[go: up one dir, main page]

JP2016144257A - Magnet device - Google Patents

Magnet device Download PDF

Info

Publication number
JP2016144257A
JP2016144257A JP2015016734A JP2015016734A JP2016144257A JP 2016144257 A JP2016144257 A JP 2016144257A JP 2015016734 A JP2015016734 A JP 2015016734A JP 2015016734 A JP2015016734 A JP 2015016734A JP 2016144257 A JP2016144257 A JP 2016144257A
Authority
JP
Japan
Prior art keywords
magnet
yoke
movable member
detection
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015016734A
Other languages
Japanese (ja)
Inventor
春山 哲也
Tetsuya Haruyama
哲也 春山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS-TOKKI Inc
Original Assignee
PS-TOKKI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS-TOKKI Inc filed Critical PS-TOKKI Inc
Priority to JP2015016734A priority Critical patent/JP2016144257A/en
Publication of JP2016144257A publication Critical patent/JP2016144257A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnet device capable of moving a movable member to a predetermined position with high accuracy and reducing a size and a weight.SOLUTION: A magnet device includes: a driving magnet 11 disposed to a fixing member 2, and a movable coil 13 disposed to a movable member 5, and the driving magnet 11 includes: a voice coil motor 9 to which a heteropolar magnetic pole is adjacent along with a moving direction of the movable member 5; a holding member 4 that is connected to the fixing member 2 with a predetermined interval so as to opposite to the movable member 5; a spherical body 6 interposed between the holding member 4 and the movable member 5 at a position opposite to the driving magnet 11; a detection magnet 16 that is arranged to the movable member 5 and to which the heteropolar magnetic pole is adjacent along with its moving direction; a position detection member 14 that faces to the detection magnet 16 and has a magnetic field detection element 15 that is arranged in the holding member 4; a first yoke 8A that is arranged in the holding member 4 and to which a magnetic flux generated from the driving magnet 11 flows; and a second yoke 8B to which the magnetic flux generated from the detection magnet 16 flows.SELECTED DRAWING: Figure 2

Description

本発明は、固定部材に対して可動部材を直線的に移動させるボイスコイルモータと磁界検出素子を含む位置検出部材を備えた磁石装置に関する。   The present invention relates to a magnet device including a position detection member including a voice coil motor and a magnetic field detection element that linearly moves a movable member with respect to a fixed member.

精密機器、例えばデジタルカメラなどの撮像用光学機器では、撮影レンズの長焦点化や高倍率ズーム化に伴い、高画質の写真を撮影するために、カメラボディーや交換レンズに例えば光学式手振れ補正装置を搭載することが一般的になっている。光学式手振れ補正装置では、光軸と垂直な平面上で補正レンズ又は撮像素子をボイスコイルモータ(以下「VCM」という。)により二次元方向に移動させるとともに、位置検出装置を搭載して、サーボ制御することが一般的である。   In precision instruments such as digital cameras, such as digital cameras, for example, optical camera shake correction devices are attached to camera bodies and interchangeable lenses in order to take high-quality pictures as the taking lens becomes longer in focus or zoomed in at a higher magnification. It has become common to install. In an optical camera shake correction device, a correction lens or an image sensor is moved in a two-dimensional direction by a voice coil motor (hereinafter referred to as “VCM”) on a plane perpendicular to the optical axis, and a position detection device is mounted on the servo. It is common to control.

例えば、特許文献1には、第1軸及び第2軸のそれぞれに沿って配置された磁石(61L、61R)が備えられた第1の部材(30)と、第1の部材に対向して備えられた第2の部材(20)と、第1の部材及び第2の部材のそれぞれに備えられた第1要素(52)と第2要素(51、552、553)との電磁的作用により第1の部材と第2の部材とを相対的に駆動させる駆動部材(50)とを含み、一方の磁石は、他方の磁石と前記第2要素との電磁的結合により生じる回転モーメントを低減させるように配置された位置決め装置が記載されている。   For example, in Patent Document 1, a first member (30) provided with magnets (61L, 61R) disposed along each of the first axis and the second axis, and the first member are opposed to each other. Due to the electromagnetic action of the second member (20) provided, the first element (52) and the second element (51, 552, 553) provided in each of the first member and the second member. A drive member (50) for relatively driving the first member and the second member, wherein one magnet reduces a rotational moment generated by electromagnetic coupling between the other magnet and the second element; A positioning device arranged in such a manner is described.

また特許文献2には、振れ補正レンズを保持するシフト枠とシフトベースとの間に転動可能なボールを挟持し、可動コイル形のボイスコイルモータにより、シフト枠を光軸直交面内でピッチ方向及びヨー方向に駆動し、ボイスコイルモータを構成する磁石とヨークとの間に作用する磁気的な吸引力により、シフト枠をベース側へ付勢するとともに、シフト枠に固定された検出用磁石とシフトベースに固定されたホール素子を含む位置検出手段を備えた像振れ補正装置が記載されている。   In Patent Document 2, a rollable ball is sandwiched between a shift frame that holds a shake correction lens and a shift base, and the shift frame is pitched in a plane orthogonal to the optical axis by a moving coil type voice coil motor. And a magnet for detection fixed to the shift frame while urging the shift frame toward the base side by a magnetic attraction acting between the magnet and the yoke constituting the voice coil motor. And an image blur correction device including position detection means including a Hall element fixed to the shift base.

特許第5181542号公報Japanese Patent No. 5181542 特許第4006178号公報Japanese Patent No. 4006178

特許文献1に記載された位置決め装置では、位置検出用磁石と駆動用磁石の各磁極の配置が90°異なるために、特にコンパクトな構成とする場合には位置検出用磁石と駆動用磁石間には必ず吸引と反発の磁力が生じ、特に各磁石間の吸引力は、駆動磁石側からみた時、駆動磁石の磁力線は位置検出用磁石に引っ張られることになるため、その分はコイルへの有効磁束が減ることになり、結果として推力低下を招く。位置検出用磁石側からみた時には、駆動磁石からの磁束線の流入、又は位置検出用磁石からの磁束の流出によって、位置検出に重要な極間付近での直線的な磁力変化を悪化させる可能性もあり、その結果、精密制御に支障を生じ、制御範囲を狭くする一因となり得る。また、位置検出磁石が駆動用磁石の対向ヨークに近接すると、位置検出磁石が駆動磁石用対向ヨークに磁気的に吸引され、負荷となることで、制御を阻害するといった問題が生じる可能性もある。更に、磁石としてフェライト磁石を使用するので、小型・軽量化を図ることができないといった問題がある。また、特許文献2に記載された像振れ補正装置は、光軸方向から見てボイスコイルモータのコイルと検出用磁石が重なるように配置されているので、コイルの磁界の影響を受けて、位置検出精度が低下するといった問題がある。   In the positioning device described in Patent Document 1, since the arrangement of the magnetic poles of the position detection magnet and the drive magnet differs by 90 °, the position detection magnet and the drive magnet are particularly arranged in a compact configuration. The magnetic force of attraction and repulsion always occurs, and especially the attraction force between each magnet, when viewed from the drive magnet side, the magnetic field line of the drive magnet is pulled by the position detection magnet, so that part is effective for the coil As a result, the magnetic flux decreases, resulting in a decrease in thrust. When viewed from the position detection magnet side, there is a possibility of exacerbating the linear magnetic force change near the poles important for position detection due to the inflow of magnetic flux lines from the drive magnet or the outflow of magnetic flux from the position detection magnet. As a result, it may interfere with precision control and contribute to narrowing the control range. In addition, when the position detection magnet is close to the opposing yoke of the driving magnet, the position detection magnet is magnetically attracted to the opposing yoke for the driving magnet and becomes a load, which may cause a problem of inhibiting control. . Furthermore, since a ferrite magnet is used as the magnet, there is a problem that it is not possible to reduce the size and weight. In addition, since the image blur correction device described in Patent Document 2 is arranged so that the coil of the voice coil motor and the magnet for detection overlap when viewed from the optical axis direction, the position is affected by the magnetic field of the coil. There is a problem that the detection accuracy decreases.

したがって本発明の目的は、可動部材を高精度で所定位置まで直線的に移動することが可能で、かつ小型・軽量化が可能な磁石装置を提供することである。   Accordingly, an object of the present invention is to provide a magnet device that can move a movable member linearly to a predetermined position with high accuracy and that can be reduced in size and weight.

第1の発明の磁石装置は、
固定部材に、バックヨークを介して設置される駆動磁石と、前記駆動磁石に対して所定方向に移動可能に設置される可動部材に設置される駆動コイルとを含み、前記駆動磁石は可動部材の移動方向に沿って、異極性の磁極が隣接するボイスコイルモータと、
前記固定部材に前記可動部材に対向するように所定間隔をおいて結合される保持部材と、
前記保持部材と前記可動部材との間でかつ前記駆動磁石に対向する位置に介装される球状体と、
前記可動部材に設置され、その移動方向に沿って、異極性の磁極が隣接する検出磁石と、前記検出磁石に対向して、前記保持部材に設置される磁界検出素子を有する位置検出部材と、
前記保持部材に設置され、前記駆動磁石から発生する磁束が流入する第1のヨーク及び前記検出磁石から発生する磁束が流入する第2のヨークを有することを特徴とするものである。
The magnet device of the first invention is:
The fixed member includes a drive magnet installed via a back yoke, and a drive coil installed on a movable member installed to be movable in a predetermined direction with respect to the drive magnet. A voice coil motor with adjacent magnetic poles of different polarity along the direction of movement;
A holding member coupled to the fixed member at a predetermined interval so as to face the movable member;
A spherical body interposed between the holding member and the movable member and at a position facing the drive magnet;
A detection magnet that is installed on the movable member and has magnetic poles of different polarities adjacent to each other along the moving direction thereof, and a position detection member that has a magnetic field detection element that is installed on the holding member so as to face the detection magnet;
The holding member is provided with a first yoke into which a magnetic flux generated from the drive magnet flows and a second yoke into which a magnetic flux generated from the detection magnet flows.

第1の発明において、前記第2のヨークの投影面積は、平面からみて、前記可動部材の移動範囲内で前記位置検出用磁石が含まれる大きさに設定されることが好ましい。   In the first invention, it is preferable that the projected area of the second yoke is set to a size that includes the position detecting magnet within a moving range of the movable member, as viewed from a plane.

第2の発明の磁石装置は、
ベース部材に設置され、バックヨークで支持される駆動磁石と、前記ベース部材の中心軸と直交する平面内で移動可能に設置される可動部材に設置される駆動コイルとを含み、前記中心軸の周囲に配置される複数のボイスコイルモータと、
前記ベース部材に所定間隔をおいて組み付けられる支持部材と前記ベースとの間に介装され、かつ軸方向において前記駆動用磁石に対向する位置にある球状体と、
前記可動部材に、軸方向から見て前記ボイスコイルモータの間に設置される複数の検出磁石と、前記検出磁石に対向して、前記支持部材に設置される複数の磁界検出素子を有する位置検出部材と、
前記ベース部材に支持され、前記駆動磁石から発生する磁束が流入する第1のヨーク及び前記検出用磁石から発生する磁束が流入する第2のヨークを、有することを特徴とすることを特徴とするものである。
The magnet device of the second invention is
A drive magnet installed on the base member and supported by a back yoke; and a drive coil installed on a movable member installed movably in a plane perpendicular to the central axis of the base member. A plurality of voice coil motors arranged around,
A spherical body that is interposed between a support member that is assembled to the base member at a predetermined interval and the base, and that is in a position facing the driving magnet in the axial direction;
Position detection having a plurality of detection magnets installed between the voice coil motors as viewed in the axial direction on the movable member, and a plurality of magnetic field detection elements installed on the support member facing the detection magnets. A member,
A first yoke supported by the base member and into which a magnetic flux generated from the driving magnet flows and a second yoke into which a magnetic flux generated from the detection magnet flows are provided. Is.

第2の発明において、前記位置検出用磁石及び前記磁界検出素子は軸方向から見た平面で前記駆動用コイルと点対称となる位置に配置することが好ましい。   In the second invention, it is preferable that the position detection magnet and the magnetic field detection element are arranged at positions that are point-symmetric with the drive coil in a plane viewed from the axial direction.

本発明において、前記第2のヨークの投影面積は、軸方向からみて、前記移動部材の移動範囲内で前記位置検出用磁石が含まれる大きさに設定されることが好ましい。   In the present invention, it is preferable that the projected area of the second yoke is set to a size that includes the position detecting magnet within the moving range of the moving member as viewed from the axial direction.

本発明によれば、可動部材を高精度で所定の位置まで移動できるとともに、小型・軽量化が可能な磁石装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to move a movable member to a predetermined position with high precision, the magnet apparatus which can be reduced in size and weight can be obtained.

本発明の第1の実施の形態に係わる磁石装置の平面図である。It is a top view of the magnet apparatus concerning the 1st Embodiment of this invention. 図1に示す磁石装置におけるVCMと位置検出部材の位置関係を示す平面図である。It is a top view which shows the positional relationship of VCM and a position detection member in the magnet apparatus shown in FIG. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 第2のヨークと検出用磁石の位置関係を模式的に示す図である。It is a figure which shows typically the positional relationship of a 2nd yoke and a magnet for a detection. 第1の実施の形態における位置検出部を示し、(a)は磁界検出素子部を模式的に示す断面図、(b)は磁束密度分布を示す図である。The position detection part in 1st Embodiment is shown, (a) is sectional drawing which shows a magnetic field detection element part typically, (b) is a figure which shows magnetic flux density distribution. 本発明の第2の実施の形態に係わる磁石装置の平面図である。It is a top view of the magnet apparatus concerning the 2nd Embodiment of this invention. 図6に示す磁石装置におけるVCMと位置検出部材の位置関係を示す平面図である。It is a top view which shows the positional relationship of VCM and a position detection member in the magnet apparatus shown in FIG. 図7のA−A線断面図である。It is the sectional view on the AA line of FIG. 第2の実施の形態における第2のヨークと検出用磁石の位置関係を模式的に示す図である。It is a figure which shows typically the positional relationship of the 2nd yoke and the magnet for a detection in 2nd Embodiment.

本発明の詳細を添付図面により説明する。   The details of the present invention will be described with reference to the accompanying drawings.

<第1の実施の形態>
磁石装置1は、図1〜3に示すように、矩形状の固定部材2に立設された複数(例えば4本)の支柱3に結合された矩形状の保持部材4と、固定部材2に対して環状部を有する可動部材5をZ軸(可動中心)と直交する面内で所定方向(X軸方向)に摺動自在に支持する球状体6を有する。この磁石装置1は、Z軸に垂直な面内で可動部材5をX軸方向に往復運動させるために、可動コイル形のボイスコイルモータ9(以下「VCM9」という。)と、可動部材5の移動量を検出する位置検出部材14を備える。可動部材5は、例えば光学素子(不図示)を有するが、これに限定されるものではない。
<First Embodiment>
As shown in FIGS. 1 to 3, the magnet device 1 includes a rectangular holding member 4 coupled to a plurality of (for example, four) pillars 3 erected on a rectangular fixing member 2, and a fixing member 2. On the other hand, it has a spherical body 6 that supports a movable member 5 having an annular portion so as to be slidable in a predetermined direction (X-axis direction) within a plane orthogonal to the Z-axis (movable center). The magnet device 1 includes a movable coil type voice coil motor 9 (hereinafter referred to as “VCM 9”) and a movable member 5 for reciprocating the movable member 5 in the X-axis direction within a plane perpendicular to the Z-axis. A position detection member 14 for detecting the amount of movement is provided. Although the movable member 5 has an optical element (not shown), for example, it is not limited to this.

可動部材5は、光学素子(不図示)の外周縁を保持する円筒状部を挟むようにX軸方向に沿って配置され、一端側に形成された、球状体6を収容するための円孔部と、他端側に設置された、検出磁石16を有する矩形状の部材である。円孔部は、球状体6が所定範囲で転動可能な大きさに形成される。また円孔部の背面側(固定部材に対向する側)には、VCM9を構成する、偏平な空芯コイルである可動コイル13が実装されるフレキシブルプリント基板(「第1のFPC」という。)12が固着される。   The movable member 5 is arranged along the X-axis direction so as to sandwich a cylindrical portion that holds the outer peripheral edge of an optical element (not shown), and is formed on one end side to accommodate a spherical body 6. And a rectangular member having a detection magnet 16 installed on the other end side. The circular hole portion is formed in a size that allows the spherical body 6 to roll within a predetermined range. A flexible printed circuit board (referred to as “first FPC”) on which the movable coil 13, which is a flat air-core coil, constituting the VCM 9 is mounted on the back side (the side facing the fixed member) of the circular hole portion. 12 is fixed.

保持部材4は、一端側に強磁性体(例えばSS材等の鉄鋼材料)からなる第1のヨーク8Aを有するとともに、他端側に、強磁性体(例えばSS材等の鉄鋼材料)からなる第2のヨーク8Bとフレキシブルプリント基板(以下「第2のFPC」という。)7を有する。第2のFPC7の一方の表面(可動部材側の面)には、配線パターン(不図示)が形成されて磁界検出素子(本例ではホール素子)15が実装される。   The holding member 4 has a first yoke 8A made of a ferromagnetic material (for example, a steel material such as SS material) on one end side, and is made of a ferromagnetic material (for example, a steel material such as SS material) on the other end side. A second yoke 8B and a flexible printed circuit board (hereinafter referred to as “second FPC”) 7 are provided. A wiring pattern (not shown) is formed on one surface (surface on the movable member side) of the second FPC 7 and a magnetic field detection element (Hall element in this example) 15 is mounted.

固定部材2は、各コーナー部に、支柱3(図1に破線で示す)が立設された矩形状の部材である。固定部材2には、矩形状の磁石保持用段差部が形成され、段差部にはVCM9を構成する矩形状の駆動磁石11がバックヨーク10を介して固着される。固定部材2、可動部材5及び支柱3は、非磁性体(例えばエンジニアリングプラスチック)で形成される。   The fixing member 2 is a rectangular member in which pillars 3 (shown by broken lines in FIG. 1) are erected at each corner portion. A rectangular magnet holding step portion is formed on the fixing member 2, and a rectangular drive magnet 11 constituting the VCM 9 is fixed to the step portion via a back yoke 10. The fixed member 2, the movable member 5, and the support column 3 are formed of a non-magnetic material (for example, engineering plastic).

第1のヨーク8Aは、固定磁石から発生する磁束が流入する位置に設けられるので、VCM9で発生する推力が向上する。第1の吸引ヨーク8Aは、強磁性体(SS材等の鉄鋼材料)からなる矩形状部材であり、可動コイル13の有効巻線部の長さ(Y方向の直線部の長さ)よりも大なるような大きさに設定される。第2のヨーク8Bは、強磁性体(SS材等の鉄鋼材料)からなる矩形状部材であり、検出磁石から流出する磁束が流入する位置に設けられる。したがって可動部材5は、軸方向に沿って固定部材2から遠ざかる方向に磁気的に吸引される。この第2のヨーク8Bは、固定部材2からはみ出さずかつ検出磁石16に重なるような寸法に設定される。これらのヨークの厚さは、磁石の磁気特性などに応じて設定すればよいが、例えば、0.5〜1.5mmの範囲に設定することができる。また第2のヨーク8Bは、図4に示すように、その投影面積が、平面(紙面に垂直な方向)からみて、可動部材5の移動範囲内(一点鎖線Bで囲まれた領域)で検出磁石16がはみ出さないような大きさに設定される。すなわち第2のヨーク8Bの幅Lrは、検出磁石16の可動範囲Bの幅Lsと同じかあるいはそれよりも大なる幅(Lr>Ls)を有するように設定される。   Since the first yoke 8A is provided at a position where the magnetic flux generated from the fixed magnet flows, the thrust generated by the VCM 9 is improved. The first suction yoke 8A is a rectangular member made of a ferromagnetic material (steel material such as SS material), and is longer than the length of the effective winding portion of the movable coil 13 (the length of the straight portion in the Y direction). It is set to a large size. The second yoke 8B is a rectangular member made of a ferromagnetic material (an iron and steel material such as an SS material), and is provided at a position where a magnetic flux flowing out from the detection magnet flows. Therefore, the movable member 5 is magnetically attracted in the direction away from the fixed member 2 along the axial direction. The second yoke 8B is set to a size that does not protrude from the fixing member 2 and overlaps the detection magnet 16. The thicknesses of these yokes may be set according to the magnetic characteristics of the magnet, but can be set in the range of 0.5 to 1.5 mm, for example. Further, as shown in FIG. 4, the projected area of the second yoke 8B is detected within the moving range of the movable member 5 (region surrounded by the alternate long and short dash line B) when viewed from the plane (direction perpendicular to the paper surface). The size is set so that the magnet 16 does not protrude. That is, the width Lr of the second yoke 8B is set to have a width (Lr> Ls) that is equal to or greater than the width Ls of the movable range B of the detection magnet 16.

保持部材4は、可動部材2との間で球状体6を所定範囲だけ移動可能に挟持するために、可動部材5に対向する側に円孔を有する。図3に示すように、軸方向から見て可動部材5と支持部材4の間に、複数の球状体が介装されるため、可動部材5はZ軸に対して垂直な平面(X方向及びそれと直交するY方向を含む面)においてX方向に移動可能な状態で支持されて、摺動(摩擦)抵抗が低減され、正確な位置精度を確保することが可能となる。   The holding member 4 has a circular hole on the side facing the movable member 5 in order to hold the spherical body 6 so as to be movable within a predetermined range between the holding member 4 and the movable member 2. As shown in FIG. 3, since a plurality of spherical bodies are interposed between the movable member 5 and the support member 4 when viewed from the axial direction, the movable member 5 has a plane perpendicular to the Z axis (X direction and It is supported in such a manner that it can move in the X direction on the surface including the Y direction perpendicular to it, and the sliding (friction) resistance is reduced, so that accurate positional accuracy can be ensured.

磁界検出素子15は、その中心が、検出磁石16の中間にくるように第2のFPC7に実装される。この磁界検出素子(例えばホール素子)15は、可動コイル13から大きく離れた位置に存在するため、可動コイルから発生する磁束の影響を受けず(ノイズを伴わずに)、高精度の位置検出が可能となる。   The magnetic field detection element 15 is mounted on the second FPC 7 so that the center thereof is in the middle of the detection magnet 16. Since this magnetic field detection element (for example, Hall element) 15 exists at a position far away from the movable coil 13, it is not affected by magnetic flux generated from the movable coil (without noise), and highly accurate position detection is possible. It becomes possible.

可動部材5の駆動手段であるVCM9は、可動部材の軽量化を図るために、可動部材5に設置された長円形状の偏平な空芯コイルである可動コイル13と、固定部材2に固設された駆動磁石11を有する(図3参照)。固定の駆動磁石11は各々、厚さ方向(Z軸方向)に磁化されかつ長手方向(X方向)に沿って異極性の磁極が隣接するように磁化され、強磁性体(例えばSS材等の鉄鋼材料)からなる平板状のバックヨーク10の表面に設置される。駆動磁石11は、公知の永久磁石で形成することができるが、少ない消費電力で高推力を得るために、希土類焼結磁石で形成することが好ましく、例えば358〜437kJ/m[45〜55MGOe]の最大エネルギー積を有するとともに1.3T以上の残留磁束密度を有することがより好ましい。 The VCM 9 which is a driving means for the movable member 5 is fixed to the fixed member 2 and the movable coil 13 which is an oblong flat air-core coil installed in the movable member 5 in order to reduce the weight of the movable member. Drive magnet 11 (see FIG. 3). Each of the fixed drive magnets 11 is magnetized in the thickness direction (Z-axis direction) and magnetized so that magnetic poles of different polarities are adjacent to each other in the longitudinal direction (X direction). It is installed on the surface of a flat back yoke 10 made of a steel material. The drive magnet 11 can be formed of a known permanent magnet, but is preferably formed of a rare earth sintered magnet in order to obtain high thrust with low power consumption, for example, 358 to 437 kJ / m 3 [45 to 55 MGOe. And a residual magnetic flux density of 1.3 T or more.

上記のVCMで可動部材を駆動する場合、可動部材2の移動量に基づいてフィードバック制御を行うために、可動部材5の移動量を検出する位置検出部材14が設けられる。位置検出部材14は、可動部材5に固定された検出磁石16と、各磁石から発生する磁界を検出するための磁界検出素子15を備えている。図示を省略するが、必要に応じて検出磁石の裏面(磁界検出素子に対向する面と反対側)に強磁性体(例えばSS材等の鉄鋼材料)からなる平板状のバックヨークを設置することができる。さらに第2のFPC7の表面(磁界検出素子が実装されていない側の面)には、第2のヨーク8Bが設けられており、検出磁石から発生する磁束が流入して、検出磁石と第2のヨークとの間に磁気吸引力が発生して、可動部材2は支持部材4側に引きつけられる(図3参照)。即ち、第2のヨークは、検出磁石16との磁気回路を形成すると共に、可動部材2を保持部材4側に引きつける吸引ヨークとしての機能も兼ね備えている。磁界検出素子15は、その中心が中心軸Zに対して初期位置(Z軸)に対して反転した位置(点対称の位置)に配置されるため、磁界検出素子を推力中心と一致するように配置した場合と同様の演算を行うことができ、可動部材2の移動量を正確に検出することができる。   When the movable member is driven by the VCM, a position detection member 14 for detecting the movement amount of the movable member 5 is provided in order to perform feedback control based on the movement amount of the movable member 2. The position detection member 14 includes a detection magnet 16 fixed to the movable member 5 and a magnetic field detection element 15 for detecting a magnetic field generated from each magnet. Although not shown, if necessary, a flat back yoke made of a ferromagnetic material (for example, a steel material such as SS material) is installed on the back surface of the detection magnet (on the opposite side to the surface facing the magnetic field detection element). Can do. Further, a second yoke 8B is provided on the surface of the second FPC 7 (the surface on which the magnetic field detection element is not mounted), and a magnetic flux generated from the detection magnet flows into the second FPC 7 so that the detection magnet and the second FPC 7 are in contact with each other. A magnetic attractive force is generated between the movable member 2 and the yoke, and the movable member 2 is attracted to the support member 4 side (see FIG. 3). That is, the second yoke forms a magnetic circuit with the detection magnet 16 and also has a function as a suction yoke that attracts the movable member 2 toward the holding member 4. Since the magnetic field detection element 15 is arranged at a position (point-symmetrical position) whose center is inverted with respect to the central axis Z with respect to the initial position (Z axis), the magnetic field detection element 15 is made to coincide with the thrust center. The same calculation as in the case of arrangement can be performed, and the amount of movement of the movable member 2 can be accurately detected.

本実施の形態では、検出磁石16として、厚さ方向に磁化した(単極着磁を施した)一対の平板状の永久磁石を使用しているが、一対の平板状の永久磁石の代りに、厚さ方向に磁化しかつ異極性の磁極が隣接する単一の平板状の永久磁石を使用することができる。また、磁界素子15は、第1のFPC7の保持部材4に対向する側とは反対側に実装することによっても、可動部材2の移動量を検出することができる。なお、その場合には第2のヨーク8Bは、磁界検出素子15との干渉を防止できるような穴を設けた形状とされる。   In the present embodiment, a pair of flat permanent magnets magnetized in the thickness direction (single-pole magnetized) are used as the detection magnet 16, but instead of the pair of flat permanent magnets. It is possible to use a single flat permanent magnet that is magnetized in the thickness direction and has adjacent magnetic poles of different polarities. Further, the movement amount of the movable member 2 can also be detected by mounting the magnetic field element 15 on the side opposite to the side facing the holding member 4 of the first FPC 7. In this case, the second yoke 8B has a shape provided with a hole that can prevent interference with the magnetic field detection element 15.

検出磁石としては、公知の永久磁石を使用することができるが、可動部材に設置されるので、軽量化を図る場合は、永久磁石粉末(表面を樹脂で被覆してもよい)と、この希土類磁石粉末を樹脂又はゴム等の高分子材料で結合した希土類ボンド磁石を使用することが好ましい。   As the detection magnet, a known permanent magnet can be used. However, since it is installed on the movable member, in order to reduce the weight, permanent magnet powder (the surface may be coated with resin) and the rare earth It is preferable to use a rare earth bonded magnet in which magnet powder is bonded with a polymer material such as resin or rubber.

磁界検出素子15は、図5に示すように、初期位置では、その中心が可動部材2に固定された一対の検出磁石16の中間(磁極が反転する位置:磁束密度=0)に一致するように配置される。したがって磁界検出素子15の表面において、検出磁石16の一端から他端に向って磁束密度は、所定長さにおいて検出磁石の中間(ゼロクロス点)を挟んで所定長さL1(L2)の範囲で、磁束密度が直線的に変化するので、磁界検出素子の出力電圧を検出することにより、可動部材2の位置検出が可能となる。磁界検出素子15は磁束密度に比例した電圧を出力するので、磁石部の寸法及び磁界検出素子と磁石部との距離を適切に設定しておけば、検出磁石の移動量(磁力変化)に比例した電圧を制御回路に出力することができ、さらに出力電圧のリニアリティーを向上することができるので、高精度の位置検出を行うことができる。   As shown in FIG. 5, the magnetic field detecting element 15 is centered at the initial position so as to coincide with the middle of the pair of detecting magnets 16 fixed to the movable member 2 (position where the magnetic pole is reversed: magnetic flux density = 0). Placed in. Therefore, on the surface of the magnetic field detection element 15, the magnetic flux density from one end to the other end of the detection magnet 16 is within a predetermined length L1 (L2) with a predetermined length sandwiching the middle (zero cross point) of the detection magnet. Since the magnetic flux density changes linearly, the position of the movable member 2 can be detected by detecting the output voltage of the magnetic field detection element. Since the magnetic field detection element 15 outputs a voltage proportional to the magnetic flux density, if the size of the magnet part and the distance between the magnetic field detection element and the magnet part are set appropriately, the magnetic field detection element 15 is proportional to the amount of movement (magnetic force change) of the detection magnet. Since the output voltage can be output to the control circuit and the linearity of the output voltage can be improved, highly accurate position detection can be performed.

第1の実施の形態においては、上述したように、Z軸方向に沿って第2のヨーク8B、磁界検出素子15、検出磁石16の順に配置されている。このように磁界検出素子15は可動コイル13に対向せずに、可動コイルから離間した位置に配置されているので、可動コイルから発生する磁束は、磁界検出素子に影響を与えることはない。また検出磁石16に対向する第2のヨーク8Bは、検出磁石16から発生する磁束が第2のヨーク8Bに流入する位置に配置されているので、可動部材2は第2のヨーク8Bに向って磁気的に吸引される。磁気吸引力Fを可動部材の質量に応じた適切な値に設定することにより、可動部材2をZ軸と直交する平面内で円滑に支持することができる。磁気吸引力Fの値としては、可動部材の質量の2倍程度であることが好ましく、例えば可動部材の質量が約25〜30gの場合で、50〜60gfの範囲にあることが好ましい。   In the first embodiment, as described above, the second yoke 8B, the magnetic field detection element 15, and the detection magnet 16 are arranged in this order along the Z-axis direction. Thus, since the magnetic field detection element 15 is not opposed to the movable coil 13 and is disposed at a position away from the movable coil, the magnetic flux generated from the movable coil does not affect the magnetic field detection element. Further, since the second yoke 8B facing the detection magnet 16 is disposed at a position where the magnetic flux generated from the detection magnet 16 flows into the second yoke 8B, the movable member 2 faces the second yoke 8B. Magnetically attracted. By setting the magnetic attractive force F to an appropriate value according to the mass of the movable member, the movable member 2 can be smoothly supported in a plane orthogonal to the Z axis. The value of the magnetic attractive force F is preferably about twice the mass of the movable member. For example, when the mass of the movable member is about 25-30 g, it is preferably in the range of 50-60 gf.

第1の実施の形態では、第1のヨーク8A及び第2のヨーク8Bの軸方向(Z軸方向)の位置を独立して調整することができるので、高い推力が得られしかも検出磁石による磁気吸引力を最適な値に調整することができる。例えば、VCM9の推力を高めることが必要となった場合は、第1のヨーク8Aと駆動磁石11との間隔ga(図3参照)を狭くすればよい。また、第2のヨーク8Bと検出磁石16との磁気吸引力を小さくすることが必要になった場合は、両者の間隔gb(図3参照)を広げればよい。即ち、ヨークを第1と第2とで分けることで、VCMの推力を最大限とし、かつ最適な磁気吸引力を得ることが可能となり、推力と吸引力の両方の要求を満たすことが可能になる。さらに2つのヨークの形状を同一に(例えば矩形状に)揃えることにより、同一の金型で製作でき、低コスト化が可能である。   In the first embodiment, since the positions of the first yoke 8A and the second yoke 8B in the axial direction (Z-axis direction) can be adjusted independently, high thrust can be obtained and magnetism by the detection magnet can be obtained. The suction force can be adjusted to an optimum value. For example, when it is necessary to increase the thrust of the VCM 9, the distance ga (see FIG. 3) between the first yoke 8A and the drive magnet 11 may be reduced. If it is necessary to reduce the magnetic attractive force between the second yoke 8B and the detection magnet 16, the distance gb between them (see FIG. 3) may be increased. In other words, by dividing the yoke into the first and second, it becomes possible to maximize the thrust of the VCM and obtain the optimum magnetic attractive force, and to satisfy both the thrust and attractive force requirements. Become. Further, by arranging the two yokes to have the same shape (for example, in a rectangular shape), they can be manufactured with the same mold, and the cost can be reduced.

磁石装置1の動作を説明する。VCM9の可動コイル13に通電すると、コイルに対向する駆動磁石11はベース部材2に固定されているので、可動コイル13にはフレミングの左手の法則に基づいて、X軸方向に沿う推力が発生する。すなわち可動部材2は、軸方向と垂直な平面において、直線移動することができる。従って、可動コイル13に供給する電流の極性及び/又は大きさを変えることにより、推力の大きさと向きを調整することができる。この駆動量を制御回路にフィードバックして、目標位置に可動部材を移動させる(サーボ制御する)ことができる。   The operation of the magnet device 1 will be described. When the movable coil 13 of the VCM 9 is energized, the drive magnet 11 facing the coil is fixed to the base member 2, so that a thrust along the X-axis direction is generated in the movable coil 13 based on Fleming's left-hand rule. . That is, the movable member 2 can move linearly on a plane perpendicular to the axial direction. Therefore, the magnitude and direction of the thrust can be adjusted by changing the polarity and / or magnitude of the current supplied to the movable coil 13. This drive amount can be fed back to the control circuit to move the movable member to the target position (servo control).

可動部材をVCMで駆動し、かつ磁界検出素子としてホール素子を使用した場合、可動部材の最大移動距離は、例えば初期位置から±(0.5〜1.0)mmの範囲に設定することができる。この移動範囲で、実際の移動量と磁界検出素子の出力電圧に対応する移動量との差(理論直線に対する誤差量)が少ない(リニアリティーが高い)ことが好ましく、ホール素子を使用した場合で、理論直線に対する誤差量が0.04mm以内に収めることができる。   When the movable member is driven by VCM and a Hall element is used as the magnetic field detection element, the maximum moving distance of the movable member can be set within a range of ± (0.5 to 1.0) mm from the initial position, for example. it can. In this movement range, it is preferable that the difference between the actual movement amount and the movement amount corresponding to the output voltage of the magnetic field detection element (the error amount with respect to the theoretical straight line) is small (high linearity). The error amount with respect to the theoretical straight line can be kept within 0.04 mm.

<第2の実施の形態>
以下の説明では、第1の実施の形態と同一機能部分は同一の参照符号で示す。
<Second Embodiment>
In the following description, the same functional parts as those in the first embodiment are denoted by the same reference numerals.

磁石装置1は、図6〜8に示すように、固定部材2に立設された複数(例えば3本)の支柱3に結合された円板状の支持部材4と、固定部材2に対して円環状の可動部材5を中心軸(Z軸)と直交する面内で摺動自在に支持する複数(例えば3つ)の球状体6を有する。この磁石装置1は、可動部材5を中心軸に対して垂直な面内で駆動するために、可動コイル形のVCM9と、可動部材5の移動量を検出する位置検出部材14を備える。可動部材5は、光学素子(不図示)を有するが、これに限定されるものではない。   As shown in FIGS. 6 to 8, the magnet device 1 has a disk-shaped support member 4 coupled to a plurality of (for example, three) columns 3 erected on the fixing member 2, and the fixing member 2. It has a plurality of (for example, three) spherical bodies 6 that slidably support an annular movable member 5 in a plane orthogonal to the central axis (Z axis). The magnet device 1 includes a movable coil type VCM 9 and a position detection member 14 that detects the amount of movement of the movable member 5 in order to drive the movable member 5 in a plane perpendicular to the central axis. Although the movable member 5 has an optical element (not shown), it is not limited to this.

可動部材5は、光学素子(不図示)の外周縁を保持する円筒状部の外周側に形成された、鋼球を収容するための円孔部と、検出磁石16を有するリング状の部材である。円孔部と検出磁石16はいずれも、中心軸方向から見て等角度間隔(120°)をおいてかつ検出磁石13と円孔部が円周方向に沿って交互に並ぶように構成されている。各円孔部は、鋼球6が所定範囲で転動可能な大きさに形成される。また各円孔部の背面側(固定部材に対向する側)には、VCM9を構成する、偏平な空芯コイルである可動コイル13が実装される第1のFPC12が固着される。   The movable member 5 is a ring-shaped member having a circular hole portion for accommodating a steel ball and a detection magnet 16 formed on the outer peripheral side of a cylindrical portion that holds the outer peripheral edge of an optical element (not shown). is there. Each of the circular hole portion and the detection magnet 16 is configured such that the detection magnet 13 and the circular hole portion are alternately arranged along the circumferential direction at equal angular intervals (120 °) when viewed from the central axis direction. Yes. Each circular hole is formed in a size that allows the steel ball 6 to roll within a predetermined range. Further, the first FPC 12 on which the movable coil 13, which is a flat air-core coil, constituting the VCM 9 is fixed to the back side (the side facing the fixed member) of each circular hole portion.

固定側部材は固定部材2に結合された保持部材4に固定された、強磁性体からなる第1のヨーク8A及び第2のヨーク8Bと円環状の第2のFPC7を有する。第2のFPC7の一方の表面(可動部材側の面)には、配線パターン(不図示)が形成されて磁界検出素子(例えばホール素子)15が実装される。   The fixed side member has a first yoke 8A and a second yoke 8B made of a ferromagnetic material and an annular second FPC 7 fixed to a holding member 4 coupled to the fixed member 2. A wiring pattern (not shown) is formed on one surface (surface on the movable member side) of the second FPC 7 and a magnetic field detection element (for example, a Hall element) 15 is mounted.

固定部材2は、円周方向に沿って所定間隔をおいて、支柱3(図6に破線で示す)が立設された円環状の部材である。固定部材2には、矩形状の磁石保持用段差部が、円周方向に沿って等角度間隔(120°)で形成され、各段差部にはVCM9を構成する矩形状の駆動磁石11がバックヨーク10を介して固着される。固定部材2、可動部材5及び支柱3は、非磁性体(例えばエンジニアリングプラスチック)で形成される。   The fixing member 2 is an annular member in which columns 3 (shown by broken lines in FIG. 6) are erected at predetermined intervals along the circumferential direction. The fixing member 2 is formed with rectangular magnet holding step portions at equal angular intervals (120 °) along the circumferential direction, and rectangular drive magnets 11 constituting the VCM 9 are backed on each step portion. It is fixed via the yoke 10. The fixed member 2, the movable member 5, and the support column 3 are formed of a non-magnetic material (for example, engineering plastic).

第1のヨーク8Aは、強磁性体(SS材等の鉄鋼材料)からなり、駆動磁石から発生する磁束が流入するように設けられる。第2のヨーク8Bは、強磁性体(SS材等の鉄鋼材料)からなり、検出磁石から流出する磁束が流入する位置に設けられるので、可動部材2は、軸方向に沿って固定部材2から遠ざかる方向に磁気的に吸引される。このヨーク8は、外径D1がベース部材2の外径より小さく、内径D2は、内径側の検出磁石16に重なるような寸法に設定される。また厚さtは、例えば、0.5〜1.5mmの範囲に設定される。また第2のヨーク8Bは、図9に示すように、その投影面積が、光軸方向からみて、可動部材2の移動範囲内(一点鎖線Bで囲まれた領域)で検出磁石16がはみ出さないような大きさに設定されている。すなわちヨーク8Bの幅Lr(D1−D2/2)は、検出磁石16の可動範囲Bの幅Lsと同じかあるいはそれよりも大なる幅(Lr>Ls)を有するように設定される。   The first yoke 8A is made of a ferromagnetic material (steel material such as an SS material) and is provided so that a magnetic flux generated from the drive magnet flows. Since the second yoke 8B is made of a ferromagnetic material (steel material such as SS material) and is provided at a position where the magnetic flux flowing out from the detection magnet flows, the movable member 2 moves from the fixed member 2 along the axial direction. It is magnetically attracted away. The yoke 8 has an outer diameter D1 that is smaller than the outer diameter of the base member 2 and an inner diameter D2 that is set to a dimension that overlaps the detection magnet 16 on the inner diameter side. Further, the thickness t is set in a range of 0.5 to 1.5 mm, for example. Further, as shown in FIG. 9, the projected area of the second yoke 8B protrudes from the detection magnet 16 within the moving range of the movable member 2 (region surrounded by the one-dot chain line B) as seen from the optical axis direction. It is set so that there is no size. That is, the width Lr (D1-D2 / 2) of the yoke 8B is set to have a width (Lr> Ls) that is equal to or greater than the width Ls of the movable range B of the detection magnet 16.

保持部材4は、可動部材2との間で球状体6を支持するために、可動部材2に対向する側に円孔を有する。図8に示すように、Z軸方向から見て可動部材5と保持部材4の間に、複数の球状体が介装されるため、可動部材5はZ軸に対して垂直な平面(X方向及びそれと直交するY方向を含む面)において任意の方向に移動可能な状態で支持されて、摺動(摩擦)抵抗が低減され、正確な位置精度を確保することが可能となる。   The holding member 4 has a circular hole on the side facing the movable member 2 in order to support the spherical body 6 with the movable member 2. As shown in FIG. 8, since a plurality of spherical bodies are interposed between the movable member 5 and the holding member 4 when viewed from the Z-axis direction, the movable member 5 has a plane perpendicular to the Z-axis (X direction). And a plane including the Y direction perpendicular to the same), the sliding (friction) resistance is reduced, and accurate positional accuracy can be ensured.

弟1FPC7は、円周方向に沿って等角度間隔で配置された磁界検出素子15の中心が、円周方向に沿って各可動コイル13の中間(駆動磁石の中間と一致)に位置して推力中心と反転した位置にくるように配置される(図3参照)。磁界検出素子の中心が推力中心と反転した位置にあると、現在位置の演算が容易となるため、可動部材を目標位置まで速やかに移動させることが可能である。また、磁界検出素子15は、可動コイル13から大きく離れた位置に存在するため、コイルから発生する磁束の影響を受けず(ノイズを伴わずに)、高精度の位置検出が可能となる。   The younger brother 1FPC 7 has a thrust at which the centers of the magnetic field detecting elements 15 arranged at equal angular intervals along the circumferential direction are located in the middle of the movable coils 13 (coincident with the middle of the drive magnet) along the circumferential direction. It arrange | positions so that it may be in the position reversed with respect to the center (refer FIG. 3). When the center of the magnetic field detection element is at a position reversed from the center of thrust, the current position can be easily calculated, and the movable member can be quickly moved to the target position. In addition, since the magnetic field detection element 15 is present at a position far away from the movable coil 13, it is not affected by the magnetic flux generated from the coil (without noise) and can detect the position with high accuracy.

可動部材5を駆動するVCM9は、可動部材の軽量化を図るために、可動部材5に設置された長円形状の偏平な空芯コイルである可動コイル13と、固定部材2に固設された駆動磁石11を有する(図8参照)。駆動磁石11は各々、厚さ方向(軸方向)に磁化されかつ長手方向(固定部材の半径方向)に沿って異極性の磁極が隣接するように磁化され、強磁性体(例えばSS材等の鉄鋼材料)からなる平板状のバックヨーク10の表面に設置される。駆動磁石11は、公知の永久磁石で形成することができるが、少ない消費電力で高推力を得るために、第1の実施の形態1と同様に希土類焼結磁石で形成することが好ましい。   The VCM 9 that drives the movable member 5 is fixed to the fixed member 2 and the movable coil 13 that is an oblong flat air-core coil installed on the movable member 5 in order to reduce the weight of the movable member. It has the drive magnet 11 (refer FIG. 8). Each of the drive magnets 11 is magnetized in the thickness direction (axial direction) and magnetized so that magnetic poles of different polarities are adjacent to each other along the longitudinal direction (radial direction of the fixed member). It is installed on the surface of a flat back yoke 10 made of a steel material. The drive magnet 11 can be formed of a known permanent magnet, but is preferably formed of a rare earth sintered magnet as in the first embodiment in order to obtain high thrust with low power consumption.

上記のVCMで可動部材を駆動する場合、可動部材5の移動量に基づいてフィードバック制御を行うために、可動部材5の移動量を検出する位置検出部材14が設けられる。位置検出部材14は、可動部材5に固定された検出磁石16と、各磁石から発生する磁界を検出するための磁界検出素子15を備えている。図示を省略するが、必要に応じて検出磁石の裏面(磁界検出素子に対向する面と反対側)に強磁性体(例えばSS材等の鉄鋼材料)からなる平板状のバックヨークを設置することができる。さらに第1のFPC7の表面(磁界検出素子が実装されていない側の面)には、第2のヨーク8Bが設けられており、検出磁石から発生する磁束が流入して、検出磁石とヨークとの間に磁気吸引力が発生して、可動部材2は保持部材4側に引きつけられる(図8参照)。即ち、第2のヨークは、検出磁石16との磁気回路を形成すると共に、可動部材2を指示部材4側に引きつける吸引ヨークとしての機能も兼ね備えている。磁界検出素子15は、その中心がZ軸(推力中心)に対して反転した位置(点対称の位置)に配置されるため、磁界検出素子を推力中心と一致するように配置した場合と同様の演算を行うことができ、可動部材5の移動量を正確に検出することができる。   When the movable member is driven by the VCM, a position detection member 14 for detecting the movement amount of the movable member 5 is provided in order to perform feedback control based on the movement amount of the movable member 5. The position detection member 14 includes a detection magnet 16 fixed to the movable member 5 and a magnetic field detection element 15 for detecting a magnetic field generated from each magnet. Although not shown, if necessary, a flat back yoke made of a ferromagnetic material (for example, a steel material such as SS material) is installed on the back surface of the detection magnet (on the opposite side to the surface facing the magnetic field detection element). Can do. Further, a second yoke 8B is provided on the surface of the first FPC 7 (the surface on which the magnetic field detection element is not mounted), and a magnetic flux generated from the detection magnet flows into the first FPC 7 so that the detection magnet, the yoke, During this time, a magnetic attractive force is generated, and the movable member 2 is attracted to the holding member 4 side (see FIG. 8). That is, the second yoke forms a magnetic circuit with the detection magnet 16 and also has a function as a suction yoke that attracts the movable member 2 to the pointing member 4 side. Since the magnetic field detection element 15 is arranged at a position (point symmetrical position) whose center is reversed with respect to the Z axis (thrust center), it is the same as the case where the magnetic field detection element is arranged so as to coincide with the thrust center. Calculations can be performed, and the amount of movement of the movable member 5 can be accurately detected.

上記の検出磁石16は、厚さ方向に磁化した(単極着磁を施した)一対の平板状の永久磁石であるが、一対の平板状の永久磁石の代りに、厚さ方向に磁化しかつ異極性の磁極が隣接する単一の平板状の永久磁石を使用することができる。また、磁界検出素子15は、第1のFPC7の支持部材4に対向する側とは反対側に実装することによっても、可動部材5の移動量を検出することができる。なお、第2のヨーク8Bは、磁界検出素子15との干渉を防止できるような形状とされる。   The detection magnet 16 is a pair of flat permanent magnets magnetized in the thickness direction (single-pole magnetized), but magnetized in the thickness direction instead of the pair of flat permanent magnets. In addition, a single flat permanent magnet having adjacent magnetic poles of different polarities can be used. The magnetic field detection element 15 can also detect the amount of movement of the movable member 5 by mounting it on the opposite side of the first FPC 7 from the side facing the support member 4. The second yoke 8B has a shape that can prevent interference with the magnetic field detection element 15.

検出磁石としては、第1の実施の形態と同様に、公知の永久磁石を使用することができるが、可動部材に設置されるので、軽量化を図るために、永久磁石粉末(表面を樹脂で被覆してもよい)と、この希土類磁石粉末を樹脂又はゴム等の高分子材料で結合した希土類ボンド磁石を使用することが好ましい。但しホール素子の出力電圧は低下するので、電気的に増幅すればよい。位置検出用磁石としては、0.1〜0.2Tの表面磁束密度を有する希土類ボンド磁石を使用することが好ましい。検出磁石の材質は可動部質量の軽量化を図るためにボンド磁石の方が望ましいが、可動部材の質量が大きい場合には、小型の希土類系焼結磁石でも可動部の軽量化を実質的に阻害しないため、実用上の問題はない。   As the detection magnet, a known permanent magnet can be used as in the first embodiment. However, since it is installed on a movable member, permanent magnet powder (surface is made of resin) to reduce the weight. And a rare earth bonded magnet in which the rare earth magnet powder is bonded with a polymer material such as resin or rubber. However, since the output voltage of the Hall element decreases, it may be amplified electrically. As the position detecting magnet, it is preferable to use a rare earth bonded magnet having a surface magnetic flux density of 0.1 to 0.2T. The material of the detection magnet is preferably a bonded magnet in order to reduce the mass of the movable part. However, if the mass of the movable member is large, even a small rare-earth sintered magnet can substantially reduce the weight of the movable part. There is no practical problem because it does not interfere.

磁界検出素子15は、可動部材2(S1方向又はS2方向に移動する)がセンタリングされている初期位置では、その中心が可動部材2に固定された一対の検出磁石16の中間(磁極が反転する位置:磁束密度=0)に一致する。したがって磁界検出素子15の表面において、検出磁石16の一端から他端に向って磁束密度は、検出磁石の中間(ゼロクロス点)を挟んで所定長さの範囲で、磁束密度が直線的に変化する。磁界検出素子は磁束密度に比例した電圧を出力するので、磁石部の寸法及びホール素子と磁石部との距離を適切に設定しておけば、検出磁石の移動量(磁力変化)に比例した電圧を制御回路に出力することができ、さらに出力電圧のリニアリティーを向上することができるので、高精度の位置決めを行うことができる。   In the initial position where the movable member 2 (moving in the S1 direction or the S2 direction) is centered, the magnetic field detection element 15 is intermediate between the pair of detection magnets 16 whose centers are fixed to the movable member 2 (the magnetic poles are reversed). Position: magnetic flux density = 0). Therefore, on the surface of the magnetic field detection element 15, the magnetic flux density linearly changes in a range of a predetermined length across the middle (zero cross point) of the detection magnet from one end of the detection magnet 16 to the other end. . Since the magnetic field detection element outputs a voltage proportional to the magnetic flux density, if the size of the magnet part and the distance between the hall element and the magnet part are set appropriately, the voltage proportional to the amount of movement (magnetic force change) of the detection magnet Can be output to the control circuit, and the linearity of the output voltage can be improved, so that highly accurate positioning can be performed.

第2の実施の形態においては、上述したように、中心軸方向に沿って第2のヨーク8B、磁界検出素子15、検出磁石16の順に配置されるとともに、中心軸を挟んで、磁界検出素子16と点対称となる位置で、第1のヨーク8A、球状体6、可動コイル13及び駆動磁石11の順に配置されている。このように磁界検出素子15は可動コイル13に対向せずに、可動コイルから離間した位置に配置されているので、可動コイルから発生する磁束は、磁界検出素子に影響を与えることはない。また検出磁石16に対向する第2のヨーク8Bは、検出磁石16から発生する磁束が第2のヨーク8Bに流入する位置に配置されているので、可動部材2はこのヨーク8Bに向って磁気的に吸引される。磁気吸引力Fを可動部材の質量に応じた適切な値に設定することにより、可動部材2を中心軸と直交する面内で円滑に支持することができる。磁気吸引力Fの値としては、可動部材の質量の2倍程度であることが好ましく、例えば可動部材の質量が約25〜30gの場合で、50〜60gfの範囲にあることが好ましい。   In the second embodiment, as described above, the second yoke 8B, the magnetic field detection element 15, and the detection magnet 16 are arranged in this order along the central axis direction, and the magnetic field detection element is sandwiched between the central axes. The first yoke 8 </ b> A, the spherical body 6, the movable coil 13, and the drive magnet 11 are arranged in this order at a point symmetric with respect to 16. Thus, since the magnetic field detection element 15 is not opposed to the movable coil 13 and is disposed at a position away from the movable coil, the magnetic flux generated from the movable coil does not affect the magnetic field detection element. Further, since the second yoke 8B facing the detection magnet 16 is disposed at a position where the magnetic flux generated from the detection magnet 16 flows into the second yoke 8B, the movable member 2 is magnetically directed toward the yoke 8B. Sucked into. By setting the magnetic attraction force F to an appropriate value corresponding to the mass of the movable member, the movable member 2 can be smoothly supported in a plane orthogonal to the central axis. The value of the magnetic attractive force F is preferably about twice the mass of the movable member. For example, when the mass of the movable member is about 25-30 g, it is preferably in the range of 50-60 gf.

さらに可動部材5を中心軸に直交する平面で移動可能に支持するための球状体6は、バックヨーク10で支持された固定磁石11と第1のヨーク8Aの間に配置されている。固定磁石11から発生する磁束は、磁石装置の組立の際にも、例えば球状体6を磁性体の鋼球とすれば、鋼球には磁気的吸引力が作用して、可動部材5のボール受け部の中心位置に保持することができる。   Furthermore, the spherical body 6 for supporting the movable member 5 movably on a plane perpendicular to the central axis is disposed between the fixed magnet 11 supported by the back yoke 10 and the first yoke 8A. The magnetic flux generated from the fixed magnet 11 can be applied to the ball of the movable member 5 even when the magnet device is assembled, for example, if the spherical body 6 is a magnetic steel ball, a magnetic attractive force acts on the steel ball. It can be held at the center position of the receiving part.

本発明の磁石装置は、例えば、可動部材5の質量が20〜30gの場合で、推力質量比(最大推力/可動部材の質量)が2.0〜3.0の範囲にあるように構成することができる。   The magnet device of the present invention is configured so that, for example, the mass of the movable member 5 is 20 to 30 g, and the thrust mass ratio (maximum thrust / the mass of the movable member) is in the range of 2.0 to 3.0. be able to.

磁石装置1では、各可動コイルに供給する電流の極性及び/又は大きさを変えることにより、推力の大きさと向きを調整することができるので、各VCMに発生する推力を合成することにより、可動部材5を中心軸と垂直な面内で任意の方向に駆動することができる。この駆動量を制御回路にフィードバックして、目標位置に可動部材を移動させるサーボ制御を行うことができる。   In the magnet device 1, the magnitude and direction of the thrust can be adjusted by changing the polarity and / or magnitude of the current supplied to each movable coil, so that the movable force can be obtained by synthesizing the thrust generated in each VCM. The member 5 can be driven in an arbitrary direction within a plane perpendicular to the central axis. This drive amount is fed back to the control circuit, and servo control for moving the movable member to the target position can be performed.

可動部材をVCMで駆動し、かつ位置検出素子としてホール素子を使用した場合、可動部材の最大移動距離は、例えば初期位置から±(0.5〜1.0)mmの範囲に設定することができる。この移動範囲で、実際の移動量と磁界検出素子の出力電圧に対応する移動量との差(理論直線に対する誤差量)が少ない(リニアリティーが高い)ことが必要であり、ホール素子を使用した場合で、理論直線に対する誤差量が0.04mm以内に収まることができる。   When the movable member is driven by VCM and a Hall element is used as the position detection element, the maximum moving distance of the movable member can be set within a range of ± (0.5 to 1.0) mm from the initial position, for example. it can. In this movement range, the difference between the actual movement amount and the movement amount corresponding to the output voltage of the magnetic field detection element (error amount with respect to the theoretical straight line) must be small (high linearity). Thus, the error amount with respect to the theoretical line can be within 0.04 mm.

第2の実施の形態では、第1の実施の形態と同様に、第1のヨーク8A及び第2のヨーク8Bの軸方向(Z軸方向)の位置を独立して調整できるので、高い推力が得られながら、しかも推力とは無関係に、検出磁石による磁気吸引力を最適な値に調整することができる。   In the second embodiment, as in the first embodiment, since the positions in the axial direction (Z-axis direction) of the first yoke 8A and the second yoke 8B can be adjusted independently, high thrust is achieved. While being obtained, the magnetic attraction force by the detection magnet can be adjusted to an optimum value regardless of the thrust force.

第1及び第2の実施の形態によれば、(1)軸方向に沿って、固定磁石、可動コイル及び吸引ヨークを配置して磁気回路を形成するので、消費電力の増大を伴わずに、磁気特性の大なる固定磁石を使用できることになり、推力質量比の増大を図ることができること、及び(2)固定磁石とは別に検出磁石を用いるので、磁界検出素子の出力電圧の直進性を優先して検出磁石の寸法を設定できるとともに、磁界検出素子を可動コイルから発生する磁束が及ばない位置に配置することが可能で、可動コイルにより磁界検出素子に与える影響を無くすことができることに加えて、特に次のような効果を奏し得る。   According to the first and second embodiments, (1) since the magnetic circuit is formed by arranging the fixed magnet, the movable coil, and the attraction yoke along the axial direction, without increasing the power consumption, Fixed magnets with large magnetic characteristics can be used, and the thrust mass ratio can be increased. (2) Since a detection magnet is used separately from the fixed magnet, priority is given to the straightness of the output voltage of the magnetic field detection element. In addition to being able to set the size of the detection magnet, it is possible to arrange the magnetic field detection element at a position where the magnetic flux generated from the movable coil does not reach, and to eliminate the influence of the movable coil on the magnetic field detection element In particular, the following effects can be obtained.

(3)固定側部材に2つの別のヨークを駆動磁石及び検出磁石に対向する位置に設けるので、可動部材を駆動するためのVCMの発生推力と、可動部材を固定側部材に吸引するための磁気吸引力を独立して(最適な値に)調整することができる。 (3) Since two other yokes are provided on the fixed side member at positions facing the drive magnet and the detection magnet, the thrust generated by the VCM for driving the movable member and the movable member for attracting the movable member to the fixed side member The magnetic attractive force can be adjusted independently (to an optimum value).

1:磁石装置、
2:固定部材、
3:支柱、
4:保持部材、
5:可動部材、
6:鋼球、
7:第2のFPC、
8A:第1の吸引ヨーク、
8B:第2の吸引ヨーク、
9:VCM、
10:バックヨーク、
11:駆動磁石、
12:第1のFPC、
13:可動コイル、
14:位置検出部材、
15:磁界検出素子、
16:検出磁石、
B:移動範囲、F:磁気吸引力、Lr:吸引ヨークの幅、Ls:移動長さ、
ga:駆動磁石と第1のヨークとの距離
gb:磁界検出素子と第2のヨークとの距離
C:ゼロクロス点、L1、L2:直線状の磁束密度分布の領域
1: Magnet device,
2: fixing member,
3: Support,
4: Holding member,
5: movable member,
6: Steel ball,
7: Second FPC,
8A: first suction yoke,
8B: second suction yoke,
9: VCM,
10: Back yoke,
11: Driving magnet,
12: First FPC,
13: Moving coil,
14: position detection member,
15: Magnetic field detection element,
16: detection magnet,
B: movement range, F: magnetic attraction force, Lr: width of attraction yoke, Ls: movement length,
ga: Distance between the drive magnet and the first yoke gb: Distance between the magnetic field detection element and the second yoke C: Zero cross point, L1, L2: Linear magnetic flux density distribution region

Claims (5)

固定部材に、バックヨークを介して設置される駆動磁石と、前記駆動磁石に対して所定方向に移動可能に設置される可動部材に設置される駆動コイルとを含み、前記駆動磁石は可動部材の移動方向に沿って、異極性の磁極が隣接するボイスコイルモータと、
前記固定部材に前記可動部材に対向するように所定間隔をおいて結合される保持部材と、
前記保持部材と前記可動部材との間でかつ前記駆動磁石に対向する位置に介装される球状体と、
前記可動部材に設置され、その移動方向に沿って、異極性の磁極が隣接する検出磁石と、前記検出磁石に対向して、前記保持部材に設置される磁界検出素子を有する位置検出部材と、
前記保持部材に設置され、前記駆動磁石から発生する磁束が流入する第1のヨーク及び前記検出磁石から発生する磁束が流入する第2のヨークを有することを特徴とする磁石装置。
The fixed member includes a drive magnet installed via a back yoke, and a drive coil installed on a movable member installed to be movable in a predetermined direction with respect to the drive magnet. A voice coil motor with adjacent magnetic poles of different polarity along the direction of movement;
A holding member coupled to the fixed member at a predetermined interval so as to face the movable member;
A spherical body interposed between the holding member and the movable member and at a position facing the drive magnet;
A detection magnet that is installed on the movable member and has magnetic poles of different polarities adjacent to each other along the moving direction thereof, and a position detection member that has a magnetic field detection element that is installed on the holding member so as to face the detection magnet;
A magnet apparatus comprising: a first yoke that is installed on the holding member and into which a magnetic flux generated from the drive magnet flows; and a second yoke into which a magnetic flux generated from the detection magnet flows.
前記第2のヨークの投影面積は、平面からみて、前記可動部材の移動範囲内で前記位置検出用磁石が含まれる大きさに設定されることを特徴とする請求項1に記載の磁石装置。   2. The magnet device according to claim 1, wherein the projected area of the second yoke is set to a size that includes the position detection magnet within a moving range of the movable member when viewed from a plane. 円板状のベース部材に設置され、バックヨークで支持される駆動磁石と、前記ベース部材の中心軸と直交する平面内で移動可能に設置される可動部材に設置される駆動コイルとを含み、前記中心軸の周囲に配置される複数のボイスコイルモータと、
前記ベース部材に軸方向において所定間隔をおいて組み付けられる中間部材と前記ベース部材との間に介装され、かつ軸方向において前記駆動用磁石に対向する位置にある複数の球状体と、
前記可動部材に、軸方向から見て前記ボイスコイルモータの間に設置される複数の検出磁石と、前記検出磁石に対向して、前記中間部材に設置される複数の磁界検出素子を有する位置検出部材と、
前記中間部材に設置され、前記駆動磁石から発生する磁束が流入する第1のヨーク及び前記検出用磁石から発生する磁束が流入する第2のヨークを有することを特徴とする磁石装置。
A drive magnet installed on a disk-shaped base member and supported by a back yoke; and a drive coil installed on a movable member installed movably in a plane perpendicular to the central axis of the base member; A plurality of voice coil motors arranged around the central axis;
A plurality of spherical bodies that are interposed between the base member and an intermediate member that is assembled to the base member at a predetermined interval in the axial direction, and that are in positions facing the driving magnet in the axial direction;
Position detection having a plurality of detection magnets installed between the voice coil motors as viewed in the axial direction on the movable member, and a plurality of magnetic field detection elements installed on the intermediate member facing the detection magnets. Members,
A magnet apparatus comprising: a first yoke installed on the intermediate member, into which a magnetic flux generated from the drive magnet flows; and a second yoke into which a magnetic flux generated from the detection magnet flows.
前記位置検出用磁石及び前記磁界検出素子は軸方向から見た平面で前記駆動用コイルと点対称となる位置に配置されることを特徴とする請求項1に記載の磁石装置。   2. The magnet device according to claim 1, wherein the position detection magnet and the magnetic field detection element are arranged at a position that is point-symmetric with the drive coil in a plane viewed from an axial direction. 前記第2のヨークの投影面積は、軸方向からみて、前記移動部材の移動範囲内で前記位置検出磁石が含まれる大きさに設定されることを特徴とする請求項1又は2に記載の磁石装置。   3. The magnet according to claim 1, wherein the projected area of the second yoke is set to a size that includes the position detection magnet within a moving range of the moving member when viewed from the axial direction. apparatus.
JP2015016734A 2015-01-30 2015-01-30 Magnet device Pending JP2016144257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016734A JP2016144257A (en) 2015-01-30 2015-01-30 Magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016734A JP2016144257A (en) 2015-01-30 2015-01-30 Magnet device

Publications (1)

Publication Number Publication Date
JP2016144257A true JP2016144257A (en) 2016-08-08

Family

ID=56571003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016734A Pending JP2016144257A (en) 2015-01-30 2015-01-30 Magnet device

Country Status (1)

Country Link
JP (1) JP2016144257A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797360A (en) * 2016-09-07 2018-03-13 三星电子株式会社 Electronic equipment
CN108375744A (en) * 2018-03-21 2018-08-07 苏州佳祺仕软件技术有限公司 A kind of magnet fixed fixture
CN113055556A (en) * 2019-12-27 2021-06-29 中芯集成电路(宁波)有限公司 Moving mechanism and driving method thereof, electronic equipment and imaging module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797360A (en) * 2016-09-07 2018-03-13 三星电子株式会社 Electronic equipment
CN108375744A (en) * 2018-03-21 2018-08-07 苏州佳祺仕软件技术有限公司 A kind of magnet fixed fixture
CN113055556A (en) * 2019-12-27 2021-06-29 中芯集成电路(宁波)有限公司 Moving mechanism and driving method thereof, electronic equipment and imaging module
CN113055556B (en) * 2019-12-27 2022-07-08 中芯集成电路(宁波)有限公司 Moving mechanism and driving method thereof, electronic equipment and imaging module

Similar Documents

Publication Publication Date Title
CN103869445B (en) Conditioning optics
JP5513834B2 (en) Lens drive device
JP2012118517A (en) Camera shake correction unit
JP5639161B2 (en) Image stabilization unit
JP6141122B2 (en) Image blur correction device, lens barrel, optical device, and imaging device
JP2007128072A (en) Optical device
US8400514B2 (en) Antivibration actuator and lens unit and camera equipped with same
JP2008045919A (en) Position detection device, blur correcting device, lens barrel, and optical equipment
JP2017111183A (en) Hand tremor correction device
JP2012068339A (en) Position detection sensor and lens drive device
JP2012177755A (en) Lens driving apparatus, autofocus camera and mobile terminal apparatus with camera
JP6235450B2 (en) Image stabilization unit
US11488756B2 (en) Optical member supporting device, optical member driving device, camera device and electronic apparatus
JP2013003552A (en) Image blur correction device and optical instrument
JP2016144257A (en) Magnet device
JP2013068702A (en) Lens drive device, autofocus camera and mobile terminal with camera
JP7071585B2 (en) Lens drive device
JP2015064547A (en) Image stabilization unit
JP2013109248A (en) Anti-vibration actuator
CN107561820B (en) Actuator, and lens unit and camera provided with same
JP2014089357A (en) Camera shake correction device
US11067824B2 (en) Optical image stabilization apparatus
JP2016212203A (en) Hand tremor correction device
JP2013085331A (en) Electromagnetic driving device
JP5954069B2 (en) Anti-vibration actuator, lens unit and camera equipped with the same