[go: up one dir, main page]

JP2016169236A - Method for producing high-purity urea water - Google Patents

Method for producing high-purity urea water Download PDF

Info

Publication number
JP2016169236A
JP2016169236A JP2016126250A JP2016126250A JP2016169236A JP 2016169236 A JP2016169236 A JP 2016169236A JP 2016126250 A JP2016126250 A JP 2016126250A JP 2016126250 A JP2016126250 A JP 2016126250A JP 2016169236 A JP2016169236 A JP 2016169236A
Authority
JP
Japan
Prior art keywords
biuret
urea
urea water
concentration
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016126250A
Other languages
Japanese (ja)
Inventor
拓矢 桑机
Takuya Kuwaki
拓矢 桑机
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP2016126250A priority Critical patent/JP2016169236A/en
Publication of JP2016169236A publication Critical patent/JP2016169236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing high-purity urea water, in which the biuret concentration of the urea water can be reduced by using the inexpensively-produced urea and by an inexpensive method.SOLUTION: The method for producing high-purity urea water for a urea SCR system, which urea water is obtained by treating an urea water undiluted solution having 2,500 ppm or higher biuret concentration with activated carbon and has the reduced biuret concentration, comprises: a biuret adsorbing/removing step of treating the urea water undiluted solution of 100 ml with the activated carbon of 1.0-3.0 g; and a biuret desorbing/removing step of desorbing the biuret from the biuret-adsorbed activated carbon. At the moment that the biuret concentration exceeds a regulation value of 2,400 ppm when the biuret adsorbing/removing step is carried out, the biuret desorbing/removing step is carried out.SELECTED DRAWING: None

Description

本発明は高純度尿素水の製造方法に関する。   The present invention relates to a method for producing high-purity urea water.

ディーゼルエンジン等の内燃機関の排気ガスに含まれるNOxを還元浄化する方法として、尿素水とSCR(Selective Catalytic Reduction、選択還元触媒)方式の触媒コンバータによりNOxを大幅に低減する方法が提案されている(特許文献1)。この尿素SCR方式は、尿素水を還元剤とし、これを前記SCR触媒コンバータに入る直前に排気ガスに混合させる方式であり、尿素は排気ガス中でアンモニアに変化し、SCR触媒コンバータ内で排気ガス中のNOxがアンモニアと結びついて水と無害な窒素に分解されるので、排気ガスのクリーン化に有望な技術とされている。   As a method for reducing and purifying NOx contained in the exhaust gas of an internal combustion engine such as a diesel engine, a method has been proposed in which NOx is greatly reduced by urea water and a catalytic converter of an SCR (Selective Catalytic Reduction) method. (Patent Document 1). This urea SCR system is a system in which urea water is used as a reducing agent and this is mixed with exhaust gas immediately before entering the SCR catalytic converter. Urea changes into ammonia in the exhaust gas, and the exhaust gas in the SCR catalytic converter. Since NOx in it is combined with ammonia and decomposed into water and harmless nitrogen, it is considered a promising technology for exhaust gas cleaning.

ところで、尿素水をSCR触媒へ導入する配管は、尿素水を噴霧状に導入する必要があるため細管であることが要求される。そこで、導入配管の閉塞原因物質として、グアニジン、ビウレット等の不純物が除去された尿素水が提案されている(特許文献2)。そして、ここには、グアニジンの濃度に関してはイオン交換樹脂によりグアニジンを吸着分離する方法、ビウレットの濃度に関しては尿素工程液の精製条件を管理して尿素からビウレットへの生成反応を抑制する方法が教示されている。   By the way, the piping for introducing the urea water into the SCR catalyst is required to be a thin tube because it is necessary to introduce the urea water in the form of spray. Therefore, urea water from which impurities such as guanidine and biuret have been removed has been proposed as a substance causing blockage of the introduction pipe (Patent Document 2). And here it teaches how to adsorb and separate guanidine by ion exchange resin with regard to guanidine concentration, and how to control the purification process of urea process liquid to suppress the reaction from urea to biuret with respect to biuret concentration. Has been.

特開2004−290835号公報JP 2004-290835 A 特開2007−145796号公報JP 2007-14596 A

しかしながら、尿素工程液の精製条件を管理して尿素からビウレットへの生成反応を抑制する方法により、尿素水中のビウレット濃度を例えば2000ppm以下にすることは必ずしも容易ではなく、安価に製造された尿素では尿素水中のビウレット濃度が3500ppmを超える場合もある。   However, it is not always easy to reduce the concentration of biuret in urea water to 2000 ppm or less, for example, by controlling the purification conditions of the urea process liquid and suppressing the production reaction from urea to biuret. The biuret concentration in urea water may exceed 3500 ppm.

本発明は、上記実情に鑑みなされたものであり、その目的は、安価に製造された尿素を使用し且つ安価な方法でビウレット濃度を低減し得る、高純度尿素水の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing high-purity urea water that uses urea produced at low cost and can reduce the biuret concentration by an inexpensive method. It is in.

すなわち、本発明の要旨は、ビウレット濃度が2500ppm以上の尿素水原液を活性炭で処理することによる、ビウレット濃度が低減された尿素SCR方式用の高純度尿素水の製造方法であって、尿素水原液100mlに対して1.0〜3.0gの活性炭で尿素水原液を処理するビウレット吸着除去工程とビウレットを吸着した活性炭からビウレットを脱着させるビウレット脱着除去工程とを包含し、先ず、ビウレット吸着除去工程を行い、次いで、当該工程から導出される尿素水中のビウレット濃度が2400ppm以下の規制値を超えた時点でビウレット脱着除去工程を行うことを特徴とする高純度尿素水の製造方法に存する。   That is, the gist of the present invention is a method for producing high-purity urea water for a urea SCR system with reduced biuret concentration by treating a urea water stock solution having a biuret concentration of 2500 ppm or more with activated carbon. It includes a biuret adsorption / removal process for treating the urea aqueous solution with 1.0 to 3.0 g of activated carbon per 100 ml and a biuret desorption / removal process for desorbing biuret from the activated carbon that has adsorbed biuret. Then, the biuret desorption removal step is performed when the biuret concentration in the urea water derived from the step exceeds a regulation value of 2400 ppm or less.

本発明によれば前記の課題が解決される。   According to the present invention, the above problems are solved.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

尿素水原液に使用される尿素としては安価に製造された肥料用途などの種々の尿素原料が挙げられる。尿素は融点(132.7℃)以上に加熱するとビウレット(尿素縮合体)が生成する。このビウレットは化学式NHCONHCONH2で表され、尿素2分子の縮合物からアンモニア1分子が分離して生成しできる物質であり、肥料用尿素の製造方法から完全に除くことは困難であり、さらに、尿素を粒状化すると増加する。ビウレットは、作物に有害な物質であり、肥料用尿素中のビウレットの含量は、肥料取締法で定める公定規格において「窒素全量の含有率1.0%につきビウレット性窒素0.02%」の含有が許されている。このことから、肥料用尿素のビウレット含量は2.4%が上限値となる。 Examples of urea used in the urea aqueous solution include various urea raw materials such as fertilizers manufactured at low cost. When urea is heated above its melting point (132.7 ° C.), biuret (urea condensate) is produced. This biuret is represented by the chemical formula NH 2 CONHCONH 2 and is a substance that can be produced by separating one molecule of ammonia from the condensate of two molecules of urea, and it is difficult to completely remove it from the method for producing fertilizer urea. Increased when urea is granulated. Biuret is a harmful substance to crops, and the content of biuret in urea for fertilizer is the content of “biuret nitrogen 0.02% per 1.0% of total nitrogen content” according to the official standard stipulated by the Fertilizer Control Law. Is allowed. Therefore, the upper limit of the biuret content of fertilizer urea is 2.4%.

一方、尿素水原液に使用される水としては、電気伝導度が50〜100μS/cmの水を使用するのが好ましい。一般には、工業用水あるいは水道水の電気伝導度は、この範囲内に収まるものである。尿素濃度は通常30〜50重量%である。   On the other hand, it is preferable to use water having an electric conductivity of 50 to 100 μS / cm as water used in the urea aqueous solution. In general, the electrical conductivity of industrial water or tap water falls within this range. The urea concentration is usually 30-50% by weight.

活性炭としては、特に制限はなく、木質系(木材、ノコギリ屑、ヤシ殻由来のものなど)、石炭系(亜炭、カツ炭、デイ炭、石炭由来のものなど)、石油ピッチ系、フェノール樹脂系、動物系(牛骨、血液由来のものなど)の活性炭などの中から、任意のものを適宜選択して使用することができる。この活性炭には、粉末炭、破砕炭、造粒炭、ハニカム状炭、シート状炭などがある。破砕炭としては、例えば粒度4〜8メッシュ程度のヤシ破砕炭などが好適である。この破砕炭は、ヤシ殻炭などの原料炭を破砕・整粒したのち、賦活して得られたものである。一方、造粒炭としては、例えば粒度4〜6メッシュ程度のペレット炭や、粒度3〜7mm程度の球状炭などが好適である。この造粒炭は、予め微粉砕した原料炭に、瀝青物質などの粘結剤を加えて、ペレット状(円柱状)や球状などに造粒し、炭化・賦活して得られたものである。一般に、活性炭の平均細孔直径は1.5〜2.0nm、比表面積は600m/g以上である。 The activated carbon is not particularly limited, and is based on wood (derived from wood, sawdust, coconut shell, etc.), coal (derived from lignite, cutlet charcoal, Dee coal, coal, etc.), petroleum pitch, phenol resin Any of activated carbons of animal type (cow bone, blood-derived, etc.) can be appropriately selected and used. Examples of the activated carbon include powdered coal, crushed coal, granulated coal, honeycomb coal, and sheet coal. As the crushed coal, for example, palm crushed coal having a particle size of about 4 to 8 mesh is suitable. This crushed coal is obtained by crushing and sizing raw coal such as coconut shell charcoal and then activating it. On the other hand, as the granulated charcoal, for example, pellet charcoal having a particle size of about 4 to 6 mesh, spherical charcoal having a particle size of about 3 to 7 mm, and the like are preferable. This granulated coal is obtained by adding a binder such as bituminous material to a finely pulverized raw coal, granulating it into pellets (columnar shape) or spherical shape, and carbonizing and activating it. . In general, activated carbon has an average pore diameter of 1.5 to 2.0 nm and a specific surface area of 600 m 2 / g or more.

本発明において、ビウレットの吸着剤として活性炭を選択した理由は次の通りである。すなわち、以下の吸着試験結果に示す通り、従来公知の一般的な吸着剤の中でビウレットの吸着剤として作用を奏するのは活性炭のみだからである。   In the present invention, the reason why activated carbon is selected as the biuret adsorbent is as follows. That is, as shown in the following adsorption test results, it is because only activated carbon has an effect as a biuret adsorbent among the conventionally known general adsorbents.

<吸着試験>
先ず、次の方法で尿素水原液を調製した。すなわち、60℃に加温した純水に撹拌条件下(マグネットスターラー使用)で工業尿素を添加し32.5重量%の尿素水を得、これに試薬のビウレット(関東化学社製 試薬特級)を添加し、ビウレット濃度を0.55重量%にした。
<Adsorption test>
First, a urea water stock solution was prepared by the following method. That is, industrial urea was added to pure water heated to 60 ° C. under a stirring condition (using a magnetic stirrer) to obtain 32.5% by weight of urea water, and a reagent biuret (special grade reagent manufactured by Kanto Chemical Co., Ltd.) was added thereto. The biuret concentration was 0.55% by weight.

次いで、表1に示す各種の吸着剤を使用し、同表に示す処理方法に従って尿素水原液の吸着剤処理を行い、被処理水中のビウレットを測定した。また、併せてトリウレットについての測定も行った。ビウレット及びトリウレットの濃度は、液体クロマトグラフィー法により行った(検出限界10ppm)。結果を表1に示す。   Next, using various adsorbents shown in Table 1, the urea water stock solution was adsorbed in accordance with the treatment method shown in the same table, and biuret in the water to be treated was measured. Moreover, the measurement about triuret was also performed. The concentration of biuret and triuret was determined by a liquid chromatography method (detection limit 10 ppm). The results are shown in Table 1.

Figure 2016169236
Figure 2016169236

本発明においては、ビウレット濃度が2500ppm以上の尿素水原液を活性炭で処理する。ビウレット濃度が上記の濃度以上の尿素水は、SCR触媒へ導入する配管の閉塞が懸念されるからである。本発明が適用される尿素水原液のビウレット濃度は、2500ppm以上であるが、好ましくは3500ppm以上である。   In the present invention, a urea aqueous solution having a biuret concentration of 2500 ppm or more is treated with activated carbon. This is because urea water having a biuret concentration equal to or higher than the above concentration is likely to block the piping introduced into the SCR catalyst. The biuret concentration of the urea aqueous solution to which the present invention is applied is 2500 ppm or more, preferably 3500 ppm or more.

本発明は、活性炭で尿素水原液を処理するビウレット吸着除去工程とビウレットを吸着した活性炭からビウレットを脱着させるビウレット脱着除去工程とを包含する。これらの工程は、2つの設備を使用して交互に行っても1つの設備を使用して逐次に行ってもよい。   The present invention includes a biuret adsorption / removal step of treating a urea aqueous solution with activated carbon and a biuret desorption / removal step of desorbing biuret from the activated carbon that has adsorbed biuret. These steps may be performed alternately using two facilities or sequentially using one facility.

ビウレット吸着除去工程における吸着剤処理の方式は、前記の表1に示す各種の方式を採用することが出来る。通常は、カラム式または撹拌混合式が使用される。工業的規模の実施では例えばステンレス製のカラムや混合容器が使用される。   As a method of adsorbent treatment in the biuret adsorption removal step, various methods shown in Table 1 can be adopted. Usually, a column type or a stirring and mixing type is used. In industrial scale implementations, for example, stainless steel columns and mixing vessels are used.

ビウレット脱着除去工程は、ビウレット吸着除去工程から導出される尿素水中のビウレット濃度が2400ppm以下の規制値を超えた時点で行う。好ましい規制値は2000ppm以下である。上記のビウレット濃度の規制値に至ったか否かの検出は、ビウレット吸着除去工程から導出される尿素水中のビウレット濃度を例えば液体クロマトグラフィー法で定期的に測定することによって容易に行うことが出来る。   The biuret desorption removal step is performed when the biuret concentration in the urea water derived from the biuret adsorption removal step exceeds a regulation value of 2400 ppm or less. A preferable regulation value is 2000 ppm or less. The detection of whether or not the regulation value of the biuret concentration has been reached can be easily performed by periodically measuring the biuret concentration in the urea water derived from the biuret adsorption and removal step, for example, by a liquid chromatography method.

ビウレット脱着除去の方法は、特に制限されず、熱水で溶解する方法、加熱分解する方法、溶剤で溶解する方法などを適宜採用することが出来る。溶剤としては、アルカリ金属の水酸化物またはアルカリ土類金属の水酸化物の水溶液、例えば、NaOH、KOH、Ca(OH)の水溶液が挙げられ、その濃度は通常10〜50重量%である。 The method for removing and removing the biuret is not particularly limited, and a method of dissolving with hot water, a method of thermally decomposing, a method of dissolving with a solvent, and the like can be appropriately employed. Examples of the solvent include an aqueous solution of an alkali metal hydroxide or an alkaline earth metal hydroxide, for example, an aqueous solution of NaOH, KOH, Ca (OH) 2 , and its concentration is usually 10 to 50% by weight. .

次に、実施例により、本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り以下の実施例に限定されるものではない。なお、ビウレット吸着除去工程とビウレット脱着除去工程の切替えのタイミングの実施に問題がないことは明らかであるので、以下に記載の「実施例」では、ビウレット吸着除去工程とビウレット脱着除去工程とを切り離して行った。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. In addition, since it is clear that there is no problem in the timing of switching between the biuret adsorption / removal process and the biuret desorption / removal process, in the “Example” described below, the biuret adsorption / removal process and the biuret desorption / removal process are separated. I went.

<尿素水原液の調製>
前記の吸着試験におけるのと同様にして、ビウレット含量0.35重量%の32.5重量%尿素水原液を調製した。
<Preparation of urea aqueous solution>
In the same manner as in the adsorption test described above, a 32.5 wt% urea water stock solution having a biuret content of 0.35 wt% was prepared.

<ビウレット吸着除去工程>
表2に記載の活性炭を使用し、バッチ式によるビウレット吸着除去工程を実施した。すなわち、200mlガラスビーカーに尿素水原液100mlと活性炭1.0g〜3.0g入れ、マグネットスターラーで1hr撹拌混合する。そして、0.2μmフィルターで活性炭を取り除いた後、液体クロマトグラフィー法でビウレット量を測定する。結果を表3に示す。
<Biuret adsorption removal process>
The activated carbon described in Table 2 was used, and a biuret adsorption removal process by a batch method was performed. That is, 100 ml of urea water stock solution and 1.0 g to 3.0 g of activated carbon are put into a 200 ml glass beaker, and the mixture is stirred and mixed with a magnetic stirrer for 1 hr. And after removing activated carbon with a 0.2 micrometer filter, the amount of biuret is measured by the liquid chromatography method. The results are shown in Table 3.

Figure 2016169236
Figure 2016169236

Figure 2016169236
Figure 2016169236

Figure 2016169236
Figure 2016169236

Figure 2016169236
Figure 2016169236

<ビウレット脱着除去工程>
日本エンバイロケミカルズ(株)製の「WH2c8/32」を使用した前記のビウレット吸着除去工程に引き続き、次に記載のビウレット脱着除去工程を行った。
<Biulet desorption removal process>
Following the biuret adsorption / removal step using “WH2c8 / 32” manufactured by Nippon Enviro Chemicals, the biuret desorption / removal step described below was performed.

0.2μmフィルターで取り除かれた活性炭を200mlガラスビーカーに移し、25重量%のNaOH水溶液100mlを入れ、マグネットスターラーで1hr撹拌混合することにより、活性炭からビウレットを溶解除去した。   The activated carbon removed by the 0.2 μm filter was transferred to a 200 ml glass beaker, 100 ml of 25 wt% NaOH aqueous solution was added, and the mixture was stirred and mixed with a magnetic stirrer to dissolve and remove biuret from the activated carbon.

そして、ビウレット脱着率を確認するため、0.2μmフィルターで活性炭を取り除き、取り除かれた活性炭を200mlガラスビーカーに移し、洗浄用尿素水(ビウレットを添加せずに調製した32.5重量%尿素水)100mlを入れ、マグネットスターラーで1hr撹拌混合した。そして、洗浄用尿素水中のビウレット量を液体クロマトグラフィー法で測定した。その結果、液体クロマトグラフィー法の検出限界(10ppm)以下であり、ビウレット脱着率は実質的に100%であることが確認された。   Then, in order to confirm the biuret desorption rate, the activated carbon was removed with a 0.2 μm filter, the removed activated carbon was transferred to a 200 ml glass beaker, and urea water for washing (32.5 wt% urea aqueous solution prepared without adding biuret) ) 100 ml was added and stirred and mixed with a magnetic stirrer for 1 hr. And the amount of biuret in the urea water for washing | cleaning was measured by the liquid chromatography method. As a result, it was below the detection limit (10 ppm) of the liquid chromatography method, and it was confirmed that the biuret desorption rate was substantially 100%.

Claims (1)

ビウレット濃度が2500ppm以上の尿素水原液を活性炭で処理することによる、ビウレット濃度が低減された尿素SCR方式用の高純度尿素水の製造方法であって、尿素水原液100mlに対して1.0〜3.0gの活性炭で尿素水原液を処理するビウレット吸着除去工程とビウレットを吸着した活性炭からビウレットを脱着させるビウレット脱着除去工程とを包含し、先ず、ビウレット吸着除去工程を行い、次いで、当該工程から導出される尿素水中のビウレット濃度が2400ppm以下の規制値を超えた時点でビウレット脱着除去工程を行うことを特徴とする高純度尿素水の製造方法。
A method for producing high-purity urea water for urea SCR system with reduced biuret concentration by treating a urea water stock solution having a biuret concentration of 2500 ppm or more with activated carbon, wherein 1.0 to It includes a biuret adsorption / removal process in which the urea aqueous solution is treated with 3.0 g of activated carbon and a biuret desorption / removal process in which biuret is desorbed from the activated carbon that has adsorbed biuret. First, a biuret adsorption / removal process is performed. A method for producing high-purity urea water, characterized in that a biuret desorption removal step is performed when the concentration of biuret in the derived urea water exceeds a regulation value of 2400 ppm or less.
JP2016126250A 2016-06-27 2016-06-27 Method for producing high-purity urea water Pending JP2016169236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126250A JP2016169236A (en) 2016-06-27 2016-06-27 Method for producing high-purity urea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126250A JP2016169236A (en) 2016-06-27 2016-06-27 Method for producing high-purity urea water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012173702A Division JP2014031345A (en) 2012-08-06 2012-08-06 Production method of high-purity urea water

Publications (1)

Publication Number Publication Date
JP2016169236A true JP2016169236A (en) 2016-09-23

Family

ID=56983150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126250A Pending JP2016169236A (en) 2016-06-27 2016-06-27 Method for producing high-purity urea water

Country Status (1)

Country Link
JP (1) JP2016169236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533670A (en) * 2020-04-30 2020-08-14 辽宁三特石油化工有限公司 Urea aqueous solution
JP2021155661A (en) * 2020-03-30 2021-10-07 日本製紙株式会社 Separation method of soda lignin

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135924A (en) * 1973-05-16 1974-12-27
US3903158A (en) * 1973-05-16 1975-09-02 Mexico Guanos Process for reducing the biuret content in urea
US4650901A (en) * 1983-12-30 1987-03-17 Union Oil Company Of California Ion exchange methods for removing biuret from urea
US4701555A (en) * 1985-07-10 1987-10-20 Union Oil Company Of California Methods for removing biuret from urea by adsorption
JP2006068680A (en) * 2004-09-03 2006-03-16 Purearth Inc Denitrating reductant composition and producing method therefor
JP2006298828A (en) * 2005-04-21 2006-11-02 Mitsui Chemicals Inc Method for producing high-purity urea water
JP2007145796A (en) * 2005-03-17 2007-06-14 Mitsui Chemicals Inc Urea water and denitrification apparatus using the same
JP2008239574A (en) * 2007-03-28 2008-10-09 Mitsui Chemicals Inc Method for producing high-purity urea water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135924A (en) * 1973-05-16 1974-12-27
US3903158A (en) * 1973-05-16 1975-09-02 Mexico Guanos Process for reducing the biuret content in urea
US3903158B1 (en) * 1973-05-16 1984-02-21
US4650901A (en) * 1983-12-30 1987-03-17 Union Oil Company Of California Ion exchange methods for removing biuret from urea
US4701555A (en) * 1985-07-10 1987-10-20 Union Oil Company Of California Methods for removing biuret from urea by adsorption
JP2006068680A (en) * 2004-09-03 2006-03-16 Purearth Inc Denitrating reductant composition and producing method therefor
JP2007145796A (en) * 2005-03-17 2007-06-14 Mitsui Chemicals Inc Urea water and denitrification apparatus using the same
JP2006298828A (en) * 2005-04-21 2006-11-02 Mitsui Chemicals Inc Method for producing high-purity urea water
JP2008239574A (en) * 2007-03-28 2008-10-09 Mitsui Chemicals Inc Method for producing high-purity urea water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021155661A (en) * 2020-03-30 2021-10-07 日本製紙株式会社 Separation method of soda lignin
CN111533670A (en) * 2020-04-30 2020-08-14 辽宁三特石油化工有限公司 Urea aqueous solution

Similar Documents

Publication Publication Date Title
Duan et al. Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation
JP5715870B2 (en) Method for producing high-purity urea water
Sun et al. Treatment of waste gases by humic acid
CN102580525A (en) Method for using activated carbon load copper oxide composite catalyst to absorb nitrogenous oxide
US10300434B2 (en) Reactive composition based on sodium bicarbonate and process for its production
CN104785101B (en) Purification system for removing VOCs from air
JP2016169236A (en) Method for producing high-purity urea water
Ali et al. Biochar derived from peanut husks as an adsorbent to ammonium ions remediation from aqueous solutions
Li et al. Effects of aging methods on the adsorption of antibiotics in wastewater by soybean straw biochar
JP2006068680A (en) Denitrating reductant composition and producing method therefor
He et al. One-pot synthesis of CuO-loaded N-doped MWCNTs adsorbent for the simultaneous adsorption-oxidation of PH3 and H2S
CN107344062A (en) A kind of desulfurizing agent, its preparation method and application
JP2014031345A (en) Production method of high-purity urea water
CN105688819A (en) Adsorbent for removing elemental mercury from coal gas and preparation method of adsorbent for removing elemental mercury from coal gas
Yu et al. CO2 capture by aqueous solution containing mixed alkanolamines and diethylene glycol in a rotating packed bed
CN104084131A (en) Ammonia gas adsorbent modified by virtue of transition metal
JP2017029892A (en) Treatment method and treatment apparatus for exhaust gas
CN104276685A (en) Process for recovering ammonia from wastewater containing ammonia nitrogen
AU2018343985B2 (en) Process for the removal of heavy metals from liquids
CN110170306B (en) Process for preparing adsorbent for efficiently removing low-concentration formaldehyde in air at normal temperature by two-step modification method, product and application thereof
JP6548839B2 (en) How to remove heavy metals from fluids
RU2289471C1 (en) Method and the installation for preparation of the solution of carbamide
Misran et al. Characterization of coal fly ash based adsorbent for CO2 removal
JP4637737B2 (en) Regeneration method of boron adsorbent
Ibrahim et al. Assessment of copper-iron catalyst supported on activated carbon for low-temperature nitric oxide reduction by hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170425