[go: up one dir, main page]

JP2016171201A - Luminaire - Google Patents

Luminaire Download PDF

Info

Publication number
JP2016171201A
JP2016171201A JP2015049813A JP2015049813A JP2016171201A JP 2016171201 A JP2016171201 A JP 2016171201A JP 2015049813 A JP2015049813 A JP 2015049813A JP 2015049813 A JP2015049813 A JP 2015049813A JP 2016171201 A JP2016171201 A JP 2016171201A
Authority
JP
Japan
Prior art keywords
control unit
wavelength control
light source
light
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015049813A
Other languages
Japanese (ja)
Inventor
哲 山内
Satoru Yamauchi
哲 山内
英樹 和田
Hideki Wada
英樹 和田
由合香 椿野
Yurika Tsubakino
由合香 椿野
佐智子 土井
Sachiko Doi
佐智子 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015049813A priority Critical patent/JP2016171201A/en
Publication of JP2016171201A publication Critical patent/JP2016171201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a luminaire that can achieve high color rendering performance and also suppress degradation in designability of the space.SOLUTION: A light emission device 1 includes an LED light source 2, and a light transmission member 3 provided on the front surface of the LED light source 2. The light transmission member 3 has a base 5, and a wavelength control unit 6 which is provided to the base 5 and controls the wavelength of light emitted from the LED light source 2. The wavelength control unit 6 includes a dye 62 having a maximum absorption wavelength in the wavelength range of 450-650 nm. In a front view of the wavelength control unit 6 and the LED light source 2, central axes of the wavelength control unit 6 and the light emission unit 4 are coaxial with each other, and the size of the wavelength control unit 6 is larger than the emission unit 4 and smaller than the base 5. According to this configuration, high color rendering can be achieved by the wavelength control unit 6 containing the dye 62. Further, the wavelength control unit 6 is provided at a pinpoint position facing the light emission unit 4, so that the appearance color is hardly visible, and degradation in designability of a space where the light emission device is installed can be suppressed.SELECTED DRAWING: Figure 1

Description

本発明は、光源として発光ダイオード(LED)を用いた照明装置に関する。   The present invention relates to a lighting device using a light emitting diode (LED) as a light source.

発光ダイオード(以下、LED)は、低電力で高輝度の発光が可能であり、しかも長寿命であることから、白熱灯や蛍光灯等に代替する照明装置用の光源として利用されている。また、青色LEDが出射する青色光を蛍光体に当てて黄色光を出力し、青色光と黄色光とを混色させて白色光を作り出す、いわゆる白色LEDがある。白色LEDは、発光強度及び発光効率において優れ、これを用いた照明装置が、シーリングライト及びベースライトといった光を拡散させる照明器具や、ダウンライト及びスポットライトといった光を集光させる照明器具等に利用されている。   A light emitting diode (hereinafter referred to as an LED) is capable of emitting light with high power and high luminance and has a long lifetime, and is therefore used as a light source for a lighting device that replaces an incandescent lamp or a fluorescent lamp. In addition, there is a so-called white LED in which blue light emitted from a blue LED is applied to a phosphor to output yellow light, and white light is generated by mixing blue light and yellow light. White LEDs are excellent in luminous intensity and luminous efficiency, and lighting devices using them are used for lighting fixtures that diffuse light such as ceiling lights and base lights, and lighting fixtures that collect light such as downlights and spotlights. Has been.

しかしながら、上述したような一般的な白色LEDは、出射光のスペクトル特性において赤色波長域のピーク強度が際立っておらず、演色性が低いので、食品や衣類等を照明する照明器具には適していなかった。そこで、LED光源の前面に、575〜600nmの波長域に吸収ピークを有する可視光選択吸収材料(以下、色素)を含有するフィルタ層を設けた照明装置が知られている(例えば、特許文献1参照)。この特許文献1に記載の発明によれば、フィルタ層が、照明光の575〜600nmの波長域の強度を低下させて、その波長域に隣接する600〜620nmの波長域にあるピーク波長を際立たせる。その結果、赤色の見え方が良好で、照明光の演色性を高めることができる。   However, the general white LED as described above is not suitable for a lighting device that illuminates food, clothing, etc., because the peak intensity in the red wavelength region is not outstanding in the spectral characteristics of the emitted light and the color rendering is low. There wasn't. Then, the illuminating device which provided the filter layer containing the visible light selective absorption material (henceforth pigment | dye) which has an absorption peak in a wavelength range of 575-600 nm in the front surface of a LED light source is known (for example, patent document 1). reference). According to the invention described in Patent Document 1, the filter layer reduces the intensity of the illumination light in the wavelength region of 575 to 600 nm, and highlights the peak wavelength in the wavelength region of 600 to 620 nm adjacent to the wavelength region. Make it. As a result, the appearance of red is good and the color rendering properties of illumination light can be enhanced.

特開2010−267571号公報JP 2010-267571 A

しかしながら、上記照明装置では、フィルタ層の全面が、色素の色に着色されているので、例えば、照明装置が点灯していないとき、フィルタ層の外観色が視認され得る。このような照明装置が、例えば、白色系の壁紙が貼られた天井等に設置されると、着色されたフィルタ層が目立ち、照明装置が設置された空間の意匠性を低下させることがある。   However, in the lighting device, the entire surface of the filter layer is colored with the color of the pigment, so that, for example, when the lighting device is not turned on, the appearance color of the filter layer can be visually recognized. For example, when such a lighting device is installed on a ceiling or the like on which white wallpaper is pasted, a colored filter layer may be conspicuous and the design of the space in which the lighting device is installed may be deteriorated.

本発明は、上記課題を解決するものであり、高い演色性を得ることができ、しかも空間の意匠性の低下を抑制することができる発光装置及びそれを用いた照明装置を提供することを目的とする。   An object of the present invention is to solve the above-described problems, and to provide a light-emitting device that can obtain high color rendering properties and that can suppress a decrease in design of a space, and a lighting device using the same. And

上記課題を解決するため、本発明は、LED光源と、前記LED光源の前面に設けられた光透過部材と、を備えた照明装置であって、前記LED光源は、正面視において所定の発光面積を持つ発光部を有し、前記光透過部材は、透光性を有する基材と、前記基材に設けられて前記LED光源から出射された光の波長を制御する波長制御部と、を有し、前記波長制御部は、波長450〜650nmの範囲に最大吸光波長を有する色素を含み、前記波長制御部及び前記LED光源の正面視において、前記波長制御部及び前記発光部の中心軸が同軸であり、且つ前記波長制御部の大きさが、前記発光部より大きく、前記基材より小さいことを特徴とする。   In order to solve the above-mentioned problem, the present invention is an illumination device including an LED light source and a light transmission member provided on a front surface of the LED light source, and the LED light source has a predetermined light emission area in a front view. The light transmissive member includes a base material having translucency, and a wavelength control unit that is provided on the base material and controls the wavelength of light emitted from the LED light source. The wavelength control unit includes a dye having a maximum absorption wavelength in a wavelength range of 450 to 650 nm, and the central axes of the wavelength control unit and the light emitting unit are coaxial in a front view of the wavelength control unit and the LED light source. The size of the wavelength control unit is larger than that of the light emitting unit and smaller than that of the base material.

本発明によれば、LED光源から出射された光が、色素を含有する波長制御部を透過することにより、高い演色性を有する照明光を得ることができる。また、波長制御部は、基材の全面ではなく、発光部と対向する位置にピンポイントで設けられているので、外観色が視認され難く、発光装置が設置された空間の意匠性の低下を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the illumination light which has high color rendering property can be obtained because the light radiate | emitted from the LED light source permeate | transmits the wavelength control part containing a pigment | dye. In addition, the wavelength control unit is pinpointed not at the entire surface of the substrate but at a position facing the light emitting unit, so that the appearance color is difficult to see and the design of the space where the light emitting device is installed is reduced. Can be suppressed.

(a)は本発明の第1の実施形態に係る発光装置の正面図、(b)は側面図。(A) is a front view of the light-emitting device concerning the 1st Embodiment of this invention, (b) is a side view. 同発光装置に用いられるLED光源の側断面図。The sectional side view of the LED light source used for the light-emitting device. 同LED光源の発光スペクトルを示す図。The figure which shows the emission spectrum of the LED light source. 上記発光装置の波長制御部に用いられるテトラアザポルフィリン化合物の構造式を示す図。The figure which shows structural formula of the tetraaza porphyrin compound used for the wavelength control part of the said light-emitting device. 波長制御部に用いられるテトラアザポルフィリン化合物の光吸収スペクトルを示す図。The figure which shows the light absorption spectrum of the tetraaza porphyrin compound used for a wavelength control part. 上記発光装置の出射光のスペクトルを示す図。The figure which shows the spectrum of the emitted light of the said light-emitting device. (a)は本発明の第2の実施形態に係る発光装置の正面図、(b)は側面図。(A) is a front view of the light-emitting device concerning the 2nd Embodiment of this invention, (b) is a side view. 同発光装置に用いられるLED光源の側断面図。The sectional side view of the LED light source used for the light-emitting device. (a)は上記実施形態の変形例に係る発光装置の正面図、(b)は側面図。(A) is a front view of the light-emitting device which concerns on the modification of the said embodiment, (b) is a side view. (a)は上記実施形態及び変形例に係る発光装置を更に変形した発光装置を用いた照明装置の側断面図、(b)は(a)の一部拡大図。(A) is a sectional side view of the illuminating device using the light-emitting device which further modified the light-emitting device concerning the said embodiment and modification, (b) is the partially expanded view of (a). 本発明の第3の実施形態に係る発光装置の側断面図。The sectional side view of the light-emitting device which concerns on the 3rd Embodiment of this invention.

本発明の第1の実施形態に係る発光装置について、図1乃至図6を参照して説明する。図1(a)(b)に示すように、本実施形態の発光装置1は、LED光源2と、LED光源2の前面に設けられた光透過部材3と、を備える。なお、LED光源2の前面とは、LED光源2から光が出射される方向に対向する面を言う。LED光源2は、例えば、チップオンボード(COB)型LED、サーフェスマウントデバイス(SMD)型LED又は砲弾型LED等の汎用のLEDモジュールであり、正面視において所定の発光面積を持つる発光部4を有する。   A light emitting device according to a first embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1A and 1B, the light emitting device 1 of this embodiment includes an LED light source 2 and a light transmission member 3 provided on the front surface of the LED light source 2. The front surface of the LED light source 2 refers to a surface facing the direction in which light is emitted from the LED light source 2. The LED light source 2 is, for example, a general-purpose LED module such as a chip-on-board (COB) type LED, a surface mount device (SMD) type LED, or a bullet-type LED, and a light emitting unit 4 having a predetermined light emitting area in a front view. Have

光透過部材3は、透光性を有する基材5と、基材5に設けられてLED光源2から出射された光の波長を制御する波長制御部6と、を有する。基材5は、LED光源2のカバー又はレンズ等に相当する構造材料であり、波長制御部6に比べて十分な厚みがある。本実施形態では、波長制御部6は、基材5のLED光源2からの光が入射する面に設けられている。また、本実施形態では、1つのLED光源2に対して1つの波長制御部6が設けられている。   The light transmissive member 3 includes a base material 5 having translucency, and a wavelength control unit 6 that is provided on the base material 5 and controls the wavelength of light emitted from the LED light source 2. The base material 5 is a structural material corresponding to a cover or a lens of the LED light source 2 and has a sufficient thickness as compared with the wavelength control unit 6. In the present embodiment, the wavelength control unit 6 is provided on the surface of the substrate 5 on which light from the LED light source 2 is incident. In the present embodiment, one wavelength control unit 6 is provided for one LED light source 2.

LED光源2は、一方の面に発光部4を有するLEDモジュールが用いられ、このLEDモジュールが基板7に実装されている。LED光源2には、例えば、発光ピーク波長が460nmの青色光を放射するGaN系青色LEDチップにYAG系黄色蛍光体が被覆され、青色光と黄色光との混光により白色光を出射するLEDモジュールが用いられる。本実施形態のように、LED光源2が単体である場合には、汎用のCOB型のLEDモジュールが好適に用いられる。   As the LED light source 2, an LED module having a light emitting unit 4 on one surface is used, and this LED module is mounted on a substrate 7. The LED light source 2 is, for example, an LED in which a GaN-based blue LED chip that emits blue light with an emission peak wavelength of 460 nm is coated with a YAG-based yellow phosphor, and white light is emitted by mixed light of blue light and yellow light. Modules are used. When the LED light source 2 is a single unit as in this embodiment, a general-purpose COB type LED module is preferably used.

具体的には、図2に示すように、LED光源2は、アルミニウム又はセラミック等から成る断面矩形状の基板20と、基板20上に実装されたLEDチップ21と、LEDチップ21を取り囲むバンク22と、バンク22に充填される封止部材23と、を備える。なお、図例では、LEDチップ21を2個用いた構成を示すが、これに限定されない。封止部材23には、例えば、シリコーン樹脂等が用いられ、LEDチップ21からの出射光の波長を変換する蛍光体24が含有される。基板20の上面にはカソード電極25及びアノード電極26が夫々設けられ、これらカソード電極25及びアノード電極26は、ワイヤ27によってLEDチップ21の各電極端子に夫々接続される。   Specifically, as shown in FIG. 2, the LED light source 2 includes a substrate 20 having a rectangular cross section made of aluminum or ceramic, an LED chip 21 mounted on the substrate 20, and a bank 22 surrounding the LED chip 21. And a sealing member 23 filled in the bank 22. In the example shown in the figure, a configuration using two LED chips 21 is shown, but the present invention is not limited to this. For example, a silicone resin or the like is used for the sealing member 23 and contains a phosphor 24 that converts the wavelength of light emitted from the LED chip 21. A cathode electrode 25 and an anode electrode 26 are respectively provided on the upper surface of the substrate 20, and the cathode electrode 25 and the anode electrode 26 are connected to each electrode terminal of the LED chip 21 by wires 27.

バンク22の内周は、上面視で円形状であり、この円周内に蛍光体24を含有する封止部材23が充填されることにより、バンク22の開口から露出した封止部材23の表面が、光を出射する発光部4となる。なお、上記図1(a)(b)では、LED光源2と発光部4とを同一の構成として図示している。   The inner periphery of the bank 22 has a circular shape when viewed from above, and the surface of the sealing member 23 exposed from the opening of the bank 22 is filled with the sealing member 23 containing the phosphor 24 in the periphery. Becomes the light emitting section 4 that emits light. In FIGS. 1A and 1B, the LED light source 2 and the light emitting unit 4 are illustrated as the same configuration.

本実施形態のLED光源2では、例えば、LEDチップ21が、波長260nm付近に発光ピーク波長を有する光を出射し、蛍光体24は、図3に示すように、波長610nm付近に発光ピーク波長を有する光を発光する。LED光源2は、これらの光を混色することで得た白色光を出射することができる。   In the LED light source 2 of the present embodiment, for example, the LED chip 21 emits light having an emission peak wavelength in the vicinity of a wavelength of 260 nm, and the phosphor 24 has an emission peak wavelength in the vicinity of a wavelength of 610 nm as shown in FIG. The light it has is emitted. The LED light source 2 can emit white light obtained by mixing these lights.

基材5(再び図1(b)参照)は、透光性を有する任意の樹脂材料又はガラス等により構成される。例えば、光学的に透明な材料としては、ポリメタクリル酸メチル、ポリカーボネート、環状ポリオレフィン、環状ポリオレフィンコポリマ、ポリメチルペンテン等の熱可塑性樹脂が挙げられる。また、乳白色半透明な材料としては、ポリエチレン、ポリプロピレン等の熱可塑性樹脂が挙げられる。更に、メタクリル酸樹脂やシリコーン樹脂に架橋成分を加えた後に、熱又は電子線、紫外線等のエネルギーを与えて硬化させる熱硬化性樹脂等も挙げられる。また、基材5には、用途に応じて、紫外線吸収剤、光安定剤、酸化防止剤、加水分解防止剤等が母材となる樹脂材料に対して適宜に添加されてもよい。なお、本実施形態では、基材5として、平坦な板状部材を図示しているが、後述する図9及び図10に示すように、出射光を拡散又は集光する形状に形成加工された配光制御部材であってもよい。   The base material 5 (see FIG. 1B again) is made of any resin material or glass having translucency. For example, examples of the optically transparent material include thermoplastic resins such as polymethyl methacrylate, polycarbonate, cyclic polyolefin, cyclic polyolefin copolymer, and polymethylpentene. Examples of the milky white translucent material include thermoplastic resins such as polyethylene and polypropylene. Furthermore, after adding a crosslinking component to a methacrylic acid resin or a silicone resin, a thermosetting resin that is cured by applying heat or energy such as an electron beam or ultraviolet rays may be used. In addition, an ultraviolet absorber, a light stabilizer, an antioxidant, a hydrolysis inhibitor, and the like may be appropriately added to the base material 5 with respect to the resin material serving as a base material, depending on the application. In the present embodiment, a flat plate-like member is illustrated as the substrate 5, but as shown in FIGS. 9 and 10 described later, the substrate 5 is formed and processed into a shape that diffuses or condenses the emitted light. It may be a light distribution control member.

波長制御部6は、透光性を有する樹脂材料から成る母材61と、この母材61に添加される色素62と、を有する。母材61には、上記基材5に用いられる光学的に透明な材料と同様の熱可塑性樹脂が好適に用いられる。   The wavelength controller 6 includes a base material 61 made of a resin material having translucency, and a pigment 62 added to the base material 61. For the base material 61, a thermoplastic resin similar to the optically transparent material used for the base material 5 is preferably used.

色素62は、特定波長の光を選択的に吸収する性質を有する化合物である。例えば、テトラアザポルフィリン、テトラフェニルポルフィリン、オクタエチルポルフィリン、フタロシアニン、シアニン、ピロメテン、スクアリリウム、キサンテン、ジオキサン、オキソノール等の有機化合物を主体とする色素が挙げられる。特に、図4に示すような、テトラアザポルフィリン化合物は、光源からの光照射に対しても堅牢性が高いので、好適に用いられる。なお、図中のMは中心金属となる元素を、R1〜R8は置換基を示す。   The dye 62 is a compound having a property of selectively absorbing light having a specific wavelength. Examples thereof include dyes mainly composed of organic compounds such as tetraazaporphyrin, tetraphenylporphyrin, octaethylporphyrin, phthalocyanine, cyanine, pyromethene, squarylium, xanthene, dioxane and oxonol. In particular, a tetraazaporphyrin compound as shown in FIG. 4 is preferably used because it has high fastness to light irradiation from a light source. In the figure, M represents an element serving as a central metal, and R1 to R8 represent substituents.

本実施形態においては、色素62として、波長450〜650nmの範囲に最大吸光波長を有する色素が用いられる。特に、波長570〜590nmの範囲に最大吸光波長を有する色素であるテトラアザポルフィリンが好適に用いられる。図5は、基材5及び母材61にアクリル樹脂(VH001(三菱レイヨン(株)製))を用い、中心金属に銅を有するテトラアザポルフィリン化合物を3.0ppmの濃度で添加して作製された波長制御部6の吸光特性を、自記分光光度計(U4100,(株)日立ハイテクノロジー製)にて測定した結果を示す。上記のようにして作成された光透過部材3では、基材5及び母材61自体に約8%程度の光吸収性があり、波長450〜650nmの範囲のピーク波長の透過率を約60%程度吸収し、約32%の光を透過する。   In the present embodiment, a dye having a maximum absorption wavelength in the wavelength range of 450 to 650 nm is used as the dye 62. In particular, tetraazaporphyrin, which is a dye having a maximum absorption wavelength in the wavelength range of 570 to 590 nm, is preferably used. FIG. 5 is prepared by using an acrylic resin (VH001 (manufactured by Mitsubishi Rayon Co., Ltd.)) for the base material 5 and the base material 61, and adding a tetraazaporphyrin compound having copper as a central metal at a concentration of 3.0 ppm. The result of having measured the light absorption characteristic of the wavelength control unit 6 with a self-recording spectrophotometer (U4100, manufactured by Hitachi High-Technology Co., Ltd.) is shown. In the light transmissive member 3 produced as described above, the base material 5 and the base material 61 itself have a light absorptivity of about 8%, and the transmittance at the peak wavelength in the range of 450 to 650 nm is about 60%. Absorbs to some extent and transmits about 32% of light.

LED光源2は、図3に示した発光特性を有するLED光源2からの出射光が、図5に示した吸収特性を有する色素を含有する波長制御部6を透過し、波長制御された白色光を出射する。図6は、発光装置1が出射する白色光の分光特性を示す。なお、同図の分光スペクトルは、瞬間マルチ測光システム(MCPD−7700(大塚電子(株)製))により計測された。LED光源2が出射する白色光は、波長570〜590nmの範囲の波長が吸収されているので、波長610nm付近のピーク波長を際立たせることができる。その結果、高い演色性を得ることができ、特に赤色の物体を鮮やかに見せることができる。   In the LED light source 2, the emitted light from the LED light source 2 having the light emission characteristics shown in FIG. 3 is transmitted through the wavelength control unit 6 containing the dye having the absorption characteristics shown in FIG. Is emitted. FIG. 6 shows spectral characteristics of white light emitted from the light emitting device 1. In addition, the spectrum of the figure was measured by the instantaneous multiphotometry system (MCPD-7700 (made by Otsuka Electronics Co., Ltd.)). Since the white light emitted from the LED light source 2 is absorbed in the wavelength range of 570 to 590 nm, the peak wavelength near 610 nm can be made to stand out. As a result, a high color rendering property can be obtained, and in particular, a red object can be displayed vividly.

また、本実施形態においては、図1(a)(b)に示したように、波長制御部6及びLED光源2の正面視において、波長制御部6と発光部4(LED光源2)の中心軸Lが同軸であり、且つ波長制御部6の大きさが、LED光源2の発光部より大きく、基材5より小さい。つまり、波長制御部6は、基材5の全面ではなく、LED光源2の発光部4と対向する位置にピンポイントで設けられている。そのため、従来の照明装置のように、フィルタ層の全面が色素の色で着色されている場合に比べて、発光装置1が点灯していないとき、波長制御部6の外観色が視認され難く、発光装置が設置された空間の意匠性の低下を抑制することができる。   In the present embodiment, as shown in FIGS. 1A and 1B, the center of the wavelength control unit 6 and the light emitting unit 4 (LED light source 2) in the front view of the wavelength control unit 6 and the LED light source 2. The axis L is coaxial, and the size of the wavelength control unit 6 is larger than the light emitting unit of the LED light source 2 and smaller than the substrate 5. That is, the wavelength control unit 6 is provided not at the entire surface of the substrate 5 but at a position facing the light emitting unit 4 of the LED light source 2 at a pinpoint. Therefore, as compared with the case where the entire surface of the filter layer is colored with the color of the pigment as in the conventional lighting device, the appearance color of the wavelength control unit 6 is less visible when the light emitting device 1 is not lit. It is possible to suppress a decrease in designability of the space where the light emitting device is installed.

LED光源2の発光部4に対する波長制御部6の大きさは、LED光源2と光透過部材3との距離によって異なるが、波長制御部6は、少なくともLED光源2の1/2ビーム角を充足する範囲に設けられていることが好ましい。すなわち、図1(a)に示すように、発光部4の外縁と波長制御部6の外縁とを繋ぐ線分sと、発光部4の中心軸Lと平行な線L1の成す角α1が、LED光源2で設計された1/2ビーム角よりも大きければよい。こうすれば、LED光源2からの出射光の殆どの光束が、波長制御部6を透過して色素62により波長制御されるので、照明光の演色性を高くすることができる。一方、波長制御部6が大き過ぎると、波長制御部6の外観色が視認され易くなってしまう。そのため、波長制御部6は、上記角α1がLED光源2の最大の配光角度α2よりも小さくなる範囲に設けられる。   Although the size of the wavelength control unit 6 with respect to the light emitting unit 4 of the LED light source 2 varies depending on the distance between the LED light source 2 and the light transmission member 3, the wavelength control unit 6 satisfies at least a half beam angle of the LED light source 2. It is preferable that it is provided in the range. That is, as shown in FIG. 1A, an angle α1 formed by a line segment s connecting the outer edge of the light emitting unit 4 and the outer edge of the wavelength control unit 6 and a line L1 parallel to the central axis L of the light emitting unit 4 is What is necessary is just to be larger than the 1/2 beam angle designed by the LED light source 2. In this way, most of the light emitted from the LED light source 2 is transmitted through the wavelength control unit 6 and is wavelength-controlled by the pigment 62, so that the color rendering property of the illumination light can be enhanced. On the other hand, when the wavelength control unit 6 is too large, the appearance color of the wavelength control unit 6 is easily visible. Therefore, the wavelength control unit 6 is provided in a range where the angle α1 is smaller than the maximum light distribution angle α2 of the LED light source 2.

また、LED光源2と光透過部材3との距離が近いほど、波長制御部6の大きさを小さくすることができ、波長制御部6の外観色がより視認され難く、発光装置1が設置された空間の意匠性の低下を抑制することができる。一方、LED光源2と光透過部材3とが近接し過ぎると、LED光源2からの熱により光透過部材3の波長制御部6に含有される色素62がダメージを受けて波長選択的な吸収性能が低下する虞がある。従って、LED光源2と光透過部材3との距離は、LED光源2(LED光源2)の出力や放熱性能によるが、例えば、汎用的な全光束800ルーメンのCOB型LEDモジュールであれば、5〜15mmとされる。こうすれば、波長制御部6を小さくして外観色がより視認され難くすることができ、且つ色素62のダメージを抑制して、長期間にわたって高い演色性の照明光を得ることができる。   Further, as the distance between the LED light source 2 and the light transmitting member 3 is shorter, the size of the wavelength control unit 6 can be reduced, the appearance color of the wavelength control unit 6 is more difficult to be visually recognized, and the light emitting device 1 is installed. It is possible to suppress a decrease in design of the space. On the other hand, if the LED light source 2 and the light transmission member 3 are too close to each other, the dye 62 contained in the wavelength control unit 6 of the light transmission member 3 is damaged by the heat from the LED light source 2, and wavelength selective absorption performance. May decrease. Therefore, the distance between the LED light source 2 and the light transmitting member 3 depends on the output and heat dissipation performance of the LED light source 2 (LED light source 2). ˜15 mm. In this way, the wavelength control unit 6 can be made smaller and the appearance color can be made more difficult to be visually recognized, and damage to the pigment 62 can be suppressed, and illumination light with high color rendering properties can be obtained over a long period of time.

また、本実施形態の光透過部材3では、基材5は、波長制御部6よりも厚みがあり、また、波長制御部6は、基材5のLED光源2からの光が入射する面に設けられている。そのため、発光装置1が外部から視られたとき、基材5のうち光が出射する面とは反対側の面に波長制御部6があるので、波長制御部6が視認され難く、発光装置1が設置された空間の意匠性の低下を、より抑制することができる。また、光透過部材3を乳白色の樹脂材料で構成する、又は基材5のうち光が出射する面に拡散処理を施すことにより、波長制御部6をより視認され難くすることができる。   Moreover, in the light transmissive member 3 of this embodiment, the base material 5 is thicker than the wavelength control unit 6, and the wavelength control unit 6 is on the surface on which the light from the LED light source 2 of the base material 5 is incident. Is provided. For this reason, when the light emitting device 1 is viewed from the outside, the wavelength control unit 6 is difficult to be visually recognized because the wavelength control unit 6 is provided on the surface of the substrate 5 opposite to the surface from which light is emitted. It is possible to further suppress the deterioration of the design property of the space in which is installed. Moreover, the wavelength control part 6 can be made harder to visually recognize by comprising the light transmissive member 3 with milky white resin material, or performing a diffusion process to the surface which the light emits among the base materials 5. FIG.

本発明の第2の実施形態に係る発光装置について、図7を参照して説明する。図7(a)(b)に示すように、本実施形態に係る発光装置1は、基板7上にLED光源2を複数備え、光透過部材3の基材5は、複数のLED光源2aの前面を覆うように設けられている。また、複数の波長制御部6が、LED光源2a毎に基材5に設けられている。図例では、5個のLED光源2aが設けられた構成を示すが、LED光源2aの個数はこれに限られない。   A light emitting device according to a second embodiment of the present invention will be described with reference to FIG. As shown in FIGS. 7A and 7B, the light-emitting device 1 according to this embodiment includes a plurality of LED light sources 2 on a substrate 7, and the base material 5 of the light transmitting member 3 includes a plurality of LED light sources 2a. It is provided to cover the front. Moreover, the some wavelength control part 6 is provided in the base material 5 for every LED light source 2a. In the example shown in the figure, a configuration in which five LED light sources 2a are provided is shown, but the number of LED light sources 2a is not limited thereto.

本実施形態では、LED光源2aは、汎用のSMD型のLEDモジュールが好適に用いられる。具体的には、図8に示すように、LED光源2は、断面矩形状の基材20aと、基材20a上に実装された発光部(LEDチップ)21と、LEDチップ21を取り囲む凹部を有する枠体22aと、枠体22aに充填される封止部材23と、を備える。封止部材23及び蛍光体24は、上記実施形態と同様である。基材20aの一側面にはカソード電極25が、他側面にはアノード電極26がリードフレーム状に夫々設けられ、基材20aの下面両端部に形成された外部接続電極27,28に夫々接続される。また、カソード電極25及びアノード電極26は、ワイヤ29によってLEDチップ21の各電極端子(不図示)に夫々接続される。   In the present embodiment, a general-purpose SMD type LED module is preferably used as the LED light source 2a. Specifically, as shown in FIG. 8, the LED light source 2 includes a base material 20 a having a rectangular cross section, a light emitting unit (LED chip) 21 mounted on the base material 20 a, and a recess surrounding the LED chip 21. And a sealing member 23 filled in the frame body 22a. The sealing member 23 and the phosphor 24 are the same as in the above embodiment. A cathode electrode 25 is provided on one side surface of the base material 20a, and an anode electrode 26 is provided on the other side surface in the form of a lead frame, which are connected to external connection electrodes 27 and 28 formed at both ends of the lower surface of the base material 20a. The Further, the cathode electrode 25 and the anode electrode 26 are connected to respective electrode terminals (not shown) of the LED chip 21 by wires 29.

枠体22aの凹部は、上面視で円形状であり、LEDチップ21が実装される底面と、光を導出する開口部と、底面から開口部に向けて円錐状に広がるように形成された側面と、を有する。側面は、LEDチップ21から出射する光を高効率で反射するように光反射処理が施されている。この凹部に蛍光体24を含有する封止部材23が充填されることにより、凹部の開口部が、LED光源2の発光部4となる。なお、上記図7(a)(b)においても、LED光源2の発光部4を構成として図示している。   The concave portion of the frame body 22a has a circular shape when viewed from above, and includes a bottom surface on which the LED chip 21 is mounted, an opening for deriving light, and a side surface formed so as to spread conically from the bottom surface toward the opening. And having. The side surface is subjected to light reflection processing so as to reflect light emitted from the LED chip 21 with high efficiency. By filling the recess with the sealing member 23 containing the phosphor 24, the opening of the recess becomes the light emitting unit 4 of the LED light source 2. 7A and 7B, the light emitting unit 4 of the LED light source 2 is illustrated as a configuration.

図7(a)(b)に示したように、本実施形態においても、各LED光源2の正面視において、波長制御部6とLED光源2の発光部4の中心軸Lが同軸であり、且つ波長制御部6の大きさが、LED光源2の発光部4より大きく、基材5より小さい。つまり、波長制御部6は、基材5の全面ではなく、LED光源2の発光部と対向する位置にピンポイントで設けられている。そのため、従来の照明装置のように、フィルタ層の全面が色素の色で着色されている場合に比べて、発光装置1が点灯していないとき、波長制御部6の外観色が視認され難く、発光装置1が設置された空間の意匠性を低下を抑制することができる。   As shown in FIGS. 7A and 7B, also in this embodiment, the central axis L of the wavelength control unit 6 and the light emitting unit 4 of the LED light source 2 is coaxial in the front view of each LED light source 2, The size of the wavelength control unit 6 is larger than the light emitting unit 4 of the LED light source 2 and smaller than the base material 5. That is, the wavelength control unit 6 is provided not at the entire surface of the substrate 5 but at a position facing the light emitting unit of the LED light source 2 at a pinpoint. Therefore, as compared with the case where the entire surface of the filter layer is colored with the color of the pigment as in the conventional lighting device, the appearance color of the wavelength control unit 6 is less visible when the light emitting device 1 is not lit. Deterioration in the design of the space in which the light emitting device 1 is installed can be suppressed.

また、本実施形態によれば、LED光源2の個数を設定することにより、発光装置1の用途に応じて容易に高出力化に対応することができる。また、本実施形態のLED光源2に用いられるSMD型のLEDモジュールは、上記実施形態で用いられたCOB型LEDモジュールに比べて、発光部4の大きさが小さいので、波長制御部6も小さくすることができる。従って、上記実施形態よりも更に波長制御部6の外観色が視認され難く、発光装置1が設置された空間の意匠性を低下を、より効果的に抑制することができる。   Further, according to the present embodiment, by setting the number of the LED light sources 2, it is possible to easily cope with an increase in output according to the use of the light emitting device 1. In addition, since the SMD type LED module used in the LED light source 2 of the present embodiment is smaller in size of the light emitting unit 4 than the COB type LED module used in the above embodiment, the wavelength control unit 6 is also smaller. can do. Therefore, the appearance color of the wavelength control unit 6 is less visible than in the above embodiment, and the deterioration of the design of the space where the light emitting device 1 is installed can be more effectively suppressed.

次に、上記実施形態の変形例に係る発光装置について、図9を参照して説明する。この変形例に係る発光装置1は、光透過部材3は、波長制御部6に含有される色素62と実質的に同じ色素62を含む補助波長制御部6aを有する。この補助波長制御部6aは、上述した波長制御部6よりも厚みが薄くなるように又は色素62の含有濃度が低くなるように構成され、基材5における波長制御部6が設けられた領域の周囲の領域に設けられている。本変形例では、複数のLED光源2に対応するように、基材5に複数の波長制御部6が設けられており、各波長制御部6の間を埋めるように、補助波長制御部6aが設けられている。   Next, a light emitting device according to a modification of the above embodiment will be described with reference to FIG. In the light emitting device 1 according to this modification, the light transmission member 3 includes an auxiliary wavelength control unit 6 a that includes a dye 62 that is substantially the same as the dye 62 contained in the wavelength control unit 6. The auxiliary wavelength control unit 6a is configured to be thinner than the wavelength control unit 6 described above or to have a lower concentration of the pigment 62, and in the region of the substrate 5 where the wavelength control unit 6 is provided. It is provided in the surrounding area. In this modification, a plurality of wavelength control units 6 are provided on the base material 5 so as to correspond to the plurality of LED light sources 2, and the auxiliary wavelength control unit 6 a is embedded so as to fill the space between the wavelength control units 6. Is provided.

この補助波長制御部6aを設けたことにより、LED光源2から広配光で出射されて波長制御部6の周縁より外側の領域に向かう光の波長も制御することができるので、照明光の色ムラを抑制することができる。また、補助波長制御部6aは、波長制御部6よりも厚みが薄い又は色素62の含有濃度が低くなるように構成されているので、色素62による色味が波長制御部6よりも弱い。従って、補助波長制御部6aの外観色は視認され難く、発光装置1が設置された空間の意匠性を低下を抑制することができる。   By providing this auxiliary wavelength control unit 6a, the wavelength of light emitted from the LED light source 2 with a wide light distribution and directed to the region outside the periphery of the wavelength control unit 6 can also be controlled. Unevenness can be suppressed. Further, since the auxiliary wavelength control unit 6 a is configured to be thinner than the wavelength control unit 6 or to have a lower concentration of the pigment 62, the color due to the pigment 62 is weaker than that of the wavelength control unit 6. Therefore, the appearance color of the auxiliary wavelength control unit 6a is difficult to be visually recognized, and the design of the space where the light emitting device 1 is installed can be prevented from being deteriorated.

また、色素62の含有量が多く色味の強い波長制御部6を、光束量が多くなる、LED光源2の中心軸L周囲の狭い領域にピンポイントで設け、中心軸Lから離れており光束量が少なくなる波長制御部6の周縁領域に、補助波長制御部6aが設けることが望ましい。この構成によれば、波長制御部6の大きさを小さくすることができるので、波長制御部6が視認され難く、発光装置1が設置された空間の意匠性の低下を抑制することができる。   Further, the wavelength control unit 6 having a high content of the pigment 62 and a strong color is provided in a narrow area around the central axis L of the LED light source 2 where the luminous flux is increased, and is separated from the central axis L and is luminous flux. It is desirable to provide the auxiliary wavelength control unit 6a in the peripheral region of the wavelength control unit 6 where the amount is reduced. According to this configuration, since the size of the wavelength control unit 6 can be reduced, it is difficult for the wavelength control unit 6 to be visually recognized, and it is possible to suppress a decrease in design of the space where the light emitting device 1 is installed.

次に、上記実施形態及び変形例を更に変形した変形例に係る発光装置、及びそれを用いた照明装置について、図10を参照して説明する。図10(a)に示すように、本変形例に係る発光装置1は、照明装置10の器具本体11の中央部を中心とする環状に配された複数のLED光源2と、LED光源2の光出射方向に設けられてLED光源2から出射した光の配光を制御する光透過部材3aと、備える。また、照明装置10は、光透過部材3aからの光出射方向に設けられてこの光透過部材3aから出射する光を拡散させて放射する拡散部材(カバー)12を備える。本実施形態では、複数のLED光源2を環状に配して成るLED群が、同心円状に2列に配されている。   Next, a light emitting device according to a modified example in which the above embodiment and the modified example are further modified, and a lighting device using the light emitting device will be described with reference to FIG. As shown in FIG. 10A, the light emitting device 1 according to this modification includes a plurality of LED light sources 2 arranged in an annular shape around the central portion of the fixture body 11 of the lighting device 10, and the LED light sources 2. A light transmission member 3a that is provided in the light emitting direction and controls the light distribution of the light emitted from the LED light source 2; Moreover, the illuminating device 10 is provided with the diffusion member (cover) 12 which is provided in the light emission direction from the light transmission member 3a, and diffuses and radiates | emits the light radiate | emitted from this light transmission member 3a. In the present embodiment, LED groups formed by annularly arranging a plurality of LED light sources 2 are arranged in two rows concentrically.

器具本体11は、円盤状の構造部材であり、天井等の施工面の反対側の面にLED光源2等が配置される。器具本体11の中央部には、施工面に設けられた給電コネクタ等に固定される給電部13が設けられる。また、給電部13の外周側には、LED光源2を点灯駆動するための点灯回路(不図示)と、LED光源2が実装される基板14と、が設けられる。器具本体11は、所定の剛性を有するアルミニウム板又は鋼板等の板材を、上記形状にプレス及び切削加工することにより形成され、LED光源2等が配置される面には可視光の反射率が高い白色塗料が塗布又は反射性金属材料が蒸着されていてもよい。   The instrument main body 11 is a disk-shaped structural member, and the LED light source 2 and the like are arranged on the surface opposite to the construction surface such as a ceiling. In the central part of the instrument main body 11, a power feeding unit 13 fixed to a power feeding connector or the like provided on the construction surface is provided. In addition, a lighting circuit (not shown) for lighting and driving the LED light source 2 and a substrate 14 on which the LED light source 2 is mounted are provided on the outer peripheral side of the power supply unit 13. The instrument main body 11 is formed by pressing and cutting a plate material such as an aluminum plate or a steel plate having a predetermined rigidity into the above shape, and has a high visible light reflectivity on the surface on which the LED light source 2 and the like are arranged. A white paint may be applied or a reflective metal material may be deposited.

給電部13は、汎用のアダプタガイドであり、給電コネクタ等を介して商用交流電源に接続される。点灯回路は、給電部13から供給された交流電流をLED光源2に適合する所定電圧の直流電流に変換及び整流するための、トランス、コンデンサ及び制御用IC等を備える。基板14は、例えば、ガラスエポキシ樹脂等の絶縁材料から成り、LED光源2が実装される面に所定の配線パターンが形成されている。点灯回路は、ユーザの操作に基づき、中心側のLED群及び外周側のLED群を夫々独立して点灯させることができるように構成されている。なお、各LED群内の各LED光源2が個別に又は複数にグルーピングされて更に細かい部分点灯又は間引き点灯等が可能なように構成されていてもよい。   The power supply unit 13 is a general-purpose adapter guide, and is connected to a commercial AC power supply via a power supply connector or the like. The lighting circuit includes a transformer, a capacitor, a control IC, and the like for converting and rectifying the alternating current supplied from the power supply unit 13 into a direct current having a predetermined voltage suitable for the LED light source 2. The board | substrate 14 consists of insulating materials, such as glass epoxy resin, for example, and the predetermined wiring pattern is formed in the surface in which the LED light source 2 is mounted. The lighting circuit is configured so that the center LED group and the outer LED group can be independently lit based on a user operation. Note that the LED light sources 2 in each LED group may be individually or grouped so that further partial lighting or thinning lighting can be performed.

LED光源2には、上記変形例と同様に、SMD型のLEDモジュールが好適に用いられる。光透過部材8は、環状に配された複数のLED光源2を一括して覆う樋状のレンズ部材であり、アクリル樹脂等の透光性樹脂により形成される。本変形例において、光透過部材8は、器具中央側のLED群を覆う中央レンズ部8aと、器具外周側のLED群を覆う外側レンズ部8bと、を備える。また、これら中央レンズ部8a及び外側レンズ部8bは、光透過部材8を器具本体11に固定するための基部80によって互いに接続され、これらは一体的に形成されている。カバー12は、器具本体11の前面を覆うドーム形状とされ、例えば、アクリル樹脂等の透光性材料に光拡散性粒子又は顔料等を添加した樹脂材料から形成される。カバー12は、上記の光拡散性粒子又は顔料等の添加に換えて、透明なガラス板又は樹脂板の表面又は裏面に、サンドブラスト処理を施して粗面としたもの、又はシボ加工を施したもの等であってもよい。   As the LED light source 2, an SMD type LED module is preferably used as in the above modification. The light transmissive member 8 is a bowl-shaped lens member that collectively covers the plurality of LED light sources 2 arranged in an annular shape, and is formed of a light transmissive resin such as an acrylic resin. In the present modification, the light transmissive member 8 includes a central lens portion 8a that covers the LED group on the center side of the device, and an outer lens portion 8b that covers the LED group on the outer periphery side of the device. Further, the central lens portion 8a and the outer lens portion 8b are connected to each other by a base portion 80 for fixing the light transmitting member 8 to the instrument body 11, and they are integrally formed. The cover 12 has a dome shape that covers the front surface of the instrument main body 11 and is formed of, for example, a resin material obtained by adding light diffusing particles or a pigment to a translucent material such as an acrylic resin. The cover 12 is obtained by subjecting the front or back surface of a transparent glass plate or resin plate to a rough surface by applying a sandblasting treatment or a textured surface instead of the addition of the above light diffusing particles or pigments. Etc.

図10(b)に示すように、光透過部材8は、上述した基部80に加え、LED光源2の発光部4を覆いLED光源2から出射した光が入射する凹状の入射面81と、入射面81から入射した光が伝搬する媒質部82と、媒質部82を伝搬した光が出射する出射面83と、を有する。本変形例では、波長制御部6は、入射面81に設けられている。   As shown in FIG. 10B, in addition to the above-described base portion 80, the light transmission member 8 covers the light emitting portion 4 of the LED light source 2, and has a concave incident surface 81 on which light emitted from the LED light source 2 is incident. It has a medium part 82 through which light incident from the surface 81 propagates and an emission surface 83 through which light propagated through the medium part 82 exits. In this modification, the wavelength control unit 6 is provided on the incident surface 81.

また、波長制御部6は、凹状の入射面81に色素62を含有する透光性樹脂の母材61を塗布することにより形成される(図1(b)も参照)。ここで、母材61に熱可塑性樹脂を用いれば、凹状の入射面81に材料を塗布し、これが冷却されて硬化することにより、簡易に波長制御部6を形成することができる。   Moreover, the wavelength control part 6 is formed by apply | coating the base material 61 of the translucent resin containing the pigment | dye 62 to the concave incident surface 81 (refer also FIG.1 (b)). Here, if a thermoplastic resin is used for the base material 61, the wavelength control unit 6 can be easily formed by applying a material to the concave incident surface 81 and cooling and curing the material.

本発明の第3の実施形態に係る発光装置について、図11を参照して説明する。本実施形態に係る発光装置1は、LED光源2と、LED光源2が搭載された基板7と、LED光源2から出射される光を屈折させて所定方向へ放射させる光透過部材9と、を備える。本実施形態では、LED光源2として砲弾型LEDが用いられる。   A light emitting device according to a third embodiment of the present invention will be described with reference to FIG. The light emitting device 1 according to the present embodiment includes an LED light source 2, a substrate 7 on which the LED light source 2 is mounted, and a light transmissive member 9 that refracts light emitted from the LED light source 2 and emits the light in a predetermined direction. Prepare. In the present embodiment, a bullet-type LED is used as the LED light source 2.

光透過部材9は、略平行光を生成するレンズであり、光軸Laを軸とした大底面91と小底面92とを有する回転体の外郭93を成して、小底面92に形成された凹部94がLED光源2から出射される光の入射面となり、この光を屈折させて所定方向へ放射させる。凹部94は、LED光源2と正対する面がLED光源2側に凸状となるよう湾曲した凸面95と、凸面95と小底面92とを接続する側面96と、を有する。光透過部材9の材料には、上記実施形態と同様の透明な材料が用いられる。このように構成された光透過部材9では、LED光源2から凸面95に入射した光は、大底面91から直接的に外部に出射される。また、側面96に入射した光は、外郭93で全反射して、大底面91から外部に出射される。   The light transmissive member 9 is a lens that generates substantially parallel light, and is formed on the small bottom surface 92 by forming an outer shell 93 of a rotating body having a large bottom surface 91 and a small bottom surface 92 about the optical axis La. The concave portion 94 serves as an incident surface for light emitted from the LED light source 2, and refracts the light to emit it in a predetermined direction. The concave portion 94 has a convex surface 95 that is curved so that the surface facing the LED light source 2 is convex toward the LED light source 2 side, and a side surface 96 that connects the convex surface 95 and the small bottom surface 92. As the material of the light transmitting member 9, the same transparent material as that in the above embodiment is used. In the light transmissive member 9 configured as described above, the light incident on the convex surface 95 from the LED light source 2 is directly emitted to the outside from the large bottom surface 91. Further, the light incident on the side surface 96 is totally reflected by the outer shell 93 and emitted from the large bottom surface 91 to the outside.

また、本実施形態では、波長制御部6が、光透過部材9の出射面となる大底面91に設けられている。波長制御部6の大きさは、LED光源2の正面視におけるモジュール面積よりも大きくなるよう設定される。この構成においても、波長制御部6は、大底面91のうち、LED光源2と対応する位置にピンポイントで設けられているので、波長制御部6が視認され難く、発光装置1が設置された空間の意匠性の低下を抑制することができる。   In the present embodiment, the wavelength control unit 6 is provided on the large bottom surface 91 serving as the light exit surface of the light transmission member 9. The size of the wavelength control unit 6 is set to be larger than the module area in the front view of the LED light source 2. Also in this configuration, the wavelength control unit 6 is provided pinpointed at a position corresponding to the LED light source 2 in the large bottom surface 91, so that the wavelength control unit 6 is difficult to be visually recognized, and the light emitting device 1 is installed. It is possible to suppress a decrease in design of the space.

なお、本発明は、上述した実施形態に限らず、種々の変形が可能である。例えば、上記第3の実施形態では、光透過部材9の出射面となる大底面91に波長制御部6を設けたが、波長制御部6は、入射面となる凸面95に設けられてもよい。この場合、波長制御部6の母材61に、光透過部材9と同じ屈折率の材料を用いることで、波長制御部6と光透過部材9との界面での屈折や全反射が生じ難くすることが望ましい。また、上記第3の実施形態の波長制御部6の外側に、第2の実施形態の変形例で示した補助波長制御部6aを、設けてもよい。また、LED光源2の発光部4の正面視形状は、例示した円形に限らず、正方形若しくは長方形又は任意の多角形であってもよく、この場合、波長制御部6は、発光部4の大きさを充足し、且つ過度に大きくなり過ぎない任意の形状が採用され得る。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the third embodiment, the wavelength control unit 6 is provided on the large bottom surface 91 serving as the emission surface of the light transmission member 9, but the wavelength control unit 6 may be provided on the convex surface 95 serving as the incident surface. . In this case, the base material 61 of the wavelength control unit 6 is made of a material having the same refractive index as that of the light transmission member 9 so that refraction and total reflection at the interface between the wavelength control unit 6 and the light transmission member 9 are less likely to occur. It is desirable. Moreover, you may provide the auxiliary | assistant wavelength control part 6a shown in the modification of 2nd Embodiment in the outer side of the wavelength control part 6 of the said 3rd Embodiment. In addition, the front view shape of the light emitting unit 4 of the LED light source 2 is not limited to the illustrated circle, and may be a square, a rectangle, or an arbitrary polygon. In this case, the wavelength control unit 6 is the size of the light emitting unit 4. Any shape that satisfies the requirements and does not become excessively large can be employed.

1 発光装置
10 照明装置
2 LED光源
3 光透過部材
4 発光部
5 基材
6 波長制御部
6a 補助波長制御部
62 色素
DESCRIPTION OF SYMBOLS 1 Light-emitting device 10 Illuminating device 2 LED light source 3 Light transmissive member 4 Light emission part 5 Base material 6 Wavelength control part 6a Auxiliary wavelength control part 62 Dye

Claims (6)

LED光源と、前記LED光源の前面に設けられた光透過部材と、を備えた照明装置であって、
前記LED光源は、正面視において所定の発光面積を持つ発光部を有し、
前記光透過部材は、透光性を有する基材と、前記基材に設けられて前記LED光源から出射された光の波長を制御する波長制御部と、を有し、
前記波長制御部は、波長450〜650nmの範囲に最大吸光波長を有する色素を含み、
前記波長制御部及び前記LED光源の正面視において、前記波長制御部及び前記発光部の中心軸が同軸であり、且つ前記波長制御部の大きさが、前記発光部より大きく、前記基材より小さいことを特徴とする発光装置。
An illumination device comprising an LED light source and a light transmissive member provided in front of the LED light source,
The LED light source has a light emitting part having a predetermined light emitting area in front view,
The light transmissive member includes a base material having translucency, and a wavelength control unit that is provided on the base material and controls the wavelength of light emitted from the LED light source,
The wavelength control unit includes a dye having a maximum absorption wavelength in a wavelength range of 450 to 650 nm,
In the front view of the wavelength control unit and the LED light source, the central axes of the wavelength control unit and the light emitting unit are coaxial, and the size of the wavelength control unit is larger than the light emitting unit and smaller than the base material. A light emitting device characterized by that.
前記LED光源を複数備え、
前記基材は、前記複数のLED光源の前面を覆うように設けられ、
複数の前記波長制御部が、前記LED光源毎に前記基材に設けられていることを特徴とする請求項1に記載の発光装置。
A plurality of the LED light sources;
The base material is provided so as to cover the front surfaces of the plurality of LED light sources,
The light emitting device according to claim 1, wherein a plurality of the wavelength control units are provided on the base for each LED light source.
前記波長制御部材は、前記基材の前記LED光源からの光が入射する面に設けられていることを特徴とする請求項1又は請求項2に記載の発光装置。   The light emitting device according to claim 1, wherein the wavelength control member is provided on a surface of the base material on which light from the LED light source is incident. 前記光透過部材は、前記波長制御部に含有される色素と実質的に同じ色素を含む補助波長制御部を有し、
前記補助波長制御部は、前記波長制御部よりも厚みが薄くなるように又は前記色素の含有濃度が低くなるように構成され、前記基材における前記波長変換部が設けられた領域よりも外側の領域に設けられていることを特徴とする請求項1乃至請求項3のいずれか一項に記載の発光装置。
The light transmitting member has an auxiliary wavelength control unit including a dye substantially the same as the dye contained in the wavelength control unit,
The auxiliary wavelength control unit is configured to be thinner than the wavelength control unit or to have a lower concentration of the dye, and outside the region where the wavelength conversion unit is provided in the substrate. The light emitting device according to claim 1, wherein the light emitting device is provided in a region.
前記色素は、テトラアザポルフィリン化合物であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の発光装置。   The light emitting device according to any one of claims 1 to 4, wherein the dye is a tetraazaporphyrin compound. 請求項1乃至請求項5のいずれか一項に記載の発光装置を用いた照明装置。   An illumination device using the light emitting device according to any one of claims 1 to 5.
JP2015049813A 2015-03-12 2015-03-12 Luminaire Pending JP2016171201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049813A JP2016171201A (en) 2015-03-12 2015-03-12 Luminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049813A JP2016171201A (en) 2015-03-12 2015-03-12 Luminaire

Publications (1)

Publication Number Publication Date
JP2016171201A true JP2016171201A (en) 2016-09-23

Family

ID=56982583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049813A Pending JP2016171201A (en) 2015-03-12 2015-03-12 Luminaire

Country Status (1)

Country Link
JP (1) JP2016171201A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324858U (en) * 1986-08-01 1988-02-18
JP2003046134A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Method for manufacturing light emitting device
JP2010171007A (en) * 2008-12-25 2010-08-05 Fujifilm Corp Display device
JP2010267571A (en) * 2009-05-18 2010-11-25 Toshiba Lighting & Technology Corp Lighting device
JP2011119248A (en) * 2009-11-06 2011-06-16 Mitsubishi Electric Corp Light emitting device, lighting system, and color conversion converter
JP2011199054A (en) * 2010-03-19 2011-10-06 Toshiba Lighting & Technology Corp Light source apparatus
US20130170199A1 (en) * 2011-12-30 2013-07-04 Cree, Inc. Led lighting using spectral notching
JP2015018612A (en) * 2013-07-08 2015-01-29 パナソニック株式会社 Luminaire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324858U (en) * 1986-08-01 1988-02-18
JP2003046134A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Method for manufacturing light emitting device
JP2010171007A (en) * 2008-12-25 2010-08-05 Fujifilm Corp Display device
JP2010267571A (en) * 2009-05-18 2010-11-25 Toshiba Lighting & Technology Corp Lighting device
JP2011119248A (en) * 2009-11-06 2011-06-16 Mitsubishi Electric Corp Light emitting device, lighting system, and color conversion converter
JP2011199054A (en) * 2010-03-19 2011-10-06 Toshiba Lighting & Technology Corp Light source apparatus
US20130170199A1 (en) * 2011-12-30 2013-07-04 Cree, Inc. Led lighting using spectral notching
JP2015018612A (en) * 2013-07-08 2015-01-29 パナソニック株式会社 Luminaire

Similar Documents

Publication Publication Date Title
TWI559578B (en) A light-emitting diode module with mixed light
JP6217972B2 (en) lighting equipment
JP6160954B2 (en) Lighting device
CN204240108U (en) Ligthing paraphernalia
JP6238200B2 (en) lighting equipment
WO2013086694A1 (en) Side-emitting guidepipe technology on led lamp to make filament effect
JP2013045530A (en) Light emitting device and lighting apparatus
JP2014135233A (en) Lighting apparatus
JP2014526774A (en) Lighting device
JP6583671B2 (en) Lighting device
JP5243883B2 (en) Light emitting device and lighting apparatus
JP6917584B2 (en) Lenses and luminaires
CN204611662U (en) Lighting device
KR100919518B1 (en) White Light emitting apparatus
JP6238199B2 (en) lighting equipment
JP2016170355A (en) Wavelength control filter, light emitting device and lighting device using the same
CN104676472B (en) Lens assembly and lamp applying same
KR102160775B1 (en) A light emitting device package
JP2016171201A (en) Luminaire
CN103904201A (en) Light emitting diode combination
JP6562343B2 (en) Wavelength control filter, light emitting device and lighting device using the same
CN209819452U (en) Lenses and Lighting Fixtures
JP6745471B2 (en) Light emitting device and lighting device using the same
WO2015072120A1 (en) Light emitting device, light emitting module, lighting device and lamp
JP6590304B2 (en) lighting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526