾すべきP11(x11,y11)位置に
正確に着弾させることができる。この時、試料プレート21は、加熱されていることが好
ましい。試料プレート21が加熱されていることにより、単位材料72に含まれる溶剤が
蒸散され、供給材料70に比較して流動性の悪い単位材料72となる。従って、材料飛翔
体71が試料プレート21の上面21aに着弾した後、上面21aに沿って濡れ広がるこ
とが抑制され、単位材料72は試料プレート21の上面21aからの高さh1(いわゆる
肉盛量)を確保することができる。
単位材料72が上面21aに配設されると、焼結工程(S320)が開始される。焼結
工程(S320)は、図8(c)に示すように、レーザー照射部51a,51bからレー
ザーL1,L2が単位材料72に向けて重力方向に交差するように照射される(図2参照
)。レーザーL1,L2が持つエネルギー(熱)によって単位材料72に含まれる溶剤お
よび増粘剤は蒸散し、金属粉末は粒子同士が結合する、いわゆる焼結されるか、もしくは
熔融結合されることによって、金属隗の単位焼結体73となってP11(x11,y11)位
置に形成される。レーザーL1,L2の照射は、単位材料72の材料組成、体積、などの
条件によって照射条件が設定され、設定された照射量を単位材料72に照射した後、照射
は停止される。
そして後述するが、上述の材料供給工程(S310)と、焼結工程(S320)と、が
繰り返されて、本例では第1の単層としての第1層目の部分造形物201が形成される。
部分造形物201は、上述の材料供給工程(S310)と、焼結工程(S320)と、が
ステージ20の移動とともにm回繰り返され、m回目の単位焼結体73が、部分造形物2
01の端部となるステージ20の座標PEND=P1m(x1m,y1m)位置に形成される。
そこで、P11(x11,y11)位置に単位焼結体73が形成されると、材料供給工程(
S310)と、焼結工程(S320)と、が、部分造形物201が形成されるまでの繰り
返し数m回に到達しているか、すなわち吐出ノズル41bにステージ20の座標位置PEN
D=P1m(x1m,y1m)に到達しているか、を判定する形成経路確認工程(S330)
が実行される。形成経路確認工程(S330)において、繰り返し数m回に到達していな
い、すなわち吐出ノズル41bにステージ20の座標位置PEND=P1m(x1m,y1m
に到達していない「NO」と判定された場合には、図9(d)に示すように、再度、材料
供給工程(S310)に移行され、ステージ20は、次の単位材料72の形成位置である
P12(x12,y12)位置が吐出ノズル41bに対向するように駆動される。そして、P
12(x12,y12)位置に吐出ノズル41bが対応したところで、材料供給工程(S31
0)と、焼結工程(S320)と、が実行され、P12(x12.y12)位置に単位焼結体
73が形成される。
そして、図9(e)に示すように、材料供給工程(S310)と、焼結工程(S320
)と、がm回繰り返されることにより、部分造形物201が形成される。そして、繰り返
し数m回目となる吐出ノズル41bが対向するステージ20の座標位置が座標PEND=P
1m(x1m,y1m)位置にあるか確認され、「YES」と判定されると、単層形成工程(
S300)が終了する。
(積層数比較工程)
単層形成工程(S300)によって、第1の単層としての第1層目の部分造形物201
が形成されると、3次元造形用データ取得工程(S100)によって得られた造形データ
と比較する積層数比較工程(S400)に移行される。積層数比較工程(S400)では
、3次元形状造形物200を構成する部分造形物の積層数Nと、積層数比較工程(S40
0)の直前の単層形成工程(S300)までで積層された部分造形物の積層数nと、を比
較する。
積層数比較工程(S400)において、n=Nと判定された場合、3次元形状造形物2
00の形成が完了したと判定し、3次元形成は終了する。しかし、n<Nと判定された場
合、再度、積層開始工程(S200)から実行される。
図10(a)は、第2の単層としての第2層目の部分造形物202の形成方法を示す断
面図である。先ず、図10(a)に示すように、再度、積層開始工程(S200)が実行
される。このとき、ステージ20は、吐出口41cおよびレーザー照射部51a,51b
と、第1層の部分造形物201の厚みh1相当分が離間するように、Z軸方向に移動され
る。更に3次元造形データに基づく第2層目の造形の起点であるステージ20の座標位置
P21(x21,y21)に、材料吐出部41の吐出ノズル41bの吐出口41cから吐出さ
れる液滴状の被焼結材料である材料飛翔体71(図2参照)が着弾するように試料プレー
ト21を備えるステージ20が移動され、3次元造形物の第2層目の形成が開始され、第
2層目の単層形成工程(S200)に移行される。
以降、上述した第1層目の部分造形物201の形成を示す図8、図9と同様に、単層形
成工程(S300)が実行される。先ず、材料供給工程(S310)として、図10(b
)に示すように、積層開始工程(S200)によって所定の位置としてのP21(x21
21)位置にヘッド31に保持された吐出ノズル41bが対向するようにステージ20の
移動に伴って試料プレート21が移動し、吐出ノズル41bから、被焼結材料としての供
給材料70が、第1層目の部分造形物201の上部201aに向けて液滴状の材料飛翔体
71として吐出口41cから吐出される。
材料飛翔体71は、部分造形物201の上部201aに着弾し、単位液滴状材料72(
以下、単位材料72という)として上部201aに配置され、P21(x21,y21)位置
での材料供給工程(S310)が終了し、部分造形物201の上部201aに高さh2(
いわゆる肉盛量)を単位材料72が形成される。
単位材料72が部分造形物201の上部201aに配設されると、焼結工程(S320
)が開始される。焼結工程(S320)は、図10(c)に示すように、レーザー照射部
51a,51bからレーザーL1,L2が単位材料72に向けて照射され、レーザーL1
,L2が持つエネルギー(熱)によって単位材料72は焼結されて単位焼結体73となる
。そして、上述の材料供給工程(S310)と、焼結工程(S320)と、が繰り返され
て、第1層目の部分造形物201の上部201a上に、第2層目の部分造形物202が形
成される。部分造形物202は、上述の材料供給工程(S310)と、焼結工程(S32
0)と、がステージ20の移動とともにm回繰り返され、m回目の単位焼結体73が、部
分造形物201の端部となるステージ20の座標PEND=P2m(x2m,y2m)位置に形
成される。
そこで、P21(x21,y21)位置に単位焼結体73が形成されると、材料供給工程(
S310)と、焼結工程(S320)と、が、第2層目の部分造形物202が形成される
までの繰り返し数m回に到達しているか、すなわち吐出ノズル41bにステージ20の座
標位置PEND=P2m(x2m,y2m)に到達しているか、を判定する形成経路確認工程(
S330)が実行される。形成経路確認工程(S330)において、繰り返し数m回に到
達していない、すなわち吐出ノズル41bにステージ20の座標位置PEND=P2m(x2
m,y2m)に到達していない「NO」と判定された場合には、図11(d)に示すように
、再度、材料供給工程(S310)に移行され、ステージ20は、次の単位材料72の形
成位置であるP22(x22,y22)位置が吐出ノズル41bに対向するように駆動される
。そして、P22(x22,y22)位置に吐出ノズル41bが対応したところで、材料供給
工程(S310)と、焼結工程(S320)と、が実行され、P22(x22.y22)位置
に単位焼結体73が形成される。
そして、図11(e)に示すように、材料供給工程(S310)と、焼結工程(S32
0)と、がm回繰り返されることにより、第2層目の部分造形物202が形成される。そ
して、繰り返し数m回目となる吐出ノズル41bが対向するステージ20の座標位置が座
標PEND=P2m(x2m,y2m)位置にあるか確認され、「YES」と判定されると、第
2層目の単層形成工程(S300)が終了する。
そして、再度、積層数比較工程(S400)に移行し、n=Nとなるまで、積層開始工
程(S200)と、単層形成工程(S300)と、が繰り返され、第1実施形態に係る3
次元形成装置1000を用いて3次元形状造形物を形成することができる。なお、第一の
単層としての第一層目の部分造形物201の上に、第二の単層としての第2層目の部分造
形物202を形成する積層開始工程(S200)と、単層形成工程(S300)と、を実
行させることを上述の適用例における積層工程とよび、積層数比較工程(S400)にお
いて、n=N、と判定されるまで繰り返される。
(第4実施形態)
第4実施形態に係る3次元形成方法について説明する。上述した第3実施形態に係る3
次元形成方法において、3次元形状造形物がオーバーハング部を有する場合、オーバーハ
ング部では、上述した単層形成工程(S300)における材料供給工程(S310)では
、材料飛翔体71が着弾すべき下層の部分造形物が存在しないことで、単位材料72が形
成されなくなる(図10(b)参照)。仮に、図11(d)に示すP21(x21、y21
位置に形成された単位焼結体73に重なって繋がるように単位材料72を着弾させても、
下層の部分造形が配置されていなければ、重力方向へ垂れ下がるように変形する虞がある
。すなわち焼結前の単位材料72は、原料となる金属、例えばステンレス、チタン合金の
単体粉末、もしくは合金化が困難なステンレスと銅(Cu)、あるいはステンレスとチタ
ン合金、あるいはチタン合金とコバルト(Co)やクロム(Cr)、などの混合粉末を、
溶剤と、増粘剤と、に混練して得られるスラリー状(あるいはペースト状)の柔らかな状
態のものであることによる。
そこで、第4実施形態に係る3次元形成方法によりオーバーハング部を変形させないで
3次元形状造形物を形成する方法を説明する。なお、第3実施形態に係る3次元形成方法
と同じ工程には同じ符号を付し、説明は省略する。また、説明を簡略にするために図12
(a)の平面外観図、および図12(b)の図12(a)に示すA−A´部の断面図に示
すような、単純な形状を有する3次元形状造形物300を例示して、第4実施形態に係る
3次元形成方法を説明するが、この形状に限定されず、いわゆるオーバーハング部を備え
る造形物であれば適用できる。
図12に示すように、3次元形状造形物300は、凹部300aを有する円柱形の基部
300bの凹部開口側端部に基部300bの外側に延在するオーバーハング部としての鍔
部300cを備えている。この3次元形状造形物300を、第4実施形態に係る3次元形
成方法に基づいて形成するために、形成過程において除去されるサポート部310が、鍔
部300cの図示下部方向に基部300bの底部に至るまでの造形用データが、3次元形
状造形物300の3次元造形用データに加えて作成される。
図13は、図12に示す3次元形状造形物300の形成方法を示すフローチャートであ
る。また図14は図13に示すフローチャートによる3次元形状造形物300の形成方法
を示し、図示左側に部分断面図、右側に平面外観図を配置した。また、本実施形態の3次
元形状造形物300では、4層が積層されて形成される例を用いて説明するが、これに限
定されるものではない。
先ず、図14(a)に示すように、図示しない試料プレート21上に第1層目となる部
分造形物301が、第3実施形態に係る3次元形成方法によって形成される。部分造形物
301を形成する工程内に、第1層目の部分サポート部311も形成される。部分サポー
ト部311は、図8及び図9によって説明した単層形成工程(S300)における焼結工
程(S320)は実行されず、単位材料72の状態のまま、すなわち未焼結部、あるいは
未熔融部のままで単層形成工程(S300)が実行される。
引き続き、単層形成工程(S300)が繰り返され、図14(b)に示すように、第2
層目および第3層目となる部分造形物302,303が形成される。そして、部分造形物
302,303を形成する工程内に、第2層目および第3層目の部分サポート部312,
313も形成される。部分サポート部312,313は、部分サポート部311同様に、
単層形成工程(S300)における焼結工程(S320)は実行されず、造形材料70の
状態のまま、すなわち未焼結部、あるいは未熔融部のままで単層形成工程(S300)が
実行され、部分サポート部311,312,313によって、サポート部310が形成さ
れる。
次に図14(c)に示すように、鍔部300cに形成される第4層目の部分造形物30
4が形成される。部分造形物304は、部分サポート部311,312,313によって
形成されたサポート部310の端面310aに支持されるように形成される。このように
部分造形物304を形成することにより、単位材料72(図8参照)が着弾する面として
端面310aが形成されていることで、正確に鍔部300cとなる第4層目の部分造形物
304を形成することができる。
そして、図14(d)に示すように、3次元形状造形物300に造形されたところで、
サポート部除去工程(S500)によって、サポート部310は3次元形状造形物300
から除去される。サポート部310は焼成されていない材料で形成されていることから、
サポート部除去工程(S500)におけるサポート部310の除去手段としては、例えば
図14(d)に示すように鋭利な刃物Knによる物理的な切除が可能である。あるいは、
溶剤に浸漬し、材料に含まれる増粘剤を溶解し3次元形状造形物300から除去してもよ
い。
上述したように、オーバーハング部としての鍔部300cを有する3次元形状造形物3
00を形成する場合、鍔部300cを支持するサポート部310を3次元形状造形物30
0の形成と合わせて形成することにより、鍔部300cの重力方向への変形を防止するこ
とができる。なお、図12に示すサポート部310は、図示するような鍔部300cを全
面でサポート(支持)する形態に限定されず、造形物の形状、材料組成などによって適宜
、形状、大きさ等が設定される。
なお、本発明の実施の際の具体的な構成は、本発明の目的を達成できる範囲で他の装置
、あるいは方法に適宜変更できる。
10…基台、11…駆動装置、20…ステージ、21…試料プレート、30…ヘッド支
持部、31…ヘッド、32…支持アーム、40…材料供給装置、41…材料吐出部、42
…材料供給ユニット、50…レーザー照射装置、51…レーザー照射部、52…レーザー
発振器、60…制御ユニット、61…ステージコントローラー、62…材料供給コントロ
ーラー、1000…3次元形成装置。

Claims (10)

  1. ステージと、
    金属粉末と、バインダーと、が混練された被焼結材料を前記ステージに供給する材料供
    給手段と、前記材料供給手段から供給された前記被焼結材料に、前記被焼結材料を焼結可
    能とするエネルギーを供給するエネルギー照射手段と、を備え、
    前記ステージに対して、前記材料供給手段と、前記エネルギー照射手段と、が、相対的
    に3次元移動が可能となる駆動手段を備え、
    前記材料供給手段は、前記被焼結材料を重力方向に所定量供給する材料吐出部を備え、
    前記エネルギー照射手段は、前記エネルギーを出射するエネルギー照射部を備え、
    前記材料吐出部と、前記エネルギー照射部と、が一つの保持手段に保持されている、
    ことを特徴とする3次元形成装置。
  2. 前記エネルギー照射手段は、前記重力方向に交差する方向に前記エネルギーを照射する

    ことを特徴とする請求項1に記載の3次元形成装置。
  3. 前記材料吐出口は、前記被焼結材料を液滴状にして吐出する、
    ことを特徴とする請求項1または2に記載の3次元形成装置。
  4. 複数の前記エネルギー照射部を備えている、
    ことを特徴とする請求項1ないし3のいずれか一項に記載の3次元形成装置。
  5. 前記材料供給手段は、少なくとも前記被焼結材料が前記ステージに対向した材料吐出口
    を備える前記材料吐出部まで前記被焼結材料を供給する材料供給部を備え、
    前記材料供給部を複数備え、
    異なる組成を有する前記被焼結材料を、少なくとも2種以上供給する、
    ことを特徴とする請求項1ないし4のいずれか一項に記載の3次元形成装置。
  6. 前記エネルギー照射手段がレーザー照射手段である、
    ことを特徴とする請求項1ないし5のいずれかに記載の3次元形成装置。
  7. 金属粉末と、バインダーと、が混練された被焼結材料を所望形状に供給する材料供給工
    程と、
    前記材料供給工程によって供給された前記被焼結材料に向けて、前記被焼結材料を焼結
    可能とするエネルギーを供給し前記被焼結材料を焼結させる焼結工程と、により単層を形
    成する単層形成工程と、
    前記単層形成工程によって形成された第一の単層に積層させ、前記単層形成工程によっ
    て第二の単層を形成する積層工程と、を含み、
    前記積層工程を所定の回数、繰り返して3次元形状造形物が形成される3次元形成方法
    であって、
    前記単層形成工程は、前記材料供給工程において前記被焼結材料を液滴状で吐出させ、
    着弾した単位液滴状材料に対して行われる前記焼結工程を、所定の前記単層の形成領域に
    亘って行う、
    ことを特徴とする3次元形成方法。
  8. 前記材料供給工程の前記被焼結材料の吐出方向は重力方向であり、前記焼結工程の前記
    エネルギーの照射方向が重力方向に交差する方向である、
    ことを特徴とする請求項7に記載の3次元形成方法。
  9. 前記積層工程において、前記単層を重力方向に支持するサポート部が形成され、
    前記サポート部は、前記焼結工程において前記エネルギーが照射されない未焼結部であ
    る、
    ことを特徴とする請求項7または8に記載の3次元形成方法。
  10. 前記サポート部を除去する、サポート部除去工程を備える、
    ことを特徴とする請求項9に記載の3次元形成方法。
JP2015053023A 2015-03-17 2015-03-17 3次元形成装置および3次元形成方法 Withdrawn JP2016172893A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015053023A JP2016172893A (ja) 2015-03-17 2015-03-17 3次元形成装置および3次元形成方法
US15/066,212 US20160271696A1 (en) 2015-03-17 2016-03-10 Three-dimensional forming apparatus and three-dimensional forming method
CN201610149575.9A CN105983696A (zh) 2015-03-17 2016-03-16 三维成形装置以及三维成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053023A JP2016172893A (ja) 2015-03-17 2015-03-17 3次元形成装置および3次元形成方法

Publications (1)

Publication Number Publication Date
JP2016172893A true JP2016172893A (ja) 2016-09-29

Family

ID=56924485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053023A Withdrawn JP2016172893A (ja) 2015-03-17 2015-03-17 3次元形成装置および3次元形成方法

Country Status (3)

Country Link
US (1) US20160271696A1 (ja)
JP (1) JP2016172893A (ja)
CN (1) CN105983696A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172739A (ja) * 2017-03-31 2018-11-08 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
JP2019060000A (ja) * 2017-09-27 2019-04-18 セイコーエプソン株式会社 三次元造形物の製造方法及び三次元造形物の製造装置
JP2020501023A (ja) * 2016-12-06 2020-01-16 マークフォージド,インコーポレーテッド 熱屈曲材料供給による付加製造
JP2020069662A (ja) * 2018-10-29 2020-05-07 東芝機械株式会社 積層造形装置、積層造形方法、及びプログラム
WO2020116609A1 (ja) * 2018-12-06 2020-06-11 株式会社ジェイテクト 付加製造装置
JP2020094269A (ja) * 2018-12-06 2020-06-18 株式会社ジェイテクト 付加製造装置
JP2020094249A (ja) * 2018-12-14 2020-06-18 株式会社ジェイテクト 付加製造装置
JPWO2019198591A1 (ja) * 2018-04-13 2021-04-30 東京応化工業株式会社 クラッディング用組成物、及び金属/樹脂接合部材の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017081814A1 (ja) * 2015-11-13 2017-05-18 技術研究組合次世代3D積層造形技術総合開発機構 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
TWI621482B (zh) * 2016-09-26 2018-04-21 東台精機股份有限公司 具有三維列印金屬功能的噴頭模組及電腦數値控制加工裝置
DE102016219088B4 (de) * 2016-09-30 2019-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur generativen Herstellung von Bauteilen oder die Ausbildung von Beschichtungen auf Oberflächen von Bauteilen
US10800108B2 (en) 2016-12-02 2020-10-13 Markforged, Inc. Sinterable separation material in additive manufacturing
US10000011B1 (en) 2016-12-02 2018-06-19 Markforged, Inc. Supports for sintering additively manufactured parts
JP6907657B2 (ja) * 2017-03-31 2021-07-21 セイコーエプソン株式会社 三次元造形物の製造方法
US10831173B2 (en) * 2017-08-11 2020-11-10 The Boeing Company Tool having magnetic material
IT201900004681A1 (it) 2019-03-28 2020-09-28 Prima Ind Spa Procedimento e sistema di additive manufacturing
JP7120120B2 (ja) * 2019-03-29 2022-08-17 新東工業株式会社 付加製造装置及び付加製造方法
JP7380080B2 (ja) * 2019-10-25 2023-11-15 セイコーエプソン株式会社 ポーラス構造を有する金属造形物の製造方法
JP7567372B2 (ja) * 2020-10-30 2024-10-16 セイコーエプソン株式会社 三次元造形装置
DE102023107904A1 (de) 2022-03-29 2023-10-05 Federal-Mogul Ignition Gmbh Zündkerze, zündkerzenelektrode und verfahren zur herstellung derselben
US11872780B2 (en) 2022-06-02 2024-01-16 The Boeing Company Methods and tool for cutting an uncured composite material
US11837852B1 (en) 2022-07-27 2023-12-05 Federal-Mogul Ignition Gmbh Spark plug electrode with electrode tip directly thermally coupled to heat dissipating core and method of manufacturing the same
US12191637B1 (en) 2024-06-14 2025-01-07 Federal-Mogul Ignition Gmbh Spark plug with cooling features and method of manufacturing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104492A (ja) * 1987-10-19 1989-04-21 Nec Corp 光ファイバを利用したレーザ加工装置
JPH02147184A (ja) * 1988-11-28 1990-06-06 Komatsu Ltd レーザクラッディング方法及び装置
US20030116542A1 (en) * 1999-09-30 2003-06-26 National Research Council Of Canada Laser consolidation apparatus for manufacturing precise structures
JP2003251480A (ja) * 2002-03-01 2003-09-09 Toyota Motor Corp レーザクラッド装置およびレーザ照射装置
JP2006200030A (ja) * 2005-01-24 2006-08-03 Aisan Ind Co Ltd 立体造形物の製造方法及び製造装置
JP2008060509A (ja) * 2006-09-04 2008-03-13 Seiko Epson Corp 配線形成方法、液滴吐出装置及び回路モジュール
CN101422963A (zh) * 2008-10-14 2009-05-06 欧客思国际有限公司 一种三维工件的制造方法与设备
JP2013075308A (ja) * 2011-09-30 2013-04-25 Hitachi Ltd パウダ供給ノズルおよび肉盛溶接方法
JP2013215801A (ja) * 2012-03-14 2013-10-24 Amada Co Ltd レーザ加工機の同軸ノズル
CN104014790A (zh) * 2014-04-23 2014-09-03 张远明 一种超声波雾化纳米悬浮液的电子线路板3d喷墨打印机
JP2015009495A (ja) * 2013-06-28 2015-01-19 シーメット株式会社 三次元造形体およびサポート形成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269540B1 (en) * 1998-10-05 2001-08-07 National Research Council Of Canada Process for manufacturing or repairing turbine engine or compressor components
US6405095B1 (en) * 1999-05-25 2002-06-11 Nanotek Instruments, Inc. Rapid prototyping and tooling system
US7572403B2 (en) * 2003-09-04 2009-08-11 Peihua Gu Multisource and multimaterial freeform fabrication
JP4299157B2 (ja) * 2004-02-03 2009-07-22 トヨタ自動車株式会社 粉末金属肉盛ノズル
DE102004022961B4 (de) * 2004-05-10 2008-11-20 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit Auflösungsverbesserung mittels Pixel-Shift
JP5101838B2 (ja) * 2006-05-16 2012-12-19 ヤンマー株式会社 金属部材の表面硬化方法
CN101612793A (zh) * 2009-07-28 2009-12-30 李蕙如 制造三维工件的方法与设备
WO2012164078A2 (de) * 2011-06-01 2012-12-06 Bam Bundesanstalt Für Materialforschung Und- Prüfung Verfahren zum herstellen eines formkörpers sowie vorrichtung
JP5949051B2 (ja) * 2012-03-29 2016-07-06 セイコーエプソン株式会社 射出成形用組成物および焼結体の製造方法
CN103769587A (zh) * 2013-11-28 2014-05-07 王利民 一种金属3d打印法产品生产方法及设备
TWI548538B (zh) * 2013-12-11 2016-09-11 三緯國際立體列印科技股份有限公司 立體列印裝置
JP6477500B2 (ja) * 2014-01-16 2019-03-06 コニカミノルタ株式会社 三次元造形装置および三次元造形方法
DE102015200986A1 (de) * 2014-02-20 2015-08-20 Heidelberger Druckmaschinen Ag Intellectual Property Vorrichtung zum Bedrucken und Strahlungsbehandeln einer gekrümmten Oberfläche eines Objekts
US9827715B2 (en) * 2014-03-27 2017-11-28 Seiko Epson Corporation Three-dimensional formation apparatus, three-dimensional formation method, and computer program

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104492A (ja) * 1987-10-19 1989-04-21 Nec Corp 光ファイバを利用したレーザ加工装置
JPH02147184A (ja) * 1988-11-28 1990-06-06 Komatsu Ltd レーザクラッディング方法及び装置
US20030116542A1 (en) * 1999-09-30 2003-06-26 National Research Council Of Canada Laser consolidation apparatus for manufacturing precise structures
JP2003251480A (ja) * 2002-03-01 2003-09-09 Toyota Motor Corp レーザクラッド装置およびレーザ照射装置
JP2006200030A (ja) * 2005-01-24 2006-08-03 Aisan Ind Co Ltd 立体造形物の製造方法及び製造装置
JP2008060509A (ja) * 2006-09-04 2008-03-13 Seiko Epson Corp 配線形成方法、液滴吐出装置及び回路モジュール
CN101422963A (zh) * 2008-10-14 2009-05-06 欧客思国际有限公司 一种三维工件的制造方法与设备
JP2013075308A (ja) * 2011-09-30 2013-04-25 Hitachi Ltd パウダ供給ノズルおよび肉盛溶接方法
JP2013215801A (ja) * 2012-03-14 2013-10-24 Amada Co Ltd レーザ加工機の同軸ノズル
JP2015009495A (ja) * 2013-06-28 2015-01-19 シーメット株式会社 三次元造形体およびサポート形成方法
CN104014790A (zh) * 2014-04-23 2014-09-03 张远明 一种超声波雾化纳米悬浮液的电子线路板3d喷墨打印机

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020501023A (ja) * 2016-12-06 2020-01-16 マークフォージド,インコーポレーテッド 熱屈曲材料供給による付加製造
JP2018172739A (ja) * 2017-03-31 2018-11-08 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
JP2019060000A (ja) * 2017-09-27 2019-04-18 セイコーエプソン株式会社 三次元造形物の製造方法及び三次元造形物の製造装置
JPWO2019198591A1 (ja) * 2018-04-13 2021-04-30 東京応化工業株式会社 クラッディング用組成物、及び金属/樹脂接合部材の製造方法
JP7341984B2 (ja) 2018-04-13 2023-09-11 東京応化工業株式会社 クラッディング用組成物、及び金属/樹脂接合部材の製造方法
JP2020069662A (ja) * 2018-10-29 2020-05-07 東芝機械株式会社 積層造形装置、積層造形方法、及びプログラム
JP7146576B2 (ja) 2018-10-29 2022-10-04 芝浦機械株式会社 積層造形装置、積層造形方法、及びプログラム
WO2020116609A1 (ja) * 2018-12-06 2020-06-11 株式会社ジェイテクト 付加製造装置
JP2020094269A (ja) * 2018-12-06 2020-06-18 株式会社ジェイテクト 付加製造装置
JP2020094249A (ja) * 2018-12-14 2020-06-18 株式会社ジェイテクト 付加製造装置
JP7243167B2 (ja) 2018-12-14 2023-03-22 株式会社ジェイテクト 付加製造装置

Also Published As

Publication number Publication date
US20160271696A1 (en) 2016-09-22
CN105983696A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
JP2016172893A (ja) 3次元形成装置および3次元形成方法
JP6536199B2 (ja) 3次元形成装置
JP6661920B2 (ja) 3次元形成装置
JP6642790B2 (ja) 三次元造形物の製造方法及び三次元造形物の製造装置
JP6669985B2 (ja) 三次元造形物の製造方法
JP6384826B2 (ja) 三次元積層造形装置、三次元積層造形方法および三次元積層造形プログラム
US11097350B2 (en) Pre-fusion laser sintering for metal powder stabilization during additive manufacturing
JP6770245B2 (ja) 三次元造形物の製造方法及び三次元造形物の製造装置
JP7168035B2 (ja) 流動性組成物セット及び流動性組成物
CN107020739B (zh) 三维造型物的制造方法
JP2017025386A (ja) 3次元成形物および3次元成形方法
CN106827508A (zh) 三维造型物的制造方法以及三维造型物的制造装置
US20210162730A1 (en) Method of manufacturing three-dimensionally formed object and three-dimensionally formed object manufacturing apparatus
JP2017196890A (ja) 三次元造形装置および三次元造形方法
CN107856303B (zh) 三维造型装置、制造方法以及记录介质
JP2017075369A (ja) 三次元造形物の製造方法及び三次元造形物の製造装置
CN107150124A (zh) 一种3d喷射打印装置及其打印方法
CN107856302B (zh) 三维造型装置、制造方法以及记录介质
JP2020117814A (ja) 三次元造形物の製造方法及び三次元造形物の製造装置
JP2019147998A (ja) 三次元造形装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20190729