[go: up one dir, main page]

JP2016155706A - Method for manufacturing free-standing substrate, substrate and free-standing substrate - Google Patents

Method for manufacturing free-standing substrate, substrate and free-standing substrate Download PDF

Info

Publication number
JP2016155706A
JP2016155706A JP2015034266A JP2015034266A JP2016155706A JP 2016155706 A JP2016155706 A JP 2016155706A JP 2015034266 A JP2015034266 A JP 2015034266A JP 2015034266 A JP2015034266 A JP 2015034266A JP 2016155706 A JP2016155706 A JP 2016155706A
Authority
JP
Japan
Prior art keywords
group iii
substrate
nitride semiconductor
iii nitride
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015034266A
Other languages
Japanese (ja)
Inventor
敏晴 松枝
Toshiharu Matsueda
敏晴 松枝
裕次郎 石原
Yujiro Ishihara
裕次郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2015034266A priority Critical patent/JP2016155706A/en
Publication of JP2016155706A publication Critical patent/JP2016155706A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce dislocation density on the surface of a joint body in a method capable of obtaining a joint body of group III nitride semiconductor crystals by growing a group III nitride semiconductor crystal on a base substrate having pieces of group III nitride semiconductor crystal adjacently arranged each other to join the group III nitride semiconductor crystals grown from each piece of the crystals.SOLUTION: A method for manufacturing a free-standing substrate comprises: a mask formation step S10 of covering a boundary part between adjacent crystal pieces on a first surface of a base substrate formed by arranging two or more pieces of group III nitride semiconductor crystal to expose a portion without having the boundary part and forming a mask including an insulation layer; and a growth step S20 of growing a group III nitride semiconductor from the exposed portion of the base substrate to form a group III nitride semiconductor layer.SELECTED DRAWING: Figure 1

Description

本発明は、自立基板の製造方法、基板、及び、自立基板に関する。   The present invention relates to a self-supporting substrate manufacturing method, a substrate, and a self-supporting substrate.

特許文献1に、III族窒化物半導体基板を製造する技術が開示されている。特許文献1に記載の技術では、{0001}面を主面とするIII族窒化物半導体母結晶から、{hk−(h+k)0}(hおよびkは整数)の主面を有する複数のIII族窒化物半導体結晶片を切り出す第1工程と、前記結晶片の[0001]方向が同一になるように、前記結晶片をそれぞれの主面の少なくとも一部で互いに接合してIII族窒化物半導体結晶の接合体を得る第2工程と、前記接合体に{0001}以外の任意に特定される{hk−(h+k)l}(h、kおよびlは整数)の主面を形成してIII族窒化物半導体結晶接合基板を得る第3工程と、を備える(特許文献1の図1等参照)。   Patent Document 1 discloses a technique for manufacturing a group III nitride semiconductor substrate. In the technique described in Patent Document 1, a plurality of IIIs having a principal surface of {hk− (h + k) 0} (h and k are integers) are generated from a group III nitride semiconductor mother crystal having a {0001} plane as a principal surface. The first step of cutting the group nitride semiconductor crystal piece and the group III nitride semiconductor by bonding the crystal pieces to each other at least at a part of their main surfaces so that the [0001] direction of the crystal piece is the same. A second step of obtaining a crystal bonded body, and forming a main surface of {hk− (h + k) l} (h, k, and l are integers) arbitrarily specified other than {0001} on the bonded body; A third step of obtaining a group nitride semiconductor crystal junction substrate (see FIG. 1 of Patent Document 1).

特開2010−13298号公報JP 2010-13298 A

本発明者らは、III族窒化物半導体の結晶片を互いに近接して並べた下地基板の上にIII族窒化物半導体結晶を成長させ、結晶片各々から成長したIII族窒化物半導体結晶どうしを接合してIII族窒化物半導体結晶の接合体を得る方法において、次のような課題を見出した。   The inventors have grown group III nitride semiconductor crystals on a base substrate in which group III nitride semiconductor crystal pieces are arranged close to each other, and group III nitride semiconductor crystals grown from each of the crystal pieces. The following problems have been found in a method of joining to obtain a joined body of a group III nitride semiconductor crystal.

下地基板において、結晶片どうしの境目部分は結晶が不連続となる。このような下地基板上に生成されるIII族窒化物半導体結晶の接合体は、この境目部分付近に欠陥が生じやすい。この欠陥は、III族窒化物半導体結晶の成長に従い接合体の厚さ方向に伝搬し、接合体の表面にまで達し得る。   In the base substrate, the crystal is discontinuous at the boundary between the crystal pieces. In such a group III nitride semiconductor crystal bonded body formed on the base substrate, defects are likely to occur near the boundary. This defect propagates in the thickness direction of the bonded body as the group III nitride semiconductor crystal grows, and can reach the surface of the bonded body.

このように、III族窒化物半導体の結晶片を互いに近接して並べた下地基板の上にIII族窒化物半導体結晶を成長させ、結晶片各々から成長したIII族窒化物半導体結晶どうしを接合してIII族窒化物半導体結晶の接合体を得る方法においては、接合体表面の転位密度が高くなるという問題がある。本発明は、当該方法において、接合体表面の転位密度を低減することを課題とする。   In this way, a group III nitride semiconductor crystal is grown on a base substrate in which group III nitride semiconductor crystal pieces are arranged close to each other, and the group III nitride semiconductor crystals grown from each of the crystal pieces are joined together. Thus, the method for obtaining a group III nitride semiconductor crystal bonded body has a problem of increasing the dislocation density on the surface of the bonded body. This invention makes it a subject to reduce the dislocation density of the conjugate | zygote surface in the said method.

本発明によれば、
複数のIII族窒化物半導体の結晶片を並べて構成した下地基板の第1の面上に、前記第1の面上における隣接する前記結晶片どうしの境界部を覆い、当該境界部が存在しない部分を露出させ、かつ、絶縁層を含むマスクを形成するマスク形成工程と、
前記マスク形成工程の後、前記下地基板の露出部分からIII族窒化物半導体を成長させ、III族窒化物半導体層を形成する成長工程と、
を有する自立基板の製造方法が実現される。
According to the present invention,
A portion where a boundary portion between adjacent crystal pieces on the first surface is covered on a first surface of a base substrate formed by arranging a plurality of group III nitride semiconductor crystal pieces and the boundary portion does not exist And forming a mask including an insulating layer, and exposing a mask,
After the mask formation step, grow a group III nitride semiconductor from the exposed portion of the base substrate, and a growth step of forming a group III nitride semiconductor layer,
A method for manufacturing a self-supporting substrate having the above is realized.

また、本発明によれば、
複数のIII族窒化物半導体の結晶片を並べて構成した下地基板と、
前記下地基板の第1の面上に位置し、前記第1の面上における隣接する前記結晶片どうしの境界部を覆い、当該境界部が存在しない部分を露出させ、かつ、絶縁層を含むマスクと、
を有する基板が実現される。
Moreover, according to the present invention,
A base substrate configured by arranging a plurality of group III nitride semiconductor crystal pieces;
A mask located on the first surface of the base substrate, covering a boundary portion between adjacent crystal pieces on the first surface, exposing a portion where the boundary portion does not exist, and including an insulating layer When,
Is realized.

また、本発明によれば、
前記基板と、
前記基板の上に位置するIII族窒化物半導体層と、
を有する自立基板が実現される。
Moreover, according to the present invention,
The substrate;
A group III nitride semiconductor layer located on the substrate;
A self-supporting substrate having is realized.

本発明によれば、III族窒化物半導体の結晶片を互いに近接して並べた下地基板の上にIII族窒化物半導体結晶を成長させ、結晶片各々から成長したIII族窒化物半導体結晶どうしを接合してIII族窒化物半導体結晶の接合体を得る方法において、接合体表面の転位密度を低減することができる。   According to the present invention, a group III nitride semiconductor crystal is grown on a base substrate in which group III nitride semiconductor crystal pieces are arranged close to each other, and group III nitride semiconductor crystals grown from each of the crystal pieces are separated. In the method of bonding and obtaining a group III nitride semiconductor crystal bonded body, the dislocation density on the surface of the bonded body can be reduced.

本実施形態の自立基板の製造方法の処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process of the manufacturing method of the self-supporting substrate of this embodiment. 本実施形態の下地基板の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the base substrate of this embodiment. 本実施形態の下地基板の一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of the base substrate of this embodiment. 本実施形態の下地基板の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the base substrate of this embodiment. 本実施形態の下地基板の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the base substrate of this embodiment. 本実施形態の下地基板上にマスクを形成した様子の一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of a mode that the mask was formed on the base substrate of this embodiment. 本実施形態の下地基板上にマスクを形成した様子の一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of a mode that the mask was formed on the base substrate of this embodiment. HVPE装置の模式図である。It is a schematic diagram of an HVPE apparatus. 本実施形態の下地基板上にマスク越しにIII族窒化物半導体層を形成した様子の一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of a mode that the group III nitride semiconductor layer was formed over the mask on the base substrate of this embodiment. 本実施形態の下地基板上にマスク越しにIII族窒化物半導体層を形成した様子の一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of a mode that the group III nitride semiconductor layer was formed over the mask on the base substrate of this embodiment. 本実施形態の自立基板の製造方法の処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process of the manufacturing method of the self-supporting substrate of this embodiment. 本実施形態の自立基板の製造方法の処理の流れの一例を示す製造工程図である。It is a manufacturing process figure which shows an example of the flow of a process of the manufacturing method of the self-supporting board | substrate of this embodiment. 本実施形態の自立基板の製造方法の処理の流れの一例を示す製造工程図である。It is a manufacturing process figure which shows an example of the flow of a process of the manufacturing method of the self-supporting board | substrate of this embodiment. 本実施形態の自立基板の製造方法の処理の流れの一例を示す製造工程図である。It is a manufacturing process figure which shows an example of the flow of a process of the manufacturing method of the self-supporting board | substrate of this embodiment. 本実施形態の自立基板の製造方法の処理の流れの一例を示す製造工程図である。It is a manufacturing process figure which shows an example of the flow of a process of the manufacturing method of the self-supporting board | substrate of this embodiment. 本実施形態の自立基板の製造方法の処理の流れの一例を示す製造工程図である。It is a manufacturing process figure which shows an example of the flow of a process of the manufacturing method of the self-supporting board | substrate of this embodiment. 本実施形態の自立基板の製造方法の処理の流れの一例を示す製造工程図である。It is a manufacturing process figure which shows an example of the flow of a process of the manufacturing method of the self-supporting board | substrate of this embodiment. 本実施形態の自立基板の製造方法の処理の流れの一例を示す製造工程図である。It is a manufacturing process figure which shows an example of the flow of a process of the manufacturing method of the self-supporting board | substrate of this embodiment.

以下、本発明の自立基板の製造方法の実施形態について図面を用いて説明する。なお、図はあくまで発明の構成を説明するための概略図であり、各部材の大きさ、形状、数、異なる部材の大きさの比率などは図示するものに限定されない。   Hereinafter, an embodiment of a method for manufacturing a self-supporting substrate of the present invention will be described with reference to the drawings. The drawings are only schematic diagrams for explaining the configuration of the invention, and the size, shape, number, and ratio of different member sizes are not limited to those shown in the drawings.

<第1の実施形態>
まず、本実施形態の概要について説明する。本実施形態の自立基板の製造方法では、複数のIII族窒化物半導体の結晶片を互いに近接して並べて下地基板を構成した後、当該下地基板の成長面(第1の面)上に絶縁層を含むマスクを形成する。マスクは、当該成長面上における隣接する結晶片どうしの境界部を覆い、当該境界部が存在しない部分を露出させるようなパターンに形成される。その後、当該下地基板の露出部分からIII族窒化物半導体をエピタキシャル成長させる。すると、各露出部分から成長したIII族窒化物半導体結晶どうしが接合し、III族窒化物半導体層を形成する。
<First Embodiment>
First, an outline of the present embodiment will be described. In the self-supporting substrate manufacturing method of the present embodiment, a plurality of group III nitride semiconductor crystal pieces are arranged close to each other to form a base substrate, and then an insulating layer is formed on the growth surface (first surface) of the base substrate. Forming a mask containing The mask is formed in a pattern that covers a boundary portion between adjacent crystal pieces on the growth surface and exposes a portion where the boundary portion does not exist. Thereafter, a group III nitride semiconductor is epitaxially grown from the exposed portion of the base substrate. Then, the group III nitride semiconductor crystals grown from the exposed portions are joined together to form a group III nitride semiconductor layer.

次に、本実施形態の自立基板の製造方法について詳細に説明する。図1は、本実施形態の自立基板の製造方法の処理の流れの一例を示すフローチャートである。図示するように、本実施形態の自立基板の製造方法は、マスク形成工程S10と、成長工程S20とを有する。   Next, the manufacturing method of the self-supporting substrate of this embodiment will be described in detail. FIG. 1 is a flowchart showing an example of a processing flow of the method for manufacturing a self-supporting substrate according to the present embodiment. As shown in the figure, the method for manufacturing a self-supporting substrate according to the present embodiment includes a mask formation step S10 and a growth step S20.

マスク形成工程S10では、複数のIII族窒化物半導体の結晶片を並べて構成した下地基板の成長面(第1の面)上に、成長面上における隣接する結晶片どうしの境界部を覆い、当該境界部が存在しない部分を露出させ、かつ、絶縁層を含むマスクを形成する。   In the mask formation step S10, a boundary surface between adjacent crystal pieces on the growth surface is covered on the growth surface (first surface) of the base substrate formed by arranging a plurality of group III nitride semiconductor crystal pieces, A portion including no boundary portion is exposed, and a mask including an insulating layer is formed.

まず、下地基板について説明する。図2に、下地基板10の平面模式図の一例を示す。図示する下地基板10は、平面形状が長方形である6つの結晶片11を、長手方向が互いに平行になるように互いに接する状態(一部に隙間が存在してもよい)で並べて構成されている。なお、図示されている面が下地基板10の成長面である。   First, the base substrate will be described. FIG. 2 shows an example of a schematic plan view of the base substrate 10. The base substrate 10 shown in the figure is configured by arranging six crystal pieces 11 having a rectangular planar shape in contact with each other so that their longitudinal directions are parallel to each other (a gap may exist in part). . The illustrated surface is a growth surface of the base substrate 10.

図3に、図2の下地基板10の側面模式図の一例を示す。図3は、図2の下地基板10を図中下から上方向に観察した様子を示す。   FIG. 3 shows an example of a schematic side view of the base substrate 10 of FIG. FIG. 3 shows a state where the base substrate 10 of FIG. 2 is observed from the bottom to the top in the drawing.

図4に、下地基板10の平面模式図の他の一例を示す。図示する下地基板10は、平面形状が長方形である6つの結晶片11を、長手方向が互いに平行になるように、互いの間に隙間をおいて、並べて構成されている。図示する例では、隙間は空気等が存在する空間となっているが、隣接する結晶片11どうしを接合する接着剤等により隙間が形成されていてもよい。なお、図示されている面が下地基板10の成長面である。   FIG. 4 shows another example of a schematic plan view of the base substrate 10. The base substrate 10 shown in the figure is configured by arranging six crystal pieces 11 having a rectangular planar shape with a gap therebetween so that their longitudinal directions are parallel to each other. In the illustrated example, the gap is a space where air or the like exists, but the gap may be formed by an adhesive or the like that joins adjacent crystal pieces 11 together. The illustrated surface is a growth surface of the base substrate 10.

図5に、下地基板10の平面模式図の他の一例を示す。図示する下地基板10は、平面形状が平行四辺形である複数の結晶片11を、互いに接する状態(一部に隙間が存在してもよい)で並べて構成されている。なお、図示されている面が下地基板10の成長面である。   FIG. 5 shows another example of a schematic plan view of the base substrate 10. The illustrated base substrate 10 is configured by arranging a plurality of crystal pieces 11 whose plane shape is a parallelogram in contact with each other (a gap may exist in part). The illustrated surface is a growth surface of the base substrate 10.

結晶片11は、III族窒化物半導体基板の破片であってもよいし、所望の大きさまで成長しなかったIII族窒化物半導体のかけらであってもよいし、所定形状のIII族窒化物半導体基板からワイヤソー等を利用して切り出したものであってもよいし、または、このようにして得られた小片を加工(研磨等)して所望の面を露出させたものであってもよい。なお、1つの下地基板10を構成する複数の結晶片11は、同種のIII族窒化物半導体で構成されるのが好ましい。   The crystal piece 11 may be a fragment of a group III nitride semiconductor substrate, a fragment of a group III nitride semiconductor that has not grown to a desired size, or a group III nitride semiconductor having a predetermined shape. It may be one cut out from the substrate using a wire saw or the like, or may be one obtained by processing (polishing or the like) the small piece thus obtained to expose a desired surface. The plurality of crystal pieces 11 constituting one base substrate 10 are preferably made of the same group III nitride semiconductor.

複数の結晶片11は、略同じ面方位(多少のズレが存在してもよい)の露出面を有する。そして、当該露出面が略同じ方向(多少のズレが存在してもよい)を向いて、下地基板10の成長面(図2、図4及び図5に示されている面)を形成している。なお、複数の結晶片11は結晶の向きが揃うように(任意の結晶軸の向きが同一となるように)並べられるのが好ましいが、多少のズレが存在してもよい。   The plurality of crystal pieces 11 have exposed surfaces having substantially the same plane orientation (a slight deviation may exist). Then, the exposed surface is directed in substantially the same direction (there may be some deviation) to form a growth surface of the base substrate 10 (the surface shown in FIGS. 2, 4 and 5). Yes. The plurality of crystal pieces 11 are preferably arranged so that the directions of the crystals are aligned (so that the directions of arbitrary crystal axes are the same), but there may be some deviation.

結晶片11どうしは互いに接合していてもよいし、接合していなくてもよい。接合手段としては、例えば、(1)結晶片11どうしの接合面にセラミック接着剤やカーボン接着剤等の接着剤を介在させる方法、(2)結晶片11の接合面に金属(Au/Ti等)を蒸着させた状態で他の結晶片11と当接させ、その後加熱して融着させる方法、(3)真空中で原子やイオンの照射を行うことで結晶片11の接合面を活性化させた後、活性化された接合面どうしを当接させて接合する方法、(4)下地基板10の成長面と異なる面側に複数の結晶片11に跨る接合層を形成する方法等が考えられるが、これらに限定されない。なお、複数の結晶片11どうしを接合しない場合は、所定の載置台に複数の結晶片11を並べて配置し、必要に応じて所定の手段で固定することで、下地基板10が準備される。   The crystal pieces 11 may be bonded to each other or may not be bonded. As the joining means, for example, (1) a method in which an adhesive such as a ceramic adhesive or a carbon adhesive is interposed between the joining surfaces of the crystal pieces 11, and (2) a metal (Au / Ti or the like) on the joining surface of the crystal pieces 11. ) In contact with another crystal piece 11 in a deposited state, and then heated and fused. (3) Activate the bonding surface of the crystal piece 11 by irradiating atoms and ions in a vacuum. And a method of bonding the activated bonding surfaces by bringing them into contact with each other, and (4) a method of forming a bonding layer straddling the plurality of crystal pieces 11 on a surface side different from the growth surface of the base substrate 10. However, it is not limited to these. In the case where the plurality of crystal pieces 11 are not joined together, the base substrate 10 is prepared by arranging the plurality of crystal pieces 11 side by side on a predetermined mounting table and fixing them with predetermined means as necessary.

なお、複数の結晶片11の平面形状、大きさ、厚さ、数等は例示したものに限定されない。複数の結晶片11の平面形状は同じであってもよいし、ばらついてもよい。また、複数の結晶片11の厚さは同じであってもよいし、ばらついてもよい。結晶片11の厚さ(下地基板10の厚さ)は、例えば、200μm以上2000μm以下である。   The planar shape, size, thickness, number, etc. of the plurality of crystal pieces 11 are not limited to those illustrated. The planar shapes of the plurality of crystal pieces 11 may be the same or may vary. Further, the thickness of the plurality of crystal pieces 11 may be the same or may vary. The thickness of the crystal piece 11 (thickness of the base substrate 10) is, for example, not less than 200 μm and not more than 2000 μm.

境界部12は、下地基板10の成長面上に現れる。結晶片11どうしの間に存在する境界線や隙間が、境界部12となる。複数の結晶片11を並べて構成される下地基板10は、このような境界部12において結晶が不連続となる。   The boundary portion 12 appears on the growth surface of the base substrate 10. A boundary line or a gap existing between the crystal pieces 11 becomes the boundary portion 12. In the base substrate 10 configured by arranging a plurality of crystal pieces 11, crystals are discontinuous at such a boundary portion 12.

図1に戻り、マスク形成工程S10では、上述した下地基板10の成長面上に、成長面上における境界部12の少なくとも一部(例えば全部)を覆い、当該境界部12が存在しない部分の少なくとも一部を露出させるマスクを形成する。マスクは、例えば、SiO、SiN等の誘電体を含んで構成される。例えば、マスクは誘電体からなる。この様な誘電体マスクでGaN表面の一部を覆った場合、マスク上では核形成が行われず、露出したGaN表面からのみ成長が起こり、所謂ELO(Epitaxial Lateral Overgrowth)成長が行われる。 Returning to FIG. 1, in the mask formation step S <b> 10, at least a part (for example, all) of the boundary portion 12 on the growth surface is covered on the growth surface of the base substrate 10 described above, and at least a portion where the boundary portion 12 does not exist. A mask for exposing a part is formed. For example, the mask includes a dielectric such as SiO 2 or SiN. For example, the mask is made of a dielectric. When a part of the GaN surface is covered with such a dielectric mask, nucleation is not performed on the mask, but growth occurs only from the exposed GaN surface, and so-called ELO (Epitaxial Lateral Overgrowth) growth is performed.

このようなパターンのマスクを形成する手段としては、フォトリソグラフィを利用する手法の他、以下の実施形態で説明する手法等を利用することができる。   As means for forming a mask having such a pattern, in addition to a technique using photolithography, a technique described in the following embodiments can be used.

図6及び図7に、下地基板10上にマスク20を形成した側面模式図の一例を示す。図6は、図2及び図3に示す下地基板10上にマスク20を形成した状態に相当する。図7は、図4に示す下地基板10上にマスク20を形成した状態に相当する。なお、図7において結晶片11どうしの隙間にマスク20が存在しないが、当該隙間にマスク20の一部が侵入してもよい。   FIG. 6 and FIG. 7 show an example of a schematic side view in which the mask 20 is formed on the base substrate 10. FIG. 6 corresponds to a state in which the mask 20 is formed on the base substrate 10 shown in FIGS. FIG. 7 corresponds to a state in which the mask 20 is formed on the base substrate 10 shown in FIG. In FIG. 7, the mask 20 does not exist in the gap between the crystal pieces 11, but a part of the mask 20 may enter the gap.

マスク20の厚さは、例えば、50nm以上1000nm以下、好ましくは80nm以上200nm以下である。また、マスク20の幅Lは、例えば1μm以上500μm以下、好ましくは10μm以上100μm以下である。   The thickness of the mask 20 is, for example, 50 nm to 1000 nm, preferably 80 nm to 200 nm. The width L of the mask 20 is, for example, 1 μm or more and 500 μm or less, preferably 10 μm or more and 100 μm or less.

マスク20をこのように構成すると、以下の成長工程S20で下地基板10の露出部分から成長させるIII族窒化物半導体に、下地基板10の境界部12付近の状態が受け継がれにくくなる。結果、当該III族窒化物半導体からなるIII族窒化物半導体層において、境界部12付近での転位の発生を軽減することができる。また、下地基板10の露出部分から成長したIII族窒化物半導体がマスク20の幅方向に進み、逆方向から成長してきたIII族窒化物半導体とぶつかって互いに接合することとなるが、そこで転位の伝搬を停止させることができる。結果、以下の成長工程S20で生成されるIII族窒化物半導体層の露出面における転位の数を少なくすることができる。   When the mask 20 is configured in this way, the state in the vicinity of the boundary portion 12 of the base substrate 10 is not easily inherited by the group III nitride semiconductor grown from the exposed portion of the base substrate 10 in the following growth step S20. As a result, in the group III nitride semiconductor layer made of the group III nitride semiconductor, the occurrence of dislocations in the vicinity of the boundary portion 12 can be reduced. Further, the group III nitride semiconductor grown from the exposed portion of the base substrate 10 advances in the width direction of the mask 20 and collides with the group III nitride semiconductor grown from the opposite direction, and is bonded to each other. Propagation can be stopped. As a result, the number of dislocations on the exposed surface of the group III nitride semiconductor layer generated in the following growth step S20 can be reduced.

なお、下地基板10の露出部分の幅Hは、例えば、10μm以上3000μm以下、好ましくは300μm以上600μm以下である。   The width H of the exposed portion of the base substrate 10 is, for example, 10 μm or more and 3000 μm or less, preferably 300 μm or more and 600 μm or less.

図1に戻り、マスク形成工程S10の後に行われる成長工程S20では、下地基板10の露出部分からIII族窒化物半導体をエピタキシャル成長させる。露出部分から成長したIII族窒化物半導体は、マスク20上を横方向に進んで成長を続け、他の方向から成長してきたIII族窒化物半導体と接合する。このようにして、下地基板10上に一続きのIII族窒化物半導体層が形成される。当該工程で成長させるIII族窒化物半導体は、GaNである。   Returning to FIG. 1, in the growth step S <b> 20 performed after the mask formation step S <b> 10, the group III nitride semiconductor is epitaxially grown from the exposed portion of the base substrate 10. The group III nitride semiconductor grown from the exposed portion proceeds on the mask 20 in the lateral direction and continues to grow, and joins with the group III nitride semiconductor grown from the other direction. In this way, a continuous group III nitride semiconductor layer is formed on the base substrate 10. The group III nitride semiconductor grown in this process is GaN.

エピタキシャル成長の具体例は特段制限されず、MOVPE(Metal Organic Vapor Phase Epitaxy)、HVPE(Hydride Vapor Phase Epitaxy)、MBE(Molecular Beam Epitaxy)、LPE(Liquid Phase Epitaxy)等を利用できる。   Specific examples of the epitaxial growth are not particularly limited, and MOVPE (Metal Organic Vapor Phase Epitaxy), HVPE (Hydride Vapor Phase Epitaxy), MBE (Molecular Beam Epitaxy), LPE (Liquid Phase Epitaxy) and the like can be used.

ここで、図8を用いて、ハイドライド気相成長(HVPE)装置100でGaNをエピタキシャル成長させる一例を説明する。   Here, an example of epitaxially growing GaN with the hydride vapor phase epitaxy (HVPE) apparatus 100 will be described with reference to FIG.

図示するHVPE装置100は、反応管121と、反応管121内に設けられている基板ホルダ123とを備える。基板ホルダ123には下地基板141(上述した下地基板10)が保持される。また、HVPE装置100は、III族原料ガスを反応管121内に供給するIII族原料ガス供給部139と、窒素原料ガスを反応管121内に供給する窒素原料ガス供給部137とを備える。さらに、HVPE装置100は、ガス排出管135と、ヒータ129、130とを備える。   The illustrated HVPE apparatus 100 includes a reaction tube 121 and a substrate holder 123 provided in the reaction tube 121. The substrate holder 123 holds the base substrate 141 (the base substrate 10 described above). The HVPE apparatus 100 includes a group III source gas supply unit 139 that supplies a group III source gas into the reaction tube 121 and a nitrogen source gas supply unit 137 that supplies a nitrogen source gas into the reaction tube 121. Further, the HVPE apparatus 100 includes a gas exhaust pipe 135 and heaters 129 and 130.

基板ホルダ123は、反応管121の下流側に回転軸132により回転自在に設けられている。ガス排出管135は、反応管121のうち基板ホルダ123の下流側に設けられている。   The substrate holder 123 is rotatably provided on the downstream side of the reaction tube 121 by a rotation shaft 132. The gas discharge pipe 135 is provided on the downstream side of the substrate holder 123 in the reaction pipe 121.

III族原料ガス供給部139は、ガス供給管126とソースボート128とIII族(Ga)原料127と反応管121のうち遮蔽板136の下の層とを含む。   The group III source gas supply unit 139 includes a gas supply pipe 126, a source boat 128, a group III (Ga) source 127, and a layer below the shielding plate 136 among the reaction tubes 121.

窒素原料ガス供給部137は、ガス供給管124と反応管121のうち遮蔽板136の上の層とを含む。   The nitrogen source gas supply unit 137 includes a gas supply pipe 124 and a layer on the shielding plate 136 in the reaction pipe 121.

III族原料ガス供給部139は、III族原子のハロゲン化物(たとえば、GaCl)を生成し、これを基板ホルダ123に保持された下地基板141の表面に供給する。   The group III source gas supply unit 139 generates a halide of group III atoms (for example, GaCl) and supplies it to the surface of the base substrate 141 held by the substrate holder 123.

ガス供給管126の供給口は、III族原料ガス供給部139内の上流側に配置されている。このため、供給されたハロゲン化水素ガス(たとえば、HClガス)は、III族原料ガス供給部139内でソースボート128中のIII族原料127と接触するようになっている。   The supply port of the gas supply pipe 126 is arranged on the upstream side in the group III source gas supply unit 139. For this reason, the supplied hydrogen halide gas (for example, HCl gas) comes into contact with the group III source material 127 in the source boat 128 in the group III source gas supply unit 139.

これにより、ガス供給管126から供給されるハロゲン含有ガスは、ソースボート128中のIII族原料127の表面または揮発したIII族分子と接触し、III族分子をハロゲン化してIII族のハロゲン化物を含むIII族原料ガスを生成する。なお、このIII族原料ガス供給部139の周囲にはヒータ129が配置され、III族原料ガス供給部139内は、たとえば800〜900℃程度の温度に維持される。   Thereby, the halogen-containing gas supplied from the gas supply pipe 126 comes into contact with the surface of the group III raw material 127 in the source boat 128 or the volatilized group III molecule, and the group III molecule is halogenated to form a group III halide. A Group III source gas is produced. A heater 129 is disposed around the group III source gas supply unit 139, and the inside of the group III source gas supply unit 139 is maintained at a temperature of about 800 to 900 ° C., for example.

反応管121の上流側は、遮蔽板136により2つの層に区画されている。図中の遮蔽板136の上側に位置する窒素原料ガス供給部137中を、ガス供給管124から供給されたアンモニアが通過し、熱により分解が促進される。なお、この窒素原料ガス供給部137の周囲にはヒータ129が配置され、窒素原料ガス供給部137内は、たとえば800〜900℃程度の温度に維持される。   The upstream side of the reaction tube 121 is divided into two layers by a shielding plate 136. Ammonia supplied from the gas supply pipe 124 passes through the nitrogen source gas supply unit 137 located on the upper side of the shielding plate 136 in the drawing, and decomposition is accelerated by heat. A heater 129 is disposed around the nitrogen source gas supply unit 137, and the nitrogen source gas supply unit 137 is maintained at a temperature of about 800 to 900 ° C., for example.

図中の右側に位置する成長領域122には、基板ホルダ123に保持された下地基板141が配置され、この成長領域122内でGaN等のIII族窒化物半導体の成長が行われる。この成長領域122の周囲にはヒータ130が配置され、成長領域122内は、たとえば1000℃〜1050℃程度の温度に維持される。   In the growth region 122 located on the right side in the figure, the base substrate 141 held by the substrate holder 123 is disposed, and a group III nitride semiconductor such as GaN is grown in the growth region 122. A heater 130 is disposed around the growth region 122, and the inside of the growth region 122 is maintained at a temperature of about 1000 ° C. to 1050 ° C., for example.

以下、成長条件の一例を示す。   Hereinafter, an example of the growth conditions is shown.

成長領域122の温度: 1040℃
III族原料ガス供給部139の温度: 850℃
III族原料ガス供給部139のHCLガス流量: マスク上での結晶会合まで50cc/min、会合後200cc/min
窒素原料ガス供給部137のアンモニアガス流量: 2000cc/min
キャリアガス: H
全ガス流量: 10L/min
Temperature of the growth region 122: 1040 ° C.
Temperature of group III source gas supply unit 139: 850 ° C.
HCL gas flow rate of group III source gas supply unit 139: 50 cc / min until crystal association on mask, 200 cc / min after association
Ammonia gas flow rate of the nitrogen source gas supply unit 137: 2000 cc / min
Carrier gas: H 2
Total gas flow: 10L / min

ここで、図9及び図10に、下地基板10上にマスク20越しにIII族窒化物半導体層30を生成した状態の側面模式図の一例を示す。本実施形態では、図9及び図10に示すように、下地基板10上にマスク20越しにIII族窒化物半導体層30を生成した積層体を、自立基板とすることができる。また、当該積層体から、研磨等により下地基板10及びマスク20を除去することで得られたIII族窒化物半導体層30を自立基板とすることができる。また、当該積層体に含まれるIII族窒化物半導体層30から一部を切り出し、自立基板とすることができる。   Here, FIG. 9 and FIG. 10 show an example of a schematic side view of a state in which the group III nitride semiconductor layer 30 is generated over the mask 20 on the base substrate 10. In the present embodiment, as shown in FIGS. 9 and 10, the stacked body in which the group III nitride semiconductor layer 30 is generated on the base substrate 10 through the mask 20 can be used as a self-supporting substrate. In addition, the group III nitride semiconductor layer 30 obtained by removing the base substrate 10 and the mask 20 from the stacked body by polishing or the like can be used as a free-standing substrate. Moreover, a part can be cut out from the group III nitride semiconductor layer 30 included in the stacked body to form a self-supporting substrate.

以上説明した本実施形態では、III族窒化物半導体の結晶片を互いに近接して並べた下地基板の上にIII族窒化物半導体結晶を成長させ、結晶片各々から成長したIII族窒化物半導体結晶どうしを接合してIII族窒化物半導体結晶の接合体を得る方法において、結晶片どうしの境界部をマスクで覆った状態で下地基板上にIII族窒化物半導体結晶を成長させるという特徴を有する。   In the present embodiment described above, a group III nitride semiconductor crystal is grown from each crystal piece by growing a group III nitride semiconductor crystal on a base substrate in which group III nitride semiconductor crystal pieces are arranged close to each other. The method for obtaining a joined group of group III nitride semiconductor crystals by joining together has a feature that a group III nitride semiconductor crystal is grown on a base substrate in a state where the boundary between crystal pieces is covered with a mask.

下地基板の境界部は結晶が不連続となるため、その上にエピタキシャル成長させるIII族窒化物半導体結晶に欠陥が発生しやすい。結晶片どうしの境界部をマスクで覆った状態で下地基板上にIII族窒化物半導体結晶をエピタキシャル成長させる本実施形態によれば、下地基板の境界部付近の状態が、下地基板上にエピタキシャル成長されるIII族窒化物半導体結晶に受け継がれにくくなる。結果、当該III族窒化物半導体結晶における転位の発生を抑制できる。結果、当該III族窒化物半導体結晶からなる層の表面における転位の数を抑制できる。   Since the crystal becomes discontinuous at the boundary portion of the base substrate, defects are likely to occur in the group III nitride semiconductor crystal epitaxially grown thereon. According to the present embodiment in which a group III nitride semiconductor crystal is epitaxially grown on a base substrate with the boundary between crystal pieces covered with a mask, the state near the boundary of the base substrate is epitaxially grown on the base substrate. It becomes difficult for the group III nitride semiconductor crystal to inherit. As a result, generation of dislocations in the group III nitride semiconductor crystal can be suppressed. As a result, the number of dislocations on the surface of the layer made of the group III nitride semiconductor crystal can be suppressed.

また、下地基板の露出部分から成長したIII族窒化物半導体がマスクの幅方向に進み、逆方向から成長してきたIII族窒化物半導体とぶつかって互いに接合することとなるが、そこで転位の伝搬を停止させることができる。結果、下地基板の上に生成されるIII族窒化物半導体層の露出面における転位の数を少なくすることができる。   In addition, the group III nitride semiconductor grown from the exposed portion of the base substrate advances in the width direction of the mask and collides with the group III nitride semiconductor grown from the opposite direction, and joins each other. Can be stopped. As a result, the number of dislocations on the exposed surface of the group III nitride semiconductor layer generated on the base substrate can be reduced.

<第2の実施形態>
本実施形態では、フォトリソグラフィを利用せずにマスク20を形成する点で、第1の実施形態と異なる。以下、詳細に説明する。
<Second Embodiment>
This embodiment is different from the first embodiment in that the mask 20 is formed without using photolithography. Details will be described below.

図11は、本実施形態の自立基板の製造方法の処理の流れの一例を示すフローチャートである。図示するように、本実施形態の自立基板の製造方法は、準備工程S1と、マスク形成工程S10と、成長工程S20とを有する。マスク形成工程S10は、第1の工程S1と第2の工程S12とを有する。   FIG. 11 is a flowchart showing an example of a processing flow of the method for manufacturing a self-supporting substrate of the present embodiment. As shown in the figure, the method for manufacturing a self-supporting substrate of this embodiment includes a preparation step S1, a mask formation step S10, and a growth step S20. The mask forming step S10 includes a first step S1 and a second step S12.

準備工程S1では、下地基板10を用意する。下地基板10は、複数のIII族窒化物半導体の結晶片11を並べて構成される。そして、当該工程で準備される下地基板10は、成長面(第1の面)に凹部及び凸部を有し、成長面上における隣接する結晶片11どうしの境界部12が凹部の底に位置する。以下、準備工程S1の一例を説明する。   In the preparation step S1, the base substrate 10 is prepared. The base substrate 10 is configured by arranging a plurality of group III nitride semiconductor crystal pieces 11. The base substrate 10 prepared in this step has a recess and a protrusion on the growth surface (first surface), and the boundary portion 12 between adjacent crystal pieces 11 on the growth surface is located at the bottom of the recess. To do. Hereinafter, an example of the preparation step S1 will be described.

まず、図12及び図13に示すように、{0001}面を露出面とするIII族窒化物半導体の結晶から複数の結晶片11を切り出す。切り出す方法は特段制限されず、バンドソー、内周刃、外周刃などを用いて結晶片11を切出してもよいし、劈開面で劈開することで結晶片11を切出してもよい。   First, as shown in FIGS. 12 and 13, a plurality of crystal pieces 11 are cut out from a group III nitride semiconductor crystal having a {0001} plane as an exposed surface. The cutting method is not particularly limited, and the crystal piece 11 may be cut using a band saw, an inner peripheral blade, an outer peripheral blade, or the like, or may be cut by cleaving on a cleavage plane.

結晶片11が切出されるIII族窒化物半導体の結晶は、例えば平面形状が略円形であり、厚さがD1である。なお、III族窒化物半導体の結晶の露出面は{0001}面以外の面であってもよい。また、III族窒化物半導体の結晶の平面形状はその他の形状であってもよい。   The group III nitride semiconductor crystal from which the crystal piece 11 is cut has, for example, a substantially circular planar shape and a thickness D1. The exposed surface of the group III nitride semiconductor crystal may be a surface other than the {0001} plane. The planar shape of the group III nitride semiconductor crystal may be other shapes.

このようなIII族窒化物半導体の結晶から、m軸方向に延伸する複数の結晶片11がストライプ状に切り出される。切断面は、[0001]方向(c軸方向)及びm軸方向と平行である。切断面と{0001}面とのなす角α1は90°である。なお、α1は、90°と異なる角度であってもよい。α1を適切に調整することで、切断面に所望の面を露出させることができる。   A plurality of crystal pieces 11 extending in the m-axis direction are cut out in stripes from such a group III nitride semiconductor crystal. The cut surface is parallel to the [0001] direction (c-axis direction) and the m-axis direction. The angle α1 formed by the cut surface and the {0001} plane is 90 °. Α1 may be an angle different from 90 °. By appropriately adjusting α1, a desired surface can be exposed to the cut surface.

次に、このようにして得られた複数の結晶片11を、図14に示すように所定の面の少なくとも一部どうしが互いに接した状態で並べて接合する。結晶片11どうしの接合は、例えば、+c面と−c面どうしを互いに当接させてもよいし、又は、結晶片11を切り出す際の切断面どうしを互いに当接させてもよい。   Next, the plurality of crystal pieces 11 obtained in this way are joined side by side with at least a part of predetermined surfaces in contact with each other as shown in FIG. For joining the crystal pieces 11, for example, the + c plane and the −c plane may be brought into contact with each other, or the cut surfaces when the crystal pieces 11 are cut out may be brought into contact with each other.

結晶片11どうしの接合手段としては、(1)結晶片11どうしの界面にセラミック接着剤やカーボン接着剤等の接着剤を介在させる方法、(2)結晶片11の接合面に金属(Au/Ti等)を蒸着させた状態で結晶片11どうしを当接させ、その後加熱して融着させる方法、(3)真空中で原子やイオンの照射を行うことで結晶片11の接合面を活性化させた後、活性化された接合面どうしを当接させて接合する方法、(4)複数の結晶片11を互いの接合面の少なくとも一部が互いに対向するように重ね合わせた後、側面に接着剤等を塗布することで複数の結晶片11を互いに接着等して固定する方法等が考えられるが、これらに限定されない。   As the means for joining the crystal pieces 11, (1) a method of interposing an adhesive such as a ceramic adhesive or a carbon adhesive at the interface between the crystal pieces 11, and (2) a metal (Au / Au) on the joint surface of the crystal pieces 11 A method in which the crystal pieces 11 are brought into contact with each other in a state in which Ti or the like is vapor-deposited, and then heated and fused. (3) The bonding surface of the crystal pieces 11 is activated by irradiation with atoms and ions in a vacuum. (4) A method in which a plurality of crystal pieces 11 are overlapped so that at least a part of each of the bonding surfaces face each other, and then the side surfaces are joined. A method of fixing the plurality of crystal pieces 11 by adhering them to each other by applying an adhesive or the like to the surface is conceivable, but is not limited thereto.

図14に示すように、複数の結晶片11は、互いに当接する接合面が所定角度β傾いた状態で互いに接合される。例えば、図示するように、台40を利用することで当該接合が実現される。台40は、水平な所定の設置面50に、底面41が接した状態で設置される。台40は、底面41とのなす角がβである斜面42を有する。図示するように、このような台40の斜面42にもたれかかる状態で複数の結晶片11を互いに接合することで、上述のような接合が実現される。本実施形態では、図14の状態の接合体を下地基板10とする。なお、下地基板10の側面や裏面(成長面と反対側の面)を研磨などし、平坦化、形状の調整等を行ってもよい。   As shown in FIG. 14, the plurality of crystal pieces 11 are joined to each other in a state in which the joining surfaces in contact with each other are inclined by a predetermined angle β. For example, as shown in the figure, the joining is realized by using a table 40. The base 40 is installed in a state where the bottom surface 41 is in contact with a predetermined horizontal installation surface 50. The base 40 has a slope 42 whose angle formed with the bottom surface 41 is β. As shown in the drawing, the above-described joining is realized by joining a plurality of crystal pieces 11 to each other while leaning against the inclined surface 42 of the table 40. In the present embodiment, the bonded body in the state shown in FIG. In addition, the side surface and the back surface (surface opposite to the growth surface) of the base substrate 10 may be polished to perform planarization, shape adjustment, or the like.

III族窒化物半導体の結晶から結晶片11を切り出す際の角度α1、及び、βを適切に調整することで、複数の結晶片11各々の所望の軸方向が、下地基板10の厚さ方向(法線方向)と平行になる。所望の軸方向は、例えば、[hk−(h+k)l]方向(h、k及びlは整数)、又は、当該[hk−(h+k)l]方向を所定角度(例:±10°以内)傾けた方向である。   By appropriately adjusting the angles α1 and β when cutting the crystal piece 11 from the group III nitride semiconductor crystal, the desired axial direction of each of the plurality of crystal pieces 11 is changed to the thickness direction of the base substrate 10 ( (Normal direction). The desired axial direction is, for example, the [hk− (h + k) l] direction (h, k, and l are integers), or the [hk− (h + k) l] direction at a predetermined angle (eg, within ± 10 °). The direction is tilted.

なお、このようにして得られた下地基板10は、図14に示すように、成長面(図中、上側の面)に凹部及び凸部を有し、境界部12が凹部の底に位置することとなる。   In addition, as shown in FIG. 14, the base substrate 10 obtained in this way has a recessed part and a convex part in a growth surface (upper surface in the figure), and the boundary part 12 is located in the bottom of a concave part. It will be.

図11に戻り、第1の工程S11では、下地基板10の上に、成長面(第1の面)を覆う絶縁層を形成する。図15に、下地基板10の一部を抜粋した側面模式図を示す。当該工程では、このような下地基板10の成長面上に、図16に示すように絶縁層21を形成する。絶縁層21は、例えばSiOである。 Returning to FIG. 11, in the first step S <b> 11, an insulating layer that covers the growth surface (first surface) is formed on the base substrate 10. FIG. 15 is a schematic side view of a part of the base substrate 10 extracted. In this step, an insulating layer 21 is formed on the growth surface of the base substrate 10 as shown in FIG. Insulating layer 21 is, for example, SiO 2.

図11に戻り、第2の工程S12では、研磨又はエッチングにより、絶縁層21の露出面側から一部を除去することで、凹部の底に絶縁層21が残り、かつ、凹部の底を除く部分で下地基板10が露出する状態を形成する。   Returning to FIG. 11, in the second step S12, by removing a part from the exposed surface side of the insulating layer 21 by polishing or etching, the insulating layer 21 remains at the bottom of the recess, and the bottom of the recess is removed. A state in which the base substrate 10 is exposed at a portion is formed.

研磨は、研削、ラッピング、CMP等の手段を採用できる。エッチングは、ウエットエッチングおよびドライエッチングを採用できる。   Polishing can employ means such as grinding, lapping, and CMP. Etching can be wet etching or dry etching.

研磨により絶縁層21の露出面側から一部を除去する場合、当該研磨により下地基板10の凸部の頂部側から一部をも除去し、凸部の頂部に平坦面を露出させる。一方、エッチングにより絶縁層21の露出面側から一部を除去する場合、凹部の底に絶縁層21が残り、かつ、前記凸部が露出する状態を形成した後、研磨処理を実行する。当該研磨により、下地基板10の凸部の頂部側から一部を除去し、凸部の頂部に平坦面を露出させる。   When a part is removed from the exposed surface side of the insulating layer 21 by polishing, a part is also removed from the top side of the convex portion of the base substrate 10 by the polishing, and a flat surface is exposed at the top portion of the convex portion. On the other hand, when a part is removed from the exposed surface side of the insulating layer 21 by etching, after the insulating layer 21 remains at the bottom of the concave portion and the convex portion is exposed, a polishing process is performed. By this polishing, a part is removed from the top side of the convex portion of the base substrate 10, and a flat surface is exposed at the top portion of the convex portion.

上述の通り、III族窒化物半導体の結晶から結晶片11を切り出す際の角度α1、及び、βを適切に調整することで、複数の結晶片11各々の所望の軸方向(例:[hk−(h+k)l]方向)が、下地基板10の厚さ方向(法線方向)と平行になる。このような下地基板10の厚さ方向に略垂直な研磨面で下地基板10の凸部の頂部側から一部を除去することで、凸部の頂部に露出する平坦面を、所望の面とすることができる。所望の面は、例えば、{hk−(h+k)l}面、又は、当該{hk−(h+k)l}面を所定角度(例:±10°以内)傾けた面である。   As described above, by appropriately adjusting the angles α1 and β when cutting the crystal piece 11 from the group III nitride semiconductor crystal, a desired axial direction of each of the plurality of crystal pieces 11 (eg, [hk− (H + k) l] direction) is parallel to the thickness direction (normal direction) of the base substrate 10. By removing a part from the top side of the convex portion of the base substrate 10 with such a polishing surface substantially perpendicular to the thickness direction of the base substrate 10, the flat surface exposed at the top portion of the convex portion is changed to a desired surface. can do. The desired plane is, for example, a {hk- (h + k) l} plane or a plane tilted from the {hk- (h + k) l} plane by a predetermined angle (eg, within ± 10 °).

図17に、第2の工程S12の後の下地基板10の様子を示す。本実施形態の場合、第2の工程S12の後に凹部の底に残った絶縁層21がマスク20となる。マスク20は、複数のIII族窒化物半導体の結晶片11を並べて構成した下地基板10の成長面(第1の面)上に位置し、成長面上における隣接する結晶片11どうしの境界部12を覆い、当該境界部12が存在しない部分を露出させている。   FIG. 17 shows the state of the base substrate 10 after the second step S12. In the case of this embodiment, the insulating layer 21 remaining on the bottom of the recess after the second step S <b> 12 becomes the mask 20. The mask 20 is located on the growth surface (first surface) of the base substrate 10 formed by arranging a plurality of group III nitride semiconductor crystal pieces 11, and a boundary portion 12 between adjacent crystal pieces 11 on the growth surface. The portion where the boundary portion 12 does not exist is exposed.

マスク20の幅L(結晶片11の延伸方向(図中、紙面に対して垂直な方向)に対して垂直な方向の幅)は、例えば1μm以上500μm以下、好ましくは10μm以上100μm以下である。マスク20間の同方向の幅Hは、例えば10μm以上3000μm以下、好ましくは300μm以上600μm以下である。また、マスク20の深さ(最深部から露出面までの距離)は、例えば50nm以上1000nm以下である。マスク20をこのように構成すると、第1の実施形態と同様の作用効果が実現される。   The width L of the mask 20 (the width in the direction perpendicular to the drawing direction of the crystal piece 11 (the direction perpendicular to the paper surface in the drawing)) is, for example, 1 μm or more and 500 μm or less, preferably 10 μm or more and 100 μm or less. A width H in the same direction between the masks 20 is, for example, 10 μm or more and 3000 μm or less, preferably 300 μm or more and 600 μm or less. The depth of the mask 20 (distance from the deepest part to the exposed surface) is, for example, not less than 50 nm and not more than 1000 nm. When the mask 20 is configured in this way, the same effects as those of the first embodiment are realized.

図11に戻り、その後、成長工程S20が行われる。成長工程S20では、凸部の頂部に露出している平坦面から、III族窒化物半導体を成長させる。成長工程S20の詳細は第1の実施形態と同様であるので、ここでの説明は省略する。図18に、成長工程S20の後の下地基板10の様子を示す。   Returning to FIG. 11, a growth step S20 is performed thereafter. In the growth step S20, a group III nitride semiconductor is grown from the flat surface exposed at the top of the convex portion. Details of the growth step S20 are the same as those in the first embodiment, and a description thereof will be omitted here. FIG. 18 shows the state of the base substrate 10 after the growth step S20.

以上説明した本実施形態によれば、第1の実施形態と同様の作用効果を実現できる。また、本実施形態によれば、フォトリソグラフィを利用せずに下地基板の所望の位置を覆うマスクを形成することができる。このような本実施形態によれば、フォトリソグラフィを省略できる分、低コスト化が実現される。また、製造工程の簡略化、製造効率の向上等の効果が実現される。   According to the present embodiment described above, the same operational effects as those of the first embodiment can be realized. Further, according to the present embodiment, it is possible to form a mask that covers a desired position of the base substrate without using photolithography. According to the present embodiment as described above, the cost can be reduced to the extent that photolithography can be omitted. In addition, effects such as simplification of the manufacturing process and improvement of manufacturing efficiency are realized.

以上説明した第1及び第2の実施形態によれば、以下の基板(マスク20が形成された下地基板10、及び、下地基板10上にIII族窒化物半導体層30を形成した自立基板)の説明がなされている。   According to the first and second embodiments described above, the following substrates (the base substrate 10 on which the mask 20 is formed and the free-standing substrate on which the group III nitride semiconductor layer 30 is formed on the base substrate 10) Explanation is made.

複数のIII族窒化物半導体の結晶片を並べて構成した下地基板と、
上記下地基板の第1の面上に位置し、当該第1の面上における隣接する上記結晶片どうしの境界部を覆い、当該境界部が存在しない部分を露出させ、かつ、絶縁層を含むマスクと、
を有する基板。
A base substrate configured by arranging a plurality of group III nitride semiconductor crystal pieces;
A mask positioned on the first surface of the base substrate, covering a boundary portion between the adjacent crystal pieces on the first surface, exposing a portion where the boundary portion does not exist, and including an insulating layer When,
Having a substrate.

上記基板において、
上記第1の面には凹部及び凸部が存在し、
上記境界部は、上記凹部の底に位置し、
上記マスクは、上記凹部の底に存在し、かつ、上記凹部の底を除く部分に存在しない基板。
In the above substrate,
The first surface has a concave portion and a convex portion,
The boundary is located at the bottom of the recess;
The mask is a substrate that exists at the bottom of the recess and does not exist at a portion other than the bottom of the recess.

上記基板において、
上記凸部は頂部が平坦面となっており、
上記平坦面は、{hk−(h+k)l}面(h、k及びlは整数)、又は、当該{hk−(h+k)l}面を所定角度(±10°以内)傾けた面である基板。
In the above substrate,
The top of the convex part is a flat surface,
The flat surface is a {hk- (h + k) l} surface (h, k and l are integers) or a surface obtained by inclining the {hk- (h + k) l} surface by a predetermined angle (within ± 10 °). substrate.

上記基板と、
上記基板の上に位置するIII族窒化物半導体層と、
を有する自立基板。
The above substrate;
A group III nitride semiconductor layer located on the substrate;
Having a free-standing substrate.

以下、参考形態の例を付記する。
1. 複数のIII族窒化物半導体の結晶片を並べて構成した下地基板の第1の面上に、前記第1の面上における隣接する前記結晶片どうしの境界部を覆い、当該境界部が存在しない部分を露出させ、かつ、絶縁層を含むマスクを形成するマスク形成工程と、
前記マスク形成工程の後、前記下地基板の露出部分からIII族窒化物半導体を成長させ、III族窒化物半導体層を形成する成長工程と、
を有する自立基板の製造方法。
2. 1に記載の自立基板の製造方法において、
前記マスク形成工程の前に、前記第1の面に凹部及び凸部を有し、前記境界部が前記凹部の底に位置する前記下地基板を用意する準備工程をさらに有し、
前記マスク形成工程は、
前記下地基板の上に、前記第1の面を覆う絶縁層を形成する第1の工程と、
前記第1の工程の後、研磨又はエッチングにより、前記絶縁層の露出面側から一部を除去することで、前記凹部の底に前記絶縁層が残り、かつ、前記凹部の底を除く部分で前記下地基板が露出する状態を形成する第2の工程と、
を有する自立基板の製造方法。
3. 2に記載の自立基板の製造方法において、
前記第2の工程では、研磨により前記絶縁層の露出面側から一部を除去し、当該研磨により前記凸部の頂部側から一部を除去して平坦面を露出させる自立基板の製造方法。
4. 2に記載の自立基板の製造方法において、
前記第2の工程では、前記絶縁層の露出面をエッチングすることで、前記凹部の底に前記絶縁層が残り、かつ、前記凸部が露出する状態を形成した後、研磨により前記凸部の頂部側から一部を除去して平坦面を露出させる自立基板の製造方法。
5. 3又は4に記載の自立基板の製造方法において、
前記下地基板の複数の前記結晶片は、[hk−(h+k)l]方向(h、k及びlは整数)、又は、当該[hk−(h+k)l]方向を所定角度傾けた方向が、前記下地基板の厚さ方向と平行になるように並べられており、
前記第2の工程で前記凸部の頂部側から一部を除去すると、前記平坦面として、{hk−(h+k)l}面、又は、当該{hk−(h+k)l}面を所定角度傾けた面が露出する自立基板の製造方法。
6. 3から5のいずれかに記載の自立基板の製造方法において、
前記成長工程では、前記平坦面からIII族窒化物半導体を成長させる自立基板の製造方法。
7. 複数のIII族窒化物半導体の結晶片を並べて構成した下地基板と、
前記下地基板の第1の面上に位置し、前記第1の面上における隣接する前記結晶片どうしの境界部を覆い、当該境界部が存在しない部分を露出させ、かつ、絶縁層を含むマスクと、
を有する基板。
8. 7に記載の基板において、
前記第1の面には凹部及び凸部が存在し、
前記境界部は、前記凹部の底に位置し、
前記マスクは、前記凹部の底に存在し、かつ、前記凹部の底を除く部分に存在しない基板。
9. 8に記載の基板において、
前記凸部は頂部が平坦面となっており、
前記平坦面は、{hk−(h+k)l}面(h、k及びlは整数)、又は、当該{hk−(h+k)l}面を所定角度傾けた面である基板。
10. 7から9のいずれかに記載の基板と、
前記基板の上に位置するIII族窒化物半導体層と、
を有する自立基板。
Hereinafter, examples of the reference form will be added.
1. A portion where a boundary portion between adjacent crystal pieces on the first surface is covered on a first surface of a base substrate formed by arranging a plurality of group III nitride semiconductor crystal pieces and the boundary portion does not exist And forming a mask including an insulating layer, and exposing a mask,
After the mask formation step, grow a group III nitride semiconductor from the exposed portion of the base substrate, and a growth step of forming a group III nitride semiconductor layer,
A method for manufacturing a self-supporting substrate.
2. In the manufacturing method of the self-supporting substrate according to 1,
Before the mask formation step, the first surface further includes a preparation step of preparing the base substrate having a concave portion and a convex portion, and the boundary portion positioned at the bottom of the concave portion,
The mask forming step includes
A first step of forming an insulating layer covering the first surface on the base substrate;
After the first step, by removing a part from the exposed surface side of the insulating layer by polishing or etching, the insulating layer remains at the bottom of the recess, and the portion excluding the bottom of the recess A second step of forming a state in which the base substrate is exposed;
A method for manufacturing a self-supporting substrate.
3. In the manufacturing method of the self-supporting substrate according to 2,
In the second step, a part of the insulating layer is removed from the exposed surface side by polishing, and a part is removed from the top side of the convex portion by the polishing to expose a flat surface.
4). In the manufacturing method of the self-supporting substrate according to 2,
In the second step, the exposed surface of the insulating layer is etched to form a state where the insulating layer remains at the bottom of the concave portion and the convex portion is exposed, and then the convex portion is polished by polishing. A method for manufacturing a self-supporting substrate in which a flat surface is exposed by removing a part from the top side.
5. In the method for manufacturing a self-supporting substrate according to 3 or 4,
The plurality of crystal pieces of the base substrate have a [hk− (h + k) l] direction (h, k, and l are integers) or a direction in which the [hk− (h + k) l] direction is inclined by a predetermined angle. Arranged so as to be parallel to the thickness direction of the base substrate,
When a part is removed from the top side of the convex part in the second step, the {hk− (h + k) l} surface or the {hk− (h + k) l} surface is inclined by a predetermined angle as the flat surface. A method for manufacturing a self-supporting substrate with exposed surfaces.
6). In the method for manufacturing a self-supporting substrate according to any one of 3 to 5,
In the growth step, a method for manufacturing a free-standing substrate in which a group III nitride semiconductor is grown from the flat surface.
7). A base substrate configured by arranging a plurality of group III nitride semiconductor crystal pieces;
A mask located on the first surface of the base substrate, covering a boundary portion between adjacent crystal pieces on the first surface, exposing a portion where the boundary portion does not exist, and including an insulating layer When,
Having a substrate.
8). In the substrate according to 7,
The first surface has a concave portion and a convex portion,
The boundary is located at the bottom of the recess;
The mask is a substrate that exists at the bottom of the recess and does not exist at a portion other than the bottom of the recess.
9. 8. The substrate according to 8,
The convex part has a flat top at the top,
The flat surface is a {hk- (h + k) l} plane (h, k, and l are integers), or a substrate obtained by tilting the {hk- (h + k) l} plane by a predetermined angle.
10. A substrate according to any one of 7 to 9,
A group III nitride semiconductor layer located on the substrate;
Having a free-standing substrate.

10 下地基板
11 結晶片
12 境界部
20 マスク
30 III族窒化物半導体層
40 台
41 底面
42 斜面
50 設置面
100 HVPE装置
121 反応管
122 成長領域
123 基板ホルダ
124 ガス供給管
125 配管
126 ガス供給管
127 III族原料
128 ソースボート
129 ヒータ
130 ヒータ
132 回転軸
135 ガス排出管
136 遮蔽板
137 窒素原料ガス供給部
139 III族原料ガス供給部
141 下地基板
DESCRIPTION OF SYMBOLS 10 Base substrate 11 Crystal piece 12 Boundary part 20 Mask 30 Group III nitride semiconductor layer 40 Stand 41 Bottom 42 Slope 50 Installation surface 100 HVPE apparatus 121 Reaction tube 122 Growth region 123 Substrate holder 124 Gas supply pipe 125 Pipe 126 Gas supply pipe 127 Group III raw material 128 Source boat 129 Heater 130 Heater 132 Rotating shaft 135 Gas exhaust pipe 136 Shielding plate 137 Nitrogen raw material gas supply part 139 Group III raw material gas supply part 141 Base substrate

Claims (10)

複数のIII族窒化物半導体の結晶片を並べて構成した下地基板の第1の面上に、前記第1の面上における隣接する前記結晶片どうしの境界部を覆い、当該境界部が存在しない部分を露出させ、かつ、絶縁層を含むマスクを形成するマスク形成工程と、
前記マスク形成工程の後、前記下地基板の露出部分からIII族窒化物半導体を成長させ、III族窒化物半導体層を形成する成長工程と、
を有する自立基板の製造方法。
A portion where a boundary portion between adjacent crystal pieces on the first surface is covered on a first surface of a base substrate formed by arranging a plurality of group III nitride semiconductor crystal pieces and the boundary portion does not exist And forming a mask including an insulating layer, and exposing a mask,
After the mask formation step, grow a group III nitride semiconductor from the exposed portion of the base substrate, and a growth step of forming a group III nitride semiconductor layer,
A method for manufacturing a self-supporting substrate.
請求項1に記載の自立基板の製造方法において、
前記マスク形成工程の前に、前記第1の面に凹部及び凸部を有し、前記境界部が前記凹部の底に位置する前記下地基板を用意する準備工程をさらに有し、
前記マスク形成工程は、
前記下地基板の上に、前記第1の面を覆う絶縁層を形成する第1の工程と、
前記第1の工程の後、研磨又はエッチングにより、前記絶縁層の露出面側から一部を除去することで、前記凹部の底に前記絶縁層が残り、かつ、前記凹部の底を除く部分で前記下地基板が露出する状態を形成する第2の工程と、
を有する自立基板の製造方法。
In the manufacturing method of the self-supporting substrate according to claim 1,
Before the mask formation step, the first surface further includes a preparation step of preparing the base substrate having a concave portion and a convex portion, and the boundary portion positioned at the bottom of the concave portion,
The mask forming step includes
A first step of forming an insulating layer covering the first surface on the base substrate;
After the first step, by removing a part from the exposed surface side of the insulating layer by polishing or etching, the insulating layer remains at the bottom of the recess, and the portion excluding the bottom of the recess A second step of forming a state in which the base substrate is exposed;
A method for manufacturing a self-supporting substrate.
請求項2に記載の自立基板の製造方法において、
前記第2の工程では、研磨により前記絶縁層の露出面側から一部を除去し、当該研磨により前記凸部の頂部側から一部を除去して平坦面を露出させる自立基板の製造方法。
In the manufacturing method of the self-supporting substrate according to claim 2,
In the second step, a part of the insulating layer is removed from the exposed surface side by polishing, and a part is removed from the top side of the convex portion by the polishing to expose a flat surface.
請求項2に記載の自立基板の製造方法において、
前記第2の工程では、前記絶縁層の露出面をエッチングすることで、前記凹部の底に前記絶縁層が残り、かつ、前記凸部が露出する状態を形成した後、研磨により前記凸部の頂部側から一部を除去して平坦面を露出させる自立基板の製造方法。
In the manufacturing method of the self-supporting substrate according to claim 2,
In the second step, the exposed surface of the insulating layer is etched to form a state where the insulating layer remains at the bottom of the concave portion and the convex portion is exposed, and then the convex portion is polished by polishing. A method for manufacturing a self-supporting substrate in which a flat surface is exposed by removing a part from the top side.
請求項3又は4に記載の自立基板の製造方法において、
前記下地基板の複数の前記結晶片は、[hk−(h+k)l]方向(h、k及びlは整数)、又は、当該[hk−(h+k)l]方向を所定角度傾けた方向が、前記下地基板の厚さ方向と平行になるように並べられており、
前記第2の工程で前記凸部の頂部側から一部を除去すると、前記平坦面として、{hk−(h+k)l}面、又は、当該{hk−(h+k)l}面を所定角度傾けた面が露出する自立基板の製造方法。
In the manufacturing method of the self-supporting substrate according to claim 3 or 4,
The plurality of crystal pieces of the base substrate have a [hk− (h + k) l] direction (h, k, and l are integers) or a direction in which the [hk− (h + k) l] direction is inclined by a predetermined angle. Arranged so as to be parallel to the thickness direction of the base substrate,
When a part is removed from the top side of the convex part in the second step, the {hk− (h + k) l} surface or the {hk− (h + k) l} surface is inclined by a predetermined angle as the flat surface. A method for manufacturing a self-supporting substrate with exposed surfaces.
請求項3から5のいずれか1項に記載の自立基板の製造方法において、
前記成長工程では、前記平坦面からIII族窒化物半導体を成長させる自立基板の製造方法。
In the manufacturing method of the self-supporting substrate according to any one of claims 3 to 5,
In the growth step, a method for manufacturing a free-standing substrate in which a group III nitride semiconductor is grown from the flat surface.
複数のIII族窒化物半導体の結晶片を並べて構成した下地基板と、
前記下地基板の第1の面上に位置し、前記第1の面上における隣接する前記結晶片どうしの境界部を覆い、当該境界部が存在しない部分を露出させ、かつ、絶縁層を含むマスクと、
を有する基板。
A base substrate configured by arranging a plurality of group III nitride semiconductor crystal pieces;
A mask located on the first surface of the base substrate, covering a boundary portion between adjacent crystal pieces on the first surface, exposing a portion where the boundary portion does not exist, and including an insulating layer When,
Having a substrate.
請求項7に記載の基板において、
前記第1の面には凹部及び凸部が存在し、
前記境界部は、前記凹部の底に位置し、
前記マスクは、前記凹部の底に存在し、かつ、前記凹部の底を除く部分に存在しない基板。
The substrate according to claim 7, wherein
The first surface has a concave portion and a convex portion,
The boundary is located at the bottom of the recess;
The mask is a substrate that exists at the bottom of the recess and does not exist at a portion other than the bottom of the recess.
請求項8に記載の基板において、
前記凸部は頂部が平坦面となっており、
前記平坦面は、{hk−(h+k)l}面(h、k及びlは整数)、又は、当該{hk−(h+k)l}面を所定角度傾けた面である基板。
The substrate according to claim 8, wherein
The convex part has a flat top at the top,
The flat surface is a {hk- (h + k) l} plane (h, k, and l are integers), or a substrate obtained by tilting the {hk- (h + k) l} plane by a predetermined angle.
請求項7から9のいずれか1項に記載の基板と、
前記基板の上に位置するIII族窒化物半導体層と、
を有する自立基板。
A substrate according to any one of claims 7 to 9,
A group III nitride semiconductor layer located on the substrate;
Having a free-standing substrate.
JP2015034266A 2015-02-24 2015-02-24 Method for manufacturing free-standing substrate, substrate and free-standing substrate Pending JP2016155706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034266A JP2016155706A (en) 2015-02-24 2015-02-24 Method for manufacturing free-standing substrate, substrate and free-standing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034266A JP2016155706A (en) 2015-02-24 2015-02-24 Method for manufacturing free-standing substrate, substrate and free-standing substrate

Publications (1)

Publication Number Publication Date
JP2016155706A true JP2016155706A (en) 2016-09-01

Family

ID=56825007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034266A Pending JP2016155706A (en) 2015-02-24 2015-02-24 Method for manufacturing free-standing substrate, substrate and free-standing substrate

Country Status (1)

Country Link
JP (1) JP2016155706A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315947A (en) * 2005-04-11 2006-11-24 Nichia Chem Ind Ltd Nitride semiconductor wafer and its production method
JP2009286652A (en) * 2008-05-28 2009-12-10 Sumitomo Electric Ind Ltd Group iii nitride crystal, group iii nitride crystal substrate, and production method of semiconductor device
JP2010013298A (en) * 2008-07-01 2010-01-21 Sumitomo Electric Ind Ltd Group iii nitride crystal joined substrate, its producing method, and method for producing group iii nitride crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315947A (en) * 2005-04-11 2006-11-24 Nichia Chem Ind Ltd Nitride semiconductor wafer and its production method
JP2009286652A (en) * 2008-05-28 2009-12-10 Sumitomo Electric Ind Ltd Group iii nitride crystal, group iii nitride crystal substrate, and production method of semiconductor device
JP2010013298A (en) * 2008-07-01 2010-01-21 Sumitomo Electric Ind Ltd Group iii nitride crystal joined substrate, its producing method, and method for producing group iii nitride crystal

Similar Documents

Publication Publication Date Title
JP5218047B2 (en) Method for producing gallium nitride crystal and gallium nitride wafer
JP5346052B2 (en) Diamond thin film and manufacturing method thereof
JP6129784B2 (en) Method for manufacturing group III nitride substrate
US10100435B2 (en) Method for manufacturing diamond substrate
JP6885547B2 (en) Manufacturing method of GaN crystal
KR20090101208A (en) Method of manufacturing nitride semiconductor freestanding substrate and nitride semiconductor freestanding substrate
JP5445105B2 (en) Method for producing group III nitride crystal and group III nitride crystal
JP2010222172A (en) Diamond thin film and manufacturing method thereof
JP2013189368A (en) Group iii nitride semiconductor substrate and method for producing group iii nitride semiconductor substrate
JP2016155706A (en) Method for manufacturing free-standing substrate, substrate and free-standing substrate
JP2017024927A (en) Method of manufacturing group III nitride semiconductor substrate
US20100272141A1 (en) Nitride semiconductor freestanding substrate and manufacturing method of the same, and laser diode
JP6871878B2 (en) Method for manufacturing group III nitride semiconductor substrate
JP5490597B2 (en) Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth
JP2017141120A (en) Group III nitride semiconductor substrate and group III nitride semiconductor substrate manufacturing method
JP6773512B2 (en) Substrate and manufacturing method of substrate
JP6250368B2 (en) Method for manufacturing free-standing substrate and free-standing substrate
JP2011195388A (en) Group iii nitride semiconductor crystal, method for producing the same, and ground substrate for growing group iii nitride semiconductor crystal
JP6130039B2 (en) Method for manufacturing group III nitride substrate
JP6466194B2 (en) Group III nitride semiconductor substrate and group III nitride semiconductor substrate manufacturing method
JP6547506B2 (en) Method of manufacturing nitride semiconductor crystal
JP2011175997A (en) Semiconductor substrate and method of manufacturing the same
JP2013170096A (en) Method for producing group 13 nitride crystal
JP6778577B2 (en) Method for manufacturing group III nitride semiconductor substrate and group III nitride semiconductor substrate
JP2008308346A (en) Method for manufacturing self-supported group iii nitride semiconductor substrate and self-supported group iii nitride semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190226