[go: up one dir, main page]

JP2016142111A - Vibration control structure - Google Patents

Vibration control structure Download PDF

Info

Publication number
JP2016142111A
JP2016142111A JP2015021006A JP2015021006A JP2016142111A JP 2016142111 A JP2016142111 A JP 2016142111A JP 2015021006 A JP2015021006 A JP 2015021006A JP 2015021006 A JP2015021006 A JP 2015021006A JP 2016142111 A JP2016142111 A JP 2016142111A
Authority
JP
Japan
Prior art keywords
elastic
damping
rectangular frame
elastic member
damping structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015021006A
Other languages
Japanese (ja)
Inventor
雄一 真崎
Yuichi Mazaki
雄一 真崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grape Co Ltd
Original Assignee
Grape Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grape Co Ltd filed Critical Grape Co Ltd
Priority to JP2015021006A priority Critical patent/JP2016142111A/en
Publication of JP2016142111A publication Critical patent/JP2016142111A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

【課題】外力の入力レベルに係わらずに振動を抑制するとともに性能劣化を招きにくくすることができる制振構造を提供する。
【解決手段】架構を構成する矩形枠5の内部に設けられる制振構造1は、長尺の弾性材料から全体環状に形成された弾性部材を有する減衰装置10と、弾性部材の周方向に沿って互いに離れた少なくとも二位置と矩形枠5とを接続する斜材20及び接合金物30と、を備え、矩形枠5の変形に伴い、斜材20から伝達される力によって弾性部材の曲率が変化することで減衰装置10が減衰力を発揮する。
【選択図】図1
The present invention provides a vibration damping structure capable of suppressing vibration and hardly causing performance degradation regardless of an input level of external force.
A damping structure 1 provided inside a rectangular frame 5 constituting a frame includes a damping device 10 having an elastic member formed from a long elastic material in an annular shape and a circumferential direction of the elastic member. The diagonal member 20 and the joint metal 30 connecting the rectangular frame 5 to at least two positions separated from each other, and the curvature of the elastic member is changed by the force transmitted from the diagonal member 20 as the rectangular frame 5 is deformed. By doing so, the damping device 10 exhibits a damping force.
[Selection] Figure 1

Description

本発明は、矩形枠の内部に設けられる制振構造に関するものである。   The present invention relates to a vibration damping structure provided inside a rectangular frame.

従来、建物等において柱及び梁で構成される架構に作用する地震などの外力に対し、その入力エネルギーを吸収して建物の揺れを抑制するための制振構造が提案されている(例えば、特許文献1参照)。特許文献1に記載された制振構造は、可塑性材の降伏耐力がブレース材の降伏耐力よりも低く設定され、架構に作用する水平力によって可塑性材を降伏させることで、その履歴エネルギーによって入力エネルギーを吸収しようとするものである。   2. Description of the Related Art Conventionally, a vibration damping structure has been proposed for absorbing the input energy against an external force such as an earthquake acting on a frame composed of columns and beams in a building or the like (for example, a patent) Reference 1). In the vibration damping structure described in Patent Document 1, the yield strength of the plastic material is set lower than the yield strength of the brace material, and the plastic material is yielded by the horizontal force acting on the frame, so that the input energy is obtained by the hysteresis energy. Is intended to absorb.

特開2001−336304号公報JP 2001-336304 A

しかしながら、特許文献1に記載されたような従来の制振構造は、可塑性材が降伏するまでの弾性状態では履歴エネルギーが見込めないことから、中小地震など入力レベルが比較的小さい外力に対しては、建物の振動を抑制することが難しいという問題がある。また、入力レベルが大きい外力によって可塑性材が降伏すると、塑性変形による残留変形が生じたり、塑性変形の程度によっては可塑性材の変形性能が低下したりなど、初期の性能が回復できなくなるという問題もある。   However, since the conventional vibration damping structure described in Patent Document 1 cannot anticipate hysteresis energy in the elastic state until the plastic material yields, it is not suitable for external forces with relatively low input levels such as small and medium earthquakes. There is a problem that it is difficult to suppress the vibration of the building. In addition, when the plastic material yields due to an external force with a large input level, there is a problem that the initial performance cannot be recovered, such as residual deformation due to plastic deformation or the deformation performance of the plastic material being lowered depending on the degree of plastic deformation. is there.

本発明は、外力の入力レベルに係わらずに振動を抑制するとともに性能劣化を招きにくくすることができる制振構造を提供することを目的とする。   It is an object of the present invention to provide a vibration damping structure that can suppress vibrations and hardly cause performance degradation regardless of the input level of external force.

上記目的を達成するために本発明の制振構造は、架構を構成する矩形枠の内部に設けられる制振構造であって、長尺の弾性材料から全体環状に形成された弾性部材を有する減衰装置と、前記弾性部材の周方向に沿って互いに離れた少なくとも二位置と前記矩形枠とを接続する接続部材と、を備え、前記矩形枠の変形に伴い、前記接続部材から伝達される力によって前記弾性部材の曲率が変化することで前記減衰装置が減衰力を発揮することを特徴とする。   In order to achieve the above object, a vibration damping structure of the present invention is a vibration damping structure provided inside a rectangular frame constituting a frame, and has a damping member having an elastic member formed in an overall ring shape from a long elastic material. And a connecting member that connects the rectangular frame to at least two positions separated from each other along the circumferential direction of the elastic member, and the force transmitted from the connecting member along with the deformation of the rectangular frame The damping device exhibits a damping force by changing the curvature of the elastic member.

このような本発明の制振構造によれば、接続部材から伝達される力によって減衰装置の弾性部材の曲率が変化することで減衰力が発揮され、この減衰力によってエネルギー吸収が行われることとなる。このような弾性部材の曲率変化に伴う減衰力は、微小変形から大変形まで発揮させることができ、即ち、小さな入力レベルの外力に対してもエネルギー吸収が可能となる。さらに、変形した弾性部材は、自らの復元力によって初期の環状の状態に復帰することから、残留変形が生じにくく変形性能の低下も起きにくいので、性能の劣化を招きにくく、エネルギー吸収性能を良好に維持することができる。   According to such a vibration damping structure of the present invention, the damping force is exhibited by the curvature of the elastic member of the damping device being changed by the force transmitted from the connecting member, and energy is absorbed by this damping force. Become. The damping force accompanying the change in the curvature of the elastic member can be exerted from a minute deformation to a large deformation, that is, energy can be absorbed even with an external force having a small input level. Furthermore, since the deformed elastic member returns to its initial annular state by its own restoring force, residual deformation is unlikely to occur and deformation performance is unlikely to deteriorate, so performance is unlikely to deteriorate and energy absorption performance is good. Can be maintained.

この際、本発明の制振構造では、前記弾性部材は、前記弾性材料が径方向に複数重なった渦巻き状、同心円状、同心楕円状、同心長円状のいずれかの環状に形成されていることが好ましい。   At this time, in the vibration damping structure of the present invention, the elastic member is formed in one of a spiral shape, a concentric circular shape, a concentric elliptical shape, or a concentric oval shape in which the elastic material is overlapped in the radial direction. It is preferable.

この構成によれば、減衰装置の弾性部材が、渦巻き状、同心円状、同心楕円状、同心長円状のいずれかの環状に形成されているので、用途に応じて適宜な形状の減衰装置を選択することができる。また、弾性部材が渦巻き状に形成されていれば、1本の長尺板状の弾性材料を渦巻き状に巻き付けて弾性部材を成形することができ、製造にかかる手間やコストを削減することができる。一方、弾性部材が同心円状や同心楕円状、同心長円状に形成されていれば、環状にした複数の弾性材料を重ねていくことで弾性部材を成形することができる。   According to this configuration, since the elastic member of the attenuation device is formed in any one of a spiral shape, a concentric circle shape, a concentric ellipse shape, and a concentric oval shape, an attenuation device having an appropriate shape according to the application is provided. You can choose. Further, if the elastic member is formed in a spiral shape, the elastic member can be formed by winding a single long plate-like elastic material in a spiral shape, which reduces the labor and cost for manufacturing. it can. On the other hand, if the elastic member is formed in a concentric circle shape, a concentric ellipse shape or a concentric oval shape, the elastic member can be formed by stacking a plurality of annular elastic materials.

さらに、本発明の制振構造では、前記減衰装置は、径方向に重なった前記弾性部材の間に介挿される粘弾性部材を有するか、径方向に重なった前記弾性部材の間に介挿される摩擦部材を有するか、又は、径方向に重なった前記弾性部材同士が互いに摺接する摩擦面を有して構成されていることが好ましい。   Furthermore, in the vibration damping structure of the present invention, the damping device has a viscoelastic member that is inserted between the elastic members that overlap in the radial direction, or is inserted between the elastic members that overlap in the radial direction. It is preferable to have a friction member or to have a friction surface in which the elastic members overlapped in the radial direction are in sliding contact with each other.

この構成によれば、弾性部材の間に粘弾性部材や摩擦部材が介挿されるか、弾性部材同士が互いの摩擦面で摺接するように構成されていることで、弾性部材の曲率変化に伴って粘性抵抗や摩擦抵抗を生じさせ、この抵抗によって減衰力が発揮されることとなる。このような粘性抵抗や摩擦抵抗による減衰力は、微小変形から大変形まで発揮させることができ、即ち、小さな入力レベルから大きな入力レベルまで、外力のレベルに関わらずにエネルギーを吸収し、振動を抑制することができる。さらに、弾性部材が自らの復元力によって初期の環状の状態に復帰する際においても、粘性抵抗や摩擦抵抗による減衰力が発揮されることから、急激な復元による衝撃や加速度を抑制しつつ、初期状態まで緩やかに復帰させることができる。   According to this configuration, the viscoelastic member or the friction member is inserted between the elastic members, or the elastic members are configured to come into sliding contact with each other on the friction surface, thereby accompanying a change in the curvature of the elastic member. Thus, viscous resistance and frictional resistance are generated, and damping force is exhibited by this resistance. Such damping force due to viscous resistance and frictional resistance can be exerted from minute deformation to large deformation, that is, from a small input level to a large input level, it absorbs energy regardless of the external force level, and vibrates. Can be suppressed. Furthermore, even when the elastic member returns to the initial annular state by its own restoring force, the damping force due to viscous resistance or frictional resistance is exerted, so that the impact and acceleration due to sudden restoration are suppressed and the initial It is possible to return slowly to the state.

また、本発明の制振構造では、前記接続部材は、前記弾性部材の径方向に対向する二位置と、前記矩形枠と、を接続することが好ましい。   In the vibration damping structure of the present invention, it is preferable that the connecting member connects two positions facing the radial direction of the elastic member and the rectangular frame.

この構成によれば、弾性部材の径方向に対向する二位置に接続部材が接続されることで、環状の弾性部材を径方向に変形させることができ、弾性部材全体の曲率を効果的に変化させて減衰力を発揮させることができる。   According to this configuration, the connecting member is connected to two positions facing the radial direction of the elastic member, whereby the annular elastic member can be deformed in the radial direction, and the curvature of the entire elastic member can be effectively changed. Can exert a damping force.

さらに、本発明の制振構造では、前記接続部材は、一端が前記弾性部材に連結され、他端が前記矩形枠に連結される斜材を有して構成されていることが好ましい。   Furthermore, in the vibration damping structure of the present invention, it is preferable that the connection member includes an oblique member having one end connected to the elastic member and the other end connected to the rectangular frame.

この構成によれば、弾性部材と矩形枠とに連結される斜材を接続部材が有することで、ブレース形式の制振構造が構成され、矩形枠の変形を効率よく弾性部材に伝達することができる。   According to this configuration, since the connecting member has the diagonal member connected to the elastic member and the rectangular frame, a brace-type vibration damping structure is configured, and deformation of the rectangular frame can be efficiently transmitted to the elastic member. it can.

また、本発明の制振構造では、前記接続部材は、前記弾性部材を前記矩形枠に接合する接合材を有して構成されていてもよい。   In the vibration damping structure of the present invention, the connection member may include a bonding material that bonds the elastic member to the rectangular frame.

この構成によれば、接合材によって弾性部材を矩形枠に接合することで、矩形枠の変形を直接的に弾性部材に伝達することができ、減衰力を効率よく発揮させることができる。   According to this configuration, by joining the elastic member to the rectangular frame with the bonding material, the deformation of the rectangular frame can be directly transmitted to the elastic member, and the damping force can be efficiently exhibited.

また、本発明の制振構造では、前記減衰装置が上下方向及び左右方向の少なくともいずれかの方向に複数隣り合って設けられ、隣り合う減衰装置の前記弾性部材同士を連結する連結部材を備えて構成されていることが好ましい。   In the vibration damping structure of the present invention, a plurality of the damping devices are provided adjacent to each other in at least one of the vertical direction and the left-right direction, and includes a connecting member that connects the elastic members of the adjacent damping devices. It is preferable to be configured.

この構成によれば、複数隣り合って設けた減衰装置の弾性部材同士を連結部材で連結することで、複数の減衰装置各々の弾性部材を連動させて変形させるとともに、連装した複数の減衰装置によって大きな減衰力を得ることができる。   According to this configuration, the elastic members of the plurality of adjacent damping devices are coupled by the coupling member, so that the elastic members of each of the plurality of damping devices are deformed in conjunction with each other, and the plurality of the damping devices connected to each other. A large damping force can be obtained.

以上の本発明によれば、入力レベルが小さな外力に対しても弾性部材の曲率変化による減衰力を発揮させることで、振動抑制効果を期待することができるとともに、弾性部材の復元力によって初期の環状の状態に復帰することで、エネルギー吸収性能を良好に維持することができる。   According to the present invention described above, it is possible to expect a vibration suppressing effect by exerting a damping force due to a change in the curvature of the elastic member even for an external force having a small input level, and an initial force can be expected by the restoring force of the elastic member. By returning to the annular state, the energy absorption performance can be maintained well.

本発明の第1実施形態に係る制振構造を示す正面図である。It is a front view which shows the damping structure which concerns on 1st Embodiment of this invention. 前記制振構造に用いる減衰装置を示す正面図である。It is a front view which shows the damping device used for the said damping structure. 前記減衰装置の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of said attenuation device. 前記減衰装置の作用を示す正面図である。It is a front view which shows the effect | action of the said attenuation device. 前記制振構造の変形例を示す正面図である。It is a front view which shows the modification of the said damping structure. 前記制振構造の他の変形例を示す正面図である。It is a front view which shows the other modification of the said damping structure. 前記制振構造のさらに他の変形例を示す正面図である。It is a front view which shows the other modification of the said damping structure. 本発明の第2実施形態に係る制振構造を示す斜視図である。It is a perspective view which shows the damping structure which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る制振構造を示す正面図である。It is a front view which shows the damping structure which concerns on 3rd Embodiment of this invention. 本発明の制振構造における減衰装置の変形例を示す正面図である。It is a front view which shows the modification of the damping device in the damping structure of this invention. 前記減衰装置の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of said attenuation device.

以下、本発明の第1実施形態に係る制振構造を、図1〜4に基づいて説明する。本実施形態の制振構造1は、建物における左右一対の鉛直部材としての柱2と、上下一対の水平部材としての梁3及び中間梁4と、を有する骨組みの矩形枠5の内部に設けられるブレース構造によって構成されている。ここで、建物としては、例えば、木造軸組み構造の戸建て住宅など、2〜3階建ての小規模なものであって、この建物における適宜な位置に適宜な個数だけ制振構造1が設けられている。   Hereinafter, a damping structure according to a first embodiment of the present invention will be described with reference to FIGS. The vibration damping structure 1 according to the present embodiment is provided inside a rectangular frame 5 of a framework having a column 2 as a pair of left and right vertical members and a beam 3 and an intermediate beam 4 as a pair of upper and lower horizontal members in a building. It is composed of a brace structure. Here, as the building, for example, a small-scale building having 2 to 3 floors such as a detached house with a wooden frame structure, an appropriate number of damping structures 1 are provided at appropriate positions in the building. ing.

制振構造1は、建物の1層当たりで上下二箇所に設けられている。具体的には、上側の制振構造1は、左右の柱2と上階の梁3と中間梁4とで形成される上段の矩形枠5A内部に設けられ、下側の制振構造1は、左右の柱2と中間梁4と下階の梁3(又は土台)とで形成される下段の矩形枠5B内部に設けられている。これらの制振構造1は、それぞれ減衰装置10と、この減衰装置10を矩形枠5に接続する接続部材としての複数の斜材20及び接合金物30と、を備えて構成されている。   The vibration control structure 1 is provided at two locations above and below one layer of the building. Specifically, the upper vibration damping structure 1 is provided inside an upper rectangular frame 5A formed by the left and right columns 2, the upper beam 3 and the intermediate beam 4, and the lower vibration damping structure 1 is Are provided in the lower rectangular frame 5B formed by the left and right columns 2, the intermediate beam 4, and the beam 3 (or base) on the lower floor. Each of the vibration damping structures 1 includes a damping device 10, and a plurality of diagonal members 20 and a joint hardware 30 as connecting members that connect the damping device 10 to the rectangular frame 5.

減衰装置10は、図2、3に示すように、長尺板状の弾性材料11Aから全体環状に形成された弾性部材11と、径方向に重なる弾性部材11の間に介挿される粘弾性材料12Aからなる粘弾性部材12と、を備えている。弾性部材11は、弾性材料2Aが渦巻き状に成形されるとともに径方向に複数層に重ねられて構成されている。粘弾性部材12は、粘弾性材料12Aが弾性材料11Aに重ねられて渦巻き状に成形されるとともに、径方向に対向する内外の弾性材料11Aに接着されて構成されている。   As shown in FIGS. 2 and 3, the damping device 10 includes a viscoelastic material interposed between an elastic member 11 formed in an overall ring shape from a long plate-like elastic material 11 </ b> A and an elastic member 11 overlapping in the radial direction. Viscoelastic member 12 made of 12A. The elastic member 11 is configured such that the elastic material 2A is formed in a spiral shape and is stacked in a plurality of layers in the radial direction. The viscoelastic member 12 is configured such that a viscoelastic material 12A is superimposed on the elastic material 11A and formed into a spiral shape, and is bonded to the inner and outer elastic materials 11A opposed in the radial direction.

弾性部材11は、弾性材料11Aを渦巻き状に4層重ねるとともに、内端部と外端部とが重なる位置で弾性材料11Aを5層重ねて形成されている。この弾性材料11Aは、ばね鋼や炭素繊維強化プラスチック(CFRP)などの素材が利用でき、適宜な板厚及び板幅を有した長尺板状に形成されている。さらに、弾性材料11Aは、板厚方向に曲げられて環状の弾性部材11に成形された状態において、その内部応力が弾性範囲にあり、直線状に復元しようとする復元力を有している。従って、弾性部材11は、全体環状の初期状態から外力によって変形された場合に、環状に復帰しようとする復元力を内部に有して形成されている。   The elastic member 11 is formed by stacking four layers of the elastic material 11A in a spiral shape, and stacking five layers of the elastic material 11A at a position where the inner end portion and the outer end portion overlap each other. The elastic material 11A can be made of a material such as spring steel or carbon fiber reinforced plastic (CFRP), and is formed in a long plate shape having an appropriate plate thickness and plate width. Further, the elastic material 11A is bent in the plate thickness direction and formed into the annular elastic member 11, and the internal stress is within the elastic range and has a restoring force to restore linearly. Therefore, the elastic member 11 is formed with a restoring force that tends to return to an annular shape when deformed by an external force from the initial state of the entire annular shape.

粘弾性部材12は、長尺シート状の粘弾性材料12Aの両面を内外の弾性材料11Aに接着することで、弾性部材11と一体に設けられている。粘弾性材料12Aは、外力や振動によって変形することで内部発熱し、振動エネルギーを熱エネルギーに変換することによって、エネルギー吸収する粘弾性体(VEM:Visco-elastic Material)で構成されている。なお、粘弾性部材12は、長尺シート状の粘弾性材料12Aを弾性材料11Aに接着したものに限らず、渦巻き状に成形した弾性部材11の隙間に液体状又はゲル状の粘弾性材料12Aを充填してから固化させることで、弾性部材11と一体に成形したものであってもよい。   The viscoelastic member 12 is provided integrally with the elastic member 11 by adhering both surfaces of a long sheet-like viscoelastic material 12A to the inner and outer elastic materials 11A. The viscoelastic material 12A is configured by a visco-elastic material (VEM) that absorbs energy by generating heat internally by being deformed by external force or vibration and converting vibration energy into heat energy. The viscoelastic member 12 is not limited to a long sheet-like viscoelastic material 12A bonded to the elastic material 11A, but a liquid or gel viscoelastic material 12A in a gap between the elastic members 11 formed in a spiral shape. It may be formed integrally with the elastic member 11 by solidifying after filling.

斜材20は、その一端が減衰装置10の弾性部材11に連結され、他端が接合金物30を介して左右の柱2に連結されている。このような斜材20は、1個の減衰装置10に対して4個が接続され、4個のうち2個ずつの斜材20は、それぞれ弾性部材11の径方向に対向する二位置に接続されている。即ち、図1において、右下がりとなる2個の斜材20Aは略一直線上に設けられ、右上がりとなる2個の斜材20Bは略一直線上に設けられ、このような4個の斜材20によって減衰装置10を中心とするX型ブレースが構成されている。   One end of the diagonal member 20 is connected to the elastic member 11 of the damping device 10, and the other end is connected to the left and right columns 2 via the joint hardware 30. Four such diagonal members 20 are connected to one damping device 10, and two of the four diagonal members 20 are connected to two positions facing each other in the radial direction of the elastic member 11. Has been. That is, in FIG. 1, the two diagonal members 20A that descend to the right are provided on a substantially straight line, and the two diagonal members 20B that rise to the right are provided on a substantially straight line. 20 constitutes an X-type brace centered on the damping device 10.

各々の斜材20は、長尺の斜材本体21と、この斜材本体21を減衰装置10の弾性部材11に連結する接続金物22と、を有して構成されている。斜材本体21は、例えば、断面寸法が45mm×45mmで板厚が1.6mmの角パイプから構成されている。接続金物22は、例えば、板厚が3.2mmの鋼板を曲げ加工して形成されている。この接続金物22は、図3に示すように、弾性部材11の内周側に位置する底面部221と、この底面部221から弾性部材11の外周側に延びて斜材本体21の側面に沿う一対の側面部222と、を有して断面コ字形に形成されている。   Each diagonal member 20 includes a long diagonal member body 21 and a connecting metal member 22 that connects the diagonal member body 21 to the elastic member 11 of the damping device 10. The diagonal member body 21 is composed of, for example, a square pipe having a cross-sectional dimension of 45 mm × 45 mm and a plate thickness of 1.6 mm. The connection hardware 22 is formed, for example, by bending a steel plate having a thickness of 3.2 mm. As shown in FIG. 3, the connection hardware 22 extends from the bottom surface portion 221 to the outer peripheral side of the elastic member 11 along the side surface of the diagonal member main body 21. And has a pair of side surface portions 222 and is formed in a U-shaped cross section.

斜材本体21と接続金物22とは、一対の側面部222及び斜材本体21を貫通するボルト23と、このボルト23に螺合するナット24と、によって互いに回動自在に連結されている。このように斜材本体21と接続金物22とを連結することで、減衰装置10の弾性部材11が接続金物22の底面部221及び一対の側面部222と斜材本体21の端部とで囲まれて保持される。また、接続金物22の底面部221には、弾性部材11を径方向外方に向かって押圧して締め付ける締付けねじ25が螺合されている。   The diagonal member body 21 and the connection hardware 22 are connected to each other by a pair of side surfaces 222 and a bolt 23 that penetrates the diagonal member body 21 and a nut 24 that is screwed to the bolt 23. Thus, by connecting the diagonal member body 21 and the connection hardware 22, the elastic member 11 of the damping device 10 is surrounded by the bottom surface portion 221 and the pair of side surfaces 222 of the connection hardware 22 and the end portion of the diagonal material body 21. Held. Further, a tightening screw 25 that presses and tightens the elastic member 11 radially outward is screwed to the bottom surface portion 221 of the connection hardware 22.

接合金物30は、ビス等によって柱2に固定される固定片部31と、この固定片部31から立ち上がる一対の連結片部32と、を有して形成され、一対の連結片部32及び斜材本体21を貫通するボルト33によって斜材本体21と回動自在に連結されている。この接合金物30は、建物に外力が作用して矩形枠5が変形した場合に、その変形に伴って斜材20に対して軸力を生じさせる。このように斜材20に軸力が生じ、この軸力が減衰装置10に伝達されることで、弾性部材11が変形することとなる。   The metal joint 30 is formed to include a fixed piece portion 31 fixed to the column 2 by screws or the like, and a pair of connecting piece portions 32 rising from the fixed piece portion 31. The diagonal member body 21 is rotatably connected to the diagonal member body 21 by a bolt 33 penetrating the member body 21. When the rectangular frame 5 is deformed due to an external force acting on the building, the joint metal 30 generates an axial force on the diagonal member 20 along with the deformation. Thus, the elastic member 11 is deformed by generating an axial force on the diagonal member 20 and transmitting the axial force to the damping device 10.

具体的には、図1に示す骨組みに対して図中左から右に向かって地震等の外力が作用した場合、矩形枠5はその上方が右にずれるように平行四辺形状に変形する。この矩形枠5の変形に伴い、2個の斜材20Aにはそれぞれ圧縮の軸力が作用し、2個の斜材20Bにはそれぞれ引張りの軸力が作用する。その結果、図4に示すように、減衰装置10の弾性部材11は、左下方と右上方に引っ張られて伸びた楕円形状に変形し、その各部における曲率が変化する。このように弾性部材11の曲率が変化すると、径方向内外に重なる弾性材料11A同士にずれが生じ、その間の粘弾性部材12がせん断変形し、この変形によって粘弾性材料12Aの内部粘性による減衰力が発揮され、この粘弾性部材12の減衰力によってエネルギー吸収が行われる。   Specifically, when an external force such as an earthquake acts on the framework shown in FIG. 1 from the left to the right in the drawing, the rectangular frame 5 is deformed into a parallelogram so that the upper side thereof is shifted to the right. Along with the deformation of the rectangular frame 5, a compression axial force acts on the two diagonal members 20A, and a tensile axial force acts on the two diagonal members 20B. As a result, as shown in FIG. 4, the elastic member 11 of the damping device 10 is deformed into an elliptical shape that is stretched by being pulled to the lower left and the upper right, and the curvature of each part changes. When the curvature of the elastic member 11 changes in this manner, the elastic materials 11A that overlap inward and outward in the radial direction are displaced from each other, and the viscoelastic member 12 therebetween undergoes shear deformation, and this deformation causes a damping force due to the internal viscosity of the viscoelastic material 12A. The energy is absorbed by the damping force of the viscoelastic member 12.

また、外力によって骨組みが逆方向に変形した場合には、各斜材20の軸力が逆向きに作用することから、減衰装置10も左右逆向きの楕円形に変形し、それによってエネルギー吸収が行われる。すなわち、地震動のように建物に対して左右の外力が繰り返し作用する外乱に対し、減衰装置10は、左右両方向の変形を繰り返し受けることで振動エネルギーを吸収するようになっている。さらに、外力がなくなって骨組みが元の形状に戻った場合には、弾性部材11の復元力によって減衰装置10が初期の環状の状態に復帰する。このように減衰装置10が初期状態に復帰する際においても、粘弾性部材12の減衰力が発揮されることから、減衰装置10は緩やかな速度で初期状態まで復帰することになる。   Further, when the framework is deformed in the reverse direction due to the external force, the axial force of each diagonal member 20 acts in the opposite direction, so that the damping device 10 is also deformed into an elliptical shape in the opposite direction, thereby absorbing energy. Done. That is, the damping device 10 absorbs vibration energy by repeatedly receiving deformations in both the left and right directions against disturbances in which left and right external forces repeatedly act on the building, such as earthquake motion. Furthermore, when the external force is lost and the skeleton returns to its original shape, the damping device 10 returns to the initial annular state by the restoring force of the elastic member 11. As described above, even when the damping device 10 returns to the initial state, the damping force of the viscoelastic member 12 is exhibited, so that the damping device 10 returns to the initial state at a moderate speed.

なお、本実施形態の制振構造は、図1のように上下二段に設けられるものに限らず、図5に示すように設置されてもよい。図5において、建物の骨組みは、左右の柱2と上下の梁3とによって矩形枠5が形成され、この矩形枠5の内部に制振構造1Aが設けられている。この制振構造1Aは、前述の制振構造1と同様に、減衰装置10と、この減衰装置10を矩形枠5に接続する接続部材としての複数の斜材20及び接合金物30と、を備えて構成されている。   The vibration damping structure of the present embodiment is not limited to being provided in two upper and lower stages as shown in FIG. 1, and may be installed as shown in FIG. In FIG. 5, a building frame has a rectangular frame 5 formed by left and right columns 2 and upper and lower beams 3, and a damping structure 1 </ b> A is provided inside the rectangular frame 5. Similar to the above-described vibration damping structure 1, the vibration damping structure 1 </ b> A includes the damping device 10, and a plurality of diagonal members 20 and joint hardware 30 as connecting members that connect the damping device 10 to the rectangular frame 5. Configured.

また、本実施形態の制振構造において、接続部材としては、図1〜5のような斜材20を有したものに限らず、図6、7に示すように、減衰装置10を矩形枠5に直接接続するものであってもよい。図6において、建物の骨組みは、左右の柱2と上下の梁3と上下二段の中間梁4とを有し、左右の柱2と上階の梁3と上段の中間梁4とで上段の矩形枠5Cが形成され、左右の柱2と上下の中間梁4とで中段の矩形枠5Dが形成され、左右の柱2と下段の中間梁4と下階の梁3とで下段の矩形枠5Eが形成され、各矩形枠5C,5D,5Eの内部にそれぞれ制振構造1Bが設けられている。これらの制振構造1Bは、それぞれ減衰装置10と、この減衰装置10を矩形枠5に接続する接続部材としての接合材40と、を備えて構成されている。   Further, in the vibration damping structure of the present embodiment, the connection member is not limited to the one having the diagonal member 20 as shown in FIGS. 1 to 5, and as shown in FIGS. It may be connected directly to. In FIG. 6, the building framework has left and right columns 2, upper and lower beams 3, and upper and lower intermediate beams 4, and upper and lower columns 2, upper-level beams 3, and upper intermediate beams 4. The rectangular frame 5C is formed, the left and right columns 2 and the upper and lower intermediate beams 4 form a middle rectangular frame 5D, and the left and right columns 2, the lower intermediate beam 4 and the lower floor beams 3 form a lower rectangular shape. A frame 5E is formed, and a damping structure 1B is provided inside each rectangular frame 5C, 5D, 5E. Each of the vibration damping structures 1 </ b> B includes a damping device 10 and a bonding material 40 as a connecting member that connects the damping device 10 to the rectangular frame 5.

接合材40は、鋼板を曲げ加工してハット型に形成され、減衰装置10の弾性部材11を径方向内方から囲むとともに、柱2、梁3、中間梁4にビス止め固定されることで、減衰装置10を直接的に矩形枠5C,5D,5Eに固定するものとなっている。すなわち、上段の矩形枠5C内部において、減衰装置10の弾性部材11は、その上下左右の4箇所が左右の柱2、上階の梁3及び上段の中間梁4にそれぞれ接合材40によって接合されている。中段の矩形枠5D内部において、減衰装置10の弾性部材11は、その上下左右の4箇所が左右の柱2及び上下の中間梁4にそれぞれ接合材40によって接合されている。下段の矩形枠5E内部において、減衰装置10の弾性部材11は、その上下左右の4箇所が左右の柱2、下階の梁3及び上段の中間梁4にそれぞれ接合材40によって接合されている。   The bonding material 40 is formed into a hat shape by bending a steel plate, surrounds the elastic member 11 of the damping device 10 from the inside in the radial direction, and is fixed to the column 2, the beam 3, and the intermediate beam 4 with screws. The damping device 10 is directly fixed to the rectangular frames 5C, 5D, 5E. That is, in the upper rectangular frame 5C, the elastic member 11 of the damping device 10 is bonded to the left and right columns 2, the upper beam 3 and the upper intermediate beam 4 by the bonding material 40 at four positions on the upper, lower, left and right sides. ing. Inside the middle rectangular frame 5D, the elastic member 11 of the damping device 10 is joined to the left and right pillars 2 and the upper and lower intermediate beams 4 by joint members 40 at the four places on the top, bottom, left and right. Inside the lower rectangular frame 5E, the elastic member 11 of the damping device 10 is joined to the left and right columns 2, the lower beam 3 and the upper intermediate beam 4 by the joining material 40 at the four positions on the upper, lower, left and right sides. .

図7において、建物の骨組みは、左右の柱2と上下の梁3と間柱5とを有し、左右一方の柱2と上下の梁3と間柱6とで一方の矩形枠5Fが形成され、左右他方の柱2と上下の梁3と間柱6とで他方の矩形枠5Fが形成され、左右の矩形枠5Fの内部にそれぞれ制振構造1Cが設けられている。これらの制振構造1Cは、それぞれ上下に並んで設けられる複数の減衰装置10と、これらの減衰装置10を矩形枠5Fに接続する接続部材としての接合材40と、上下に隣り合う減衰装置10の弾性部材11同士を連結する連結部材50と、を備えて構成されている。接合材40は、図6のものと同様の部材である。   In FIG. 7, the building framework has left and right columns 2, upper and lower beams 3, and intermediary columns 5, and one rectangular frame 5 </ b> F is formed by the left and right columns 2, the upper and lower beams 3, and the intermediary columns 6. The other rectangular frame 5F is formed by the left and right other columns 2, the upper and lower beams 3, and the inter-columns 6, and the damping structure 1C is provided inside each of the left and right rectangular frames 5F. These damping structures 1C include a plurality of damping devices 10 arranged in the vertical direction, a bonding material 40 as a connecting member for connecting these damping devices 10 to the rectangular frame 5F, and the damping devices 10 adjacent to each other in the vertical direction. And a connecting member 50 that connects the elastic members 11 to each other. The bonding material 40 is a member similar to that shown in FIG.

連結部材50は、鋼板を曲げ加工してハット型に形成された部材を一対備え、減衰装置10の弾性部材11を側方から囲むとともに、ボルトによって一対の部材を結合することで、隣り合う減衰装置10を連結するものとなっている。従って、左右の矩形枠5F内部において、上下に隣り合う減衰装置10の弾性部材11同士は、互いに連結部材50によって連結され、各減衰装置10の弾性部材11は、その左右2箇所が柱2及び間柱6にそれぞれ接合材40によって接合され、最上段及び最下段の減衰装置10の弾性部材11は、その上下各1箇所がそれぞれ上下の梁3に接合材40によって接合されている。   The connecting member 50 includes a pair of members formed into a hat shape by bending a steel plate, surrounds the elastic member 11 of the damping device 10 from the side, and couples the pair of members with bolts, thereby adjacent damping. The apparatus 10 is connected. Therefore, the elastic members 11 of the damping devices 10 adjacent to each other in the left and right rectangular frames 5F are connected to each other by the connecting members 50. The elastic members 11 of the respective damping devices 10 have two columns on the left and right sides. Each of the elastic members 11 of the uppermost and lowermost damping devices 10 is joined to the upper and lower beams 3 by the joining material 40, respectively.

以上のような本実施形態の制振構造1,1A,1B,1Cによれば以下の効果が得られる。すなわち、減衰装置10の弾性部材11が接続部材である斜材20及び接合金物30や接合材40によって矩形枠5に接続され、矩形枠5の変形に伴って弾性部材11の曲率が変化することで粘弾性部材12の減衰力が発揮され、この減衰力によってエネルギー吸収が行われることとなる。このような減衰力は、微小変形から大変形まで発揮させることができ、即ち、小さな入力レベルの外力に対しても粘弾性部材12が減衰力を発揮することができるので、入力レベルに関わらず振動抑制効果を期待することができる。   According to the vibration damping structure 1, 1A, 1B, 1C of the present embodiment as described above, the following effects can be obtained. That is, the elastic member 11 of the damping device 10 is connected to the rectangular frame 5 by the diagonal member 20, the joint metal 30, and the bonding member 40 that are connecting members, and the curvature of the elastic member 11 changes as the rectangular frame 5 is deformed. Thus, the damping force of the viscoelastic member 12 is exhibited, and energy is absorbed by this damping force. Such a damping force can be exerted from a minute deformation to a large deformation, that is, the viscoelastic member 12 can exert a damping force even for an external force of a small input level. A vibration suppressing effect can be expected.

さらに、弾性部材11の復元力によって、減衰装置10が初期の環状の状態に復帰することで、エネルギー吸収性能を良好に維持することができる。このように弾性部材11の復元力によって減衰装置10が初期の環状の状態に復帰する際においても、粘弾性部材12の減衰力が発揮されることから、減衰装置10は緩やかな速度で初期状態まで復帰することになり、余計な振動や衝撃を発生させずに初期状態に復帰することができる。   Furthermore, the energy absorbing performance can be favorably maintained by returning the damping device 10 to the initial annular state by the restoring force of the elastic member 11. Thus, even when the damping device 10 returns to the initial annular state by the restoring force of the elastic member 11, the damping device 10 exhibits the damping force of the viscoelastic member 12, so that the damping device 10 is in the initial state at a moderate speed. Thus, it is possible to return to the initial state without generating extra vibration or shock.

また、弾性部材11が渦巻き状の環状に形成されているので、1本の長尺板状の弾性材料11Aを渦巻き状に巻き付けて弾性部材11を成形することができるとともに、弾性材料11Aに長尺シート状の粘弾性材料12Aを接着してから巻き付けていくことで、粘弾性部材12の成形工程を簡便化することができる。従って、減衰装置10の製造にかかる手間やコストを削減することができる。   Further, since the elastic member 11 is formed in a spiral ring shape, the elastic member 11 can be formed by winding a single long plate-shaped elastic material 11A in a spiral shape, and the elastic material 11A is long. By forming the sheet-like viscoelastic material 12A and then winding it, the molding process of the viscoelastic member 12 can be simplified. Therefore, it is possible to reduce labor and cost for manufacturing the attenuation device 10.

次に、本発明の第2実施形態に係る制振構造を、図8に基づいて説明する。本実施形態の制振構造1は、大断面集成材を用いた大スパンラーメン架構を有する建物に適用される点が前記第1実施形態と相違する。ラーメン架構Rは、基礎Fに立設される大断面集成材柱からなる柱2Aと、この柱2Aの上端に剛接される大断面集成材柱からなる梁3Aと、を有して構成され、桁行方向に所定スパンだけ離れて複数が並設されている。隣り合うラーメン架構R同士は、桁梁3B及び中間梁4Aによって連結されている。また、一部のラーメン架構Rには、基礎Fと梁3Aとに間柱6Aが設けられ、この間柱6Aと柱2Aとの間に中間梁4Bが架設されている。   Next, a vibration damping structure according to the second embodiment of the present invention will be described with reference to FIG. The vibration damping structure 1 of this embodiment is different from the first embodiment in that it is applied to a building having a large span frame structure using a large cross-section laminated lumber. The ramen frame R is configured to include a column 2A composed of a large-section laminated timber column erected on the foundation F, and a beam 3A composed of a large-section laminated timber column rigidly connected to the upper end of the column 2A. A plurality of lines are arranged side by side in the column line direction by a predetermined span. The adjacent frame frames R are connected to each other by a beam 3B and an intermediate beam 4A. Further, in some of the frame frames R, an intermediate column 6A is provided on the foundation F and the beam 3A, and an intermediate beam 4B is installed between the intermediate column 6A and the column 2A.

制振構造1は、ラーメン架構R同士を連結する桁行方向と、ラーメン架構R内部の張間方向と、の二方向に設けられるとともに、各方向において上下二段で設けられている。桁行方向において、上段の制振構造1は、左右の柱2Aと桁梁3Bと中間梁4Aとで形成される上段の矩形枠5G内部に設けられ、下段の制振構造1は、左右の柱2Aと中間梁4Aと基礎梁F1とで形成される下段の矩形枠5H内部に設けられている。張間方向において、上段の制振構造1は、柱2A及び間柱5Aと梁3Aと中間梁4Bとで形成される上段の矩形枠5J内部に設けられ、下段の制振構造1は、柱2A及び間柱5Aと中間梁4Bと基礎梁F2とで形成される下段の矩形枠5K内部に設けられている。これらの制振構造1は、前記第1実施形態のものと同様である。   The vibration damping structure 1 is provided in two directions, that is, a direction in which the frame frames R are connected to each other and a tension direction in the frame frame R, and is provided in two upper and lower stages in each direction. In the girder direction, the upper vibration damping structure 1 is provided inside the upper rectangular frame 5G formed by the left and right columns 2A, the girder beam 3B, and the intermediate beam 4A. 2A, the intermediate beam 4A, and the base beam F1 are provided inside the lower rectangular frame 5H. In the tension direction, the upper vibration damping structure 1 is provided inside the upper rectangular frame 5J formed by the pillar 2A, the intermediate pillar 5A, the beam 3A, and the intermediate beam 4B, and the lower vibration damping structure 1 is formed by the pillar 2A. And the lower rectangular frame 5K formed by the inter-column 5A, the intermediate beam 4B, and the foundation beam F2. These damping structures 1 are the same as those in the first embodiment.

次に、本発明の第3実施形態に係る制振構造を、図9に基づいて説明する。本実施形態の制振構造1は、鉄骨造ラーメン架構を有する建物に適用される点が前記第1、2実施形態と相違する。ラーメン架構は、角型鋼管からなる柱2Bと、この柱2Bに剛接されるH形鋼からなる梁3Cと、を有して構成され、柱2B間において上下階の梁3Cには、間柱6Bが架設されている。制振構造1は、柱2B及び間柱6Bと上下の梁3Cとで形成される矩形枠5L内部に設けられている。これらの制振構造1は、前記第1実施形態のものと略同様の構成を備えるが、前記接合金物30に代えて、接続部材としては、複数の斜材20を矩形枠5Lに連結するブラケット30Aが柱2B及び梁3Cに溶接固定されている。   Next, a damping structure according to a third embodiment of the present invention will be described with reference to FIG. The vibration damping structure 1 of this embodiment is different from the first and second embodiments in that it is applied to a building having a steel frame frame. The ramen frame has a pillar 2B made of a square steel pipe and a beam 3C made of H-shaped steel that is rigidly connected to the pillar 2B. 6B is installed. The vibration damping structure 1 is provided inside a rectangular frame 5L formed by the pillars 2B and the intermediate pillars 6B and the upper and lower beams 3C. These vibration damping structures 1 have substantially the same configuration as that of the first embodiment, but instead of the joint hardware 30, as a connecting member, a bracket for connecting a plurality of diagonal members 20 to the rectangular frame 5L. 30A is fixed to the column 2B and the beam 3C by welding.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

例えば、前記実施形態では、木造軸組み構造、大断面集成材を用いたラーメン構造、鉄骨ラーメン構造の建物に制振構造1,1A,1B,1Cを適用した場合を例示したが、本発明の制振構造を適用する建物の構造種別や構造形式は特に限定されない。すなわち、建物としては、木造枠組壁構造のものでもよいし、軽量鉄骨軸組構造のものでもよいし、鉄筋コンクリート造や鉄骨鉄筋コンクリート造のものでもよい。さらに、本発明の制振構造は、建物に適用されるものに限らず、各種の構築物や工作物に適用されてもよいし、その他任意の物品に対して適用されてもよい。   For example, in the said embodiment, although the case where the damping structure 1,1A, 1B, 1C was applied to the building of a wooden frame structure, a ramen structure using a large cross-section laminated material, and a steel frame ramen structure, There is no particular limitation on the structure type or structure type of the building to which the vibration control structure is applied. That is, the building may have a wooden frame structure, a light steel frame structure, a reinforced concrete structure, or a steel reinforced concrete structure. Furthermore, the vibration damping structure of the present invention is not limited to being applied to a building, and may be applied to various structures and workpieces, or may be applied to any other article.

また、前記実施形態では、減衰装置10の弾性部材11が渦巻き状の環状に形成されていたが、これに限らず、弾性部材が同心円状、同心楕円状、同心長円状のいずれかの環状に形成されていてもよい。また、前記実施形態では、減衰装置10が弾性部材11と粘弾性部材12とを有して構成されていたが、これに限らず、減衰装置としては、弾性部材11に代えて摩擦部材が弾性部材の弾性材料間に介挿されていてもよいし、径方向に重なる弾性部材の弾性材料同士が互いに摩擦面で摺接するように構成されていてもよい。このような摩擦部材や摩擦面を設けた場合には、弾性部材の曲率変化に伴い摩擦抵抗が生じることによって減衰力を発揮させることができ、前記実施形態と同様の作用効果を奏することができる。   Moreover, in the said embodiment, although the elastic member 11 of the damping device 10 was formed in the spiral annular shape, it is not restricted to this, An elastic member is any one of concentric circle shape, concentric ellipse shape, or a concentric ellipse shape. It may be formed. Moreover, in the said embodiment, although the damping device 10 comprised the elastic member 11 and the viscoelastic member 12, it is not restricted to this, As a damping device, it replaces with the elastic member 11, and a friction member is elastic. It may be inserted between the elastic materials of the members, or the elastic materials of the elastic members that overlap in the radial direction may be in sliding contact with each other on the friction surface. When such a friction member or a friction surface is provided, a damping force can be exhibited by generating a frictional resistance in accordance with a change in the curvature of the elastic member, and the same effect as that of the above embodiment can be achieved. .

また、減衰装置10の弾性部材11としては、前記実施形態のように長尺板状の弾性材料11Aから環状に形成されたものに限らず、図10,11に示すような構造であってもよい。図10,11において、減衰装置10Aは、長尺線状の弾性材料11Cから全体環状に形成された弾性部材11Bを有して構成されている。弾性部材11Bは、弾性材料11Cを軸方向及び径方向に複数回巻き重ねて形成されている。この弾性材料11Cは、PC鋼線やPC撚り線などの鋼線や、炭素繊維やアラミド繊維などを撚った線材等、各種素材が利用でき、適宜な径寸法を有した長尺線状に形成されている。   In addition, the elastic member 11 of the damping device 10 is not limited to the long plate-like elastic material 11 </ b> A formed in an annular shape as in the above embodiment, and may have a structure as shown in FIGS. 10 and 11. Good. 10 and 11, the damping device 10 </ b> A includes an elastic member 11 </ b> B that is formed in an annular shape from an elongated elastic material 11 </ b> C. The elastic member 11B is formed by winding the elastic material 11C a plurality of times in the axial direction and the radial direction. The elastic material 11C can be made of various materials such as a steel wire such as a PC steel wire or a PC stranded wire, or a wire material twisted of carbon fiber or aramid fiber, and is formed into a long wire having an appropriate diameter. Is formed.

減衰装置10Aは、前記実施形態と同様の斜材20によって矩形枠に接続される。この斜材20は、斜材本体21と、接続金物22と、を有して構成され、接続金物22は、図11に示すように、底面部221の内側に設けられて弾性部材11Bを押圧する押圧板26を有して構成されている。この押圧板26を締付けねじ25によって弾性部材11Bに押し付けることで、複数回巻き重ねた弾性材料11Cがばらけないようになっている。この弾性部材11Bは、外部からの力を受けて曲率が変化するように変形することで、軸方向及び径方向に重なる弾性材料11C同士が擦れ合い、この摩擦抵抗によって減衰力を発揮するようになっている。なお、減衰装置10Aは、弾性材料11C同士の隙間に粘弾性材料を充填して構成されてもよく、これによれば曲率変化に伴う粘弾性材料の粘性抵抗によって減衰力を発揮することができる。   The attenuation device 10A is connected to the rectangular frame by the diagonal member 20 similar to that of the above embodiment. The diagonal member 20 includes an oblique member main body 21 and a connection metal member 22, and the connection metal member 22 is provided inside the bottom surface portion 221 and presses the elastic member 11B as shown in FIG. It has a pressing plate 26 to be configured. By pressing the pressing plate 26 against the elastic member 11B with the tightening screw 25, the elastic material 11C wound a plurality of times is prevented from being separated. The elastic member 11B is deformed so as to change its curvature in response to an external force, so that the elastic materials 11C overlapping in the axial direction and the radial direction rub against each other, and a damping force is exhibited by this frictional resistance. It has become. The damping device 10A may be configured by filling a gap between the elastic materials 11C with a viscoelastic material. According to this, the damping device 10A can exert a damping force by the viscous resistance of the viscoelastic material accompanying a change in curvature. .

また、前記実施形態では、減衰装置10,10Aを矩形枠5に接続する接続部材として、4個の斜材20を有したX型ブレース形式のもの、あるいは、減衰装置10,10Aを矩形枠5に直接接合する接合材40を有したものを例示したが、接続部材としては、減衰装置を矩形枠に接続できるものであれば、その接続形式や部材形状などは特に限定されない。すなわち、前記実施形態では、接続部材としての4個の斜材20をX型ブレースとして用いたが、片上がりの/型ブレースであってもよいし、V型ブレースであってもよい。また、腰壁や垂れ壁等の壁材を接続部材とし、この壁材を介して減衰装置が矩形枠に接続されていてもよい。さらに、矩形枠としては、前記実施形態のように柱2、梁3、中間梁4、間柱6等で四方が構成されたものに限らず、適宜な部材で矩形枠状に形成されたものが適用可能である。   Moreover, in the said embodiment, as a connection member which connects attenuation | damping apparatus 10 and 10A to the rectangular frame 5, the thing of the X-type brace type which has the four diagonal members 20, or the attenuation | damping apparatus 10 and 10A is the rectangular frame 5 However, the connecting member is not particularly limited as long as it can connect the attenuation device to the rectangular frame. That is, in the above-described embodiment, the four diagonal members 20 as the connection members are used as the X-type braces, but may be one-sided up / type braces or V-type braces. Further, a wall member such as a waist wall or a hanging wall may be used as a connecting member, and the attenuation device may be connected to the rectangular frame via the wall member. Furthermore, the rectangular frame is not limited to the rectangular frame formed by the pillar 2, the beam 3, the intermediate beam 4, the intermediary column 6 and the like as in the above-described embodiment, but a rectangular frame formed by an appropriate member. Applicable.

1,1A,1B,1C 制振構造
5 矩形枠
10,10A 減衰装置
11,11B 弾性部材
11A,11C 弾性材料
12 粘弾性部材
12A 粘弾性材料
20 斜材(接続部材)
30 接合金物(接続部材)
40 接合材(接続部材)
50 連結部材
1, 1A, 1B, 1C Damping structure 5 Rectangular frame 10, 10A Damping device 11, 11B Elastic member 11A, 11C Elastic material 12 Viscoelastic member 12A Viscoelastic material 20 Diagonal material (connection member)
30 Metal fittings (connection members)
40 Bonding material (connection member)
50 connecting members

Claims (7)

架構を構成する矩形枠の内部に設けられる制振構造であって、
長尺の弾性材料から全体環状に形成された弾性部材を有する減衰装置と、
前記弾性部材の周方向に沿って互いに離れた少なくとも二位置と前記矩形枠とを接続する接続部材と、を備え、
前記矩形枠の変形に伴い、前記接続部材から伝達される力によって前記弾性部材の曲率が変化することで前記減衰装置が減衰力を発揮することを特徴とする制振構造。
A vibration damping structure provided inside a rectangular frame constituting the frame,
A damping device having an elastic member formed in an overall ring shape from a long elastic material;
A connecting member that connects the rectangular frame with at least two positions that are separated from each other along the circumferential direction of the elastic member;
A damping structure in which the damping device exerts a damping force when the curvature of the elastic member is changed by a force transmitted from the connection member as the rectangular frame is deformed.
前記弾性部材は、前記弾性材料が径方向に複数重なった渦巻き状、同心円状、同心楕円状、同心長円状のいずれかの環状に形成されていることを特徴とする請求項1に記載の制振構造。   2. The elastic member according to claim 1, wherein the elastic member is formed in any one of a spiral shape, a concentric circular shape, a concentric elliptical shape, and a concentric elliptical shape in which a plurality of the elastic materials are overlapped in the radial direction. Damping structure. 前記減衰装置は、径方向に重なった前記弾性部材の間に介挿される粘弾性部材を有するか、径方向に重なった前記弾性部材の間に介挿される摩擦部材を有するか、又は、径方向に重なった前記弾性部材同士が互いに摺接する摩擦面を有して構成されていることを特徴とする請求項2に記載の制振構造。   The damping device has a viscoelastic member inserted between the elastic members overlapped in the radial direction, or has a friction member inserted between the elastic members overlapped in the radial direction, or the radial direction The vibration damping structure according to claim 2, wherein the elastic members overlapped with each other have a friction surface in sliding contact with each other. 前記接続部材は、前記弾性部材の径方向に対向する二位置と、前記矩形枠と、を接続することを特徴とする請求項1〜3のいずれか一項に記載の制振構造。   The said connection member connects the two positions which oppose the radial direction of the said elastic member, and the said rectangular frame, The damping structure as described in any one of Claims 1-3 characterized by the above-mentioned. 前記接続部材は、一端が前記弾性部材に連結され、他端が前記矩形枠に連結される斜材を有して構成されていることを特徴とする請求項1〜4のいずれか一項に記載の制振構造。   5. The connection member according to claim 1, wherein the connection member includes an oblique member having one end connected to the elastic member and the other end connected to the rectangular frame. The described vibration control structure. 前記接続部材は、前記弾性部材を前記矩形枠に接合する接合材を有して構成されていることを特徴とする請求項1〜4のいずれか一項に記載の制振構造。   The damping structure according to any one of claims 1 to 4, wherein the connecting member includes a bonding material that bonds the elastic member to the rectangular frame. 前記減衰装置が上下方向及び左右方向の少なくともいずれかの方向に複数隣り合って設けられ、隣り合う減衰装置の前記弾性部材同士を連結する連結部材を備えて構成されていることを特徴とする請求項1〜6のいずれか一項に記載の制振構造。   A plurality of the damping devices are provided adjacent to each other in at least one of a vertical direction and a horizontal direction, and are configured to include a connecting member that connects the elastic members of the adjacent damping devices. Item 7. The vibration damping structure according to any one of Items 1 to 6.
JP2015021006A 2015-02-05 2015-02-05 Vibration control structure Pending JP2016142111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021006A JP2016142111A (en) 2015-02-05 2015-02-05 Vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021006A JP2016142111A (en) 2015-02-05 2015-02-05 Vibration control structure

Publications (1)

Publication Number Publication Date
JP2016142111A true JP2016142111A (en) 2016-08-08

Family

ID=56570056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021006A Pending JP2016142111A (en) 2015-02-05 2015-02-05 Vibration control structure

Country Status (1)

Country Link
JP (1) JP2016142111A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119965A (en) * 2015-12-28 2017-07-06 塩川 諒治 Diagonal beam structure
JP2021039266A (en) * 2019-09-04 2021-03-11 株式会社3D Printing Corporation Acoustic meta-material and vibration attenuation device using the same
JP2021162039A (en) * 2020-03-30 2021-10-11 株式会社大林組 Vibration control structure, vibration control unit and installation method
CN113586660A (en) * 2021-08-12 2021-11-02 重庆大学 Modularized quasi-zero rigidity vibration isolation structure
CN113699875A (en) * 2021-09-03 2021-11-26 河海大学 Super high shock attenuation pier structure of nearly fault railway

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273336A (en) * 1987-05-06 1987-11-27 旭化成株式会社 Yield strength frame
JPH11293930A (en) * 1998-04-15 1999-10-26 Nishimatsu Constr Co Ltd Earthquake-resistive reinforcing member and earthquake-resistive reinforcing construction
JP2001336304A (en) * 2000-05-30 2001-12-07 Sumitomo Metal Ind Ltd Damping device and damping structure
WO2014123204A1 (en) * 2013-02-07 2014-08-14 日本発條株式会社 Load application device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273336A (en) * 1987-05-06 1987-11-27 旭化成株式会社 Yield strength frame
JPH11293930A (en) * 1998-04-15 1999-10-26 Nishimatsu Constr Co Ltd Earthquake-resistive reinforcing member and earthquake-resistive reinforcing construction
JP2001336304A (en) * 2000-05-30 2001-12-07 Sumitomo Metal Ind Ltd Damping device and damping structure
WO2014123204A1 (en) * 2013-02-07 2014-08-14 日本発條株式会社 Load application device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119965A (en) * 2015-12-28 2017-07-06 塩川 諒治 Diagonal beam structure
JP2021039266A (en) * 2019-09-04 2021-03-11 株式会社3D Printing Corporation Acoustic meta-material and vibration attenuation device using the same
JP2021162039A (en) * 2020-03-30 2021-10-11 株式会社大林組 Vibration control structure, vibration control unit and installation method
JP7380387B2 (en) 2020-03-30 2023-11-15 株式会社大林組 Vibration damping structure, damping unit and installation method
CN113586660A (en) * 2021-08-12 2021-11-02 重庆大学 Modularized quasi-zero rigidity vibration isolation structure
CN113586660B (en) * 2021-08-12 2022-05-03 重庆大学 A Modular Quasi-Zero-Stiffness Vibration Isolation Structure
CN113699875A (en) * 2021-09-03 2021-11-26 河海大学 Super high shock attenuation pier structure of nearly fault railway

Similar Documents

Publication Publication Date Title
JP2016142111A (en) Vibration control structure
CN102859097B (en) Vibration damping metal sheet and building construction
TWI529284B (en) Composite damping connector
JP2008088641A (en) Building or building reinforcement
JP2014194116A (en) Vibration control structure of building
JPH11269984A (en) Damping structure for building frame
JP2011038362A (en) Seismic control damper
JP5658892B2 (en) Bearing walls and buildings
JP2015025272A (en) Damping / seismic composite material and building using the same
JP6134099B2 (en) Vibration control device and building
JP5668388B2 (en) Damping structure of joint
JP5574336B2 (en) TMD mechanism
JP7409950B2 (en) Vibration control device
JP5305756B2 (en) Damping wall using corrugated steel
CN104453001A (en) Composite damper formed by parallel connection of viscoelastic damper and buckling-restrained brace
JP2014222095A (en) Friction damper
JP2018193730A (en) Building and wooden reinforcement
WO2000071840A1 (en) Vibration control member formed integrally with elasto-plastic and viscoelastic damper
JP4956340B2 (en) Building or building reinforcement
JP6364225B2 (en) Connected vibration control structure
JP6074773B2 (en) Reinforcement structure for wooden structures
JP6882071B2 (en) Damper
JP2016121705A (en) Attenuation device and vibration control structure
JP7266468B2 (en) Seismic isolation structure
JP2019031855A (en) Vibration control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305