[go: up one dir, main page]

JP2016149330A - Disposal of used lithium ion batteries - Google Patents

Disposal of used lithium ion batteries Download PDF

Info

Publication number
JP2016149330A
JP2016149330A JP2015027047A JP2015027047A JP2016149330A JP 2016149330 A JP2016149330 A JP 2016149330A JP 2015027047 A JP2015027047 A JP 2015027047A JP 2015027047 A JP2015027047 A JP 2015027047A JP 2016149330 A JP2016149330 A JP 2016149330A
Authority
JP
Japan
Prior art keywords
fluorine
lithium ion
lithium
ion battery
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015027047A
Other languages
Japanese (ja)
Other versions
JP6612506B2 (en
Inventor
浩一郎 平田
Koichiro Hirata
浩一郎 平田
博道 小泉
Hiromichi Koizumi
博道 小泉
林 浩志
Hiroshi Hayashi
浩志 林
龍太郎 藤澤
Ryutaro Fujisawa
龍太郎 藤澤
幹雄 原田
Mikio Harada
幹雄 原田
智 徳田
Satoshi Tokuda
智 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Nippon Magnetic Dressing Co
Original Assignee
Mitsubishi Materials Corp
Nippon Magnetic Dressing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Nippon Magnetic Dressing Co filed Critical Mitsubishi Materials Corp
Priority to JP2015027047A priority Critical patent/JP6612506B2/en
Publication of JP2016149330A publication Critical patent/JP2016149330A/en
Application granted granted Critical
Publication of JP6612506B2 publication Critical patent/JP6612506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method for recovering fluorine contained in a used lithium ion battery efficiently.SOLUTION: A processing method of a used lithium ion battery has a thermal decomposition step for thermally decomposing the organic components and the fluorine compound of the battery by heating a used lithium ion battery, a crushing screening step for crushing the heated battery and screening into fine particles and coarse particles, a cleaning elution step for cleaning the fine particles and eluting the fluorine compound contained in the fine particles, a fluorine immobilization step for forming a fluorine-containing precipitation by adding a precipitation agent to the liquid after cleaning containing the eluted fluorine compound, and a separation recovery step for recovering the fluorine-containing precipitation while separating solid and liquid.SELECTED DRAWING: Figure 1

Description

本発明は、使用済みリチウムイオン電池の処理方法に関し、リチウムイオン電池に含まれているフッ素化合物等を安全に処理して回収する処理方法に関する。   The present invention relates to a method for treating a used lithium ion battery, and relates to a treatment method for safely treating and recovering a fluorine compound or the like contained in a lithium ion battery.

電気自動車や電子機器には高容量の電気を供給するために大型のリチウムイオン電池が使用されており、電気自動車や電子機器の普及によって大量に生じる使用済み大型リチウムイオン電池の処理が問題になりつつある。   Large-sized lithium ion batteries are used in electric vehicles and electronic devices to supply high-capacity electricity, and the processing of used large-sized lithium ion batteries that occur in large quantities due to the widespread use of electric vehicles and electronic devices becomes a problem. It's getting on.

リチウムイオン電池は電解質中のリチウムイオンが電気伝導を担う二次電池であり、代表的な構成では、負極活物質には黒鉛、正極活物質にはコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムが用いられ、両電極の活物質は、ポリフッ化ビニリデン(PVDF)などのフッ素系バインダーによって銅やアルミニウムの箔よりなる集電体に固着されている。また、電解液には六フッ化リン酸リチウム(LiPF)などのフッ素含有リチウム塩を炭酸エステル類などの有機溶媒に溶解したものが主に用いられている。 A lithium ion battery is a secondary battery in which lithium ions in an electrolyte are responsible for electrical conduction. In a typical configuration, graphite is used for the negative electrode active material, lithium cobaltate, lithium nickelate, and lithium manganate are used for the positive electrode active material. The active material used for both electrodes is fixed to a current collector made of a copper or aluminum foil with a fluorine-based binder such as polyvinylidene fluoride (PVDF). In addition, an electrolytic solution in which a fluorine-containing lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in an organic solvent such as carbonates is mainly used.

このようにリチウムイオン電池にはフッ素化合物が用いられている。フッ素は有害な環境規制物質であり、排水や排ガスには厳しい規制が設けられている。使用済みリチウムイオン電池のリサイクルまたは廃棄処理においては、電池に含まれているフッ素化合物を適正に処理することが求められる。また、電解液に使用される炭酸エステル類は危険物第四類に該当する引火性液体であり、電解質のLiPFは分解して有毒なフッ化水素を発生する。これらの点より、安全な処理方法が求められている。 Thus, the fluorine compound is used for the lithium ion battery. Fluorine is a harmful environmentally regulated substance, and there are strict regulations on wastewater and exhaust gas. In recycling or disposal of used lithium ion batteries, it is required to appropriately treat fluorine compounds contained in the batteries. Carbonates used in the electrolytic solution are flammable liquids that fall under the fourth category of hazardous materials, and LiPF 6 as an electrolyte decomposes to generate toxic hydrogen fluoride. From these points, a safe processing method is required.

使用済みリチウムイオン電池の処理方法として、従来、該電池を炉内で焙焼する方法が知られている。例えば、特許第3079285号公報(特許文献1)には、リチウムイオン電池を炉内で焙焼し、その焙焼物を破砕して磁性物と非磁性物とに分別し、アルミニウムや銅などの含有物を回収する方法が記載されている。また、特開平10−330855号公報(特許文献2)には、800℃以上の炉内にリチウムイオン電池を投入し、外装材を破裂させて活物質を回収する方法が記載されている。   As a method for treating a used lithium ion battery, conventionally, a method of baking the battery in a furnace is known. For example, in Japanese Patent No. 3079285 (Patent Document 1), a lithium ion battery is roasted in a furnace, the roasted product is crushed and separated into a magnetic material and a non-magnetic material, and contains aluminum, copper, or the like. A method for recovering the product is described. Japanese Patent Application Laid-Open No. 10-330855 (Patent Document 2) describes a method in which a lithium ion battery is placed in a furnace at 800 ° C. or higher and an exterior material is ruptured to recover an active material.

リチウムイオン電池に含まれている電解質の処理方法としては、カルシウム化合物を用いる方法が知られている。例えば、特許第5510166号公報(特許文献3)には、正極活物質の酸浸出液に消石灰を添加してフッ化カルシウムを沈澱させて回収する方法が記載されている。また、特開2012−229481号公報(特許文献4)には、リチウムイオン電池をカルシウムやマグネシウムのアルカリ土類金属水溶液に浸出してフッ素およびリンを難溶性のアルカリ土類フッ化物やアルカリ土類リン酸塩にし、液中に懸濁するこれらのフッ化物やリン酸塩を洗浄除去する方法が記載されている。
さらに、特開2000−106221号公報(特許文献5)には、リチウムイオン電池を破砕し、水洗浄してLiPFを溶出させ、該洗浄後液に高温の酸を添加してLiPFをリン酸とフッ素に分解し、これに消石灰を加えてフッ化カルシウムとリン酸カルシウムの混合物を回収する処理方法が記載されている。
As a method for treating an electrolyte contained in a lithium ion battery, a method using a calcium compound is known. For example, Japanese Patent No. 5551166 (Patent Document 3) describes a method of collecting and recovering calcium fluoride by adding slaked lime to an acid leaching solution of a positive electrode active material. Japanese Patent Laid-Open No. 2012-229481 (Patent Document 4) discloses that a lithium ion battery is leached in an alkaline earth metal aqueous solution of calcium or magnesium, and fluorine and phosphorus are hardly soluble in alkaline earth fluoride or alkaline earth. A method of washing and removing these fluorides and phosphates which are converted into phosphates and suspended in the solution is described.
Furthermore, JP 2000-106221 A (Patent Document 5) discloses that a lithium ion battery is crushed and washed with water to elute LiPF 6 , and a high-temperature acid is added to the solution after washing to add LiPF 6 to phosphorus. A treatment method is described that decomposes into an acid and fluorine and adds slaked lime to the mixture to recover a mixture of calcium fluoride and calcium phosphate.

特許第3079285号公報Japanese Patent No. 3079285 特開平10−330855号公報JP-A-10-330855 特許第5510166号公報Japanese Patent No. 5510166 特開2012−229481号公報JP 2012-229481 A 特開2000−106221号公報JP 2000-106221 A

特許文献1および特許文献2の処理方法は金属類の回収を主体にしているためフッ素は十分に回収されない。一方、特許文献3の方法は、リチウムイオン電池の正極活物質を酸性溶液によって浸出させた浸出液にCa化合物などを添加して該浸出液のpHを2〜4に調整し、該浸出液中のリンやフッ素を除去することが記載されているが、正極活物質に付着するLiPF以外のフッ素化合物は残留してしまう。
また、特許文献4および特許文献5の処理方法は、LiPFを溶出させた液にカルシウム等を加えてフッ素およびリンを固定化する方法であるが、生成する固形分はフッ化カルシウム等とリン酸カルシウム等の混合物であるので、これらの分離に手間がかかり、再利用し難いと云う問題がある。さらに、従来の処理方法では電極バインダーであるPVDFのフッ素が残留する。
Since the processing methods of Patent Document 1 and Patent Document 2 mainly recover metals, fluorine is not sufficiently recovered. On the other hand, in the method of Patent Document 3, a Ca compound or the like is added to a leachate obtained by leaching a positive electrode active material of a lithium ion battery with an acidic solution to adjust the pH of the leachate to 2 to 4, and phosphorus or Although it is described that fluorine is removed, fluorine compounds other than LiPF 6 adhering to the positive electrode active material remain.
Further, the processing methods of Patent Document 4 and Patent Document 5 are methods in which calcium and the like are added to the liquid from which LiPF 6 is eluted to immobilize fluorine and phosphorus, but the generated solids are calcium fluoride and calcium phosphate. Therefore, there is a problem that it takes time to separate them and it is difficult to reuse them. Further, in the conventional processing method, PVDF fluorine as an electrode binder remains.

本発明は、従来の処理方法における上記問題を解決したものであり、使用済みリチウムイオン電池からフッ素を効率よく回収する処理方法を提供する。本発明では、電解質であるLiPF6のフッ素だけでなく、従来の処理方法では対象とされていなかった電極バインダーであるPVDFのフッ素も回収することができる。PVDFは、集電体と活物質の物理的な接着の役割を担っているため、分解することにより、後段の破砕篩分け工程において、集電体と活物質の分離が容易になる。具体的には、本発明は、リチウムイオン電池を最初に加熱処理して有機成分およびフッ素化合物を熱分解する工程によって、電解質のLiPFおよびバインダーのPVDFのフッ素成分を、一つの工程で同時にフッ化リチウム(LiF)にする。これにより、フッ素の分離回収を容易にし、さらにフッ化リチウムを洗浄溶出する工程、およびフッ素を固定化する工程を組み合わせてフッ素を効率よく回収できるようにした処理方法を提供する。 This invention solves the said problem in the conventional processing method, and provides the processing method which collect | recovers fluorine efficiently from a used lithium ion battery. In the present invention, not only the fluorine of LiPF 6 that is an electrolyte but also the fluorine of PVDF that is an electrode binder that has not been targeted by the conventional processing method can be recovered. Since PVDF plays a role of physical adhesion between the current collector and the active material, it is easy to separate the current collector from the active material in the subsequent crushing and sieving step by decomposing. Specifically, according to the present invention, a lithium ion battery is first heat-treated to thermally decompose an organic component and a fluorine compound, whereby a fluorine component of an electrolyte LiPF 6 and a binder PVDF is simultaneously filtered in one step. Lithium fluoride (LiF). This provides a treatment method that facilitates the separation and recovery of fluorine, and that can recover fluorine efficiently by combining the step of washing and eluting lithium fluoride and the step of fixing fluorine.

本発明は以下の構成からなる使用済みリチウムイオン電池の処理方法に関する。
〔1〕リチウムイオン電池を加熱処理して該電池の有機成分およびフッ素化合物を熱分解する熱分解工程と、加熱処理した電池を破砕して細粒物と粗粒物に篩分けする破砕篩分け工程と、該細粒物を洗浄して該細粒物に含まれるフッ素化合物を溶出させる洗浄溶出工程と、溶出したフッ素化合物を含む洗浄後液に固定化剤を添加してフッ素含有沈澱を生成させるフッ素固定化工程と、フッ素含有沈澱を固液分離して回収する分離回収工程を有することを特徴とするリチウムイオン電池の処理方法。
〔2〕熱分解工程において、リチウムイオン電池を、非酸化性雰囲気下、350℃〜600℃に加熱して有機成分を熱分解して無機化すると共に、電解質の六フッ化リン酸リチウムおよびバインダーのポリフッ化ビニリデンを熱分解して、それぞれに含有されるフッ素をリチウム化合物と反応させてフッ化リチウムにする上記[1]に記載するリチウムイオン電池の処理方法。
〔3〕破砕篩分け工程において、熱処理した該電池を破砕して活物質を主成分とする平均粒子径1mm未満の細粒物と、これより大きい集電体の金属箔を主成分とする粗粒物とに篩分けする上記[1]または上記[2]に記載するリチウムイオン電池の処理方法。
〔4〕洗浄溶出工程において、細粒物を水洗浄して該細粒物に含まれるフッ化リチウムを溶出させることによってフッ素およびリチウムを除去する上記[1]〜上記[3]の何れかに記載するリチウムイオン電池の処理方法。
〔5〕フッ素固定化工程において、洗浄溶出工程より排出されるフッ素含有排水に対して、カルシウム化合物をフッ素固定化剤として用い、フッ化カルシウム沈澱を生成させる上記[1]〜上記[4]の何れかに記載するリチウムイオン電池の処理方法。
〔6〕フッ化カルシウム沈澱を固液分離した液分からリチウムを回収し、その処理液を洗浄溶出工程の洗浄液として繰り返し利用する上記[1]〜上記[5]の何れかに記載するリチウムイオン電池の処理方法。
The present invention relates to a method for treating a used lithium ion battery having the following configuration.
[1] A thermal decomposition process in which a lithium ion battery is heat-treated to thermally decompose the organic components and fluorine compounds of the battery, and a crushing sieving in which the heat-treated battery is crushed and sieved into fine particles and coarse particles A step of washing, eluting the fluorine compound contained in the fine particle and eluting the fluorine compound, and adding a fixing agent to the post-cleaning solution containing the eluted fluorine compound to produce a fluorine-containing precipitate. A method for treating a lithium ion battery, comprising: a fluorine immobilization step to be performed; and a separation / recovery step to separate and recover the fluorine-containing precipitate by solid-liquid separation.
[2] In the pyrolysis step, the lithium ion battery is heated to 350 ° C. to 600 ° C. in a non-oxidizing atmosphere to thermally decompose and mineralize the organic component, and lithium hexafluorophosphate as an electrolyte and a binder The method of treating a lithium ion battery according to the above [1], wherein the polyvinylidene fluoride is thermally decomposed and the fluorine contained therein is reacted with a lithium compound to form lithium fluoride.
[3] In the crushing and sieving step, the heat-treated battery is crushed and a coarse product mainly composed of fine particles having an average particle diameter of less than 1 mm mainly composed of an active material and a metal foil of a current collector larger than this The method for treating a lithium ion battery according to the above [1] or [2], wherein sieving into granules is performed.
[4] In any one of the above [1] to [3], in the washing and elution step, the fine particles are washed with water to elute lithium fluoride contained in the fine particles, thereby removing fluorine and lithium. A method for treating a lithium ion battery as described.
[5] In the fluorine immobilization step, the calcium compound is used as a fluorine immobilizing agent for the fluorine-containing wastewater discharged from the washing and elution step, and calcium fluoride precipitates are generated in the above [1] to [4] The processing method of the lithium ion battery described in any one.
[6] The lithium ion battery according to any one of [1] to [5] above, wherein lithium is recovered from a liquid fraction obtained by solid-liquid separation of calcium fluoride precipitate, and the treatment liquid is repeatedly used as a cleaning liquid in a cleaning elution process. Processing method.

〔具体的な説明〕
本発明の処理方法は、使用済みリチウムイオン電池を加熱処理して該電池の有機成分およびフッ素化合物を熱分解する熱分解工程と、加熱処理した電池を破砕して細粒物と粗粒物に篩分けする破砕篩分け工程と、該細粒物を洗浄して該細粒物に含まれるフッ素化合物を溶出させる洗浄溶出工程と、溶出したフッ素化合物を含む洗浄後液に固定化剤を添加してフッ素含有沈澱を生成させるフッ素固定化工程と、フッ素含有沈澱を固液分離して回収する分離回収工程を有することを特徴とするリチウムイオン電池の処理方法である。
本発明の処理方法の概略を図1に示す。
[Specific description]
The treatment method of the present invention includes a thermal decomposition step of thermally treating a used lithium ion battery to thermally decompose the organic components and fluorine compound of the battery, and crushing the heat-treated battery into fine and coarse particles. Crushing and sieving step for sieving, washing and elution step for washing the fine particles to elute the fluorine compound contained in the fine particles, and adding a fixing agent to the post-washing solution containing the eluted fluorine compound A process for treating a lithium ion battery, comprising: a fluorine immobilization step for generating a fluorine-containing precipitate; and a separation and recovery step for recovering the fluorine-containing precipitate by solid-liquid separation.
An outline of the treatment method of the present invention is shown in FIG.

本発明の処理方法は使用済みリチウムイオン電池、耐用期間が過ぎたリチウムイオン電池、仕様変更などによって廃棄されたリチウムイオン電池、製造工程内で不良と判断されたリチウムイオン電池等が対象である。   The treatment method of the present invention is intended for used lithium ion batteries, lithium ion batteries whose lifetime has passed, lithium ion batteries discarded due to specification changes, lithium ion batteries determined to be defective in the manufacturing process, and the like.

〔熱分解工程〕
本発明の処理方法は、最初にリチウムイオン電池を加熱処理する熱分解工程を行う。該熱分解工程では、上記電池を加熱炉に入れ、非酸化性雰囲気において約350℃〜約600℃、好ましくは400℃〜550℃に加熱して行うとよい。非酸化性ガスとしては窒素、炭酸ガス、アルゴン、過熱水蒸気等の酸素を含まないガスを導入するとよい。600℃を上回ると、電池に含まれるアルミが溶融し、後段の選別工程にて分離効率が低下する。一方、350℃未満の場合は、PVDFが分解せず、樹脂として残留するため、PVDF由来のFは回収ができなくなる。
[Pyrolysis process]
In the treatment method of the present invention, first, a thermal decomposition step of heat-treating a lithium ion battery is performed. In the pyrolysis step, the battery is placed in a heating furnace and heated to about 350 ° C. to about 600 ° C., preferably 400 ° C. to 550 ° C. in a non-oxidizing atmosphere. As the non-oxidizing gas, a gas not containing oxygen such as nitrogen, carbon dioxide, argon, superheated steam or the like may be introduced. If it exceeds 600 ° C., the aluminum contained in the battery is melted, and the separation efficiency is lowered in the subsequent sorting step. On the other hand, when the temperature is lower than 350 ° C., PVDF does not decompose and remains as a resin, so that F derived from PVDF cannot be recovered.

この熱分解工程において、使用済みリチウムイオン電池に含まれる樹脂、接着剤、セパレータとして使用される多孔質ポリオレフィン、電解液の有機溶媒などの可燃成分が分解される。また、電解質の六フッ化リン酸リチウム(LiPF)、および電極バインダーのポリフッ化ビニリデン(PVDF)に含まれるフッ素成分は、電池成分に含まれるリチウム化合物と反応して固体のフッ化リチウム(LiF)になる。電池に含まれるリチウム化合物としては、電解質のLiPF6、または正極活物質のリチウム化合物がある。正極活物質、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムは熱分解によりコバルト、ニッケル、マンガン等の酸化物または金属に分解して、リチウムは上記フッ化リチウムに取り込まれる。 In this thermal decomposition step, combustible components such as a resin, an adhesive, a porous polyolefin used as a separator, and an organic solvent of the electrolytic solution contained in the used lithium ion battery are decomposed. In addition, the fluorine component contained in the electrolyte lithium hexafluorophosphate (LiPF 6 ) and the electrode binder polyvinylidene fluoride (PVDF) reacts with the lithium compound contained in the battery component to form solid lithium fluoride (LiF )become. As a lithium compound contained in the battery, there is an electrolyte LiPF 6 or a positive electrode active material lithium compound. A positive electrode active material, for example, lithium cobaltate, lithium nickelate, or lithium manganate, is decomposed into an oxide or metal such as cobalt, nickel, or manganese by thermal decomposition, and lithium is taken into the lithium fluoride.

この熱分解によって、電池に含まれるフッ素の75%〜99%はフッ化リチウムとして熱分解残渣に含まれる。一方、残り1%〜25%のフッ素はフッ化水素として熱分解ガスに含まれる。排ガス中のフッ素は、水吸収してフッ素含有排水とし,これにカルシウム化合物を添加してフッ化カルシウムを沈澱させ、これを固液分離してフッ素を回収することができる。   By this thermal decomposition, 75% to 99% of the fluorine contained in the battery is contained in the thermal decomposition residue as lithium fluoride. On the other hand, the remaining 1% to 25% of fluorine is contained in the pyrolysis gas as hydrogen fluoride. Fluorine in the exhaust gas can be absorbed into water to form a fluorine-containing wastewater, and a calcium compound can be added thereto to precipitate calcium fluoride, which can be solid-liquid separated to recover the fluorine.

〔破砕篩分け工程〕
熱分解工程において加熱処理した電池を破砕し、細粒物と粗粒物とに篩分けする。一般に正極の集電体は高純度のアルミニウム、負極の集電体は高純度の銅であり、いずれの集電体も10〜20μm程度の厚みのシートないし箔である。これらのシートないし箔の集電体は展性があるため1mm以上の粗粒の破砕物になる。一方、集電体に付着している活物質は1〜50μm程度の粒子の集合体であるため、細かく破砕されて概ね1mm未満の細粒の破砕物にすることができる。概ね1mm未満の細粒物と、これより大きい粗粒物とに篩分けすることで、集電体と活物質を選別することができる。目開き0.1〜1.0mm、好ましくは0.15〜0.5mmの振動篩を用いて篩分けするとよい。
[Fracture sieving process]
The battery heat-treated in the pyrolysis step is crushed and sieved into fine and coarse particles. In general, the current collector of the positive electrode is high-purity aluminum, and the current collector of the negative electrode is high-purity copper, and each current collector is a sheet or foil having a thickness of about 10 to 20 μm. Since these sheet or foil current collectors are malleable, they become coarse crushed materials of 1 mm or more. On the other hand, since the active material adhering to the current collector is an aggregate of particles of about 1 to 50 μm, it can be finely crushed into fine crushed material of less than 1 mm. The current collector and the active material can be selected by sieving into fine particles having a size of less than 1 mm and coarse particles having a size larger than 1 mm. Sieve using a vibrating sieve having an aperture of 0.1 to 1.0 mm, preferably 0.15 to 0.5 mm.

この破砕篩分けによって、正極活物質および負極活物質の90wt%〜99.5wt%は細粒物に含まれる。一方、集電体の破砕物は粗粒物に含まれる。この粗粒物は比重選別などによってアルミニウム主体の軽量物と銅主体の重量物とに選別し、アルミニウムおよび銅を回収することができる。   By this crushing and sieving, 90 wt% to 99.5 wt% of the positive electrode active material and the negative electrode active material are contained in the fine particles. On the other hand, the crushed material of the current collector is included in the coarse particles. The coarse particles can be sorted into a light weight mainly made of aluminum and a heavy weight mainly made of copper by specific gravity sorting or the like, and aluminum and copper can be recovered.

〔洗浄溶出工程〕
フッ化リチウムは細かく破砕されるので、活物質と共に細粒物にほぼ全量が含まれる。フッ化リチウムは化学的に安定であるため乾式で除去するのは難しく、湿式洗浄により溶出させて除去することができる。
そこで、篩分けした細粒物を水洗浄してフッ化リチウムを溶出させ、溶出したフッ化リチウムを含む洗浄後液を回収する。細粒物中に共存する活物質中にはフッ化リチウムの他に溶解度の高い物質は存在しないので、フッ化リチウムを選択的に溶出させることができる。水洗浄としては撹拌洗浄、多段の撹拌洗浄、ケーキ洗浄等の一般的な化学浸出操作を適用することができる。洗浄後の細粒物のフッ素は94%以上を除去することができる。
[Washing and elution process]
Since lithium fluoride is finely crushed, almost all of the fine particles are contained together with the active material. Since lithium fluoride is chemically stable, it is difficult to remove it by dry method, and it can be removed by elution by wet cleaning.
Therefore, the fine particles thus screened are washed with water to elute lithium fluoride, and the washed liquid containing the eluted lithium fluoride is collected. Since there is no highly soluble substance other than lithium fluoride in the active material coexisting in the fine particles, lithium fluoride can be selectively eluted. As the water washing, general chemical leaching operations such as stirring washing, multistage stirring washing, cake washing and the like can be applied. More than 94% of the fluorine in the fine particles after washing can be removed.

細粒物の洗浄後液を回収してフッ素固定化工程に送る。一方、洗浄残渣には正極活物質に由来するコバルト、ニッケル、マンガン等の酸化物または金属が含まれているので、該洗浄残渣からこれらを回収することができる。   After washing the fine particles, the liquid is collected and sent to the fluorine fixation process. On the other hand, since the cleaning residue contains oxides or metals such as cobalt, nickel, and manganese derived from the positive electrode active material, these can be recovered from the cleaning residue.

〔フッ素固定化工程〕
上記細粒物の洗浄後液には、フッ化リチウムが溶解しており、フッ化物イオンとリチウムイオンが含まれているので、この洗浄後液にカルシウム系固定化剤を添加してフッ素をフッ化カルシウムにして沈澱させる。カルシウム系固定化剤としては消石灰、生石灰、炭酸カルシウムまたはこれらを含むアルカリ薬品等を用いることができる。これらはフッ化カルシウムを直ちに沈澱させ、この沈澱は水に溶け難く、容易に液中のフッ素を固定できるので好ましい。
[Fluorine immobilization process]
Since the lithium fluoride is dissolved in the liquid after washing the fine particles and contains fluoride ions and lithium ions, a calcium-based fixing agent is added to the liquid after washing to fluorinate fluorine. Precipitate as calcium fluoride. As the calcium-based fixing agent, slaked lime, quick lime, calcium carbonate, alkaline chemicals containing these, or the like can be used. These are preferable because calcium fluoride is immediately precipitated, and this precipitation is difficult to dissolve in water and can easily fix fluorine in the liquid.

〔分離回収工程〕
上記フッ化カルシウム沈澱を固液分離して回収する。固液分離としてはフッ化カルシウム沈殿を凝集後に沈降分離させることで濃縮スラリーとした後にフィルタープレスによりろ過脱水することで含水率の低いケーキを得ることができる。フィルタープレス以外にも遠心分離ないしは真空ろ過ないしはベルトプレスなどによる脱水ができる。回収したフッ化カルシウムは純度が高い場合にはフッ酸製造原料として活用することができ、純度が低いものはセメント原料として活用することができる。
[Separation and recovery process]
The calcium fluoride precipitate is recovered by solid-liquid separation. As solid-liquid separation, a cake having a low water content can be obtained by separating the calcium fluoride precipitate by agglomeration and then separating it into a concentrated slurry, followed by filtration and dewatering with a filter press. In addition to the filter press, dehydration can be performed by centrifugation, vacuum filtration, or a belt press. The recovered calcium fluoride can be used as a raw material for producing hydrofluoric acid when the purity is high, and the calcium fluoride can be used as a raw material for cement.

固液分離した液分にはリチウムイオンが含まれているので、陽イオン交換樹脂によりリチウムを回収することができる。処理後の液は繰り返し洗浄溶出工程の洗浄液として活用することもできる。   Since the liquid component obtained by solid-liquid separation contains lithium ions, lithium can be recovered by a cation exchange resin. The liquid after the treatment can be used as a washing liquid in the repeated washing and elution process.

本発明の処理方法によれば、使用済みリチウムイオン電池に含まれるフッ素を効率よく除去することができ、具体的にはフッ素の94%以上を除去することができる。
本発明の処理方法は、樹脂化合物であるバインダーや電解質等の異なる形態のフッ素化合物を混在した状態で統一的に処理するので、フッ素の回収工程を簡略化することができる。さらに電池に含まれるフッ素源を全て包括的に処理するのでフッ素回収率を高めることができる。
本発明の処理方法は、特別な薬剤を使用せず、熱分解後の処理は破砕篩分け、洗浄溶出、フッ素固定化剤の添加、および固液分離の簡潔な工程であるので容易に実施することができる。
According to the treatment method of the present invention, fluorine contained in a used lithium ion battery can be efficiently removed, and specifically 94% or more of fluorine can be removed.
In the treatment method of the present invention, the fluorine recovery process can be simplified since the treatment is uniformly performed in a state where different types of fluorine compounds such as a binder and an electrolyte, which are resin compounds, are mixed. Furthermore, since all the fluorine sources contained in the battery are comprehensively processed, the fluorine recovery rate can be increased.
The treatment method of the present invention does not use any special agent, and the treatment after thermal decomposition is easily performed because it is a simple process of crushing sieving, washing and elution, addition of a fluorine fixing agent, and solid-liquid separation. be able to.

本発明の処理方法の概略を示す工程図。Process drawing which shows the outline of the processing method of this invention. 実施例1の熱分解残渣のXRDチャート。3 is an XRD chart of the thermal decomposition residue of Example 1. FIG. 熱分解前の活物質のXRDチャート。The XRD chart of the active material before thermal decomposition.

本発明の実施例および比較例を以下に示す。実施例および比較例の結果を表1に示す。なお、イオン濃度は陰イオンクロマトグラフィーによって測定した。熱分解残渣および活物質はXRDによって分析した。   Examples and Comparative Examples of the present invention are shown below. The results of Examples and Comparative Examples are shown in Table 1. The ion concentration was measured by anion chromatography. The pyrolysis residue and active material were analyzed by XRD.

〔実施例1〕
使用済みリチウムイオン電池(LIB)を過熱水蒸気雰囲気で加熱炉に入れて500℃で1時間加熱処理した。該電池の熱分解残渣を破砕し、0.5mm以下の細粒物を回収した。細粒物のXRDチャートを図2に示す。該チャートに示されるように、熱分解残渣にはLiFが含まれている。一方、加熱処理前の活物質のXRDチャート(図3)に示すように、これらにはLiFのピークは存在しない。この結果から、LIBに含まれるフッ素化合物のフッ素は、加熱処理によってLiFになったことが確認できる。
回収した細粒物に含まれるフッ素濃度は4.1wt%であった。この細粒物15g(フッ素量615mg)を後段の湿式洗浄に供した。湿式洗浄は純水を使用し、洗浄を10回繰返した。1回の洗浄に使用する純水量は150g(液/固量比=10/1)とした。洗浄10回後の積算で洗浄後液に溶出したフッ素量は580mgであり、細粒物中のフッ素量に対する溶出したフッ素量によって示されるフッ素溶出率は94.3%であった。
続いて、フッ素濃度610ppmの洗浄後液を2L用い、この洗浄後液に、4.0gのCa(OH)を添加したところ、液中フッ素濃度は20ppmになった。さらに3.0gのCa(OH)を追加で添加したところ、液中フッ素濃度は10ppmになった。
生成した沈澱を固液分離して回収した。該沈澱はXRD分析によってフッ化カルシウムであることを確認した。回収した沈澱の乾燥重量は7.56gであり、細粒物中のフッ素の回収率は92.8%であった。
[Example 1]
A used lithium ion battery (LIB) was placed in a heating furnace in a superheated steam atmosphere and heat-treated at 500 ° C. for 1 hour. The thermal decomposition residue of the battery was crushed, and fine particles of 0.5 mm or less were collected. An XRD chart of the fine particles is shown in FIG. As shown in the chart, the pyrolysis residue contains LiF. On the other hand, as shown in the XRD chart (FIG. 3) of the active material before the heat treatment, there is no LiF peak. From this result, it can be confirmed that the fluorine of the fluorine compound contained in LIB became LiF by the heat treatment.
The fluorine concentration contained in the collected fine particles was 4.1 wt%. 15 g of this fine granule (fluorine content: 615 mg) was subjected to a subsequent wet cleaning. In the wet cleaning, pure water was used, and the cleaning was repeated 10 times. The amount of pure water used for one washing was 150 g (liquid / solid ratio = 10/1). The amount of fluorine eluted in the solution after washing 10 times after washing was 580 mg, and the fluorine elution rate indicated by the amount of fluorine eluted with respect to the amount of fluorine in the fine granules was 94.3%.
Subsequently, when 2 L of the washed liquid with a fluorine concentration of 610 ppm was used and 4.0 g of Ca (OH) 2 was added to the washed liquid, the fluorine concentration in the liquid was 20 ppm. When 3.0 g of Ca (OH) 2 was additionally added, the fluorine concentration in the liquid became 10 ppm.
The resulting precipitate was recovered by solid-liquid separation. The precipitate was confirmed to be calcium fluoride by XRD analysis. The collected precipitate had a dry weight of 7.56 g, and the recovery rate of fluorine in the fine granules was 92.8%.

〔実施例2〕
表1に示す処理条件下でLIBを加熱処理して破砕し、細粒破砕物を篩分けして回収して洗浄し、その洗浄後液に固形化剤を添加してフッ素を含む沈澱を生成させた。この結果を表1に示す。
[Example 2]
LIB is heat-treated and crushed under the processing conditions shown in Table 1. Fine-grained crushed material is sieved and recovered, washed, and a solidifying agent is added to the solution after washing to produce a precipitate containing fluorine. I let you. The results are shown in Table 1.

〔比較例1〕
実施例1と同様のLIBを過熱水蒸気雰囲気で加熱炉に入れて500℃で1時間加熱処理した。該電池の熱分解残渣を破砕し、0.5mm以下の細粒物を回収した。この細粒物15g(フッ素量615mg)をさらに大気下、1000℃に加熱して1時間保持した。加熱残渣のフッ素量を測定したところ、108mgのフッ素が揮発して除去された。細粒物中のフッ素量に対する揮発したフッ素量によって示されるフッ素除去率は17.6%であり、フッ素を揮発させる加熱処理だけではフッ素の除去率が低く、加熱処理だけではフッ素の回収率が低くなる。
[Comparative Example 1]
LIB similar to Example 1 was put into a heating furnace in a superheated steam atmosphere and heat-treated at 500 ° C. for 1 hour. The thermal decomposition residue of the battery was crushed, and fine particles of 0.5 mm or less were collected. 15 g of this fine-grained product (fluorine content: 615 mg) was further heated to 1000 ° C. in the atmosphere and held for 1 hour. When the amount of fluorine in the heating residue was measured, 108 mg of fluorine was volatilized and removed. The fluorine removal rate indicated by the amount of fluorine volatilized with respect to the amount of fluorine in the fine particles is 17.6%, and the fluorine removal rate is low only by heat treatment that volatilizes fluorine, and the fluorine recovery rate is low only by heat treatment. Lower.

〔比較例2〕
使用済みLIBを加熱処理せずに、水洗浄して破砕し、0.5mm未満の細粒物を篩分けして回収した。回収した細粒物のフッ素濃度は1.9wt%であった。この細粒物15g(フッ素量285mg)を後段の湿式洗浄に供した。湿式洗浄は実施例1と同様に行った。その結果、10回洗浄の積算で洗浄後液に溶出したフッ素量は30mgであり、フッ素の溶出率は10.5%であった。
[Comparative Example 2]
The used LIB was washed with water and crushed without heat treatment, and fine particles of less than 0.5 mm were collected by sieving. The collected fine particles had a fluorine concentration of 1.9 wt%. 15 g of this fine particle (fluorine content: 285 mg) was subjected to a subsequent wet cleaning. Wet cleaning was performed in the same manner as in Example 1. As a result, the amount of fluorine eluted in the solution after washing by integrating 10 times of washing was 30 mg, and the elution rate of fluorine was 10.5%.

Figure 2016149330
Figure 2016149330

Claims (6)

使用済みリチウムイオン電池を加熱処理して該電池の有機成分およびフッ素化合物を熱分解する熱分解工程と、加熱処理した電池を破砕して細粒物と粗粒物に篩分けする破砕篩分け工程と、該細粒物を洗浄して該細粒物に含まれるフッ素化合物を溶出させる洗浄溶出工程と、溶出したフッ素化合物を含む洗浄後液に固定化剤を添加してフッ素含有沈澱を生成させるフッ素固定化工程と、フッ素含有沈澱を固液分離して回収する分離回収工程を有することを特徴とするリチウムイオン電池の処理方法。 A thermal decomposition process in which used lithium ion batteries are heat-treated to thermally decompose the organic components and fluorine compounds of the batteries, and a crushing and sieving process in which the heat-treated batteries are crushed and sieved into fine and coarse particles A washing and elution step of washing the fine particles to elute the fluorine compound contained in the fine particles, and adding a fixing agent to the post-washing solution containing the eluted fluorine compound to generate a fluorine-containing precipitate. A method for treating a lithium ion battery, comprising: a fluorine fixing step; and a separation and recovery step of recovering the fluorine-containing precipitate by solid-liquid separation. 熱分解工程において、リチウムイオン電池を、非酸化性雰囲気下、350℃〜600℃に加熱して有機成分を熱分解して無機化すると共に、電解質の六フッ化リン酸リチウムおよびバインダーのポリフッ化ビニリデンを熱分解して、それぞれに含有されるフッ素をリチウム化合物と反応させてフッ化リチウムにする請求項1に記載するリチウムイオン電池の処理方法。 In the pyrolysis step, the lithium ion battery is heated to 350 ° C. to 600 ° C. in a non-oxidizing atmosphere to thermally decompose the organic component and mineralize, and the electrolyte is lithium hexafluorophosphate and the binder polyfluoride. The method for treating a lithium ion battery according to claim 1, wherein vinylidene is thermally decomposed, and fluorine contained therein is reacted with a lithium compound to form lithium fluoride. 破砕篩分け工程において、熱処理した該電池を破砕して活物質を主成分とする平均粒径1mm未満の細粒物と、これより大きい集電体の金属箔を主成分とする粗粒物とに篩分けする請求項1または請求項2に記載するリチウムイオン電池の処理方法。 In the crushing and sieving step, the heat-treated battery is crushed and a fine particle having an average particle diameter of less than 1 mm mainly composed of an active material, and a coarse particle mainly composed of a metal foil of a current collector larger than this The processing method of the lithium ion battery of Claim 1 or Claim 2 sieved to. 洗浄溶出工程において、細粒物を水洗浄して該細粒物に含まれるフッ化リチウムを溶出させることによってフッ素およびリチウムを除去する請求項1〜請求項3の何れかに記載するリチウムイオン電池の処理方法。 The lithium ion battery according to any one of claims 1 to 3, wherein in the washing and elution step, the fine particles are washed with water and lithium fluoride contained in the fine particles is eluted to remove fluorine and lithium. Processing method. フッ素固定化工程において、洗浄溶出工程より排出されるフッ素含有排水に対して、カルシウム化合物をフッ素固定化剤として用い、フッ化カルシウム沈澱を生成させる請求項1〜請求項4の何れかに記載するリチウムイオン電池の処理方法。 In the fluorine fixation step, calcium fluoride is used as a fluorine fixing agent for the fluorine-containing wastewater discharged from the washing and elution step, and calcium fluoride precipitation is generated. A method for treating a lithium ion battery. フッ化カルシウム沈澱を固液分離した液分からリチウムを回収し、その処理液を洗浄溶出工程の洗浄液として繰り返し利用する請求項1〜請求項5の何れかに記載するリチウムイオン電池の処理方法。

The method for treating a lithium ion battery according to any one of claims 1 to 5, wherein lithium is recovered from a liquid fraction obtained by solid-liquid separation of calcium fluoride precipitate, and the treatment liquid is repeatedly used as a washing liquid in the washing and elution step.

JP2015027047A 2015-02-14 2015-02-14 Disposal of used lithium ion batteries Active JP6612506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015027047A JP6612506B2 (en) 2015-02-14 2015-02-14 Disposal of used lithium ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015027047A JP6612506B2 (en) 2015-02-14 2015-02-14 Disposal of used lithium ion batteries

Publications (2)

Publication Number Publication Date
JP2016149330A true JP2016149330A (en) 2016-08-18
JP6612506B2 JP6612506B2 (en) 2019-11-27

Family

ID=56691335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027047A Active JP6612506B2 (en) 2015-02-14 2015-02-14 Disposal of used lithium ion batteries

Country Status (1)

Country Link
JP (1) JP6612506B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190077247A (en) * 2016-10-31 2019-07-03 후난 진 위엔 뉴 머터리얼즈 조인트 스탁 컴퍼니 리미티드 Recycling of lithium in low-volume extraction tail water Recycling of tail water
CN110639847A (en) * 2019-09-30 2020-01-03 国网上海市电力公司 A method for sorting and recombining retired batteries
CN110994062A (en) * 2019-11-27 2020-04-10 湖南邦普循环科技有限公司 Recovery method for removing fluorine at front section of waste lithium ion battery
JP2020064855A (en) * 2018-10-11 2020-04-23 Dowaエコシステム株式会社 Method for recovering valuables from lithium ion secondary battery
CN112958588A (en) * 2021-01-29 2021-06-15 上海净颖环保科技股份有限公司 Waste battery safety recycling and disassembling system and disassembling method thereof
CN113140821A (en) * 2017-01-25 2021-07-20 株式会社Lg化学 Method for recovering positive electrode active material from lithium secondary battery
CN113186398A (en) * 2021-03-01 2021-07-30 安徽南都华铂新材料科技有限公司 Fluorine removal system for lithium iron phosphate battery powder and fluorine removal method using same
JP2021146317A (en) * 2020-03-23 2021-09-27 太平洋セメント株式会社 Hexavalent chromium production inhibitor
WO2021241835A1 (en) * 2020-05-25 2021-12-02 주식회사 엘지에너지솔루션 Method for reusing active material using positive electrode scrap
CN113909273A (en) * 2021-12-07 2022-01-11 中国科学院过程工程研究所 A kind of recycling method and application of waste lithium battery pole piece
CN113939941A (en) * 2019-03-14 2022-01-14 罗氏锰股份有限公司 Processing of Cobalt Sulfate/Cobalt Dithionate Liquor from Cobalt Sources
WO2022032345A1 (en) * 2020-08-12 2022-02-17 Resource Conservation and Recycling Corporation Pty Ltd Process for recovering values from batteries
CN114300777A (en) * 2022-03-04 2022-04-08 中南大学 Lithium battery positive electrode powder recovery method, catalyst and application thereof
CN114614074A (en) * 2022-03-03 2022-06-10 九江天赐高新材料有限公司 Waste lithium ion battery recovery method and device
CN114914570A (en) * 2022-05-20 2022-08-16 广州天赐高新材料股份有限公司 Method and device for recycling electrolyte of waste lithium ion battery
JP2023511183A (en) * 2020-07-06 2023-03-16 エルジー エナジー ソリューション リミテッド Method for reusing active material using positive electrode scrap
JP2023534797A (en) * 2020-08-24 2023-08-14 エルジー エナジー ソリューション リミテッド ACTIVE MATERIAL RECOVERY DEVICE AND ACTIVE MATERIAL REUSE USING THE SAME
CN116730566A (en) * 2023-08-15 2023-09-12 赣州吉锐新能源科技股份有限公司 Fluorine-containing waste liquid defluorination process for battery recovery
CN116871307A (en) * 2023-06-29 2023-10-13 格林美(武汉)城市矿山产业集团有限公司 A method for recycling ASR fine scraps
JP2023177724A (en) * 2022-06-03 2023-12-14 株式会社エンビプロ・ホールディングス Waste residue of lithium ion battery and method for producing the same
JP2023554364A (en) * 2021-09-09 2023-12-27 エルジー エナジー ソリューション リミテッド Method for regenerating cathode active material and cathode active material recycled from this
JP2024502892A (en) * 2021-08-02 2024-01-23 エルジー エナジー ソリューション リミテッド How to reuse active materials using cathode scraps
JP2024507559A (en) * 2021-10-21 2024-02-20 エルジー エナジー ソリューション リミテッド Method for regenerating cathode active material and cathode active material recycled from this
JP2024515170A (en) * 2021-08-26 2024-04-05 エルジー エナジー ソリューション リミテッド Method for reusing positive electrode active material
CN118272660A (en) * 2024-05-31 2024-07-02 湖南中大资珑科技有限公司 Transformation method of fluorine in waste power battery black powder and extraction method of lithium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540972A (en) * 2020-04-14 2020-08-14 安徽南都华铂新材料科技有限公司 Method for removing fluoride ions in waste lithium ion batteries
WO2022055272A1 (en) * 2020-09-11 2022-03-17 주식회사 엘지에너지솔루션 Method for recovering cathode material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026089A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Lithium battery, manufacturing method and processing method thereof
JP2012195073A (en) * 2011-03-15 2012-10-11 Mitsui Mining & Smelting Co Ltd Method for producing recycled material
US20140290438A1 (en) * 2011-08-12 2014-10-02 Christian Hanisch Method for reclaiming active material from a galvanic cell, and an active material separation installation, particularly an active metal separation installation
JP2015028928A (en) * 2013-06-28 2015-02-12 三菱マテリアル株式会社 Method for processing fluorine-containing electrolytic solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026089A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Lithium battery, manufacturing method and processing method thereof
JP2012195073A (en) * 2011-03-15 2012-10-11 Mitsui Mining & Smelting Co Ltd Method for producing recycled material
US20140290438A1 (en) * 2011-08-12 2014-10-02 Christian Hanisch Method for reclaiming active material from a galvanic cell, and an active material separation installation, particularly an active metal separation installation
JP2015028928A (en) * 2013-06-28 2015-02-12 三菱マテリアル株式会社 Method for processing fluorine-containing electrolytic solution

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536888A (en) * 2016-10-31 2019-12-19 湖南金源新材料股▲ふん▼有限公司 Method for recovering lithium from extracted tail liquid with low lithium content and recycling extracted tail liquid
KR102251421B1 (en) * 2016-10-31 2021-05-13 후난 진 위엔 뉴 머터리얼즈 조인트 스탁 컴퍼니 리미티드 Recovery of lithium from low content extracted tail water and recycling method of extracted tail water
KR20190077247A (en) * 2016-10-31 2019-07-03 후난 진 위엔 뉴 머터리얼즈 조인트 스탁 컴퍼니 리미티드 Recycling of lithium in low-volume extraction tail water Recycling of tail water
CN113140821A (en) * 2017-01-25 2021-07-20 株式会社Lg化学 Method for recovering positive electrode active material from lithium secondary battery
JP2020064855A (en) * 2018-10-11 2020-04-23 Dowaエコシステム株式会社 Method for recovering valuables from lithium ion secondary battery
CN113939941A (en) * 2019-03-14 2022-01-14 罗氏锰股份有限公司 Processing of Cobalt Sulfate/Cobalt Dithionate Liquor from Cobalt Sources
CN110639847A (en) * 2019-09-30 2020-01-03 国网上海市电力公司 A method for sorting and recombining retired batteries
CN110994062A (en) * 2019-11-27 2020-04-10 湖南邦普循环科技有限公司 Recovery method for removing fluorine at front section of waste lithium ion battery
JP7474615B2 (en) 2020-03-23 2024-04-25 太平洋セメント株式会社 Hexavalent chromium generation inhibitor
JP2021146317A (en) * 2020-03-23 2021-09-27 太平洋セメント株式会社 Hexavalent chromium production inhibitor
WO2021241835A1 (en) * 2020-05-25 2021-12-02 주식회사 엘지에너지솔루션 Method for reusing active material using positive electrode scrap
JP2023511183A (en) * 2020-07-06 2023-03-16 エルジー エナジー ソリューション リミテッド Method for reusing active material using positive electrode scrap
JP7350185B2 (en) 2020-07-06 2023-09-25 エルジー エナジー ソリューション リミテッド How to reuse active materials using cathode scraps
WO2022032345A1 (en) * 2020-08-12 2022-02-17 Resource Conservation and Recycling Corporation Pty Ltd Process for recovering values from batteries
JP7453467B2 (en) 2020-08-24 2024-03-19 エルジー エナジー ソリューション リミテッド Active material recovery device and active material reuse method using the same
JP2023534797A (en) * 2020-08-24 2023-08-14 エルジー エナジー ソリューション リミテッド ACTIVE MATERIAL RECOVERY DEVICE AND ACTIVE MATERIAL REUSE USING THE SAME
CN112958588A (en) * 2021-01-29 2021-06-15 上海净颖环保科技股份有限公司 Waste battery safety recycling and disassembling system and disassembling method thereof
CN113186398A (en) * 2021-03-01 2021-07-30 安徽南都华铂新材料科技有限公司 Fluorine removal system for lithium iron phosphate battery powder and fluorine removal method using same
JP7612880B2 (en) 2021-08-02 2025-01-14 エルジー エナジー ソリューション リミテッド Method for reusing active material using scrap cathodes
JP2024502892A (en) * 2021-08-02 2024-01-23 エルジー エナジー ソリューション リミテッド How to reuse active materials using cathode scraps
JP2024515170A (en) * 2021-08-26 2024-04-05 エルジー エナジー ソリューション リミテッド Method for reusing positive electrode active material
JP7648797B2 (en) 2021-08-26 2025-03-18 エルジー エナジー ソリューション リミテッド Method for reusing positive electrode active material
JP7614355B2 (en) 2021-09-09 2025-01-15 エルジー エナジー ソリューション リミテッド Method for regenerating positive electrode active material and positive electrode active material regenerated therefrom
JP2023554364A (en) * 2021-09-09 2023-12-27 エルジー エナジー ソリューション リミテッド Method for regenerating cathode active material and cathode active material recycled from this
JP7654814B2 (en) 2021-10-21 2025-04-01 エルジー エナジー ソリューション リミテッド Method for regenerating positive electrode active material and positive electrode active material regenerated therefrom
JP2024507559A (en) * 2021-10-21 2024-02-20 エルジー エナジー ソリューション リミテッド Method for regenerating cathode active material and cathode active material recycled from this
CN113909273B (en) * 2021-12-07 2022-06-28 中国科学院过程工程研究所 A kind of recycling method and application of waste lithium battery pole piece
CN113909273A (en) * 2021-12-07 2022-01-11 中国科学院过程工程研究所 A kind of recycling method and application of waste lithium battery pole piece
CN114614074B (en) * 2022-03-03 2024-04-16 九江天赐高新材料有限公司 Method and device for recycling waste lithium ion batteries
CN114614074A (en) * 2022-03-03 2022-06-10 九江天赐高新材料有限公司 Waste lithium ion battery recovery method and device
CN114300777A (en) * 2022-03-04 2022-04-08 中南大学 Lithium battery positive electrode powder recovery method, catalyst and application thereof
WO2023222127A1 (en) * 2022-05-20 2023-11-23 广州天赐高新材料股份有限公司 Waste lithium ion battery electrolyte recycling method and apparatus
CN114914570A (en) * 2022-05-20 2022-08-16 广州天赐高新材料股份有限公司 Method and device for recycling electrolyte of waste lithium ion battery
US12315900B1 (en) 2022-05-20 2025-05-27 Guangzhou Tinci Materials Technology Co., Ltd. Waste lithium ion battery electrolyte solution recycling method and apparatus
JP2023177724A (en) * 2022-06-03 2023-12-14 株式会社エンビプロ・ホールディングス Waste residue of lithium ion battery and method for producing the same
CN116871307A (en) * 2023-06-29 2023-10-13 格林美(武汉)城市矿山产业集团有限公司 A method for recycling ASR fine scraps
CN116730566A (en) * 2023-08-15 2023-09-12 赣州吉锐新能源科技股份有限公司 Fluorine-containing waste liquid defluorination process for battery recovery
CN116730566B (en) * 2023-08-15 2023-10-27 赣州吉锐新能源科技股份有限公司 Fluorine-containing waste liquid defluorination process for battery recovery
CN118272660A (en) * 2024-05-31 2024-07-02 湖南中大资珑科技有限公司 Transformation method of fluorine in waste power battery black powder and extraction method of lithium

Also Published As

Publication number Publication date
JP6612506B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP6612506B2 (en) Disposal of used lithium ion batteries
JP7253538B2 (en) Lithium-ion battery recycling method
JP6314814B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
JP5847741B2 (en) Waste cathode material and method for recovering metal from waste battery
JP6897466B2 (en) How to separate copper from nickel and cobalt
JP2023510361A (en) Method for reusing active material using positive electrode scrap
JP6948066B2 (en) Recycled negative electrode active material recovered from waste lithium ion battery containing lithium titanate and its recovery method
CN115433826A (en) Method for dissolving lithium compound, method for producing lithium carbonate, and method for recovering lithium from lithium ion secondary battery scrap
JP2019160429A (en) Lithium recovery method
CN110148801B (en) Vacuum separation method for positive plate of waste lithium iron phosphate battery
CN109852807A (en) A kind of oxidation treatment method of waste and old lithium ion battery
CN107381604A (en) A kind of method that lithium carbonate is reclaimed from ferric phosphate lithium cell
JP3425206B2 (en) Method for recovering valuable resources from used lithium secondary batteries
JP7691993B2 (en) Lithium recovery method and lithium carbonate manufacturing method
JP7271833B2 (en) Lithium recovery method
JP6562212B2 (en) Method and apparatus for thermal decomposition treatment of lithium ion battery
JP6958235B2 (en) How to separate copper from nickel and cobalt
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
JP2023518880A (en) Reuse of batteries by reduction and carbonylation
CN105244560B (en) A kind of resource recycling method of lithium ion battery
JP6516240B2 (en) Lithium extraction method
CN113735109B (en) Method for recovering graphite from lithium ion battery and application thereof
CN118086694A (en) Method for directly extracting lithium from waste lithium ion battery monomer preferentially
Li et al. Pyrolysis Pretreatment for Recycling Spent LiFePO4 Batteries in Argon Gas: Kinetic Behaviors and Reaction Mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191031

R150 Certificate of patent or registration of utility model

Ref document number: 6612506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250