[go: up one dir, main page]

JP2016160560A - Method for manufacturing carbon fiber bundle - Google Patents

Method for manufacturing carbon fiber bundle Download PDF

Info

Publication number
JP2016160560A
JP2016160560A JP2015041916A JP2015041916A JP2016160560A JP 2016160560 A JP2016160560 A JP 2016160560A JP 2015041916 A JP2015041916 A JP 2015041916A JP 2015041916 A JP2015041916 A JP 2015041916A JP 2016160560 A JP2016160560 A JP 2016160560A
Authority
JP
Japan
Prior art keywords
fiber bundle
flameproofing
carbon fiber
process oil
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015041916A
Other languages
Japanese (ja)
Inventor
巧己 若林
Katsumi Wakabayashi
巧己 若林
牧野 哲也
Tetsuya Makino
哲也 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015041916A priority Critical patent/JP2016160560A/en
Publication of JP2016160560A publication Critical patent/JP2016160560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a carbon fiber bundle excellent in physical properties and quality, which suppresses generation of fuzzes of the fiber bundle, and breakage of the fiber bundle by applying a flame resistance-modifying process oil solution composition separately at a plurality of times to a carbon fiber precursor acrylic fiber bundle before and on a way of flame resistance treatment.SOLUTION: The method for manufacturing a carbon fiber bundle includes introducing a carbon fiber precursor acrylic fiber bundle into not less than two flame resistance-modifying furnaces disposed in series and capable of independently controlling temperature, and heat-treating at 200°C-300°C in an oxidation atmosphere. In between the two flame resistance-modifying furnaces, a flame resistance-modifying process oil solution composition is applied to the fiber bundle on a way of flame resistance-modifying obtained by heat-treating the precursor fiber bundle in a primary stage flame resistance-modifying furnace, and thereafter the fiber bundle is heat-treated in a secondary stage flame resistance-modifying furnace.SELECTED DRAWING: None

Description

本発明は、高品位な炭素繊維を安定して生産する製造方法に関する。   The present invention relates to a production method for stably producing high-quality carbon fibers.

炭素繊維前駆体アクリル繊維束(以下、「前駆体繊維束」と略する。)を用いて炭素繊維束を製造する方法としては、アクリル繊維の単繊維を数千から数万本束ねた繊維束を、200〜300℃の酸化性雰囲気下で加熱処理(以下、『耐炎化処理』と称する)を行って耐炎化繊維束を得た後、300〜1000℃の不活性ガス雰囲気下で加熱処理(以下、「前炭素化処理」と称する)し、次いで1000℃以上の不活性ガス雰囲気下で加熱処理(以下、「炭素化処理」と称する)を行う方法が知られている。   As a method of producing a carbon fiber bundle using a carbon fiber precursor acrylic fiber bundle (hereinafter abbreviated as “precursor fiber bundle”), a fiber bundle in which thousands to tens of thousands of acrylic fibers are bundled. Is heated in an oxidizing atmosphere at 200 to 300 ° C. (hereinafter referred to as “flame-proofing treatment”) to obtain a flame-resistant fiber bundle, and then heat-treated in an inert gas atmosphere at 300 to 1000 ° C. (Hereinafter, referred to as “pre-carbonization treatment”) and then a heat treatment (hereinafter referred to as “carbonization treatment”) in an inert gas atmosphere at 1000 ° C. or higher is known.

耐炎化処理は発熱を伴う酸化反応であり、この反応熱が繊維束内部に蓄熱して、繊維束が発火しないように、200〜300℃と比較的低温で長時間熱処理を行う必要がある。長時間の熱処理を行うため、耐炎化処理をおこなう加熱処理装置(以下、「耐炎化炉」と称する)では、前駆体繊維束が耐炎化炉内を繰り返し通過するように、耐炎化炉の両端に、複数の折り返しローラーが配置されることが一般的である。   The flameproofing treatment is an oxidation reaction accompanied by heat generation, and it is necessary to perform heat treatment at a relatively low temperature of 200 to 300 ° C. for a long time so that the reaction heat is accumulated in the fiber bundle and the fiber bundle is not ignited. In a heat treatment apparatus (hereinafter referred to as a “flame-proofing furnace”) that performs a flame-proofing process in order to perform a long-time heat treatment, both ends of the flame-proofing furnace are passed so that the precursor fiber bundle repeatedly passes through the flame-proofing furnace. In general, a plurality of folding rollers are arranged.

耐炎化処理する時の温度や、酸化反応に伴う多量の発熱により、耐炎化繊維の単繊維間に融着が発生し易くなる。融着が発生した耐炎化繊維束を、引き続き炭素化処理すると、得られた炭素繊維には毛羽の発生や糸切れといった障害が発生する。   Due to the temperature at the time of the flameproofing treatment and the large amount of heat generated by the oxidation reaction, fusion easily occurs between the single fibers of the flameproofed fiber. When the flame-resistant fiber bundle in which the fusion has occurred is subsequently carbonized, the obtained carbon fiber has problems such as generation of fuzz and yarn breakage.

また、前駆体繊維束の収束性や平滑性(耐擦過性)が不十分である場合、耐炎化炉の両端に配置した折り返しローラーに単糸が巻き付きいたり、繊維束同士の接触や擦れによる単繊維の糸切れといった障害が発生する。   In addition, when the convergence and smoothness (scratch resistance) of the precursor fiber bundle are insufficient, a single yarn is wound around the folding rollers disposed at both ends of the flameproofing furnace, or the fiber bundle is in contact with or rubbed. Problems such as fiber breakage occur.

上述した問題を解決するために、前駆体繊維束に付与する油剤(以下、前駆体繊維束の製造段階で付与される油剤を『紡糸工程油剤』と称する)が重要であることが知られており、多くの油剤に関する検討が行われてきた。   In order to solve the above-mentioned problems, it is known that an oil agent to be applied to the precursor fiber bundle (hereinafter, an oil agent to be applied at the production stage of the precursor fiber bundle is referred to as “spinning process oil agent”) is important. Many oil agents have been studied.

その中でも、高い耐熱性を有し、繊維の融着を効果的に抑制でき、かつ良好な繊維束の収束製と平滑性(耐擦過性)が得られることから、シリコ−ン系化合物含有油剤がよく使用されている。   Among them, since it has high heat resistance, fiber fusion can be effectively suppressed, and good fiber bundle convergence and smoothness (scratch resistance) can be obtained. Is often used.

さらに、耐炎化工程以降に、繊維束の収束性や平滑性をさらに高めるため更に油剤を付与(以下、前駆体繊維束の耐炎化工程で付与する油剤を『耐炎化工程油剤』と称する)することが提案されている(特許文献2、特許文献3)。   Further, after the flameproofing step, an oil agent is further applied to further improve the convergence and smoothness of the fiber bundle (hereinafter, the oil agent applied in the flameproofing step of the precursor fiber bundle is referred to as “flameproofing step oil agent”). (Patent Document 2 and Patent Document 3).

紡糸工程油剤と耐炎化工程油剤の一部は耐炎化処理中に揮発するが、特に耐炎化処理の初期の揮発量が多いことがわかっている。そのため、耐炎化処理の初期から後期まで、効率よく耐炎化処理を行うためには、紡糸工程油剤と耐炎化工程油剤(以下、まとめて「油剤」と略する)を前駆体繊維束に一定量以上付与することが必要となる。しかし、油剤の付与量が多すぎると、油剤組成物による繊維間の膠着が生じ易い。膠着が発生すると、繊維束の中心部付近までに酸化性気体が侵入できないため、同中心部付近の繊維が十分に耐炎化処理されず、耐炎化処理斑がおきる原因となる。、耐炎化処理斑がおきると、耐炎化処理の後に行なう炭素化処理において、糸切れ、繊維束の部分的な切断、あるいは全体的な切断(以下、まとめて「束切れ」と表記することもある)、さらには炭素繊維の強度低下の原因となる。   A part of the spinning process oil and the flameproofing process oil are volatilized during the flameproofing process, and it is known that the initial volatilization amount is particularly large in the flameproofing process. Therefore, in order to efficiently perform the flameproofing process from the initial stage to the latter stage of the flameproofing process, a certain amount of spinning process oil and flameproofing process oil (hereinafter collectively referred to as “oil”) are added to the precursor fiber bundle. It is necessary to give above. However, if the applied amount of the oil agent is too large, sticking between fibers due to the oil agent composition tends to occur. When the sticking occurs, the oxidizing gas cannot enter the vicinity of the center portion of the fiber bundle, so that the fibers in the vicinity of the center portion are not sufficiently flame-resistant and cause flame-resistant spots. In the carbonization treatment performed after the flameproofing treatment, the yarn breakage, the partial cut of the fiber bundle, or the total cut (hereinafter collectively referred to as “bundle cut”) A), and further, the strength of the carbon fiber is reduced.

炭素繊維を高性能化する手段として、炭素繊維束を構成する単繊維の表面皺構造を浅く平滑にしたり、単繊維の繊維断面形状を真円に近い形状とすることが提案されている(特許文献4)。しかし、単繊維の断面形状を真円に近づくほど、繊維束の収束性は強まるため、上述した膠着の問題が顕著になり、上記の油剤束切れの問題が、より顕著となる。束切れがおきた場合、製造停止につながる場合が多く、結果として、油剤、特に耐炎化工程油剤を、本来の効果を最大限に発揮でき得る量に付与することができない。   As means for improving the performance of carbon fibers, it has been proposed to make the surface wrinkle structure of the single fibers constituting the carbon fiber bundle shallow and smooth, or to make the cross-sectional shape of the single fibers close to a perfect circle (patent) Reference 4). However, as the cross-sectional shape of the single fiber approaches a perfect circle, the convergence property of the fiber bundle becomes stronger, so that the problem of the above-mentioned sticking becomes remarkable, and the problem of the above-mentioned oil agent bundle breakage becomes more remarkable. When the bundle breaks, it often leads to production stop, and as a result, the oil agent, particularly the flameproofing process oil agent, cannot be applied in an amount capable of maximizing the original effect.

特開昭61−146817号公報JP-A 61-146817 特開2008−190056号公報Japanese Patent Laid-Open No. 2008-190056 特開2013−060680号公報JP 2013-060680 A 特開2010−285710号公報JP 2010-285710 A

本発明は、炭素繊維前駆体アクリル繊維束の耐炎化処理において、耐炎化工程油剤組成物を複数回に分けて付与することで、耐炎化工程油剤由来のトラブルを回避しつつ、耐炎化工程油剤組成物の付与効果を最大限に発揮させ、耐炎化工程での操業性、工程通過性を著しく向上させ、また、同時に物性や品質が優れる耐炎化繊維および炭素繊維の製造方法を提供することを目的とする。   In the flameproofing treatment of the carbon fiber precursor acrylic fiber bundle, the present invention provides a flameproofing process oil agent by giving the flameproofing process oil composition in a plurality of times, while avoiding troubles derived from the flameproofing process oil. To provide a method for producing flame-resistant fibers and carbon fibers that maximizes the effect of imparting the composition, significantly improves operability and processability in the flame-proofing process, and at the same time has excellent physical properties and quality. Objective.

本発明は、炭素繊維束の製造方法に関するものであり、炭素繊維前駆体アクリル繊維束を、独立に温度制御が可能な2以上の直列して設置された耐炎化炉に導入し、酸化性雰囲気下、200℃〜300℃で加熱処理することを含む、炭素繊維束の製造方法であって、直列して配置された2つの耐炎化炉間において、前段の耐炎化炉で炭素繊維前駆体アクリル繊維束を加熱処理して得た耐炎化途中繊維束に、耐炎化工程油剤組成物を付与した後、次いで後段の耐炎化炉で加熱処理することを特徴とする、炭素繊維束の製造方法に関する。   The present invention relates to a method for producing a carbon fiber bundle, wherein the carbon fiber precursor acrylic fiber bundle is introduced into two or more flameproofing furnaces installed in series capable of independent temperature control, and an oxidizing atmosphere. A method for producing a carbon fiber bundle, comprising heat treatment at 200 ° C. to 300 ° C. below, between two flameproofing furnaces arranged in series, and a carbon fiber precursor acrylic in a preceding flameproofing furnace It relates to a method for producing a carbon fiber bundle, characterized by applying a flameproofing step oil agent composition to a flameproof fiber bundle obtained by heat-treating the fiber bundle, and then heat-treating in a subsequent flameproof furnace. .

さらに本発明の製造方法は、下記(1)〜(4)の条件とすることができる。
(1)炭素繊維前駆体アクリル繊維束を最初に前記耐炎化炉に導入する直前に、前記耐炎化工程油剤組成物を該繊維束に付与する。
(2)炭素繊維前駆体アクリル繊維束に、シリコーン系化合物を含む紡糸工程油剤組成物が付与されている。
(3)炭素繊維前駆体アクリル繊維束または耐炎化途中繊維束に、耐炎化工程油剤組成物を付与し、次いで該繊維束の含水率を1.0%以下とした後、耐炎化処理する。
(4)炭素繊維前駆体アクリル繊維束の平均凹凸度Raが5nm以上70nm以下であり、該繊維束を構成する単繊維の繊維軸に対して垂直方向の繊維断面の長径dLと短径dSとの比(dL/dS)が1.05以上1.50以下。
Furthermore, the manufacturing method of this invention can be made into the conditions of following (1)-(4).
(1) Immediately before the carbon fiber precursor acrylic fiber bundle is first introduced into the flameproofing furnace, the flameproofing process oil agent composition is applied to the fiber bundle.
(2) A spinning process oil composition containing a silicone compound is applied to the carbon fiber precursor acrylic fiber bundle.
(3) A flameproofing step oil agent composition is applied to the carbon fiber precursor acrylic fiber bundle or the flameproof fiber bundle, and then the moisture content of the fiber bundle is set to 1.0% or less, followed by flameproofing treatment.
(4) The average unevenness Ra of the carbon fiber precursor acrylic fiber bundle is 5 nm or more and 70 nm or less, and the major axis dL and minor axis dS of the fiber cross section perpendicular to the fiber axis of the single fiber constituting the fiber bundle, Ratio (dL / dS) is 1.05 or more and 1.50 or less.

本発明によれば、繊維に耐炎化油剤組成物を効率よく付与することが可能となり、耐炎化処理の操業性、工程通過性が著しく改善され、また、同時に物性や品質が優れる耐炎化繊維束および炭素繊維束を安定に製造できる。   According to the present invention, it becomes possible to efficiently impart a flameproofing oil composition to the fiber, the operability and processability of the flameproofing treatment are remarkably improved, and at the same time, the flameproofing fiber bundle is excellent in physical properties and quality. And a carbon fiber bundle can be manufactured stably.

以下に本発明について詳細に説明する。   The present invention is described in detail below.

炭素繊維前駆体アクリル繊維束は、アクリロニトリル系重合体を有機溶剤あるいは無機溶剤に溶解し、通常用いられる方法にて紡糸して得られるもので、紡糸の方法、条件には特に制限はない。   The carbon fiber precursor acrylic fiber bundle is obtained by dissolving an acrylonitrile-based polymer in an organic solvent or an inorganic solvent and spinning by a commonly used method, and the spinning method and conditions are not particularly limited.

アクリロニトリル系重合体は、好ましくはアクリロニトリル単位85質量%以上、より好ましくは90質量%以上を含有する重合体を使用する。
このアクリロニトリル系重合体としては、アクリロニトリルの単独重合体または共重合体あるいはこれらの重合体の混合重合体を使用し得る。
The acrylonitrile-based polymer is preferably a polymer containing acrylonitrile units of 85% by mass or more, more preferably 90% by mass or more.
As the acrylonitrile-based polymer, a homopolymer or copolymer of acrylonitrile or a mixed polymer of these polymers can be used.

アクリロニトリル系共重合体は、アクリロニトリルと共重合しうる単量体とアクリロニトリルとの共重合生成物であり、アクリロニトリルと共重合しうる単量体としては、メチル(メタ)アクリレ−ト、エチル(メタ)アクリレ−ト、プロピル(メタ)アクリレ−ト、ブチル(メタ)アクリレ−ト、ヘキシル(メタ)アクリレ−ト等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類およびそれらの塩類や、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル、スチレンスルホン酸ソ−ダ、アリルスルホン酸ソ−ダ、β−スチレンスルホン酸ソ−ダ、メタアリルスルホン酸ソ−ダ等のスルホン基を含む重合性不飽和単量体、2−ビニルピリジン、2−メチル−5−ビニルピリジン等のピリジン基を含む重合性不飽和単量体等が挙げられるが、これらに限定されるものではない。   The acrylonitrile copolymer is a copolymerized product of a monomer that can be copolymerized with acrylonitrile and acrylonitrile. Examples of the monomer that can be copolymerized with acrylonitrile include methyl (meth) acrylate, ethyl (meta ) (Meth) acrylates such as acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, halogens such as vinyl chloride, vinyl bromide, vinylidene chloride Acids such as vinyl chloride, (meth) acrylic acid, itaconic acid, crotonic acid and their salts, maleic acid imide, phenylmaleimide, (meth) acrylamide, styrene, α-methylstyrene, vinyl acetate, styrenesulfonic acid -Sodium, allylsulfonic acid soda, beta-styrenesulfonic acid soda, methallylsulfonic acid Examples thereof include polymerizable unsaturated monomers containing a sulfone group such as soda, polymerizable unsaturated monomers containing a pyridine group such as 2-vinylpyridine and 2-methyl-5-vinylpyridine, etc. It is not limited to.

重合法については、従来公知の溶液重合、懸濁重合、乳化重合などを適用することができる。   As the polymerization method, conventionally known solution polymerization, suspension polymerization, emulsion polymerization and the like can be applied.

得られたアクリロニトリル系重合体を、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、塩化亜鉛水溶液、硝酸などに溶解して、紡糸口金を通して凝固液に吐出して凝固糸を得る。凝固糸を得る紡糸方法は、湿式紡糸法、乾湿式紡糸法、乾式紡糸法などを採用できる。   The obtained acrylonitrile-based polymer is dissolved in dimethyl sulfoxide, dimethylacetamide, dimethylformamide, an aqueous zinc chloride solution, nitric acid, etc., and discharged into a coagulating liquid through a spinneret to obtain a coagulated yarn. As a spinning method for obtaining a coagulated yarn, a wet spinning method, a dry wet spinning method, a dry spinning method, or the like can be employed.

次いで、得られた凝固糸に延伸処理が施される。この際、凝固糸を凝固浴中または延伸浴中で延伸してもよいし、一部空中延伸した後に、浴中延伸してもよい。浴中延伸は通常50〜98℃の延伸浴中で1回あるいは2回以上の多段に分割するなどして行われ、その前後、あるいは同時に洗浄を行ってもよい。   Next, the obtained coagulated yarn is subjected to drawing treatment. At this time, the coagulated yarn may be stretched in a coagulation bath or a stretching bath, or may be partially stretched in the air and then stretched in the bath. Stretching in the bath is usually performed in a stretching bath at 50 to 98 ° C. by dividing it into multiple stages of once or twice, and washing may be performed before or after or simultaneously.

この紡糸工程において、炭素繊維前駆体アクリル繊維束(前駆体繊維束)に油剤を付与すると、紡糸工程での前駆体繊維束の収束性、柔軟性、平滑性を改善でき、帯電を防止することができる。   In this spinning process, if an oil agent is added to the carbon fiber precursor acrylic fiber bundle (precursor fiber bundle), the convergence, flexibility and smoothness of the precursor fiber bundle in the spinning process can be improved, and charging can be prevented. Can do.

紡糸工程で付与する油剤組成物(以下、「紡糸工程油剤」と略する)を繊維束に均一に付与せしめるために、浴中延伸、洗浄後の水膨潤状態にある繊維束に対して紡糸工程油剤を付与することが好ましい。   Spinning process for fiber bundles in a water-swelled state after stretching in a bath and washing in order to uniformly apply the oil composition applied in the spinning process (hereinafter abbreviated as “spinning process oil agent”) to the fiber bundle. It is preferable to apply an oil agent.

紡糸工程油剤の付与方法は特に制限はなく、公知の方法を用いることができる。油剤を水に分散させた処理液が入った油剤処理槽に炭素繊維前駆体アクリル繊維束を浸漬し、油剤を付着させる方法が工業的観点から好ましい。   There are no particular limitations on the method of applying the spinning process oil, and any known method can be used. A method of immersing the carbon fiber precursor acrylic fiber bundle in an oil agent treatment tank containing a treatment liquid in which an oil agent is dispersed in water and attaching the oil agent is preferable from an industrial viewpoint.

紡糸工程油剤を付着させた凝固糸を、例えば加熱ローラーを用いて乾燥して緻密化する。乾燥温度、時間は適宜選択することができるが、120℃〜190℃の加熱ローラーにより乾燥緻密化することが好ましい。加熱ローラーの温度が120℃以上であれば、加熱ローラーの本数を多くする必要がなく、また、加熱ローラーの温度が190℃以下であれば、単繊維間に融着が生じることがなく、炭素繊維の性能を低下させることがない。   The coagulated yarn to which the spinning process oil is adhered is dried and densified using, for example, a heating roller. Although drying temperature and time can be selected as appropriate, it is preferable to dry and densify with a heating roller of 120 to 190 ° C. If the temperature of the heating roller is 120 ° C. or higher, there is no need to increase the number of heating rollers, and if the temperature of the heating roller is 190 ° C. or less, no fusion occurs between the single fibers, and carbon The fiber performance is not deteriorated.

高倍率の延伸が可能であること、より最終紡速を高くすることができること、得られる繊維の緻密性や配向度向上に寄与することから、上記乾燥緻密化により得られたアクリル繊維束に、更に乾熱延伸処理またはスチーム延伸処理を施してもよい。乾熱延伸処理は2本の熱ロール間で行ってもよいし、更にその熱ロール間に設置したホットプレートに繊維を接触させて行ってもよい。スチーム延伸は加圧水蒸気雰囲気中で延伸を行う加圧水蒸気延伸法により行うことが好ましい。   Since it is possible to stretch at a high magnification, it is possible to increase the final spinning speed, and contribute to improving the density and orientation of the resulting fiber, the acrylic fiber bundle obtained by the above-mentioned dry densification, Furthermore, you may perform a dry heat extending | stretching process or a steam extending | stretching process. The dry heat stretching treatment may be performed between two hot rolls, or may be performed by bringing the fibers into contact with a hot plate installed between the hot rolls. The steam stretching is preferably performed by a pressurized steam stretching method in which stretching is performed in a pressurized steam atmosphere.

こうして得られた前駆体繊維束に、耐炎化処理中以降における、繊維束の収束性の向上および繊維間の融着防止のために、更に耐炎化工程油剤組成物を付与する(以下、「耐炎化工程油剤」と略する)。。   The precursor fiber bundle thus obtained is further provided with a flameproofing process oil agent composition for the purpose of improving the convergence of the fiber bundle and preventing fusion between the fibers during the flameproofing treatment (hereinafter referred to as “flameproofing”). Chemical process oil ”. .

この際、紡糸工程油剤と耐炎化工程油剤の少なくと一つに、シリコーン系化合物を含むませることにより、耐炎化処理後に行なう焼成処理での工程通過性を向上し、炭素化処理中で繊維の融着を防止することができる。   At this time, by including a silicone compound in at least one of the spinning process oil and the flameproofing process oil, the process passability in the firing process performed after the flameproofing process is improved, and the fiber is treated during the carbonization process. Fusion can be prevented.

紡糸工程油剤、耐炎化工程油剤の組み合わせの例としては、以下の3つが挙げられる。下記の「シリコーン系化合物含有油剤」とは、シリコーン系化合物を含有する油剤のことである。
(1)紡糸工程油剤:シリコーン系化合物含有油剤/耐炎化工程油剤:シリコーン系化合物含有油剤
(2)紡糸工程油剤:シリコーン系化合物含有油剤/耐炎化工程油剤:シリコーン系化合物を含有しない油剤
(3)紡糸工程油剤:シリコーン系化合物を含有しない油剤/耐炎化工程油剤:シリコーン系化合物含有油剤
(1)の場合は、例えば紡糸工程油剤には、ロールへの繊維束の巻き付き防止や単繊維同士の融着防止などに適したシリコーン系油剤を使用し、耐炎化工程油剤には、繊維束の収束性維持などに適したシリコーン系油剤を使用するなど、目的に応じてシリコーン系化合物を適宜選択することができる。(2)、(3)の場合は、アクリル繊維束に付与するシリコーン系化合物の量を減らすことができ、シリコーン系化合物由来の微粉体の発生量を減らすことができる。
Examples of combinations of the spinning process oil and the flameproofing process oil include the following three. The following “silicone compound-containing oil agent” refers to an oil agent containing a silicone compound.
(1) Spinning process oil: Silicone compound-containing oil / flame resistance process oil: Silicone compound-containing oil (2) Spinning process oil: silicone compound-containing oil / flame resistance process oil: Oil containing no silicone compound (3 ) Spinning process oil: Oil containing no silicone compound / Flame resistance process oil: Silicone compound-containing oil In the case of (1), for example, in the spinning process oil, the fiber bundle is prevented from being wound around the roll or between single fibers. Use a silicone-based oil suitable for preventing fusion, etc., and use a silicone-based compound suitable for maintaining the convergence of the fiber bundle as the flameproofing process. be able to. In the case of (2) and (3), the amount of the silicone compound applied to the acrylic fiber bundle can be reduced, and the amount of fine powder derived from the silicone compound can be reduced.

油剤に用いるシリコーン系化合物としては、アミノ変性シリコーン、エポキシ変性シリコーン等のシリコーンオイルが挙げられるが、特に好ましくはアミノ変性シリコーンである。アミノ変性シリコーンとしては、側鎖1級アミノ変性シリコーン、側鎖1,2級アミノ変性シリコーン、あるいは両末端アミノ変性シリコーンが挙げられる。   Examples of the silicone compound used in the oil include silicone oils such as amino-modified silicone and epoxy-modified silicone, and amino-modified silicone is particularly preferable. Examples of the amino-modified silicone include side-chain primary amino-modified silicone, side-chain primary and secondary amino-modified silicone, and both-end amino-modified silicone.

シリコーン系化合物の粘度は(25℃で測定)は50センチストークス(cSt)以上3,000cSt以下、さらには2,000cSt以下のものを用いることが好ましい。3,000cSt以下であると水中への分散性や、あるいは溶解性に問題を生じることなく、繊維の表面に均一に付与することができる。また、50cSt以上であれば、耐炎化処理中の油剤は分解、揮発することなく、単繊維間の融着を効率的に防止できる。   The viscosity of the silicone compound (measured at 25 ° C.) is preferably 50 centistokes (cSt) or more and 3,000 cSt or less, more preferably 2,000 cSt or less. If it is 3,000 cSt or less, it can be uniformly applied to the surface of the fiber without causing problems in dispersibility in water or solubility. Moreover, if it is 50 cSt or more, the oil agent in the flameproofing process can efficiently prevent fusion between single fibers without being decomposed and volatilized.

シリコーン系化合物の官能基当量(アミン当量やエポキシ当量など)は、1000g/mol以上10000g/mol以下が好ましく、さらに好ましくは2000g/mol以上7000g/mol以下である。1000g/mol以上であれば、耐炎化工程においてシリコーン骨格が分解することがない。また、10000g/mol以下であれば、耐炎化処理中に工程に繊維間の融着に起因して、最終的に得られた炭素繊維のストランド強度の低下等、炭素繊維の物性低下を抑制できる。   The functional group equivalent (amine equivalent, epoxy equivalent, etc.) of the silicone compound is preferably 1000 g / mol or more and 10,000 g / mol or less, more preferably 2000 g / mol or more and 7000 g / mol or less. If it is 1000 g / mol or more, the silicone skeleton will not be decomposed in the flameproofing step. Moreover, if it is 10000 g / mol or less, it can suppress the physical property fall of carbon fiber, such as the fall of the strand strength of the carbon fiber finally obtained resulting from the fusion | melting between fibers in a process during a flame-proofing process. .

シリコーン系化合物以外の油剤成分としては、例えば、ビスフェノールAのアルキレンオキサイド付加物をモノアルキルエステル化し、さらに飽和脂肪族ジカルボン酸を反応させて得られた反応生成物や、二塩基酸とオキシアルキレン単位を有するポリオールの縮合物に脂肪族アルカノールアミドを反応して得られる末端アミド基を有する付加物、ポリアミンと脂肪酸を反応して得られるアミド化合物のアルキレンオキサイド付加物などを用いることができる。   Examples of the oil component other than the silicone compound include a reaction product obtained by converting a alkylene oxide adduct of bisphenol A into a monoalkyl ester and further reacting with a saturated aliphatic dicarboxylic acid, or a dibasic acid and an oxyalkylene unit. It is possible to use an adduct having a terminal amide group obtained by reacting an aliphatic alkanolamide with a polyol condensate, an alkylene oxide adduct of an amide compound obtained by reacting a polyamine and a fatty acid, or the like.

また、空気中250℃、2時間の熱処理後に、さらに不活性雰囲気中700℃、5分間加熱した際の質量残存率が5質量%以下となるようなエステル化合物を用いると耐熱性が損なわれることがなく好ましい。   In addition, heat resistance is impaired when an ester compound is used that has a mass residual rate of 5% by mass or less when heated at 700 ° C. for 5 minutes in an inert atmosphere after heat treatment at 250 ° C. in air for 2 hours. It is preferable because there is no

油剤成分を水に分散させた油剤を用いる場合は、公知の方法を用いればよい。
例えば、油剤成分を0.1〜数十μmの大きさの粒子として水中に均一に分散させるため、界面活性剤を用いることができる。界面活性剤にはイオン型、非イオン型があり、イオン型はアニオン界面活性剤、カチオン界面活性剤、両性界面活性剤がある。
When using an oil agent in which an oil agent component is dispersed in water, a known method may be used.
For example, a surfactant can be used to uniformly disperse the oil component in water as particles having a size of 0.1 to several tens of μm. Surfactants include ionic and nonionic types, and ionic types include anionic surfactants, cationic surfactants, and amphoteric surfactants.

非イオン型界面活性剤は、炭素化処理中に繊維中の欠陥が形成される開始点となる金属を含まないため好ましい。非イオン型界面活性剤としては、具体的には高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪酸アミドエチレンオキサイド付加物、油脂のエチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物が挙げられ、高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物が好ましく、中でもポリプロピレングリコールエチレンオキサイド付加物が更に好ましい。   Nonionic surfactants are preferred because they do not contain a metal that is the starting point for the formation of defects in the fiber during carbonization. Specific examples of nonionic surfactants include higher alcohol ethylene oxide adducts, alkylphenol ethylene oxide adducts, fatty acid ethylene oxide adducts, polyhydric alcohol fatty acid ester ethylene oxide adducts, higher alkylamine ethylene oxide adducts, Examples include fatty acid amide ethylene oxide adducts, fat and oil ethylene oxide adducts, polypropylene glycol ethylene oxide adducts, higher alcohol ethylene oxide adducts, alkylphenol ethylene oxide adducts, and polypropylene glycol ethylene oxide adducts. Oxide adducts are more preferred.

ポリプロピレングリコールエチレンオキサイド付加物の構造は、ブロック共重合型ポリエーテルが好ましい。   The structure of the polypropylene glycol ethylene oxide adduct is preferably a block copolymer type polyether.

油剤中の前記エステル化合物の熱劣化を防止するために、酸化防止剤を用いても良い。酸化防止剤としては、具体的には、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェニル‐ジトリデシルホスファイト)等並びにこれらの組み合わせが挙げられる。   In order to prevent thermal deterioration of the ester compound in the oil agent, an antioxidant may be used. Specific examples of the antioxidant include pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 1,3,5-tris (4-t-butyl) -3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 4,4'- Butylidenebis (3-methyl-6-tert-butylphenyl-ditridecyl phosphite) and the like, as well as combinations thereof.

油剤中の酸化防止剤の含有量は1〜10質量%の範囲とすることが好ましい。1質量%以上であれば、エステル化合物の熱劣化を防止する効果が十分に得られ、また、10質量%以下であれば、油剤の乳化安定性を損なうことなく、前駆体繊維束由来の酸化防止剤の残渣が、炭素繊維に残存することもない。   The content of the antioxidant in the oil is preferably in the range of 1 to 10% by mass. If it is 1% by mass or more, the effect of preventing thermal deterioration of the ester compound is sufficiently obtained, and if it is 10% by mass or less, the oxidation derived from the precursor fiber bundle is carried out without impairing the emulsion stability of the oil agent. The residue of the inhibitor does not remain on the carbon fiber.

その他、紡糸工程油剤及び耐炎化工程油剤には、前駆体繊維束および炭素繊維の特性向上のために帯電防止剤、浸透剤、消泡剤、防腐剤などを適宜配合することができる。   In addition, an antistatic agent, a penetrating agent, an antifoaming agent, an antiseptic, and the like can be appropriately blended with the spinning process oil and the flameproofing process oil to improve the properties of the precursor fiber bundle and the carbon fiber.

紡糸工程油剤の付与量は、乾燥した繊維束に対して油剤が0.1〜3.0質量%となるようにすることが好ましい。紡糸工程油剤の付与量は、例えば油剤を水に分散させた処理液における油剤の濃度を調整したり、ニップロールなどによる液の絞りを調整したりすることにより調整できる。   The application amount of the spinning process oil agent is preferably 0.1 to 3.0% by mass of the oil agent with respect to the dried fiber bundle. The application amount of the spinning process oil can be adjusted, for example, by adjusting the concentration of the oil in the treatment liquid in which the oil is dispersed in water, or by adjusting the squeezing of the liquid using a nip roll or the like.

本発明において、耐炎化工程油剤の付与は複数回に分けて行う。耐炎化油剤を付与するの回数に、特に制限はない。耐炎化工程油剤の付与設備や後述する乾燥設備の設置スペースを狭小化する観点から、耐炎化処理する工程を2〜4区画に分割して行い、各区画にそれぞれ油剤付与設備を設け、耐炎化工程油剤を付与することができれば十分である。   In the present invention, the application of the flameproofing process oil is performed in multiple steps. There is no restriction | limiting in particular in the frequency | count of providing a flame-resistant oil agent. Flameproofing process From the viewpoint of narrowing the installation space of the oiling equipment and the drying equipment described later, the flameproofing process is divided into 2 to 4 sections, and each section is provided with oiling equipment and flameproofing. It is sufficient if the process oil can be applied.

具体的な操作としては、耐炎化途中繊維束の密度範囲を目安にして、耐炎化工程油剤を付与することができる。例えば、通常の炭素繊維前駆体アクリル繊維束は密度約1.18g/cm、耐炎化繊維束は密度約1.36g/cmであり、耐炎化処理途中の耐炎化途中繊維束に、1回だけ耐炎化工程油剤を付与する場合は、耐炎化途中繊維束の密度が1.27g/cm付近で耐炎化工程油剤を付与すれば良い。また、耐炎化途中繊維束に、2回だけ耐炎化工程油剤を付与する場合は、耐炎化途中繊維束の密度が1.24g/cm付近と1.30g/cm付近で耐炎化工程油剤を付与すれば良い。 耐炎化工程油剤の付与す設備を設置する位置は、特に限定されることはない。前駆体繊維束を耐炎化炉に導入する直前や、耐炎化処理する工程を2〜4区画に分割して、各々の区画に油剤付与設備を設置することができる。 As a specific operation, the flame resistance process oil can be applied using the density range of the fiber bundle during flame resistance as a guide. For example, a normal carbon fiber precursor acrylic fiber bundle has a density of about 1.18 g / cm 3 and a flame-resistant fiber bundle has a density of about 1.36 g / cm 3. When the flameproofing process oil is applied only once, the flameproofing process oil may be applied when the density of the fiber bundle is about 1.27 g / cm 3 during the flameproofing. In addition, when the flameproofing process oil agent is applied to the fiber bundle in the middle of flameproofing only twice, the flameproofing process oil has a density of the fiber bundle in the middle of flameproofing of around 1.24 g / cm 3 and around 1.30 g / cm 3. Can be given. The position where the equipment to which the flameproofing process oil is applied is not particularly limited. Immediately before the precursor fiber bundle is introduced into the flameproofing furnace or the flameproofing process is divided into 2 to 4 sections, and an oil agent application facility can be installed in each section.

耐炎化工程油剤の付与を複数回に分けて行う場合、各回の油剤付与量は、次の油剤付与に至るまでの間、耐炎化処理中に油剤を付与した効果が維持できる量であれば十分である。具体的には、次の油剤付与に至るまでの耐炎化処理時間の長さに応じて、油剤付与量を決定したり、糸切れや繊維束切れの発生状況を鑑みて、油剤付与量を決定しても良い。具体的には油剤付与回数にもよるが、油剤付与前の繊維束に対する付与量を0.02〜1.0質量%の範囲で調整できる。   When applying the flameproofing process oil in multiple times, it is sufficient that the amount of oil applied each time is sufficient to maintain the effect of applying the oil during the flameproofing process until the next oil application. It is. Specifically, depending on the length of the flameproofing treatment time until the next oil agent application, the oil agent application amount is determined, or the oil agent application amount is determined in consideration of the occurrence of yarn breakage or fiber bundle breakage. You may do it. Specifically, although it depends on the number of times the oil agent is applied, the application amount with respect to the fiber bundle before the oil agent application can be adjusted in a range of 0.02 to 1.0 mass%.

耐炎化工程油剤の水分散液に、炭素繊維前駆体アクリル繊維束または耐炎化途中繊維束を浸漬した後、次いでニップロール等で繊維束を絞ることにより過剰な水分散液が取り除れる。しかし、水分散液を絞った後でも、繊維束には多量の水分が含まれている。   After the carbon fiber precursor acrylic fiber bundle or the flame resistant fiber bundle is immersed in the aqueous dispersion of the flameproofing process oil, the excess aqueous dispersion can be removed by squeezing the fiber bundle with a nip roll or the like. However, even after the aqueous dispersion is squeezed, the fiber bundle contains a large amount of water.

炭素繊維前駆体アクリル繊維束あるいは耐炎化途中繊維束を耐炎化炉に供給する前に、繊維束中に含まれる水分を除去しておくことが、非常に重要である。   It is very important to remove moisture contained in the fiber bundle before supplying the carbon fiber precursor acrylic fiber bundle or the flame-proofing fiber bundle to the flame-proofing furnace.

理由は明らかでないが、シリコーン系油剤が付与された前駆体繊維束を耐炎化処理するときに、繊維側が水分を多量に含む状態で耐炎化処理すると、シリコーン系油剤に由来する微粉体の発生量が増加する傾向がある。   The reason is not clear, but when the flame retardant treatment is performed on the precursor fiber bundle to which the silicone-based oil agent is applied, the amount of fine powder derived from the silicone-based oil agent when the fiber side is subjected to the flame resistance treatment in a state containing a large amount of moisture. Tend to increase.

また、耐炎化途中繊維束は繊維束内部に水を吸収しやすいため、繊維束を、水を含んだ状態で耐炎化処理すると、最終的に得られる炭素繊維束の強度は大きく低下する。   In addition, since the fiber bundle in the middle of flame resistance easily absorbs water inside the fiber bundle, the strength of the carbon fiber bundle finally obtained is greatly reduced when the fiber bundle is subjected to flame resistance treatment in a state containing water.

従って、耐炎化炉に導入する直前の前駆体繊維束の含水率、及び耐炎化炉に再導入する耐炎化途中繊維束の含水率は、ともに1.5質量%未満とすることが好ましく、1.0質量%以下とすることがより好ましい。繊維束中の含水率を1.5質量%未満とすることにより、上記した微粉体の発生を効果的に抑制でき、最終的に得られる炭素繊維束の強度低下を防ぐことができる。   Therefore, the moisture content of the precursor fiber bundle just before being introduced into the flameproofing furnace and the moisture content of the flameproofing fiber bundle being reintroduced into the flameproofing furnace are both preferably less than 1.5% by mass. More preferably, the content is not more than 0.0% by mass. By setting the moisture content in the fiber bundle to less than 1.5% by mass, the generation of the fine powder described above can be effectively suppressed, and the strength reduction of the finally obtained carbon fiber bundle can be prevented.

水分を乾燥する際の処理温度は、前駆体繊維束の耐炎化反応が起こらない温度に設定することが好ましく、具体的には140〜210℃の温度範囲に調整した乾燥ロールを用いて繊維束を乾燥することができる。   The treatment temperature at the time of drying the moisture is preferably set to a temperature at which the flame resistance reaction of the precursor fiber bundle does not occur, specifically, the fiber bundle using a drying roll adjusted to a temperature range of 140 to 210 ° C. Can be dried.

耐炎化処理は、酸化性雰囲気下、温度200〜300℃で酸化、繊維束を緊張あるいは延伸しながら加熱処理して、耐炎化処理後の耐炎化繊維の密度が1.30g/cm以上1.50g/cm以下の範囲となるように加熱すれば良い。繊維束を耐炎化処理するときの加熱方法や耐炎化炉の構造は、熱風循環方式、多孔板表面を有する固定熱板方式などを用いることができる。 The flameproofing treatment is carried out by oxidizing at a temperature of 200 to 300 ° C. in an oxidizing atmosphere, heating the fiber bundle while tensioning or stretching, and the density of the flameproofing fiber after the flameproofing treatment is 1.30 g / cm 3 or more 1 Heating may be performed in a range of 50 g / cm 3 or less. As the heating method and the structure of the flameproofing furnace when the fiber bundle is flameproofed, a hot air circulation method, a fixed hot plate method having a porous plate surface, or the like can be used.

こうして得られた耐炎化繊維束を、次いで不活性ガス雰囲気下で前炭素化、炭素化処理することにより、炭素繊維束を得ることができる。前炭素化条件としては、最高温度が550〜800℃の範囲内になるようにして、不活性雰囲気中、繊維束を緊張させた状態で、300〜500℃の温度領域においては、500℃/分以下、好ましくは300℃/分以下の昇温速度で耐炎化繊維束の前炭素化処理をすることが炭素繊維の機械的特性を向上させるために有効である。   The flame-resistant fiber bundle thus obtained is then pre-carbonized and carbonized under an inert gas atmosphere to obtain a carbon fiber bundle. As pre-carbonization conditions, the maximum temperature is in the range of 550 to 800 ° C., and the fiber bundle is tensioned in an inert atmosphere, and in the temperature range of 300 to 500 ° C., 500 ° C. / In order to improve the mechanical properties of the carbon fiber, it is effective to pre-carbonize the flame-resistant fiber bundle at a temperature rising rate of 300 ° C./min or less.

前炭素化繊維束の炭素化条件は、1200〜3000℃の不活性雰囲気中、1000〜1200℃の温度領域において500℃/分以下、好ましくは300℃/分以下の昇温速度で炭素化処理することが、炭素繊維の機械的特性を向上させるために有効である。前炭素化処理と炭素化処理の不活性雰囲気には、窒素、アルゴン、ヘリウム、など公知の不活性ガスを利用でき、経済性の観点から窒素が望ましい。   The carbonization condition of the pre-carbonized fiber bundle is carbonization treatment at a temperature rising rate of 500 ° C./min or less, preferably 300 ° C./min or less in a temperature range of 1000 to 1200 ° C. in an inert atmosphere of 1200 to 3000 ° C. It is effective to improve the mechanical properties of the carbon fiber. A known inert gas such as nitrogen, argon or helium can be used for the inert atmosphere of the pre-carbonization treatment and the carbonization treatment, and nitrogen is desirable from the viewpoint of economy.

得られた炭素繊維束は、電解液中で電解酸化処理を施したり、気相又は液相での酸化処理を施すことにより、炭素繊維樹脂複合材料としたときの炭素繊維とマトリックス樹脂の親和性や接着性を向上できることから好ましい。前記処理後さらに、必要に応じてサイジング剤を付与することができる。   The obtained carbon fiber bundle is subjected to an electrolytic oxidation treatment in an electrolytic solution, or an oxidation treatment in a gas phase or a liquid phase, so that the affinity between the carbon fiber and the matrix resin when made into a carbon fiber resin composite material And the adhesiveness can be improved. After the treatment, a sizing agent can be added as necessary.

なお、製造例、実施例、比較例では、以下に示す紡糸工程油剤、耐炎化工程油剤を使用した。   In the production examples, examples, and comparative examples, the following spinning process oils and flameproofing process oils were used.

[紡糸工程油剤A]
・側鎖1,2級アミノ変性シリコーン(25℃での粘度250cSt、アミノ当量7600) 52質量部
・ペンタエリスリチル‐テトラキス〔3‐(3,5‐ジ‐t‐ブチル‐4‐ヒドロキシフェニル)プロピオネート〕 2質量部
・ポリオキシエチレンステアリルエーテル[EO(エチレンオキサイド):12モル、HLB:13.9] 6質量部
を混合(合計60質量部)したものに、脱イオン水40質量部を加え、ホモミキサーで一次乳化した。次いで高圧ホモジナイザーを用いて圧力を調整し、乳化粒径が0.3μm程度になるように二次乳化を行ない、紡糸工程油剤とした。
[Spinning process oil A]
-Side chain 1, secondary amino-modified silicone (viscosity 250cSt at 25 ° C, amino equivalent 7600) 52 parts by mass-Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate] 2 parts by mass-polyoxyethylene stearyl ether [EO (ethylene oxide): 12 mol, HLB: 13.9] 40 parts by mass of deionized water was added to a mixture of 6 parts by mass (total 60 parts by mass). First emulsification with a homomixer. Subsequently, the pressure was adjusted using a high-pressure homogenizer, and secondary emulsification was performed so that the emulsified particle size was about 0.3 μm, and a spinning process oil was obtained.

[耐炎化工程油剤B]
・p−トルエンスルホン酸触媒下、190℃で、アジピン酸1モルに、ポリオキシエチレン(2モル)付加ビスフェノールAモノラウレート1.1モルを少量添加して、エステル化合物を得る。
次いで、・前記エステル化合物にポリオキシエチレン(10モル)付加ステアリルアミノエーテル(1モル)添加して得られる化合物 48質量部
・ペンタエリスリチル‐テトラキス〔3‐(3,5‐ジ‐t‐ブチル‐4‐ヒドロキシフェニル)プロピオネート〕 2質量部
・ポリオキシエチレンステアリルエーテル[EO(エチレンオキサイド):12モル、HLB:13.9] 10質量部
を混合(合計60質量部)したものに脱イオン水(40質量部)を加え、ホモミキサーで一次乳化した。次いで高圧ホモジナイザーを用いて圧力を調整し、乳化粒径が0.3μm程度になるように二次乳化を行ない、耐炎化工程油剤とした。
[Flameproofing process oil B]
-In 190 degreeC under a p-toluenesulfonic acid catalyst, 1.1 mol of polyoxyethylene (2 mol) addition bisphenol A monolaurate is added to 1 mol of adipic acid, and an ester compound is obtained.
Next, 48 parts by mass of a compound obtained by adding polyoxyethylene (10 mol) -added stearylaminoether (1 mol) to the ester compound. Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl -4-hydroxyphenyl) propionate] 2 parts by mass polyoxyethylene stearyl ether [EO (ethylene oxide): 12 mol, HLB: 13.9] 10 parts by mass (total 60 parts by mass) mixed with deionized water (40 parts by mass) was added and primary emulsification was performed with a homomixer. Subsequently, the pressure was adjusted using a high-pressure homogenizer, and secondary emulsification was performed so that the emulsified particle size was about 0.3 μm, and a flameproofing process oil was obtained.

<繊維表面の平均凹凸度Ra>
炭素繊維前駆体アクリル繊維束を構成する単繊維について、ナノサーチレーザー顕微鏡を用いて、下記条件で3D画像を2画像を取得して解析することにより、繊維表面の平均凹凸度Raの測定を行った。1サンプルあたり単繊維5本について3D画像を取得し、各画像について凹凸度Raを求め、その平均値を該サンプルの平均凹凸度Raとした。
[繊維表面の3D画像の測定条件]
測定装置:ナノサーチレーザー顕微鏡(製品名:LEXT OLS3500、オリンパス株式会社製)、
探針:カンチレバー(製品名:OMCL−AC240TS−C2、オリンパス株式会社製)
測定環境:室温下大気中で行った。
走査範囲(円周方向×繊維軸方向):600nm×600nm走査条件:測定する繊維サンプルの繊維軸方向に対して垂直方向に、繊維表面をレーザーで走査(スキャン)して測定した。走査速度は1.0Hz、ピクセル数は512×512とした。
<Average unevenness Ra of the fiber surface>
For the single fiber constituting the carbon fiber precursor acrylic fiber bundle, the average unevenness Ra of the fiber surface is measured by acquiring and analyzing two 3D images under the following conditions using a nanosearch laser microscope. It was. A 3D image was obtained for 5 single fibers per sample, the unevenness Ra was determined for each image, and the average value was taken as the average unevenness Ra of the sample.
[Measurement conditions of 3D image of fiber surface]
Measuring device: Nanosearch laser microscope (product name: LEXT OLS3500, manufactured by Olympus Corporation),
Probe: Cantilever (Product name: OMCL-AC240TS-C2, manufactured by Olympus Corporation)
Measurement environment: performed in air at room temperature.
Scanning range (circumferential direction × fiber axis direction): 600 nm × 600 nm Scanning condition: Measurement was performed by scanning (scanning) the fiber surface with a laser in a direction perpendicular to the fiber axis direction of the fiber sample to be measured. The scanning speed was 1.0 Hz, and the number of pixels was 512 × 512.

[3D画像の解析条件]
上記条件で、単繊維1本について3D画像を1枚を取得した。画像解析ソフトを用いて、取得した繊維表面の3D画像を、曲面画像から平面画像に変換した(平面フィッティング補正)。該平面画像について、繊維軸に垂直な方向の断面プロファイルを計測して表面粗さ解析を行い、平均凹凸度Raを求めた。
[3D image analysis conditions]
Under the above conditions, one 3D image was obtained for one single fiber. Using the image analysis software, the acquired 3D image of the fiber surface was converted from a curved surface image to a planar image (planar fitting correction). With respect to the planar image, a cross-sectional profile in a direction perpendicular to the fiber axis was measured, surface roughness analysis was performed, and an average unevenness Ra was obtained.

<単繊維の繊維断面の長径/短径比(dL/dS)>
走査型電子顕微鏡(SEM)を用いて、以下の方法で測定した。内径1mmの塩化ビニル樹脂製のチューブ内に測定用の炭素繊維束を通した後、長さ約10mmの繊維束が得られるように、チューブをナイフで輪切りにして試料を準備する。ついで、前記試料を繊維断面が上を向くようにしてSEM試料台に接着し、さらにAuを厚さ約10nmにスパッタリングしてから、走査型電子顕微鏡(製品名:XL20、フィリップス社製)を用いて、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察した。単繊維の繊維断面の長径dL及び短径dSを測定し、dL/dSを算出した。
<Long diameter / short diameter ratio (dL / dS) of fiber cross section of single fiber>
Measurement was performed by the following method using a scanning electron microscope (SEM). After passing a carbon fiber bundle for measurement through a tube made of a vinyl chloride resin having an inner diameter of 1 mm, a sample is prepared by cutting the tube with a knife so that a fiber bundle having a length of about 10 mm can be obtained. Next, the sample was adhered to the SEM sample stage with the fiber cross section facing upward, and Au was sputtered to a thickness of about 10 nm, and then a scanning electron microscope (product name: XL20, manufactured by Philips) was used. The fiber cross section was observed under conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm. The major axis dL and minor axis dS of the fiber cross section of the single fiber were measured, and dL / dS was calculated.

<繊維束の含水率>
所定長さに切断した繊維束を105℃で1.5時間乾燥し、乾燥前質量W1(g)、乾燥後質量W2(g)をそれぞれ下3桁まで測定し、下記計算式(2)により含水率を測定した。
含水率(%)=(W1−W2)/W2×100 ・・・(2)
<Moisture content of fiber bundle>
The fiber bundle cut into a predetermined length is dried at 105 ° C. for 1.5 hours, and the weight W1 (g) before drying and the weight W2 (g) after drying are measured to the last three digits, respectively, according to the following calculation formula (2) The water content was measured.
Moisture content (%) = (W1−W2) / W2 × 100 (2)

<紡糸工程油剤Aの付与量>
炭素繊維前駆体アクリル繊維束について、メチルエチルケトンを用いたソックスレー抽出法(以下、「抽出」と略する)により測定した。抽出時間は1時間とした。抽出前の繊維束の質量W3(g)、抽出後の繊維束の質量W4(g)をそれぞれ下3桁まで測定し、下記計算式(3)により紡糸工程油剤の付着量を測定した。
紡糸工程油剤の付着量(%)=(W3−W4)/W4×100・・・(3)
<Amount of spinning process oil A>
The carbon fiber precursor acrylic fiber bundle was measured by a Soxhlet extraction method (hereinafter abbreviated as “extraction”) using methyl ethyl ketone. The extraction time was 1 hour. The mass W3 (g) of the fiber bundle before extraction and the mass W4 (g) of the fiber bundle after extraction were measured to the last three digits, respectively, and the amount of the spinning process oil agent was measured by the following formula (3).
Spinning process oil amount (%) = (W3−W4) / W4 × 100 (3)

<耐炎化工程油剤Bの付与量>
炭素繊維前駆体アクリル繊維束、耐炎化途中繊維束に耐炎化工程油剤を付与〜乾燥処理した後の繊維束の質量W5(g)、該耐炎化工程油剤を付与する前の繊維束の質量W6(g)をそれぞれ下3桁まで測定し、下記計算式(4)により耐炎化工程油剤の付着量を測定した。耐炎化工程油剤を2回以上に分けて付与する場合は、それぞれの付与処理について付着量を測定した。
<Applied amount of flameproofing process oil B>
Carbon fiber precursor acrylic fiber bundle, fiber bundle mass W5 (g) after applying flameproofing process oil agent to fiber bundle during flameproofing ~ drying treatment, mass W6 of fiber bundle before applying the flameproofing process oil agent (G) was measured to the last 3 digits, and the adhesion amount of the flameproofing process oil agent was measured by the following calculation formula (4). In the case of applying the flameproofing process oil agent in two or more times, the adhesion amount was measured for each application process.

耐炎化工程油剤の付着量(%)=(W5−W6)/W6×100・・・(4)
<繊維束の外観>
耐炎化炉1で処理した後の耐炎化途中繊維束、耐炎化炉2で処理した後の耐炎化繊維束、炭素化炉(第一炭素化炉と第二炭素化炉)で処理した後の炭素繊維束)について、毛羽の発生を観察した。得られた繊維束をLEDライトで照らし、繊維束の長さ10mあたりに観察される毛羽の数を測定し、下記に示す3段階(◎、○、△)で評価した。処理中に繊維束の束切れが発生した場合は、×とした。
◎:毛羽の数が0〜5個。
Amount of adhesion of flameproofing process oil (%) = (W5−W6) / W6 × 100 (4)
<Appearance of fiber bundle>
Flame proofing fiber bundle after treatment in flame proofing furnace 1, flame proof fiber bundle after treatment in flame proofing furnace 2, carbonization furnace (first carbonization furnace and second carbonization furnace) The generation of fluff was observed for the carbon fiber bundle). The obtained fiber bundle was illuminated with an LED light, the number of fluff observed per 10 m length of the fiber bundle was measured, and evaluated in the following three stages (◎, ○, Δ). When a bundle of fiber bundles was broken during the treatment, it was marked as x.
A: The number of fluff is 0-5.

○:毛羽の数が6〜15個
△:毛羽の数が16個以上
×:繊維束の束切れ
<炭素繊維束のストランド強度>
樹脂含浸炭素繊維束のストランド試験体の調製および強度の測定は、JIS R7601に準拠し測定し評価した。測定は、測定回数n=10で行い、平均値を算出した。
○: The number of fluff is 6 to 15 Δ: The number of fluff is 16 or more ×: Fiber bundle is broken <Strand strength of carbon fiber bundle>
Preparation of strand test pieces of resin-impregnated carbon fiber bundles and measurement of strength were measured and evaluated according to JIS R7601. The measurement was performed with the number of measurements n = 10, and the average value was calculated.

[製造例]
製造例1に炭素繊維アクリル前駆体繊維束af1、製造例2に炭素繊維アクリル前駆体繊維束af2の製造例を示す。
[Production example]
Production Example 1 shows a carbon fiber acrylic precursor fiber bundle af1, and Production Example 2 shows a production example of a carbon fiber acrylic precursor fiber bundle af2.

[製造例1]
アクリロニトリル、アクリルアミド、メタクリル酸を水中に投入し、過硫酸アンモニウム−亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリルアミド単位/メタクリル酸単位=97/2/1(質量比)からなるアクリロニトリル系重合体を得た。このアクリロニトリル系重合体をジメチルアセトアミドに溶解し、固形分濃度21質量%の紡糸原液を調製した。
[Production Example 1]
Acrylonitrile, acrylamide and methacrylic acid are put into water and copolymerized by aqueous suspension polymerization in the presence of ammonium persulfate-ammonium hydrogen sulfite and iron sulfate, and acrylonitrile unit / acrylamide unit / methacrylic acid unit = 97/2/1 ( An acrylonitrile polymer consisting of (mass ratio) was obtained. This acrylonitrile-based polymer was dissolved in dimethylacetamide to prepare a spinning dope with a solid concentration of 21% by mass.

直径50μm、孔数30,000の吐出孔を有する紡糸口金から、前記紡糸原液を、38℃に調温した67質量%ジメチルアセトアミド水溶液を満たした凝固液中に吐出して凝固させ、凝固糸を得た。次いで温度を60〜98℃の範囲に設定した5段の延伸洗浄槽に凝固糸を通過させ、合計2.6倍延伸処理と洗浄処理を同時に行った。次いで、繊維束に、上述したアミノ変性シリコーンを主成分とする紡糸工程油剤Aを繊維束100質量%に対して1.1質量%となるよう付与した後、乾燥緻密化処理を行った。乾燥緻密化処理後の繊維束を、温度約150℃のスチーム下で3.5倍延伸した。次に、可塑化延伸後の繊維束にタッチロールで脱イオン水を付与した後、交絡付与装置へ供給して交絡を付与した後に、ボビンに巻き取った。得られた炭素繊維アクリル前駆体繊維束(af1)は単繊維繊度は1.0dtex、平均凹凸度Ra15.0nm、単繊維の繊維断面の長径/短径比(dL/dS)1.17であった。   From the spinneret having a discharge hole having a diameter of 50 μm and a hole number of 30,000, the spinning solution is discharged into a coagulation liquid filled with a 67% by mass dimethylacetamide aqueous solution adjusted to 38 ° C. to solidify the coagulated yarn. Obtained. Next, the coagulated yarn was passed through a five-stage stretch washing tank whose temperature was set in the range of 60 to 98 ° C., and a total 2.6 times stretching treatment and washing treatment were simultaneously performed. Next, the spinning process oil agent A mainly composed of the above-mentioned amino-modified silicone was applied to the fiber bundle so as to be 1.1% by mass with respect to 100% by mass of the fiber bundle, and then a dry densification treatment was performed. The fiber bundle after the drying densification treatment was stretched 3.5 times under steam at a temperature of about 150 ° C. Next, after applying deionized water to the fiber bundle after plasticizing and drawing with a touch roll, the fiber bundle was supplied to the entanglement applying device and entangled, and then wound on a bobbin. The obtained carbon fiber acrylic precursor fiber bundle (af1) had a single fiber fineness of 1.0 dtex, an average unevenness Ra of 15.0 nm, and a long fiber / long diameter ratio (dL / dS) of a single fiber of 1.17. It was.

[製造例2]
製造例1で調整した紡糸原液を、直径75μm、孔数24,000の吐出孔を配置した紡糸口金から、38℃に調温した67質量%ジメチルアセトアミド水溶液を満たした凝固液中に、吐出して凝固させ、凝固糸を得た。次いで、温度を60〜98℃の範囲に設定した5段の延伸・洗浄槽に凝固糸を通過させ、合計3.2倍の延伸と洗浄を同時に行った。次いで、繊維束に、上述した紡糸工程油剤Aを繊維束100質量%に対して1.1質量%となるよう付与し、乾燥緻密化処理を行った。乾燥緻密化処理後の繊維束を、温度約150℃のスチーム下で2.6倍の延伸した。次に、可塑化延伸後の繊維束にタッチロールで脱イオン水を付与した後、製造例1と同様の方法で交絡を付与した後に、ボビンに巻き取った。得られた炭素繊維アクリル前駆体繊維束(af2)は単繊維繊度1.2dtex、平均凹凸度Ra31.0nmで、単繊維の繊維断面の長径/短径比(dL/dS)は1.18であった。
[Production Example 2]
The spinning dope prepared in Production Example 1 was discharged from a spinneret having a discharge diameter of 75 μm in diameter and 24,000 holes into a coagulating liquid filled with a 67% by mass dimethylacetamide aqueous solution adjusted to 38 ° C. And coagulated to obtain a coagulated yarn. Next, the coagulated yarn was passed through a 5-stage drawing / washing tank whose temperature was set in the range of 60 to 98 ° C., and a total of 3.2 times of drawing and washing were simultaneously performed. Next, the spinning process oil A described above was applied to the fiber bundle so as to be 1.1% by mass with respect to 100% by mass of the fiber bundle, and dry densification treatment was performed. The fiber bundle after the dry densification treatment was stretched 2.6 times under steam at a temperature of about 150 ° C. Next, after applying deionized water with a touch roll to the fiber bundle after plasticizing and stretching, it was wound around a bobbin after being entangled by the same method as in Production Example 1. The obtained carbon fiber acrylic precursor fiber bundle (af2) has a single fiber fineness of 1.2 dtex and an average roughness Ra of 31.0 nm, and the long / short diameter ratio (dL / dS) of the fiber cross section of the single fiber is 1.18. there were.

[実施例1]
上述の耐炎化工程油剤Bの水分散液を入れた油剤処理槽に、前駆体繊維束af1を浸漬した後、ニップロールによる液絞り処理(以後、ニップ処理)を行い、その後150℃の加熱ローラーで乾燥処理することにより、耐炎化工程油剤の1回目の付与を行った。前駆体繊維束への耐炎化工程油剤Bの付与量は0.03質量%、加熱ローラーにて乾燥処理した後の前駆体繊維束の含水率は0.28%であった。
[Example 1]
After immersing the precursor fiber bundle af1 in the oil treatment tank containing the aqueous dispersion of the above-mentioned flameproofing process oil B, a liquid squeezing process (hereinafter referred to as a nip process) by a nip roll is performed, and then a heating roller at 150 ° C. By applying the drying treatment, the first application of the flameproofing process oil was performed. The application amount of the flameproofing process oil agent B to the precursor fiber bundle was 0.03% by mass, and the moisture content of the precursor fiber bundle after drying treatment with a heating roller was 0.28%.

この耐炎化工程油剤Bが付与された炭素繊維前駆体アクリル繊維束af1を、耐炎化炉1に導入し、230〜240℃に加熱された空気を前駆体繊維束af1に吹き付け、密度1.27g/cmの耐炎化途中繊維束of1−1を得た。耐炎化処理の際の伸長率は−3.0%、処理時間は40分とした。 The carbon fiber precursor acrylic fiber bundle af1 provided with this flameproofing process oil B is introduced into the flameproofing furnace 1, and air heated to 230 to 240 ° C. is sprayed onto the precursor fiber bundle af1, and the density is 1.27 g. A fiber bundle of1-1 having a flame resistance of / cm 3 was obtained. The elongation rate during the flameproofing treatment was -3.0%, and the treatment time was 40 minutes.

次いで、耐炎化工程繊維束of1−1を耐炎化炉2に導入し、1回目の耐炎化工程油剤Bを付与した方法と同様の方法で、耐炎化工程油剤Bの2回目の付与を行った。耐炎化工程繊維束of1−1への耐炎化工程油剤Bの付与量は0.03質量%、加熱ローラーにて乾燥処理を施された後の耐炎化途中繊維束of1−1の含水率は0.32%であった。   Next, the flameproofing process fiber bundle of1-1 was introduced into the flameproofing furnace 2, and the second application of the flameproofing process oil B was performed in the same manner as the method of applying the first flameproofing process oil B. . The amount of flameproofing process oil B applied to the flameproofing process fiber bundle of1-1 is 0.03% by mass, and the moisture content of the flameproofing fiber bundle of1-1 after being dried by a heating roller is 0. 32%.

さらに、この耐炎化途中繊維束of1−1を、耐炎化炉に導入し、250〜260℃に加熱された空気を耐炎化途中繊維束of1−1に吹き付けることによって、密度1.35g/cmの耐炎化繊維束of1−2を得た。耐炎化処理の際の伸長率は−3.0%、処理時間は40分とした。 Further, this flameproofing fiber bundle of1-1 is introduced into a flameproofing furnace, and air heated to 250 to 260 ° C. is blown onto the flameproofing fiber bundle of1-1, thereby obtaining a density of 1.35 g / cm 3. The flame-resistant fiber bundle of1-2 was obtained. The elongation rate during the flameproofing treatment was -3.0%, and the treatment time was 40 minutes.

次に耐炎化繊維束of1−2を、+3.0%の伸張を加えながら、窒素雰囲気中で300〜700℃の温度勾配を有する第一炭素化炉を通過させ前炭素化処理した。第一炭素化炉内の温度変化は直線的に増加するように設定し、処理時間は1.3分とした。次いで、窒素雰囲気中で1000〜1600℃の温度勾配を有する第二炭素化炉を、伸長率−4.5%の条件で通過させ炭素化処理した。処理時間は1.3分とした。この第二炭素化炉では温度1000〜1200℃の間の昇温速度は400℃/分とした。   Next, the flame-resistant fiber bundle of1-2 was pre-carbonized by passing through a first carbonization furnace having a temperature gradient of 300 to 700 ° C. in a nitrogen atmosphere while applying an extension of + 3.0%. The temperature change in the first carbonization furnace was set to increase linearly, and the treatment time was 1.3 minutes. Next, a second carbonization furnace having a temperature gradient of 1000 to 1600 ° C. in a nitrogen atmosphere was passed through under the condition of an elongation rate of −4.5% for carbonization treatment. The processing time was 1.3 minutes. In this second carbonization furnace, the rate of temperature increase between 1000 ° C. and 1200 ° C. was 400 ° C./min.

次に表面処理を行い、さらにサイジング剤を付与して炭素繊維束を得た。耐炎化途中繊維束、耐炎化繊維束、炭素化繊維束に、単繊維切れ・毛羽の発生はほとんど認められず、顕著な強度低下も見られなかった。   Next, surface treatment was performed, and a sizing agent was further applied to obtain a carbon fiber bundle. The fiber bundles, flame resistant fiber bundles, and carbonized fiber bundles in the course of flameproofing showed almost no single fiber breakage or fluffing, and no significant reduction in strength was observed.

[実施例2〜3]
1回目及び2回目の耐炎化工程油剤Bの付与量と、同油剤を付与し乾燥処理した後の繊維束の含水率を表1の通りとした以外は、実施例1と同様の方法で耐炎化(途中)繊維束、炭素化繊維束を製造した。評価結果を表1に示した。繊維束に単繊維切れ・毛羽の発生はほとんど認められず、顕著な強度低下も見られなかった。
[Examples 2-3]
Flame resistance in the same manner as in Example 1 except that the application amount of the first and second flameproofing process oil B and the moisture content of the fiber bundle after applying the oil and drying treatment were as shown in Table 1. (On the way) fiber bundles and carbonized fiber bundles were produced. The evaluation results are shown in Table 1. In the fiber bundle, single fiber breakage and fluff were hardly observed, and no significant reduction in strength was observed.

[実施例4〜6]
炭素繊維前駆体アクリル繊維束af2を用いて、表1に示した条件で耐炎化工程油剤Bを付与した以外は、実施例1と同様の方法で耐炎化(途中)繊維束、炭素化繊維束を製造した。評価結果を表1に示した。繊維束に単繊維切れ・毛羽の発生はほとんど認められず、実施例4〜6の間に顕著な強度低下は見られなかった。
[Examples 4 to 6]
Flame-resistant (on the way) fiber bundle and carbonized fiber bundle in the same manner as in Example 1 except that the flame-proofing process oil B was applied under the conditions shown in Table 1 using the carbon fiber precursor acrylic fiber bundle af2. Manufactured. The evaluation results are shown in Table 1. In the fiber bundle, almost no single fiber breakage or fluff was observed, and no significant strength reduction was observed between Examples 4-6.

[比較例1]
1〜2回目の耐炎化工程油剤Bの付与を施さない(乾燥処理も施していない)こと以外は、実施例1と同様の方法で、耐炎化(途中)繊維束、炭素化繊維束を製造した。評価を表1に示した。実施例に比して、繊維束の収束性は低下しており、毛羽が散見された。炭素繊維束の品位は実施例の炭素繊維束より劣る結果となった。
[Comparative Example 1]
Flameproofing (on the way) fiber bundles and carbonized fiber bundles are manufactured in the same manner as in Example 1 except that the application of the oil resistance B is not performed (the drying treatment is not performed). did. The evaluation is shown in Table 1. Compared with the Examples, the convergence of the fiber bundle was lowered, and fuzz was scattered. The quality of the carbon fiber bundle was inferior to the carbon fiber bundle of the example.

[比較例2]
2回目の耐炎化工程油剤Bの付与を施さないこと以外は、実施例1と同様の方法で、耐炎化(途中)繊維束、炭素化繊維束を製造した。評価結果を表1に示した。2回目の耐炎化処理(耐炎化炉2)以降から毛羽が散見され、炭素繊維束の品位は実施例の炭素繊維束よりも劣る結果となった。
[Comparative Example 2]
Flameproofing (on the way) fiber bundles and carbonized fiber bundles were produced in the same manner as in Example 1 except that the second flameproofing process oil B was not applied. The evaluation results are shown in Table 1. Fluff was scattered after the second flameproofing treatment (flameproofing furnace 2), and the quality of the carbon fiber bundle was inferior to the carbon fiber bundle of the example.

[比較例3]
1回目の耐炎化工程油剤Bの付与量を表1に示した条件とした以外は、実施例1と同様の方法で、耐炎化(途中)繊維束、炭素化繊維束を製造した。評価結果を表1に示した。1〜2回目の耐炎化処理(耐炎化炉1、2)では毛羽は発生しなかったが、炭素化処理以降から、束切れの発生が散見された。炭素繊維束の品位は実施例の炭素繊維束よりも劣る結果となり、ストランド強度も大きく低下した。
[Comparative Example 3]
A flame-resistant (on the way) fiber bundle and a carbonized fiber bundle were produced in the same manner as in Example 1 except that the application amount of the first flame-resistant step oil B was changed to the conditions shown in Table 1. The evaluation results are shown in Table 1. Fluff did not occur in the first and second flameproofing treatments (flameproofing furnaces 1 and 2), but the occurrence of bundle breakage was observed after the carbonization treatment. The quality of the carbon fiber bundle was inferior to that of the carbon fiber bundle of the example, and the strand strength was greatly reduced.

[比較例4]
1回目と2回目の耐炎化工程油剤Bを付与した後に加熱ロールによる乾燥処理を施さなかった以外は、実施例1と同様の方法で、耐炎化(途中)繊維束、炭素化繊維束を製造した。評価結果を表1に示した。1〜2回目の耐炎化処理(耐炎化炉1、2)では毛羽は発生しなかったが、炭素化処理以降から、束切れの発生が散見された。炭素繊維束の品位は実施例で得た炭素繊維束よりも劣る結果となり、ストランド強度も大きく低下した。
[Comparative Example 4]
Flame-resistant (on the way) fiber bundles and carbonized fiber bundles are produced in the same manner as in Example 1 except that after the first and second flame-proofing process oil agent B is applied, the drying treatment with a heating roll is not performed. did. The evaluation results are shown in Table 1. Fluff did not occur in the first and second flameproofing treatments (flameproofing furnaces 1 and 2), but the occurrence of bundle breakage was observed after the carbonization treatment. The quality of the carbon fiber bundle was inferior to that of the carbon fiber bundle obtained in the examples, and the strand strength was greatly reduced.

ここで、比較例4においては、耐炎化工程油剤を付与した後の加熱ロールによる乾燥処理を施さずに耐炎化処理を行ったため、耐炎化工程油剤が付与され、ニップ処理された直後の繊維束含水率を、耐炎化前の繊維束含水率とした。   Here, in Comparative Example 4, since the flameproofing treatment was performed without performing the drying treatment with the heating roll after the application of the flameproofing process oil, the fiber bundle immediately after the flameproofing process oil was applied and the nip treatment was performed. The moisture content was defined as the moisture content of the fiber bundle before flame resistance.

[比較例5]
2回目の耐炎化工程油剤Bを付与しないこと以外は、実施例4と同様の方法で、耐炎化(途中)繊維束、炭素化繊維束を製造した。評価結果を表1に示した。繊維束の収束性は、実施例に比して低下しており、毛羽も散見された。得られた炭素繊維束の品位は実施例4の炭素繊維束よりもわずかに劣る結果となった。
[Comparative Example 5]
Flame resistant (on the way) fiber bundles and carbonized fiber bundles were produced in the same manner as in Example 4 except that the second flame resistant step oil agent B was not applied. The evaluation results are shown in Table 1. The convergence property of the fiber bundle was lower than that of the example, and some fluff was observed. The quality of the obtained carbon fiber bundle was slightly inferior to the carbon fiber bundle of Example 4.

[比較例6]
1〜2回目の耐炎化工程油剤Bの付与を施さない(乾燥処理も施していない)こと以外は、実施例4と同様の方法で、耐炎化(途中)繊維束、炭素化繊維束を製造した。評価結果を表1に示した。繊維束の収束性は、実施例に比して大きく低下しており、毛羽が多く発生し、炭素化処理以降から、束切れの発生が散見された。炭素繊維束の品位は実施例4の炭素繊維束よりも大きく劣り、ストランド強度の低下も低下した。
[Comparative Example 6]
Flameproofing (on the way) fiber bundles and carbonized fiber bundles are manufactured in the same manner as in Example 4 except that the first and second flameproofing step oil agent B is not applied (no drying treatment is applied). did. The evaluation results are shown in Table 1. The convergence property of the fiber bundle was greatly reduced as compared with the example, and a lot of fluff was generated, and the occurrence of bundle breakage was observed after the carbonization treatment. The quality of the carbon fiber bundle was greatly inferior to the carbon fiber bundle of Example 4, and the decrease in strand strength was also reduced.

Claims (5)

炭素繊維前駆体アクリル繊維束を、独立に温度制御が可能な2以上の直列して設置された耐炎化炉に導入し、酸化性雰囲気下、200℃〜300℃で加熱処理することを含む、炭素繊維束の製造方法であって、
前記の直列して配置された2つの耐炎化炉間において、2つの耐炎化炉のうち前段の耐炎化炉で前記炭素繊維前駆体アクリル繊維束を加熱処理して得た耐炎化途中繊維束に、耐炎化工程油剤組成物を付与した後、次いで2つの耐炎化炉のうち後段の耐炎化炉で加熱処理することを特徴とする、炭素繊維束の製造方法。
Including introducing a carbon fiber precursor acrylic fiber bundle into two or more flameproofing furnaces installed in series capable of independent temperature control and heat-treating at 200 ° C. to 300 ° C. in an oxidizing atmosphere, A method of manufacturing a carbon fiber bundle,
Between the two flameproofing furnaces arranged in series, the flameproofing fiber bundle obtained by heat-treating the carbon fiber precursor acrylic fiber bundle in the preceding flameproofing furnace out of the two flameproofing furnaces. The method for producing a carbon fiber bundle is characterized in that after applying the flameproofing process oil composition, heat treatment is performed in a subsequent flameproofing furnace out of the two flameproofing furnaces.
下記(1)を満たす、請求項1に記載の炭素繊維束の製造方法。
(1)前記炭素繊維前駆体アクリル繊維束を最初に前記耐炎化炉に導入する直前に、前記耐炎化工程油剤組成物を該繊維束に付与する。
The manufacturing method of the carbon fiber bundle of Claim 1 which satisfy | fills following (1).
(1) Immediately before the carbon fiber precursor acrylic fiber bundle is first introduced into the flameproofing furnace, the flameproofing step oil agent composition is applied to the fiber bundle.
下記(2)を満たす、請求項1または2に記載の炭素繊維束の製造方法。
(2)前記耐炎化工程油剤組成物を付与する前の炭素繊維前駆体アクリル繊維束に、シリコーン系化合物を含有する紡糸工程油剤組成物が付与されている。
The manufacturing method of the carbon fiber bundle of Claim 1 or 2 which satisfy | fills following (2).
(2) The spinning process oil composition containing the silicone compound is applied to the carbon fiber precursor acrylic fiber bundle before the application of the flameproofing process oil composition.
下記(3)を満たす、請求項1〜3のいずれか一項に記載の炭素繊維束の製造方法。
(3)前記炭素繊維前駆体アクリル繊維束または耐炎化途中繊維束に、前記耐炎化工程油剤組成物を付与し、次いで該繊維束の含水率を1.0%以下とした後、耐炎化処理する。
The manufacturing method of the carbon fiber bundle as described in any one of Claims 1-3 which satisfy | fills following (3).
(3) Applying the flameproofing step oil agent composition to the carbon fiber precursor acrylic fiber bundle or flameproofing fiber bundle, and then setting the moisture content of the fiber bundle to 1.0% or less, followed by flameproofing treatment To do.
下記(4)(5)を満たす、請求項1〜4のいずれか一項に記載の炭素繊維束の製造方法。
(4)前記炭素繊維前駆体アクリル繊維束の平均凹凸度Raが5nm以上70nm以下。
(5)前記炭素繊維前駆体アクリル繊維束を構成する単繊維の繊維軸に対して垂直方向の繊維断面の長径dLと短径dSとの比(dL/dS)が1.05以上1.50以下。
The manufacturing method of the carbon fiber bundle as described in any one of Claims 1-4 which satisfy | fills following (4) (5).
(4) The average unevenness Ra of the carbon fiber precursor acrylic fiber bundle is 5 nm or more and 70 nm or less.
(5) The ratio (dL / dS) of the major axis dL and minor axis dS of the fiber cross section in the direction perpendicular to the fiber axis of the single fiber constituting the carbon fiber precursor acrylic fiber bundle is 1.05 or more and 1.50. Less than.
JP2015041916A 2015-03-04 2015-03-04 Method for manufacturing carbon fiber bundle Pending JP2016160560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041916A JP2016160560A (en) 2015-03-04 2015-03-04 Method for manufacturing carbon fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041916A JP2016160560A (en) 2015-03-04 2015-03-04 Method for manufacturing carbon fiber bundle

Publications (1)

Publication Number Publication Date
JP2016160560A true JP2016160560A (en) 2016-09-05

Family

ID=56846315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041916A Pending JP2016160560A (en) 2015-03-04 2015-03-04 Method for manufacturing carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP2016160560A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151255A1 (en) * 2017-02-16 2018-08-23 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same
CN110447139A (en) * 2018-03-02 2019-11-12 住友电气工业株式会社 Redox flow batteries electrode, redox flow batteries unit and redox flow batteries
WO2020066653A1 (en) * 2018-09-28 2020-04-02 東レ株式会社 Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110300819B (en) * 2017-02-16 2022-06-07 三菱化学株式会社 Carbon fiber precursor acrylic fiber, carbon fiber, and processes for producing these
KR20210082564A (en) * 2017-02-16 2021-07-05 미쯔비시 케미컬 주식회사 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same
CN110300819A (en) * 2017-02-16 2019-10-01 三菱化学株式会社 Carbon fiber precursor acrylic series fiber, carbon fiber and their manufacturing method
JPWO2018151255A1 (en) * 2017-02-16 2019-11-07 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber, carbon fiber and method for producing them
US11959197B2 (en) 2017-02-16 2024-04-16 Mitsubishi Chemical Corporation Carbon fiber precursor acrylic fiber, carbon fiber, and method for producing same
WO2018151255A1 (en) * 2017-02-16 2018-08-23 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same
KR102385506B1 (en) 2017-02-16 2022-04-11 미쯔비시 케미컬 주식회사 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same
JP2021059834A (en) * 2017-02-16 2021-04-15 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber, carbon fiber, and production method of the same
KR20190103443A (en) * 2017-02-16 2019-09-04 미쯔비시 케미컬 주식회사 Carbon Fiber Precursor Acrylic Fibers, Carbon Fibers and Their Manufacturing Methods
KR102273974B1 (en) 2017-02-16 2021-07-06 미쯔비시 케미컬 주식회사 Carbon Fiber Precursor Acrylic Fibers, Carbon Fibers and Methods of Making Them
CN110447139B (en) * 2018-03-02 2022-06-14 住友电气工业株式会社 Electrode for redox flow battery, redox flow battery cell, and redox flow battery
EP3761423A4 (en) * 2018-03-02 2021-03-10 Sumitomo Electric Industries, Ltd. ELECTRODE FOR REDOX FLOW BATTERIES, REDOX FLOW BATTERY CELL AND REDOX FLOW BATTERY
AU2018260798B2 (en) * 2018-03-02 2023-08-17 Sumitomo Electric Industries, Ltd. Electrode for redox flow batteries, redox flow battery cell, and redox flow battery
CN110447139A (en) * 2018-03-02 2019-11-12 住友电气工业株式会社 Redox flow batteries electrode, redox flow batteries unit and redox flow batteries
WO2020066653A1 (en) * 2018-09-28 2020-04-02 東レ株式会社 Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle
JPWO2020066653A1 (en) * 2018-09-28 2021-08-30 東レ株式会社 Method for manufacturing flame-resistant fiber bundle and method for manufacturing carbon fiber bundle
JP7354840B2 (en) 2018-09-28 2023-10-03 東レ株式会社 Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles

Similar Documents

Publication Publication Date Title
TWI397626B (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same
JP2008063705A (en) Lubricant for acrylic fiber as carbon fiber precursor
JP2016160560A (en) Method for manufacturing carbon fiber bundle
JP5731908B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
JP4838595B2 (en) Carbon fiber bundle manufacturing method
JP2004211240A (en) Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
JP2005089884A (en) Method for producing carbon fiber precursor acrylic fiber bundle
TWI769513B (en) Carbon fiber manufacturing method and carbon fiber using the same
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP4942502B2 (en) Method for producing flame-resistant fiber bundle
JP2002266239A (en) Carbon fiber precursor acrylic fiber and method for producing the same and oil agent composition
JP2004149937A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2013060680A (en) Method for producing carbon fiber
JP2018145562A (en) Carbon fiber precursor acrylic fiber bundle and manufacturing method of carbon fiber bundle using the same
JP3479576B2 (en) Carbon fiber precursor acrylic fiber
JP2004169198A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2016166428A (en) Manufacturing method of carbon fiber bundle
JP2002371476A (en) Silicone oil solution for carbon fiber and method for producing carbon fiber
JP2010111957A (en) Carbon fiber, composite material, and method for producing carbon fiber
JP2011208290A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JP2018111891A (en) Method for producing carbon fiber bundle
JP4543931B2 (en) Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame resistant fiber, carbon fiber and method for producing the same
JP2007113141A (en) Method for producing carbon fiber precursor fiber bundle
JP2007332518A (en) Oil agent composition, carbon fiber precursor acrylic fiber bundle and its production method, and carbon fiber bundle
WO2023140212A1 (en) Carbon fiber bundle