[go: up one dir, main page]

JP2016133293A - Radiation panel and radiation air conditioning system using the same - Google Patents

Radiation panel and radiation air conditioning system using the same Download PDF

Info

Publication number
JP2016133293A
JP2016133293A JP2015010188A JP2015010188A JP2016133293A JP 2016133293 A JP2016133293 A JP 2016133293A JP 2015010188 A JP2015010188 A JP 2015010188A JP 2015010188 A JP2015010188 A JP 2015010188A JP 2016133293 A JP2016133293 A JP 2016133293A
Authority
JP
Japan
Prior art keywords
panel
heat medium
flow paths
valve
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015010188A
Other languages
Japanese (ja)
Other versions
JP6307451B2 (en
Inventor
鐵雄 呉
Tetsuo Go
鐵雄 呉
井上 良則
Yoshinori Inoue
良則 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2015010188A priority Critical patent/JP6307451B2/en
Publication of JP2016133293A publication Critical patent/JP2016133293A/en
Application granted granted Critical
Publication of JP6307451B2 publication Critical patent/JP6307451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

【課題】例えば、多層階の階毎と、あるいは、同一の階の領域毎に冷房又は暖房運転を行うことができるとともに、広い範囲の空調負荷にも対応することができる放射パネルを提供する。
【解決手段】パネル本体2に、熱媒体が流動する複数本の異なる流路3,4を備えており、その流路3,4は、パネル本体2に形成された複数の溝部9に熱媒体流動用の伝熱パイプ5,6を嵌入して形成している。
【選択図】図1
For example, a radiation panel capable of performing cooling or heating operation for each floor of a multi-layer floor or for each region of the same floor and capable of dealing with a wide range of air conditioning loads is provided.
A panel body 2 includes a plurality of different flow paths 3 and 4 through which a heat medium flows, and the flow paths 3 and 4 are formed in a plurality of grooves 9 formed in the panel body 2. The heat transfer pipes 5 and 6 for flow are inserted and formed.
[Selection] Figure 1

Description

本発明は、空調機能を備えた内装材(スパンドレル)として部屋の天井や側壁などに利用される放射パネル、及び、これを用いた放射空調システムに関する。   The present invention relates to a radiant panel used as an interior material (spandrel) having an air conditioning function, such as a ceiling or a side wall of a room, and a radiant air conditioning system using the same.

かかる放射パネルとしては、例えば、特許文献1に示されているように、放熱性に優れた金属材からなる波形のパネル本体に、冷水や温水などの熱媒体が流される伝熱パイプを蛇行状に配設したものが知られている。   As such a radiant panel, for example, as shown in Patent Document 1, a corrugated panel body made of a metal material excellent in heat dissipation has a meandering shape of a heat transfer pipe in which a heat medium such as cold water or hot water is caused to flow. The one arranged in the above is known.

意匠登録第1347139号公報Design Registration No. 1347139

この種の放射パネルは、空調対象空間の天井部や側壁部に複数枚並べて設置されるとともに、伝熱パイプを流れる冷水あるいは温水などの熱媒体でパネル本体を冷却あるいは加温し、パネル本体の大きい波形表面から、冷熱あるいは温熱を放射することで、空調対象空間の冷房あるいは暖房が行われる。   This type of radiant panel is installed side by side on the ceiling and side walls of the air-conditioning target space, and the panel body is cooled or heated with a heat medium such as cold water or hot water flowing through the heat transfer pipe. By radiating cold or warm heat from a large corrugated surface, the air-conditioning target space is cooled or heated.

しかしながら、従来の放射パネルは、熱媒体を流す流路が一本だけであったために、例えば、一連の放射パネルが設置された、例えば、一つの階の全部屋を冷房、あるいは、暖房するような空調システムにならざるを得ず、一つの階における一部の部屋やエリアを冷房し、他の部屋やエリアを暖房するような運転が難しいものとなっていた。また、多層階の構造物における一部の階で冷房運転し、他の階で暖房運転することも難しいものとなっていた。   However, since the conventional radiant panel has only one flow path for flowing a heat medium, for example, a series of radiant panels are installed, for example, to cool or heat all rooms on one floor. The air conditioning system was unavoidable, and it was difficult to operate by cooling some rooms and areas on one floor and heating other rooms and areas. In addition, it is difficult to perform a cooling operation on some floors in a multi-story structure and a heating operation on other floors.

また、放射パネルからの放射熱量は、熱媒体の温度と流量を調節することで調整することが可能であるが、熱媒体の温度調節範囲、及び、単一の流路を流せる流量には限界があり、高負荷から低負荷までの広い範囲の空調負荷に対応することが困難であった。   The amount of radiant heat from the radiant panel can be adjusted by adjusting the temperature and flow rate of the heat medium, but the temperature control range of the heat medium and the flow rate that can flow through a single flow path are limited. It was difficult to cope with a wide range of air conditioning loads from high loads to low loads.

本発明は、このような実情に着目してなされたものであって、例えば、階毎、あるいは、部屋毎に冷房又は暖房の運転をそれぞれ行うことができるとともに、広い範囲の空調負荷にも対応することができる放射パネル、および、これを用いた放射空調システムを提供することを目的とする。   The present invention has been made by paying attention to such a situation. For example, the present invention can perform cooling or heating operation for each floor or for each room, and also supports a wide range of air conditioning loads. An object of the present invention is to provide a radiation panel that can be used, and a radiation air conditioning system using the radiation panel.

上記目的を達成するために、本発明では次のように構成している。   In order to achieve the above object, the present invention is configured as follows.

(1)本発明に係る放射パネルは、パネル本体に、熱媒体が流動する複数本の異なる流路を備える。   (1) A radiation panel according to the present invention includes a plurality of different flow paths through which a heat medium flows in a panel body.

本発明によると、複数本の異なる流路の一部にのみ低温(あるいは、高温)の熱媒体を流動させることで、熱負荷の小さい冷房(あるいは、暖房)を行うことができ、また、複数本の異なる流路の全てに低温(あるいは、高温)の熱媒体を流動させることで、熱負荷の大きい冷房(あるいは、暖房)を行うことができる。   According to the present invention, cooling (or heating) with a small heat load can be performed by flowing a low-temperature (or high-temperature) heat medium only in a part of a plurality of different flow paths. Cooling (or heating) with a large heat load can be performed by flowing a low-temperature (or high-temperature) heat medium through all the different flow paths of the book.

(2)本発明の他の実施態様では、前記複数本の異なる流路は、隣合う流路が異なるように前記パネル本体に配置される。   (2) In another embodiment of the present invention, the plurality of different flow paths are arranged in the panel body such that adjacent flow paths are different.

この実施態様によると、複数本の異なる流路は、隣合う流路が異なるようにパネル本体に配置されるので、例えば、2本の異なる流路では、低温の熱媒体を流動させる流路と高温の熱媒体を流動させる流路とを、隣合うように交互に配置することができ、異なる流路を、パネル本体に偏在させることなく、均等に配置して、冷熱あるいは温熱を均等に放射させるといったことが可能となる。   According to this embodiment, the plurality of different flow paths are arranged in the panel body so that the adjacent flow paths are different. For example, in the two different flow paths, a flow path for causing the low-temperature heat medium to flow Channels that flow high-temperature heat medium can be alternately arranged adjacent to each other, and different channels are evenly arranged without uneven distribution in the panel body to radiate cold or warm heat evenly. It is possible to make it.

(3)本発明の更に他の実施態様では、前記複数本の異なる流路の内の少なくとも1本の流路は、前記パネル本体における流路長さが、他の流路の流路長さと異なる。   (3) In still another embodiment of the present invention, at least one of the plurality of different channels has a channel length in the panel body that is equal to a channel length of another channel. Different.

この実施態様によると、複数本の異なる流路の内の少なくとも1本の流路の、パネル本体における流路長さを、他の流路の流路長さと異ならせるので、パネル本体毎、すなわち、放射パネル毎に、例えば、低温の熱媒体を流動させる流路長さを、他の流路である高温の熱媒体を流動させる流路長さよりも長くして冷房能力を暖房能力に比べて高めるといったことが可能となる。   According to this embodiment, the channel length in the panel body of at least one of the plurality of different channels is different from the channel length of the other channels. For each radiant panel, for example, the flow path length for flowing a low-temperature heat medium is longer than the flow path length for flowing a high-temperature heat medium that is another flow path, and the cooling capacity is compared with the heating capacity. It becomes possible to raise.

これによって、放射パネルの設置枚数だけでは対応できないように空調負荷に対しても、放射パネル自体の能力を変更して対応するといったことが可能となる。   As a result, it is possible to cope with an air conditioning load by changing the capacity of the radiating panel itself so that it is not possible to deal with only the number of radiating panels installed.

(4)本発明の好ましい実施態様では、前記パネル本体に形成された溝部に、熱媒体流動用の伝熱パイプが嵌入されて前記流路が形成される。   (4) In a preferred embodiment of the present invention, a heat transfer pipe for heat medium flow is fitted into a groove formed in the panel body to form the flow path.

この実施態様によると、溝部に伝熱パイプを嵌入するだけで、所望の流路を簡単に形成することができる。   According to this embodiment, a desired flow path can be easily formed only by inserting the heat transfer pipe into the groove.

(5)本発明の他の実施態様では、前記溝部は、その開口幅が前記伝熱パイプの外径より僅かに小さい略半円形に形成され、伝熱パイプが前記溝部に圧入嵌合される。   (5) In another embodiment of the present invention, the groove is formed in a substantially semicircular shape whose opening width is slightly smaller than the outer diameter of the heat transfer pipe, and the heat transfer pipe is press-fitted into the groove. .

この実施態様によると、装着された伝熱パイプの外周は、溝部の内面に半周より長い範囲で接触し、伝熱パイプからパネル本体への熱伝達が良好に行われる。また、溝部の開口幅がパイプ外径よりも幅狭となっているので、圧入装着された伝熱パイプは、溝部から浮き上がることが阻止されることになり、溝部の内面と伝熱パイプとの接触がパイプ嵌入部位の全長に亘って確実に維持される。また、一旦圧入装着した伝熱パイプは溝部から簡単には浮き上がらないので、放射パネルの組み立て作業が容易なものとなる。   According to this embodiment, the outer periphery of the mounted heat transfer pipe is in contact with the inner surface of the groove portion in a range longer than a half circumference, and heat transfer from the heat transfer pipe to the panel body is favorably performed. In addition, since the opening width of the groove is narrower than the outer diameter of the pipe, the press-fitted heat transfer pipe is prevented from floating from the groove, and the inner surface of the groove and the heat transfer pipe Contact is reliably maintained over the entire length of the pipe insertion site. Further, since the heat transfer pipe once press-fitted and mounted does not easily float from the groove, the assembly work of the radiant panel becomes easy.

(6)本発明の放射空調システムは、上記(1)ないし(5)のいずれかの放射パネルの複数枚を、各放射パネルの複数本の異なる前記流路が、隣接する放射パネルの複数本の異なる流路にそれぞれ直列に連通するように接続して放射パネル群を構成し、前記放射パネル群の前記直列に連通する複数系統の流路を、低温の熱媒体を供給する低熱源と高温の熱媒体を供給する高熱源とにそれぞれ選択接続可能としている。   (6) A radiant air-conditioning system according to the present invention includes a plurality of radiating panels according to any one of the above (1) to (5), a plurality of radiating panels adjacent to each other by a plurality of different flow paths of each radiating panel. The radiating panel group is configured to be connected in series to different flow paths of the radiating panel group, and the plurality of flow paths in series of the radiating panel group are connected to a low heat source for supplying a low temperature heat medium and a high temperature. It can be selectively connected to a high heat source that supplies the heat medium.

本発明によると、例えば、放射パネル群の複数系統の流路の内、一部の系統の流路を、低熱源(あるいは、高熱源)に接続することによって、熱負荷の小さい冷房(あるいは、暖房)を行なうことができ、また、放射パネル群の複数系統の流路の全ての系統の流路を、低熱源(あるいは、高熱源)に接続することによって、熱負荷の大きい冷房(あるいは、暖房)を行なうことができる。   According to the present invention, for example, by connecting a flow path of a part of a plurality of flow paths of the radiant panel group to a low heat source (or a high heat source), cooling with a small heat load (or Heating), and by connecting the flow paths of all of the multiple flow paths of the radiant panel group to a low heat source (or high heat source), cooling with a large heat load (or Heating).

(7)本発明の好ましい実施態様では、前記放射パネル群を複数備え、各放射パネル群の前記複数系統の流路を、前記低熱源と前記高熱源とにそれぞれ選択接続可能としている。   (7) In a preferred embodiment of the present invention, a plurality of the radiation panel groups are provided, and the plurality of channels of each radiation panel group can be selectively connected to the low heat source and the high heat source, respectively.

この実施態様によると、複数の放射パネル群の各放射パネル群を、例えば、多層階構造物の階毎、あるいは、同一階の複数の領域毎ごとに設置することで、階毎、あるいは、同一階の領域毎に、冷房運転、または、暖房運転をそれぞれ行うことが可能となる。   According to this embodiment, each radiating panel group of a plurality of radiating panel groups is installed, for example, for each floor of a multi-level floor structure, or for each of a plurality of regions on the same floor, for example, for each floor or the same. It becomes possible to perform cooling operation or heating operation for each area of the floor.

(8)本発明の他の実施態様では、前記放射パネル群の2系統の前記流路における一方の流路の流入ポートを、低温熱媒体の供給流路に弁を介して接続するとともに、一方の前記流路の流出ポートを、低温熱媒体の戻し流路に弁を介して接続し、前記2系統の前記流路における他方の流路の流入ポートを、高温熱媒体の供給流路に弁を介して接続するとともに、他方の前記流路の流出ポートを、高温熱媒体の戻し流路に弁を介して接続し、前記2系統の流路における流入ポート同士を、弁を備えたバイパス流路で接続するとともに、2系統の流路における流出ポート同士を、弁を備えたバイパス流路で接続する。   (8) In another embodiment of the present invention, an inflow port of one of the two channels of the radiating panel group is connected to a supply channel of a low-temperature heat medium via a valve, The outlet port of the channel is connected to the return channel of the low-temperature heat medium via a valve, and the inlet port of the other channel of the two channels is connected to the supply channel for the high-temperature heat medium. And the other outflow port of the flow path is connected to the return flow path of the high-temperature heat medium via a valve, and the inflow ports in the two flow paths are connected to a bypass flow having a valve. In addition to being connected by a road, the outflow ports in the two channels are connected by a bypass channel provided with a valve.

この実施態様によると、低温熱媒体供給用と低温熱媒体戻し用の弁を開放し、他の弁を閉じることで、2系統の流路における一方の流路にのみ低温熱媒体が供給流動され、他方の流路での熱媒体の流動は休止されて、低負荷での冷房運転が行われる。   According to this embodiment, the low temperature heat medium supply valve and the low temperature heat medium return valve are opened, and the other valves are closed, so that the low temperature heat medium is supplied and flowed to only one of the two channels. The flow of the heat medium in the other flow path is stopped, and the cooling operation with a low load is performed.

また、低温熱媒体供給用と低温熱媒体戻し用の弁と、バイパス用の弁を開き、かつ、低温熱媒体供給用と低温熱媒体戻し用の弁を閉じることで、2系統の流路のそれぞれに低温熱媒体が供給流動され、多量の低温熱媒体の流動によって高負荷の冷房運転が行われる。   In addition, the low temperature heat medium supply valve, the low temperature heat medium return valve, and the bypass valve are opened, and the low temperature heat medium supply valve and the low temperature heat medium return valve are closed. A low temperature heat medium is supplied and flown to each, and a high load cooling operation is performed by the flow of a large amount of the low temperature heat medium.

また、高温熱媒体供給用と高温熱媒体戻し用の弁を開放し、他の弁を閉じることで、一方の流路にのみ高温熱媒体が供給流動され、他方の流路での熱媒体の流動は休止されて、低負荷での暖房運転が行われる。   Also, by opening the high temperature heat medium supply valve and the high temperature heat medium return valve and closing the other valve, the high temperature heat medium is supplied and flowed only to one flow path, and the heat medium in the other flow path The flow is stopped and the heating operation is performed at a low load.

また、高温熱媒体供給用と高温熱媒体戻し用の弁と、バイパス用の弁を開き、かつ、低温熱媒体供給用と低温熱媒体戻し用の弁を閉じることで、2系統の流路のそれぞれに高温熱媒体が供給流動され、多量の高温熱媒体の流動によって高負荷の暖房運転が行われる。   In addition, the high temperature heat medium supply valve, the high temperature heat medium return valve, and the bypass valve are opened, and the low temperature heat medium supply valve and the low temperature heat medium return valve are closed. A high-temperature heat medium is supplied and flown to each, and a high-load heating operation is performed by the flow of a large amount of high-temperature heat medium.

このように、本発明によれば、例えば、多層階における階毎、あるいは、同一階における領域毎に冷房または暖房を行なうことができ、また、高負荷から低負荷までの広い範囲の空調負荷にも対応することができる。   Thus, according to the present invention, for example, cooling or heating can be performed for each floor in a multi-layer floor or for each region on the same floor, and for a wide range of air conditioning loads from high load to low load. Can also respond.

放射パネルの平面図である。It is a top view of a radiation panel. 図1におけるA−A断面図である。It is AA sectional drawing in FIG. 要部の斜視図である。It is a perspective view of the principal part. 放射パネルを構成するパネル基材の斜視図である。It is a perspective view of the panel base material which comprises a radiation panel. 放射パネル群の概略平面図である。It is a schematic plan view of a radiation panel group. 多層階の放射空調システムの概略構成図である。It is a schematic block diagram of the radiation | emission air conditioning system of a multilayer floor. 他の実施形態の放射パネルにおける要部を示す縦断正面図である。It is a vertical front view which shows the principal part in the radiation panel of other embodiment.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に本発明に係る放射パネル1の平面図が、図2に図1におけるA−A断面図が、また、図3にその要部の斜視図がそれぞれ示されている。   FIG. 1 is a plan view of a radiating panel 1 according to the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG.

この放射パネル1は、波板状に形成されたパネル本体2の裏面(図では上面)に沿って、冷水や温水などの熱媒体が流動する2本の流路3,4を構成する2本の伝熱パイプ5,6を蛇行状に装着して構成されている。2本の流路3,4を構成する伝熱パイプ5,6は、その直線状の部分が、並行に隣合うように交互に配置される。   The radiating panel 1 includes two flow paths 3 and 4 through which a heat medium such as cold water or hot water flows along the back surface (upper surface in the figure) of the panel body 2 formed in a corrugated plate shape. The heat transfer pipes 5 and 6 are mounted in a meandering manner. The heat transfer pipes 5 and 6 constituting the two flow paths 3 and 4 are alternately arranged so that their linear portions are adjacent to each other in parallel.

パネル本体2は、複数枚(この例では6枚)の細長いパネル基材7をその横幅方向に並列配備し、その横幅方向に沿う複数本(この例では3本)の桟部材8でパネル基材8群を裏面側から互いに連結して所定面積に組上げられている。   The panel main body 2 includes a plurality of (six in this example) elongated panel base materials 7 arranged in parallel in the horizontal width direction, and a plurality of (three in this example) crosspiece members 8 along the horizontal width direction. The group of materials 8 are connected to each other from the back side and assembled to a predetermined area.

図4に示すように、パネル基材7は、伝熱性及び放熱性に優れ、かつ、軽量なアルミ材を押し出し成型して波板状に形成されたものであり、この例では、半円形断面の4本の溝部9が一定間隔で並列形成されて、その外表面(図では下面)が、基材外形面積よりも大きい面積の放射面に形成されている。また、パネル基材7における横幅方向の両端に近い裏面(図では上面)には、桟部材8への連結用の係合部として、鉤形断面形状の係合リブ10が基材全長に亘って突設されている。このように、パネル基材7は、基材全長に亘る溝部9及び係合リブ10によって、基材長手方向での曲げ剛性が高いものとなっている。   As shown in FIG. 4, the panel base material 7 is formed in a corrugated plate shape by extruding a lightweight aluminum material, which is excellent in heat transfer and heat dissipation properties. The four groove portions 9 are formed in parallel at regular intervals, and the outer surface (the lower surface in the figure) is formed on a radiation surface having an area larger than the outer surface area of the base material. In addition, on the back surface (upper surface in the figure) of the panel base material 7 near both ends in the lateral width direction, engagement ribs 10 having a bowl-shaped cross-section as an engaging portion for connection to the crosspiece member 8 extend over the entire length of the base material. Projecting. Thus, the panel base material 7 has a high bending rigidity in the longitudinal direction of the base material due to the grooves 9 and the engaging ribs 10 extending over the entire length of the base material.

桟部材8は、断面形状が下向きコの字に屈折された鋼板材で形成されており、その長手方向の所定位置の下端辺に、基材連結用の係合部としての奥拡がりの係合凹部11が切欠き形成されている。また、桟部材8の長手方向の複数箇所には連結孔12が形成されるとともに、その内部にはナット13が溶接固定され、図示されていない連結用金具をボルト連結、あるいは、ねじ込み連結できるようになっている。   The crosspiece member 8 is formed of a steel plate material whose cross-sectional shape is refracted in a U-shape, and is engaged at a lower end of a predetermined position in the longitudinal direction with an extension as an engaging portion for connecting the base material. A recess 11 is formed in the notch. Further, connecting holes 12 are formed at a plurality of positions in the longitudinal direction of the crosspiece member 8, and nuts 13 are welded and fixed inside thereof, so that a connecting bracket (not shown) can be connected by bolts or screwed. It has become.

熱媒体の流路3,4を形成する伝熱パイプ5,6は、パネル基材7の溝部9に密着嵌入する外径のアルミパイプが用いられ、パイプ内を流れる熱媒体からパネル基材7に熱が伝達拡散されることで、パネル面の全体から冷熱あるいは温熱の放射が行われるようになっている。なお、蛇行屈曲された伝熱パイプ5,6の屈曲部は、溝部9から外れてパネル裏面側(上方)に突出されている。   As the heat transfer pipes 5 and 6 forming the heat medium flow paths 3 and 4, aluminum pipes having an outer diameter that are closely fitted into the grooves 9 of the panel base material 7 are used, and the panel base material 7 from the heat medium flowing in the pipe is used. The heat is transferred to and diffused, so that the whole panel surface is radiated with cold or hot heat. Note that the bent portions of the meanderingly bent heat transfer pipes 5 and 6 are removed from the groove portion 9 and protrude to the panel back side (upward).

また、桟部材8における下端縁の一部は、溝部9に嵌入された伝熱パイプ5,6に当接されており、伝熱パイプ5,6が溝部9から浮き上がることが阻止されている。   Further, a part of the lower end edge of the crosspiece member 8 is in contact with the heat transfer pipes 5 and 6 fitted into the groove portion 9, and the heat transfer pipes 5 and 6 are prevented from being lifted from the groove portion 9.

伝熱パイプ5,6が装着される中央2本の溝部9においては、その開口端部9aが溝部周方向に沿ってパネル裏面側に少し突出されて、伝熱パイプ5,6における外径の二分の一よりも少し深い部分円形の奥拡がり溝に形成されている。従って、溝部9の開口幅が伝熱パイプ5,6の外径より僅かに小さくなっており、伝熱パイプ5,6を溝部9に装着する際には、伝熱パイプ5,6あるいは開口端部9aを弾性変形させながら伝熱パイプ5,6を溝部9に圧入嵌合することになる。   In the two central groove portions 9 to which the heat transfer pipes 5 and 6 are attached, the opening end portions 9a are slightly projected to the panel back side along the circumferential direction of the groove portions, and the outer diameter of the heat transfer pipes 5 and 6 is reduced. It is formed in a partly circular groove extending slightly deeper than half. Therefore, the opening width of the groove portion 9 is slightly smaller than the outer diameter of the heat transfer pipes 5 and 6, and when the heat transfer pipes 5 and 6 are attached to the groove portion 9, The heat transfer pipes 5 and 6 are press-fitted into the groove portion 9 while elastically deforming the portion 9a.

このように圧入装着された伝熱パイプ5,6は、その外周面が溝部9の内周面に半周より長い範囲で接触し、伝熱パイプ5,6からパネル基材7への熱伝達が行われる接触面積が極力大きく確保されている。また、溝部9の開口幅がパイプ外径よりも幅狭となっているので、圧入装着された伝熱パイプ5,6は、大きい外力が掛からない限り溝部9から出ることがなく、桟部材8による押さえが作用しない箇所でも伝熱パイプ5,6の浮き上がりが阻止され、溝部9の内面と伝熱パイプ5,6との接触がパイプ嵌入部位の全長に亘って確実に維持される。また、放射パネル1の組み立て工程や部屋の天井や壁面への取り付け作業において、圧入装着した伝熱パイプ5,6が溝部9から浮き上がらないので、作業が容易なものとなる。   The heat transfer pipes 5 and 6 thus press-fitted and attached come into contact with the inner peripheral surface of the groove portion 9 in a range longer than a half circumference, and heat transfer from the heat transfer pipes 5 and 6 to the panel base material 7 is performed. The contact area to be performed is secured as large as possible. Further, since the opening width of the groove portion 9 is narrower than the outer diameter of the pipe, the heat transfer pipes 5 and 6 that are press-fitted and attached do not come out of the groove portion 9 unless a large external force is applied, and the crosspiece member 8 The heat transfer pipes 5 and 6 are prevented from being lifted even at a position where the pressing by the pressure does not act, and the contact between the inner surface of the groove 9 and the heat transfer pipes 5 and 6 is reliably maintained over the entire length of the pipe insertion site. Further, in the assembling process of the radiating panel 1 and the attaching operation to the ceiling or wall surface of the room, the heat transfer pipes 5 and 6 that are press-fitted and attached do not float from the groove portion 9, so that the operation becomes easy.

放射パネル1の組上げにおいては、所定複数枚のパネル基材7を並べて、パネル本体2を構成するとともに、伝熱パイプ5,6を蛇行状に屈曲して溝部9に嵌入装着し、その後、桟部材8でパネル基材7群を連結する。この場合、並べたパネル基材7群に上方から桟部材8を強く押し付けることで、係合リブ10が弾性変形しながら係合凹部11に入り込んで係止されることになる。   In assembling the radiating panel 1, a predetermined plurality of panel base materials 7 are arranged to constitute the panel body 2, and the heat transfer pipes 5 and 6 are bent in a meandering manner and fitted into the groove portion 9, and then The panel base material 7 group is connected by the member 8. In this case, by strongly pressing the crosspiece member 8 from above on the arrayed panel base materials 7 group, the engagement rib 10 enters the engagement recess 11 and is locked while elastically deforming.

放射パネル1を天井の内装材として組み付ける場合には、先に桟部材8を固定配備しておいてから、パネル本体2を持上げて桟部材8に下方から強く押し付けることで、係合リブ10と係合凹部11とを介して桟部材8にパネル本体2を係止連結することもできる。   When the radiating panel 1 is assembled as an interior material for the ceiling, the crosspiece member 8 is fixed and arranged first, and then the panel main body 2 is lifted and pressed against the crosspiece member 8 from below, so that the engagement rib 10 and The panel body 2 can also be locked and connected to the crosspiece member 8 via the engaging recess 11.

放射パネル1の単体は以上のように構成されており、例えば、図5に示すように、複数枚の放射パネル1を並べて、天井面や壁面に装着する所望面積の熱放射部20を形成するとともに、各放射パネル1の2本の伝熱パイプ5,6を順次直列状に接続して、2本の流路3,4を一連に形成した放射パネル群を構成する。   The single radiating panel 1 is configured as described above. For example, as shown in FIG. 5, a plurality of radiating panels 1 are arranged to form a heat radiating portion 20 having a desired area to be mounted on a ceiling surface or a wall surface. At the same time, the two heat transfer pipes 5 and 6 of each radiating panel 1 are sequentially connected in series to form a radiating panel group in which the two flow paths 3 and 4 are formed in series.

図6に、上記構成の放射パネル群20を、多層階における各階ごとの空調(あるいは、同一階における複数の各領域の空調)に利用した放射空調システムの概略構成が示されている。   FIG. 6 shows a schematic configuration of a radiant air-conditioning system in which the radiating panel group 20 having the above-described configuration is used for air conditioning for each floor in a multi-layer floor (or air conditioning for a plurality of areas on the same floor).

各階(あるいは各領域)の放射パネル群20は、地下水やクーリングタワーで冷却された低温熱媒体としての冷水を循環供給する冷熱源21と、ボイラーやヒータで加熱された高温熱媒体としての温水を循環供給する温熱源22とに並列接続されている。   The radiant panel group 20 on each floor (or each region) circulates a cold heat source 21 that circulates and supplies cold water as a low-temperature heat medium cooled by ground water or a cooling tower, and hot water as a high-temperature heat medium heated by a boiler or a heater. It is connected in parallel to the supplied heat source 22.

また、各放射パネル群20おいては、2本の異なる流路3,4の内の一方の流路3の流入ポート3iと流出ポート3eは、冷水弁23,24を介して冷水供給流路21fと冷水戻り流路21rに接続されている。また、他方の流路4の流入ポート4iと流出ポート4eは、温水弁25,26を介して温水供給流路22fと温水戻り流路22rに接続されている。また、両流路3,4の流入ポート3i,4i同士、及び、流出ポート3e,4e同士がそれぞれバイパス流路27,28及バイパス弁29,30を介して互いに連通接続されている。   In each radiating panel group 20, the inflow port 3 i and the outflow port 3 e of one of the two different flow paths 3 and 4 are connected to the cold water supply flow path via the cold water valves 23 and 24. 21f and the cold water return channel 21r are connected. The inflow port 4i and the outflow port 4e of the other flow path 4 are connected to the hot water supply flow path 22f and the hot water return flow path 22r via hot water valves 25 and 26, respectively. Further, the inflow ports 3i, 4i and the outflow ports 3e, 4e of both the flow paths 3, 4 are connected to each other via the bypass flow paths 27, 28 and the bypass valves 29, 30, respectively.

上記構成によると、各弁23,24,25,26,29,30を制御することで、各階(あるいは、各領域)の放射パネル群20を、図中の(a)で示される低負荷冷房運転モード、(b)で示される高負荷冷房運転モード、(c)で示される低負荷暖房運転モード、(d)で示される高負荷暖房運転モード、及び、(e)で示される冷暖連続運転モードで、個別に運転することが可能となる。   According to the above configuration, by controlling the valves 23, 24, 25, 26, 29, and 30, the radiating panel group 20 on each floor (or each region) can be cooled by the low load cooling shown by (a) in the figure. Operation mode, high-load cooling operation mode indicated by (b), low-load heating operation mode indicated by (c), high-load heating operation mode indicated by (d), and cooling / heating continuous operation indicated by (e) It is possible to operate individually in the mode.

なお、図6において、冷水が流動する流路は太い実線で、温水が流動する流路は太い点線で、また、熱媒体が流動しない流路部分は細い点線で示されている。また、開放されている弁は白抜きで、閉止されている弁は塗り潰しで示されている。   In FIG. 6, the flow path through which the cold water flows is indicated by a thick solid line, the flow path through which the hot water flows is indicated by a thick dotted line, and the flow path portion where the heat medium does not flow is indicated by a thin dotted line. In addition, the opened valve is shown in white, and the closed valve is shown in solid.

上記低負荷冷房運転モード(a)においては、冷水供給用と冷水戻し用の冷水弁23,24を開放し、他の弁25,26,29,30を閉じることで、一方の流路3にのみ冷水が供給流動され、他方の流路4での熱媒体の流動は休止される。   In the low load cooling operation mode (a), the chilled water valves 23 and 24 for chilled water supply and chilled water return are opened and the other valves 25, 26, 29 and 30 are closed, so that Only the cold water is supplied and flowed, and the flow of the heat medium in the other flow path 4 is stopped.

上記高負荷冷房運転モード(b)においては、冷水供給用と冷水戻し用の冷水弁23,24と、バイパス用のバイパス弁29,30を開放し、かつ、温水供給用と温水戻し用の温水弁25,26を閉じることで、2本の流路3,4のそれぞれに冷水が供給流動され、1本の流路3に比べて、冷水を2倍まで供給流動させることができ、高負荷の冷房運転が行われる。   In the high load cooling operation mode (b), the chilled water valves 23 and 24 for chilled water supply and chilled water return, and the bypass valves 29 and 30 for bypass are opened, and hot water for supplying hot water and returning hot water. By closing the valves 25, 26, cold water is supplied and flowed to each of the two flow paths 3, 4, and cold water can be supplied and flowed up to twice as much as the single flow path 3. The cooling operation is performed.

上記低負荷暖房運転モード(c)においては、温水供給用と温水戻し用の温水弁25,26を開放し、他の弁23,24,29,30を閉じることで、一方の流路4にのみ温水が供給流動され、他方の流路3での熱媒体の流動は休止される。   In the low load heating operation mode (c), the warm water supply and return warm water valves 25 and 26 are opened, and the other valves 23, 24, 29, and 30 are closed, so that Only hot water is supplied and flowed, and the flow of the heat medium in the other flow path 3 is stopped.

上記高負荷暖房運転モード(d)においては、温水供給用と温水戻し用の温水弁25,26と、バイパス用のバイパス弁29,30を開放し、かつ、冷水供給用と冷水戻し用の冷水弁23,24を閉じることで、2本の流路3,4のそれぞれに温水が供給流動され、1本の流路4に比べて、温水を2倍まで供給流動させることができ、高負荷の暖房運転が行われる。   In the high load heating operation mode (d), the hot water supply and return warm water valves 25 and 26 and the bypass bypass valves 29 and 30 are opened, and the cold water supply and cold water return cold water is opened. By closing the valves 23, 24, hot water is supplied and flowed to each of the two flow paths 3, 4, and hot water can be supplied and flowed up to twice as much as the single flow path 4. The heating operation is performed.

上記冷暖連続運転モード(e)においては、冷水供給用と冷水戻し用の冷却弁23,24を開放して他の弁25,26,29,30を閉じる低負荷冷房運転モードの冷房温度から、温水供給用と温水戻し用の温水弁25,26を開放して他の弁23,24,29,30を閉じる低負荷暖房運転モードの暖房温度までの無段階の温度調整が可能である。   In the cooling / heating continuous operation mode (e), from the cooling temperature in the low load cooling operation mode in which the cooling valves 23 and 24 for supplying cold water and returning the cooling water are opened and the other valves 25, 26, 29 and 30 are closed. It is possible to adjust the temperature steplessly to the heating temperature in the low load heating operation mode in which the hot water supply valves 25 and 26 for supplying hot water and returning the hot water are opened and the other valves 23, 24, 29 and 30 are closed.

(他の実施形態)
本発明は、以下のような形態で実施することもできる。
(Other embodiments)
The present invention can also be implemented in the following forms.

(1)上記実施形態では、パネル本体2に2本の流路3,4を備えた2パス仕様に構成した場合を例示しているが、3本あるいは4本の流路を備えた3パスあるいは4パス仕様で実施することも可能であり、これによると、流路切換えによって熱媒体を一層多様な形態で流動させることが可能となり、さらに広範囲な熱負荷に対応した空調運転を行うことができる。   (1) In the above embodiment, the case where the panel main body 2 is configured to have a two-pass specification including the two flow paths 3 and 4 is illustrated, but three paths including three or four flow paths are illustrated. Alternatively, it can also be implemented with a 4-pass specification. According to this, it is possible to flow the heat medium in more various forms by switching the flow path, and it is possible to perform air conditioning operation corresponding to a wider range of heat loads. it can.

更に、各流路の断面積を異ならせてもよい。   Furthermore, you may vary the cross-sectional area of each flow path.

また、複数本の異なる流路の内の少なくとも1本の流路の、パネル本体2における流路長さを、他の流路の流路長さと異ならせてもよい。例えば、上記図1において、2本の流路3,4をそれぞれ構成する蛇行状の伝熱パイプ5,6の折返し回数を異ならせるなどして、パネル本体2における一方の伝熱パイプ5のパイプ長さを、他方の伝熱パイプ6のパイプ長さよりも長くし、例えば、一方の伝熱パイプ5に冷水を、他方の伝熱パイプ6に温水をそれぞれ供給するようにし、冷房能力を、暖房能力に比べて高めるようにしてもよい。   Further, the channel length of the panel main body 2 of at least one of the plurality of different channels may be different from the channel lengths of the other channels. For example, in FIG. 1, the pipe of one of the heat transfer pipes 5 in the panel body 2 is made by varying the number of turns of the meandering heat transfer pipes 5 and 6 constituting the two flow paths 3 and 4, respectively. The length is made longer than the pipe length of the other heat transfer pipe 6, for example, cold water is supplied to one heat transfer pipe 5 and hot water is supplied to the other heat transfer pipe 6. You may make it raise compared with ability.

このようにパネル本体2毎、すなわち、放射パネル1毎に、流路長さを異ならせることによって、異なる空調負荷に対応することが可能となる。   Thus, it becomes possible to cope with different air conditioning loads by varying the flow path length for each panel body 2, that is, for each radiation panel 1.

これによって、放射パネル1の設置枚数だけでは対応できない空調負荷に対しても、放射パネル1自体の能力を変更して対応するといったことが可能となる。   As a result, it is possible to cope with an air conditioning load that cannot be dealt with only by the number of installed radiating panels 1 by changing the capability of the radiating panel 1 itself.

(2)上記実施形態では、パネル本体2の溝部9に伝熱パイプ5,6を嵌入して熱媒体流動用の流路3,4を形成して、伝熱パイプ5,6の略半周を溝部9に接触させて伝熱パイプ5,6からパネル本体2への熱伝達を行うようにしているが、図7に示すように、半円形の溝部9に伝熱パイプ5,6を嵌入装着した上で、半円形断面形状の溝部31を備えたアルミ材からなる鞘部材32を、伝熱パイプ5,6を被せてパネル本体2に面接触させることで、伝熱パイプ5,6の全周を用いてパネル本体2への熱伝達を効率よく行うことができる。   (2) In the above embodiment, the heat transfer pipes 5 and 6 are inserted into the groove 9 of the panel body 2 to form the flow passages 3 and 4 for flowing the heat medium. Heat is transferred from the heat transfer pipes 5 and 6 to the panel body 2 in contact with the groove 9, but the heat transfer pipes 5 and 6 are fitted into the semicircular groove 9 as shown in FIG. Then, the sheath member 32 made of an aluminum material provided with the groove portion 31 having a semicircular cross-sectional shape is covered with the heat transfer pipes 5 and 6 and brought into surface contact with the panel body 2, so that Heat transfer to the panel body 2 can be efficiently performed using the circumference.

(3)上記実施形態では、パネル基材7を押し出し成型加工して、係合リブ10をパネル基材7の裏面側において基材全長に形成することで、パネル基材7をその長手方向の任意の位置において桟部材8に基板裏面側で係合連結し、パネル外表面から連結箇所が見えない仕上がりとなる内装材(スパンドレル)に構成しているが、パネル外表面の外観が問題とならない条件の下で使用する場合には、パネル基材7をアルミ板材にプレス加工を施して波板状に成型し、このパネル基材7を外表面側からネジ締めで桟部材8に連結するようにすることもできる。   (3) In the said embodiment, the panel base material 7 is extrusion-molded, and the engagement rib 10 is formed in the base material full length in the back surface side of the panel base material 7, and the panel base material 7 is the longitudinal direction of it. Although it is engaged and connected to the crosspiece member 8 on the back side of the substrate at an arbitrary position, it is configured as an interior material (spandrel) that does not show the connection location from the outer surface of the panel, but the appearance of the outer surface of the panel does not matter. When used under conditions, the panel base material 7 is pressed into an aluminum plate and formed into a corrugated plate shape, and this panel base material 7 is connected to the crosspiece member 8 by screwing from the outer surface side. It can also be.

(4)上記実施形態では、パネル基材7は波板状であったけれども、波板状に限らず、他の形状であってもよく、例えば、平板上の一方の面に、伝熱パイプを嵌入する半円状のパイプ受け部を有し、他方の面にフィンを有するような形状であってもよい。   (4) In the said embodiment, although the panel base material 7 was corrugated shape, it may be not only corrugated shape but another shape, for example, it is a heat-transfer pipe on one surface on a flat plate. It may be a shape having a semicircular pipe receiving portion into which the fin is inserted and having a fin on the other surface.

1 放射パネル
2 パネル本体
3 流路
3i 流入ポート
3e 流出ポート
4 流路
4i 流入ポート
4e 流出ポート
5 伝熱パイプ
6 伝熱パイプ
7 パネル基材
8 桟部材
9 溝部
10 パネル基材の係合部(係合リブ)
11 桟部材の係合部(係合凹部)
20 放射パネル群
21 冷熱源(低熱源)
21f 低温熱媒体の供給流路
21r 低温熱媒体の戻し流路
22 温熱源(高熱源)
22f 高温熱媒体の供給流路
22r 高温熱媒体の戻し流路
23 冷水弁
24 冷水弁
25 温水弁
26 温水弁
27 バイパス流路
28 バイパス流路
29 バイパス弁
30 バイパス弁
DESCRIPTION OF SYMBOLS 1 Radiation panel 2 Panel body 3 Flow path 3i Inflow port 3e Outflow port 4 Flow path 4i Inflow port 4e Outflow port 5 Heat transfer pipe 6 Heat transfer pipe 7 Panel base material 8 Crosspiece member 9 Groove part 10 Engagement part of panel base material ( Engagement rib)
11 engaging member (engaging recess) of crosspiece member
20 Radiant panel group 21 Cold heat source (low heat source)
21f Supply path for low-temperature heat medium 21r Return path for low-temperature heat medium 22 Heat source (high heat source)
22f Supply path for high-temperature heat medium 22r Return path for high-temperature heat medium 23 Chilled water valve 24 Chilled water valve 25 Hot water valve 26 Hot water valve 27 Bypass path 28 Bypass path 29 Bypass valve 30 Bypass valve

Claims (8)

パネル本体に、熱媒体が流動する複数本の異なる流路を備える、
ことを特徴とする放射パネル。
The panel body has a plurality of different flow paths through which the heat medium flows,
A radiant panel characterized by that.
前記複数本の異なる流路は、隣合う流路が異なるように前記パネル本体に配置される、
請求項1に記載の放射パネル。
The plurality of different flow paths are arranged in the panel body such that adjacent flow paths are different.
The radiation panel according to claim 1.
前記複数本の異なる流路の内の少なくとも1本の流路は、前記パネル本体における流路長さが、他の流路の流路長さと異なる、
請求項1または2に記載の放射パネル。
At least one of the plurality of different channels has a channel length in the panel body different from the channel lengths of the other channels.
The radiation panel according to claim 1 or 2.
前記パネル本体に形成された溝部に、熱媒体流動用の伝熱パイプが嵌入されて前記流路が形成される、
請求項1ないし3のいずれかに記載の放射パネル。
In the groove formed in the panel body, a heat transfer pipe for heat medium flow is inserted to form the flow path.
The radiant panel according to any one of claims 1 to 3.
前記溝部は、その開口幅が前記伝熱パイプの外径より僅かに小さい略半円形に形成され、伝熱パイプが前記溝部に圧入嵌合される、
請求項4に記載の放射パネル。
The groove is formed in a substantially semicircular shape whose opening width is slightly smaller than the outer diameter of the heat transfer pipe, and the heat transfer pipe is press-fitted into the groove.
The radiant panel according to claim 4.
前記請求項1ないし5のいずれかに記載の放射パネルの複数枚を、各放射パネルの複数本の異なる前記流路が、隣接する放射パネルの複数本の異なる流路にそれぞれ直列に連通するように接続して放射パネル群を構成し、
前記放射パネル群の前記直列に連通する複数系統の流路を、低温の熱媒体を供給する低熱源と高温の熱媒体を供給する高熱源とにそれぞれ選択接続可能とした、
ことを特徴とする放射空調システム。
6. A plurality of radiating panels according to claim 1, wherein a plurality of different flow paths of each radiating panel are connected in series to a plurality of different flow paths of adjacent radiating panels. Connected to the radiating panel group,
The plurality of flow paths communicating in series with the radiant panel group can be selectively connected to a low heat source that supplies a low-temperature heat medium and a high heat source that supplies a high-temperature heat medium, respectively.
Radiant air conditioning system characterized by that.
前記放射パネル群を複数備え、
各放射パネル群の前記複数系統の流路を、前記低熱源と前記高熱源とにそれぞれ選択接続可能とした、
請求項6に記載の放射空調システム。
A plurality of the radiating panel groups are provided,
The plurality of channels of each radiation panel group can be selectively connected to the low heat source and the high heat source, respectively.
The radiant air-conditioning system according to claim 6.
前記放射パネル群の2系統の前記流路における一方の流路の流入ポートを、低温熱媒体の供給流路に弁を介して接続するとともに、一方の前記流路の流出ポートを、低温熱媒体の戻し流路に弁を介して接続し、
前記2系統の前記流路における他方の流路の流入ポートを、高温熱媒体の供給流路に弁を介して接続するとともに、他方の前記流路の流出ポートを、高温熱媒体の戻し流路に弁を介して接続し、
前記2系統の流路における流入ポート同士を、弁を備えたバイパス流路で接続するとともに、2系統の流路における流出ポート同士を、弁を備えたバイパス流路で接続する、
請求項6または7に記載の放射空調システム。
The inflow port of one of the two channels of the radiating panel group is connected to the supply channel of the low-temperature heat medium via a valve, and the outflow port of one of the channels is connected to the low-temperature heat medium Connected through a valve to the return channel of
The inflow port of the other channel in the two channels is connected to the supply channel of the high temperature heat medium via a valve, and the outflow port of the other channel is connected to the return channel of the high temperature heat medium. Connected through a valve to
The inflow ports in the two flow paths are connected by a bypass flow path having a valve, and the outflow ports in the two flow paths are connected by a bypass flow path having a valve,
The radiation air-conditioning system according to claim 6 or 7.
JP2015010188A 2015-01-22 2015-01-22 Radiant air conditioning system Active JP6307451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015010188A JP6307451B2 (en) 2015-01-22 2015-01-22 Radiant air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015010188A JP6307451B2 (en) 2015-01-22 2015-01-22 Radiant air conditioning system

Publications (2)

Publication Number Publication Date
JP2016133293A true JP2016133293A (en) 2016-07-25
JP6307451B2 JP6307451B2 (en) 2018-04-04

Family

ID=56437627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015010188A Active JP6307451B2 (en) 2015-01-22 2015-01-22 Radiant air conditioning system

Country Status (1)

Country Link
JP (1) JP6307451B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041325U (en) * 1990-04-13 1992-01-08
JPH07174368A (en) * 1993-10-29 1995-07-14 Takenaka Komuten Co Ltd Radiation cooling and heating device
JPH09178225A (en) * 1995-12-27 1997-07-11 Daiwa House Ind Co Ltd Heat radiation surface material and ceiling radiation panel
JP2009192144A (en) * 2008-02-14 2009-08-27 Tesuku:Kk Moisture releasing electrical hot water circulation heating system
JP2012522203A (en) * 2009-03-27 2012-09-20 メッサーナ,ロベルト Modular off-the-shelf radiant panel with integrated header
JP2013092320A (en) * 2011-10-27 2013-05-16 Yokohama Rubber Co Ltd:The Air conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041325U (en) * 1990-04-13 1992-01-08
JPH07174368A (en) * 1993-10-29 1995-07-14 Takenaka Komuten Co Ltd Radiation cooling and heating device
JPH09178225A (en) * 1995-12-27 1997-07-11 Daiwa House Ind Co Ltd Heat radiation surface material and ceiling radiation panel
JP2009192144A (en) * 2008-02-14 2009-08-27 Tesuku:Kk Moisture releasing electrical hot water circulation heating system
JP2012522203A (en) * 2009-03-27 2012-09-20 メッサーナ,ロベルト Modular off-the-shelf radiant panel with integrated header
JP2013092320A (en) * 2011-10-27 2013-05-16 Yokohama Rubber Co Ltd:The Air conditioning device

Also Published As

Publication number Publication date
JP6307451B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
US7232369B2 (en) System and method for providing heating, ventilation and air conditioning
EP2192369B1 (en) Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
US20100089556A1 (en) Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
JP2010107151A (en) Panel for air conditioning, or the like
SK95298A3 (en) Single or multi row radiator body and process for producing it
PL216199B1 (en) Single-row or multi-row heater equipped with at least two different heating segments
JP2010500532A (en) Air conditioning panel
EP2781841A1 (en) Hot-water heat exchanger
JP6307451B2 (en) Radiant air conditioning system
US3162243A (en) Combined radiator and convector heat exchanger
KR20100088598A (en) Heat exchanger
JP4042971B2 (en) Air-conditioning air ondol structure
JP2009216323A (en) Air-conditioning equipment
US20110056666A1 (en) Modular panel for the formation of systems for ambient cooling or heating
EP3390919B1 (en) System and device for heating, cooling and ventilating and lighting of a room
RU61397U1 (en) CONVECTOR FOR WATER HEATING SYSTEM AND CONVECTOR SECTION
PL215336B1 (en) Single-row or multi-row heater equipped with at least two different heating segments
RU2799692C1 (en) Heater with convection chambers
RU2468304C2 (en) Radiator with partial load function
JP7575130B1 (en) Heating and cooling systems
CN222298614U (en) Adjustable manifold channel exchange structure capable of adjusting fluid heat exchange temperature and heat exchanger
CN203964136U (en) Become segmentation radiator and segmentation thereof
LT5574B (en) One-sectional or multisectional heater with at least two differently fitted segments
US20230304675A1 (en) Heating/cooling walls and ceilings
KR100780398B1 (en) Air Conditioning Panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6307451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250