[go: up one dir, main page]

JP2016125896A - Measuring apparatus - Google Patents

Measuring apparatus Download PDF

Info

Publication number
JP2016125896A
JP2016125896A JP2014266453A JP2014266453A JP2016125896A JP 2016125896 A JP2016125896 A JP 2016125896A JP 2014266453 A JP2014266453 A JP 2014266453A JP 2014266453 A JP2014266453 A JP 2014266453A JP 2016125896 A JP2016125896 A JP 2016125896A
Authority
JP
Japan
Prior art keywords
tubular member
disposed
outer peripheral
peripheral surface
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014266453A
Other languages
Japanese (ja)
Inventor
紘久 矢吹
Hirohisa Yabuki
紘久 矢吹
池 信一
Shinichi Ike
信一 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2014266453A priority Critical patent/JP2016125896A/en
Publication of JP2016125896A publication Critical patent/JP2016125896A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily manufacture and provide a measuring apparatus capable of improving strength of a tubular member and exactly measuring the flow rate of fluid.SOLUTION: A measuring apparatus according to one aspect of the present invention includes: a tubular member 11; a reinforcement member 21 which is arranged on the outer peripheral surface so as to cover the outer peripheral surface of at least one end of the tubular member 11; and an environment sensor arranged on the outer peripheral surface of the tubular member 11.SELECTED DRAWING: Figure 1

Description

本発明は、管状部材の強度を向上でき、且つ、流体の流量を正確に測定できる測定装置に関する。   The present invention relates to a measuring apparatus that can improve the strength of a tubular member and can accurately measure the flow rate of a fluid.

従来、ガスや空気等の被測定流体の流量を検出するフローセンサとして、少なくとも1つの温度センサ及び熱源が組み込まれてなる半導体モジュールを有する、液体用のフローセンサにおいて、液体を導くパイプを具備し、前記半導体モジュールは前記パイプの外面に接着剤を介して設けられており、前記温度センサ及び前記熱源は前記パイプの外面と熱的接触していることを特徴とするフローセンサが知られていた(特許文献1)。   2. Description of the Related Art Conventionally, as a flow sensor for detecting the flow rate of a fluid to be measured such as gas or air, a liquid flow sensor having a semiconductor module in which at least one temperature sensor and a heat source are incorporated has a pipe for guiding the liquid. The flow sensor is known in which the semiconductor module is provided on the outer surface of the pipe via an adhesive, and the temperature sensor and the heat source are in thermal contact with the outer surface of the pipe. (Patent Document 1).

特表2003−532099号公報Special table 2003-532099 gazette

特許文献1のフローセンサにおいて、パイプを他のパイプや部材と接合する際に、何らかの継手部材と接続する。このとき、当該継手部材により固定される際に当該パイプに圧力がかかり、パイプ肉厚が薄いと、パイプの破損または変形などが生じてしまう。   In the flow sensor of Patent Document 1, when a pipe is joined to another pipe or member, the pipe is connected to some joint member. At this time, pressure is applied to the pipe when it is fixed by the joint member, and if the pipe is thin, the pipe is damaged or deformed.

ここで、センサ感度を向上させるためには、パイプの外壁に接着されている半導体モジュールに含まれる熱源の熱を効率よくパイプ内部に伝える必要がある。そうすると、当該半導体モジュールの設置位置(領域)におけるパイプ肉厚が厚い場合は、センサ感度が低下し、流体の流量を測定することができないおそれがある。   Here, in order to improve the sensor sensitivity, it is necessary to efficiently transfer the heat of the heat source included in the semiconductor module bonded to the outer wall of the pipe to the inside of the pipe. Then, when the pipe thickness at the installation position (region) of the semiconductor module is thick, the sensor sensitivity is lowered, and there is a possibility that the fluid flow rate cannot be measured.

また、特許文献1のフローセンサにおいては、半導体モジュールの設置位置におけるパイプ肉厚を機械的に加工している。しかしながら、当該パイプ肉厚を機械的に加工する場合、パイプの加工面が損傷することによりパイプ強度が低下し、また、パイプの内外径精度が低いと加工後のパイプ肉厚にバラつきが生じ、センサ特性に影響を与えるおそれがある。このように、パイプ肉厚を機械的に調整することによって、流体の流量を正確に測定できるフローセンサを製造することは容易ではない。   Moreover, in the flow sensor of patent document 1, the pipe thickness in the installation position of a semiconductor module is processed mechanically. However, when mechanically processing the pipe thickness, pipe strength is reduced by damaging the processed surface of the pipe, and when the pipe inner and outer diameter accuracy is low, the pipe thickness after processing varies, The sensor characteristics may be affected. Thus, it is not easy to manufacture a flow sensor that can accurately measure the fluid flow rate by mechanically adjusting the pipe wall thickness.

そこで、本発明は、管状部材の強度を向上でき、且つ、流体の流量を正確に測定できる測定装置を容易に製造し提供することを目的の一つとする。   Therefore, an object of the present invention is to easily manufacture and provide a measuring device that can improve the strength of a tubular member and can accurately measure the flow rate of a fluid.

上記課題を解決するために、本発明の一側面に係る測定装置は、管状部材と、前記管状部材の少なくとも一つの端部の外周面を覆うように前記外周面に配置される補強部材と、前記管状部材の外周面に配置される環境センサと、を備える、測定装置。   In order to solve the above problems, a measuring apparatus according to one aspect of the present invention includes a tubular member, a reinforcing member disposed on the outer peripheral surface so as to cover an outer peripheral surface of at least one end of the tubular member, An environmental sensor disposed on an outer peripheral surface of the tubular member.

本発明によれば、測定装置が管状部材の少なくとも一つの端部の外周面を覆うように外周面に配置される補強部材と、管状部材の外周面に配置される環境センサと、を備えることによって、上記管状部材の強度を補強することができ、且つ、上記環境センサのセンサ感度の劣化を防止することができるので、管状部材の強度を向上でき、且つ、流体の流量を正確に測定できる測定装置を容易に製造し提供することができる。   According to the present invention, the measuring device includes the reinforcing member disposed on the outer peripheral surface so as to cover the outer peripheral surface of at least one end of the tubular member, and the environmental sensor disposed on the outer peripheral surface of the tubular member. Therefore, the strength of the tubular member can be reinforced and the deterioration of the sensor sensitivity of the environmental sensor can be prevented, so that the strength of the tubular member can be improved and the flow rate of the fluid can be accurately measured. A measuring device can be easily manufactured and provided.

本発明の第1実施形態に係る流量計の側面断面図である。It is side surface sectional drawing of the flowmeter which concerns on 1st Embodiment of this invention. 図1のI−I方向から見た断面図である。It is sectional drawing seen from the II direction of FIG. 本発明の第1実施形態に係るフローセンサの構成例を示す斜視図である。It is a perspective view which shows the structural example of the flow sensor which concerns on 1st Embodiment of this invention. 図3のII−II方向から見た断面図である。It is sectional drawing seen from the II-II direction of FIG. 本発明の第1実施形態に係る流量計の製造工程を示した図である。図5(a)は、管状部材に補強部材が配置される工程を示した図である。図5(b)は、管状部材に補強部材が配置された後、管状部材にフローセンサが配置される工程を示した図である。図5(c)は、管状部材にフローセンサが配置された後の状態を示した図である。It is the figure which showed the manufacturing process of the flowmeter which concerns on 1st Embodiment of this invention. Fig.5 (a) is the figure which showed the process in which a reinforcement member is arrange | positioned to a tubular member. FIG. 5B is a diagram illustrating a process in which the flow sensor is disposed on the tubular member after the reinforcing member is disposed on the tubular member. FIG. 5C is a view showing a state after the flow sensor is arranged on the tubular member. 図5に示す製造工程におけるIII−III方向またはIV−IV方向から見た断面図である。図6(a)は、図5(a)における製造工程1−(A)後の状態を示した図であり、図5に示す製造工程1−(A)におけるIII−III方向から見た断面図である。図6(b)は、図5(a)における製造工程1−(B)後の状態を示した図であり、図5に示す製造工程1−(B)におけるIII−III方向から見た断面図である。図6(c)は、図5(b)における製造工程2後の状態を示した図であり、図5(c)のIV−IV方向から見た断面図である。It is sectional drawing seen from the III-III direction or IV-IV direction in the manufacturing process shown in FIG. 6A is a view showing a state after the manufacturing step 1- (A) in FIG. 5A, and is a cross section seen from the III-III direction in the manufacturing step 1- (A) shown in FIG. FIG. FIG. 6B is a view showing a state after the manufacturing step 1- (B) in FIG. 5A, and is a cross section viewed from the III-III direction in the manufacturing step 1- (B) shown in FIG. FIG. FIG. 6C is a view showing a state after the manufacturing process 2 in FIG. 5B, and is a cross-sectional view seen from the IV-IV direction of FIG. 5C. 図5(a)における製造工程1−(B)後の状態を示した図であり、管状部材に配置する一以上の補強部材に一以上の溝が形成されている場合の図である。It is the figure which showed the state after the manufacturing process 1- (B) in Fig.5 (a), and is a figure in case one or more groove | channels are formed in one or more reinforcement members arrange | positioned at a tubular member. 本発明の第2実施形態に係る流量計の側面断面図である。It is side surface sectional drawing of the flowmeter which concerns on 2nd Embodiment of this invention.

以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形(各実施形態を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。なお、以下の説明において、図面の上側を「上」、下側を「下」という。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described below. That is, the present invention can be implemented with various modifications (combining the embodiments) without departing from the spirit of the present invention. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The drawings are schematic and do not necessarily match actual dimensions and ratios. In some cases, the dimensional relationships and ratios may be different between the drawings. In the following description, the upper side of the drawing is referred to as “upper” and the lower side is referred to as “lower”.

<第1実施形態>
図1は、本発明の第1実施形態に係る流量計の側面断面図である。図2は、図1のI−I方向から見た断面図である。図1および図2に示すように、流量計1(測定装置)は、例示的に、管状部材11と、補強部材21と、継手部材と、管状部材11内を流れる流体の流量を測定するフローセンサ51(環境センサ)(図2においては不図示)と、センサ筐体71と、を備えて構成されている。フローセンサ51からの検出信号は、図示しない処理回路によって処理されるようになっている。
<First Embodiment>
FIG. 1 is a side sectional view of a flow meter according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view seen from the II direction of FIG. As shown in FIGS. 1 and 2, the flow meter 1 (measuring device) exemplarily includes a tubular member 11, a reinforcing member 21, a joint member, and a flow for measuring the flow rate of fluid flowing in the tubular member 11. A sensor 51 (environmental sensor) (not shown in FIG. 2) and a sensor housing 71 are provided. A detection signal from the flow sensor 51 is processed by a processing circuit (not shown).

管状部材11は、流体を通過させる管状の部材をいい、たとえば、流体の圧力、温度変化に耐え得る所定の内径、肉厚、長さを有する剛構造部材であり、セラミックス、プラスチック、ステンレスなどで構成される。なお、管状部材11の肉厚は、熱伝導の障害に殆どならない程度に薄い(例えば、数十μm)。   The tubular member 11 is a tubular member that allows fluid to pass through. For example, the tubular member 11 is a rigid structural member having a predetermined inner diameter, thickness, and length that can withstand changes in pressure and temperature of the fluid, and is made of ceramic, plastic, stainless steel, or the like. Composed. In addition, the thickness of the tubular member 11 is thin (for example, several tens of micrometers) to such an extent that it hardly becomes an obstacle to heat conduction.

センサ筐体71は、フローセンサ51を格納する部材である。また、継手部材は、図1に示すように、例示的に、ボディ部材41、フェラル部材43,47、およびナット部材45,49を備えて構成されており、管状部材11の少なくとも一つの端部に接続されており、管状部材11とチューブ15などの他の管状部材等とを接続する部材である。
たとえば、図1に示すように、継手部材のフェラル部材43は管状部材11および後述する補強部材21を覆うようにボディ部材41に挿入され、ナット部材45をボディ部材41に取り付けることにより当該フェラル部材43は当該ボディ部材41に押し込まれる。このように、継手部材は、管状部材11および補強部材21の少なくとも一つの端部を締める。
また、たとえば、図1に示すように、継手部材のフェラル部材47はチューブ15を覆うようにボディ部材41に挿入され、ナット部材49をボディ部材41に取り付けることにより当該フェラル部材47は当該ボディ部材41に押し込まれる。このように、継手部材は、チューブ15の少なくとも一つの端部を締める。さらに、図1に示すように、継手部材において管状部材11および補強部材21と、チューブ15とはスペースSを空けて配置されているが、スペースSを空けず管状部材11および補強部材21と、チューブ15とを直接接続するように構成してもよい。
管状部材11の少なくとも一つの端部は、継手部材によりセンサ筐体71に固定されている。なお、継手部材が備える各部材は、たとえば、セラミック、プラスチック、ステンレスなどで構成される。
The sensor casing 71 is a member that stores the flow sensor 51. Further, as shown in FIG. 1, the joint member includes, for example, a body member 41, ferrule members 43 and 47, and nut members 45 and 49, and at least one end portion of the tubular member 11. This is a member that connects the tubular member 11 to another tubular member such as the tube 15.
For example, as shown in FIG. 1, the ferrule member 43 of the joint member is inserted into the body member 41 so as to cover the tubular member 11 and the reinforcing member 21 described later, and the nut member 45 is attached to the body member 41 to attach the ferrule member. 43 is pushed into the body member 41. Thus, the joint member fastens at least one end of the tubular member 11 and the reinforcing member 21.
For example, as shown in FIG. 1, the ferrule member 47 of the joint member is inserted into the body member 41 so as to cover the tube 15, and the ferrule member 47 is attached to the body member 41 by attaching the nut member 49 to the body member 41. It is pushed into 41. Thus, the joint member fastens at least one end of the tube 15. Furthermore, as shown in FIG. 1, the tubular member 11 and the reinforcing member 21 and the tube 15 in the joint member are disposed with a space S therebetween, but the tubular member 11 and the reinforcing member 21 without the space S are provided. You may comprise so that the tube 15 may be connected directly.
At least one end of the tubular member 11 is fixed to the sensor housing 71 by a joint member. Each member included in the joint member is made of, for example, ceramic, plastic, stainless steel, or the like.

補強部材21は、管状部材11の強度を補うため接着剤31を介して管状部材11に配置される部材である。図1および図2に示すように、補強部材21は、たとえば、管状部材11の少なくとも一つの端部の外周面を覆うように上記外周面に配置される。また、補強部材21は、継手部材により覆われている、管状部材11の少なくとも一つの端部の外周面に配置されている。   The reinforcing member 21 is a member disposed on the tubular member 11 with an adhesive 31 in order to supplement the strength of the tubular member 11. As shown in FIGS. 1 and 2, the reinforcing member 21 is disposed on the outer peripheral surface so as to cover the outer peripheral surface of at least one end of the tubular member 11, for example. The reinforcing member 21 is disposed on the outer peripheral surface of at least one end of the tubular member 11 that is covered with the joint member.

フローセンサ51は、管状部材11内を流通する流体の流量を測定する。図1に示すように、フローセンサ51は、補強部材21に形成された開口Oに配置され、そして、管状部材11の外周面に極力接近して配置される。   The flow sensor 51 measures the flow rate of the fluid flowing through the tubular member 11. As shown in FIG. 1, the flow sensor 51 is disposed in the opening O formed in the reinforcing member 21 and is disposed as close as possible to the outer peripheral surface of the tubular member 11.

図3は、本発明の実施形態に係るフローセンサの構成例を示す斜視図である。図4は、図3のII−II方向から見た断面図である。図3及び図4に示すように、フローセンサ51は、キャビティ102が設けられた基板101と、基板101上にキャビティ102を覆うように配置された絶縁膜103と、絶縁膜103に設けられたヒータ104と、ヒータ104より上流側に設けられた上流側測温抵抗素子105と、ヒータ104より下流側に設けられた下流側測温抵抗素子106と、上流側測温抵抗素子105より上流側に設けられた周囲温度センサ107と、を有している。   FIG. 3 is a perspective view illustrating a configuration example of the flow sensor according to the embodiment of the present invention. FIG. 4 is a cross-sectional view seen from the II-II direction of FIG. As shown in FIG. 3 and FIG. 4, the flow sensor 51 is provided on the substrate 101 provided with the cavity 102, the insulating film 103 disposed on the substrate 101 so as to cover the cavity 102, and the insulating film 103. Heater 104, upstream temperature sensing resistor element 105 provided upstream of heater 104, downstream temperature sensor element 106 provided downstream of heater 104, and upstream side of upstream temperature resistance element 105 And an ambient temperature sensor 107.

絶縁膜103のキャビティ102を覆う部分は、断熱性のダイアフラムを構成している。周囲温度センサ107は、管状部材11を流通する被測定流体の温度を測定する。ヒータ104は、キャビティ102を覆う絶縁膜103の略中心に配置されており、管状部材11を流通する被測定流体を、周囲温度センサ107が計測した温度よりも一定温度高くなるように加熱する。上流側測温抵抗素子105はヒータ104より上流側の温度を検出するために用いられ、下流側測温抵抗素子106はヒータ104より下流側の温度を検出するために用いられる。   The portion of the insulating film 103 covering the cavity 102 constitutes a heat insulating diaphragm. The ambient temperature sensor 107 measures the temperature of the fluid to be measured that flows through the tubular member 11. The heater 104 is disposed substantially at the center of the insulating film 103 that covers the cavity 102, and heats the fluid to be measured flowing through the tubular member 11 so as to be higher than the temperature measured by the ambient temperature sensor 107. The upstream resistance temperature detector 105 is used to detect the temperature upstream of the heater 104, and the downstream resistance temperature detector 106 is used to detect the temperature downstream of the heater 104.

本実施形態では、フローセンサ51は、管状部材11の外周面に接して配置されており、上記したとおり、管状部材11の肉厚は、熱伝導の障害に殆どならない程度に薄い(例えば、数十μm)ので、ヒータ105に加えられた熱は管状部材11内を流れる被測定流体に及ぼされ、被測定流体の温度が上流側測温抵抗素子105や下流側測温抵抗素子106によって検出されるようになっている。ここで、管状部材11内における被測定流体の流量が零の場合、ヒータ104で加えられた熱は、上流方向と下流方向へ対称的に拡散する。従って、上流側測温抵抗素子105の温度と下流側測温抵抗素子106の温度は等しくなり、上流側測温抵抗素子105の電気抵抗と下流側測温抵抗素子106の電気抵抗は等しくなる。これに対し、管状部材11内における被測定流体が上流側から下流側へと流通している場合、ヒータ104で加えられた熱は下流方向に運ばれる(運搬効果)。従って、上流側測温抵抗素子105の温度よりも下流側測温抵抗素子106の温度が高くなり、上流側測温抵抗素子105の電気抵抗と下流側測温抵抗素子106の電気抵抗との間に差が生じる。この電気抵抗の差は、管状部材11内を流通する被測定流体の速度や流量と相関関係があることが知られている。このため、上流側測温抵抗素子105の電気抵抗と下流側測温抵抗素子106の電気抵抗との差に基づいて、管状部材11内を流通する被測定流体の速度や流量を測定(算出)することができる。   In the present embodiment, the flow sensor 51 is disposed in contact with the outer peripheral surface of the tubular member 11, and as described above, the thickness of the tubular member 11 is so thin as to hardly hinder heat conduction (for example, several 10 μm), the heat applied to the heater 105 is exerted on the fluid to be measured flowing in the tubular member 11, and the temperature of the fluid to be measured is detected by the upstream resistance thermometer element 105 and the downstream resistance thermometer element 106. It has become so. Here, when the flow rate of the fluid to be measured in the tubular member 11 is zero, the heat applied by the heater 104 diffuses symmetrically in the upstream direction and the downstream direction. Therefore, the temperature of the upstream resistance temperature element 105 and the temperature of the downstream resistance temperature element 106 are equal, and the electrical resistance of the upstream resistance temperature element 105 and the electrical resistance of the downstream resistance temperature element 106 are equal. On the other hand, when the fluid to be measured in the tubular member 11 flows from the upstream side to the downstream side, the heat applied by the heater 104 is conveyed in the downstream direction (transport effect). Therefore, the temperature of the downstream side resistance element 106 becomes higher than the temperature of the upstream side resistance element 105, and the electrical resistance of the upstream side resistance element 105 and the electrical resistance of the downstream side resistance element 106. There will be a difference. It is known that this difference in electrical resistance has a correlation with the speed and flow rate of the fluid to be measured flowing through the tubular member 11. For this reason, the speed and flow rate of the fluid to be measured flowing through the tubular member 11 are measured (calculated) based on the difference between the electrical resistance of the upstream temperature measuring resistance element 105 and the electrical resistance of the downstream temperature measuring resistance element 106. can do.

なお、基板101の材料としては、シリコン(Si)等が使用可能である。絶縁膜103の材料としては、酸化ケイ素(SiO2)等が使用可能である。キャビティ102は、異方性エッチング等により形成される。また、ヒータ104、上流側測温抵抗素子105、下流側測温抵抗素子106及び周囲温度センサ107の各々の材料としては、白金(Pt)等が使用可能であり、これらは、リソグラフィ法等により形成可能である。 Note that silicon (Si) or the like can be used as the material of the substrate 101. As a material of the insulating film 103, silicon oxide (SiO 2 ) or the like can be used. The cavity 102 is formed by anisotropic etching or the like. Further, platinum (Pt) or the like can be used as a material for each of the heater 104, the upstream temperature measuring resistor element 105, the downstream temperature measuring resistor element 106, and the ambient temperature sensor 107. It can be formed.

このように、管状部材11はフローセンサ51で検出可能な程度に薄いので機械的強度が低い。そこで、本実施形態では補強部材21が強度を補償している。また、補強部材21が設けられた端部で継手部材が管状部材11をセンサ筐体71に固定しているので、管状部材11にストレスを加えず、チューブ15の中途に流量計1を取り付け可能である。   Thus, since the tubular member 11 is thin enough to be detected by the flow sensor 51, the mechanical strength is low. Therefore, in this embodiment, the reinforcing member 21 compensates the strength. Further, since the joint member fixes the tubular member 11 to the sensor housing 71 at the end where the reinforcing member 21 is provided, the flow meter 1 can be attached in the middle of the tube 15 without applying stress to the tubular member 11. It is.

(製造工程)
本発明の第1実施形態に係る流量計の製造工程を図5及び図6を用いて説明する。
図5は、本発明の第1実施形態に係る流量計の製造工程を示した図である。図5(a)は、管状部材に補強部材が配置される工程を示した図である。図5(b)は、管状部材に補強部材が配置された後、管状部材にフローセンサが配置される工程を示した図である。図5(c)は、管状部材にフローセンサが配置された後の状態を示した図である。
図6は、図5に示す製造工程におけるIII−III方向またはIV−IV方向から見た断面図である。図6(a)は、図5(a)における製造工程1−(A)後の状態を示した図であり、図5に示す製造工程1−(A)におけるIII−III方向から見た断面図である。図6(b)は、図5(a)における製造工程1−(B)後の状態を示した図であり、図5に示す製造工程1−(B)におけるIII−III方向から見た断面図である。図6(c)は、図5(b)における製造工程2後の状態を示した図であり、図5(c)のIV−IV方向から見た断面図である。
(Manufacturing process)
A manufacturing process of the flow meter according to the first embodiment of the present invention will be described with reference to FIGS.
FIG. 5 is a diagram showing a manufacturing process of the flow meter according to the first embodiment of the present invention. Fig.5 (a) is the figure which showed the process in which a reinforcement member is arrange | positioned to a tubular member. FIG. 5B is a diagram illustrating a process in which the flow sensor is disposed on the tubular member after the reinforcing member is disposed on the tubular member. FIG. 5C is a view showing a state after the flow sensor is arranged on the tubular member.
FIG. 6 is a cross-sectional view seen from the III-III direction or the IV-IV direction in the manufacturing process shown in FIG. 6A is a view showing a state after the manufacturing step 1- (A) in FIG. 5A, and is a cross section seen from the III-III direction in the manufacturing step 1- (A) shown in FIG. FIG. FIG. 6B is a view showing a state after the manufacturing step 1- (B) in FIG. 5A, and is a cross section viewed from the III-III direction in the manufacturing step 1- (B) shown in FIG. FIG. FIG. 6C is a view showing a state after the manufacturing process 2 in FIG. 5B, and is a cross-sectional view seen from the IV-IV direction of FIG. 5C.

本発明の一実施形態に係る流量計1は、以下の工程を経て生産される。
まず、図5(a)に示すように、管状部材11の少なくとも一つの端部の外周面を覆うように補強部材21を上記外周面に配置する(工程1)。
次に、図5(b)に示すように、フローセンサ51を管状部材11に配置する(工程2)。
The flow meter 1 according to an embodiment of the present invention is produced through the following steps.
First, as shown in FIG. 5A, the reinforcing member 21 is disposed on the outer peripheral surface so as to cover the outer peripheral surface of at least one end of the tubular member 11 (step 1).
Next, as shown in FIG.5 (b), the flow sensor 51 is arrange | positioned to the tubular member 11 (process 2).

工程1において、たとえば付着装置200により付着される接着剤31を介して、各補強部材21A,B,Cを管状部材11に配置する。たとえば、補強部材21Aを管状部材11に配置する工程1−(A)、補強部材21Bを管状部材11に配置する工程1−(B)、および補強部材21Cを管状部材11に配置する工程1−(C)について、工程1−(A)、工程1−(B)、工程1−(C)の順で実施される。補強部材21と管状部材11との位置関係は、製造工程1−(A)後は、図6(a)に示す関係であり、製造工程1−(B)後は、図6(b)に示す関係である。
このように、複数の補強部材21を組み合わせて開口Oが設けられるように貼り合わせて管状部材11に配置する。
In step 1, the reinforcing members 21 </ b> A, B, and C are arranged on the tubular member 11 via an adhesive 31 that is attached by the attaching device 200, for example. For example, Step 1- (A) in which the reinforcing member 21A is disposed on the tubular member 11, Step 1- (B) in which the reinforcing member 21B is disposed on the tubular member 11, and Step 1- in which the reinforcing member 21C is disposed on the tubular member 11. About (C), it implements in order of process 1- (A), process 1- (B), and process 1- (C). The positional relationship between the reinforcing member 21 and the tubular member 11 is the relationship shown in FIG. 6 (a) after the manufacturing step 1- (A), and after FIG. 6 (b) after the manufacturing step 1- (B). It is the relationship shown.
In this manner, the plurality of reinforcing members 21 are combined and bonded to each other so as to provide the opening O, and are arranged on the tubular member 11.

なお、これらの工程は、不同であってもよい。また、各工程が同時に実施されてもよいし、少なくとも二つの工程が同時に実施され、他の工程が異なるタイミングで実施されてもよい。   Note that these steps may be the same. Moreover, each process may be implemented simultaneously, at least 2 process may be implemented simultaneously, and another process may be implemented at a different timing.

さらに、上記では、補強部材21は、補強部材21A,B,Cというように三つに分割されているように説明したが、補強部材21の数に制限はなく、一つであってもよいし、二以上であってもよい。さらにまた、補強部材21が二以上に分割されているほうが、一つの場合に比べて補強部材21を管状部材11に配置する工程を容易に実施できる。   Further, in the above description, the reinforcing member 21 has been described as being divided into three such as the reinforcing members 21A, B, and C, but the number of the reinforcing members 21 is not limited and may be one. Two or more may be used. Furthermore, the process which arrange | positions the reinforcement member 21 in the tubular member 11 can be easily implemented compared with the case where the reinforcement member 21 is divided | segmented into two or more.

ここで、補強部材21を分割して提供することのメリットを説明する。
図7は、図5(a)における製造工程1−(B)後の状態を示した図であり、管状部材に配置する一以上の補強部材に一以上の溝が形成されている場合の図である。図7に示すように、管状部材11に配置する一以上の補強部材21に溝80が形成されている。当該溝80は、たとえば補強部材21のある一端から他端に亘って連続的に形成されてもよく、非連続的に形成されてもよい。図7に示すように、管状部材11に補強部材21が配置され管状部材11が補強されている領域において補強部材21に溝80が形成されることにより溝がない場合と比較して溝80が熱絶縁の効果を持つことで、補強部材21に熱が逃げる影響を低減できるため、センサ特性を向上させることができる。このように、溝80が形成されている補強部材21を管状部材11に配置して測定装置1を製造する場合、補強部材21が分割されていることで容易に当該測定装置1を製造することができる。
Here, the merit of dividing and providing the reinforcing member 21 will be described.
FIG. 7 is a view showing a state after the manufacturing step 1- (B) in FIG. 5A, and is a view in the case where one or more grooves are formed in one or more reinforcing members arranged in the tubular member. It is. As shown in FIG. 7, a groove 80 is formed in one or more reinforcing members 21 arranged in the tubular member 11. For example, the groove 80 may be formed continuously from one end to the other end of the reinforcing member 21 or may be formed discontinuously. As shown in FIG. 7, the groove 80 is formed in the reinforcing member 21 in the region where the reinforcing member 21 is disposed on the tubular member 11 and the tubular member 11 is reinforced. By having the effect of thermal insulation, the influence of heat escaping to the reinforcing member 21 can be reduced, so that the sensor characteristics can be improved. Thus, when manufacturing the measuring apparatus 1 by arranging the reinforcing member 21 in which the groove 80 is formed on the tubular member 11, the measuring apparatus 1 can be easily manufactured by dividing the reinforcing member 21. Can do.

また、接着剤を介して補強部材21を管状部材11に配置する際に、当該補強部材21に対して加重することが必要である場合、補強部材21が一つである場合には補強部材21に対して均一に加重することが困難であり適切に配置することができない場合であっても、補強部材21が二以上であることで各補強部材21に対して均一に加重することができ、各補強部材21を適切に配置することが可能となる。   In addition, when the reinforcing member 21 is disposed on the tubular member 11 via the adhesive, it is necessary to apply weight to the reinforcing member 21. When the reinforcing member 21 is one, the reinforcing member 21 is provided. Even when it is difficult to apply a uniform weight to each of the reinforcing members 21, the reinforcing members 21 can be uniformly weighted by having two or more reinforcing members 21, Each reinforcing member 21 can be appropriately arranged.

さらに、図5および図6に示すように、たとえば、管状部材11の上半分全体を覆うように補強部材21Aを配置することで、管状部材11のねじれや折れに対して補強することができる。   Furthermore, as shown in FIGS. 5 and 6, for example, by arranging the reinforcing member 21 </ b> A so as to cover the entire upper half of the tubular member 11, the tubular member 11 can be reinforced against twisting or breaking.

またさらに、付着装置200は、接着剤31を補強部材21および管状部材11に付着するように構成されてもよいし、補強部材21および管状部材11の少なくとも一方に付着するように構成されてもよい。   Furthermore, the attachment device 200 may be configured to attach the adhesive 31 to the reinforcing member 21 and the tubular member 11, or may be configured to adhere to at least one of the reinforcing member 21 and the tubular member 11. Good.

なお、上記では、接着剤31を介して、各補強部材21A,B,Cを管状部材11に配置する工程を説明したが、常に接着剤31を用いる必要はなく、接着剤31の代わりに、各補強部材21A,B,Cの管状部材11への配置を補助する補助部材や取付部材などを用いることもできる。   In the above description, the step of disposing the reinforcing members 21A, B, and C on the tubular member 11 via the adhesive 31 has been described. However, it is not always necessary to use the adhesive 31, and instead of the adhesive 31, An auxiliary member, an attachment member, or the like that assists the placement of the reinforcing members 21A, B, and C on the tubular member 11 can also be used.

工程2について、図5(b)においては、複数の補強部材21を組み合わせて開口Oが設けられるように貼り合わせて管状部材11に配置されることにより形成された開口Oにフローセンサ51を配置しつつ、当該フローセンサ51を管状部材11に配置する。図5(c)に示すように、管状部材11において、フローセンサ51が配置される領域以外の領域についてはすべて補強部材21で覆われるため、管状部材11の強度を飛躍的に高めることができる。なお、図6(c)に示すように、フローセンサ51は管状部材11に接着剤31を介して配置されてもよいし、接着剤31の代わりに、フローセンサ51の管状部材11への配置を補助する補助部材や取付部材などを用いることもできる。   5B, in FIG. 5B, the flow sensor 51 is disposed in the opening O formed by combining the plurality of reinforcing members 21 and bonding them so as to provide the opening O and disposing them on the tubular member 11. However, the flow sensor 51 is disposed on the tubular member 11. As shown in FIG. 5C, in the tubular member 11, all regions other than the region where the flow sensor 51 is disposed are covered with the reinforcing member 21, so that the strength of the tubular member 11 can be dramatically increased. . As shown in FIG. 6C, the flow sensor 51 may be disposed on the tubular member 11 via the adhesive 31, or the flow sensor 51 is disposed on the tubular member 11 instead of the adhesive 31. It is also possible to use an auxiliary member, a mounting member, or the like that assists.

(効果)
本実施形態によれば、測定装置が管状部材11の少なくとも一つの端部の外周面を覆うように外周面に配置される補強部材21と、管状部材11の外周面に配置される環境センサと、を備えることによって、上記管状部材11の強度を補強することができ、且つ、上記環境センサのセンサ感度の劣化を防止することができるので、管状部材11の強度を向上でき、且つ、流体の流量を正確に測定できる測定装置を容易に製造し提供することができる。
(effect)
According to the present embodiment, the reinforcing member 21 disposed on the outer peripheral surface so that the measuring device covers the outer peripheral surface of at least one end of the tubular member 11, and the environmental sensor disposed on the outer peripheral surface of the tubular member 11, , The strength of the tubular member 11 can be reinforced, and the sensor sensitivity of the environmental sensor can be prevented from deteriorating, so that the strength of the tubular member 11 can be improved and the fluid A measuring device that can accurately measure the flow rate can be easily manufactured and provided.

<第2実施形態>
第2実施形態は、管状部材11の少なくとも一つの端部の外周面のみを覆うように補強部材21が配置されている測定装置について説明する。なお、特に記述がない限り、前述した実施形態と同一構成部分は同一符号をもって表し、その説明を省略する。
Second Embodiment
In the second embodiment, a measuring device in which the reinforcing member 21 is disposed so as to cover only the outer peripheral surface of at least one end of the tubular member 11 will be described. Unless otherwise specified, the same components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図8は、本発明の第2実施形態に係る流量計の側面断面図である。図8に示すように、流量計2において、管状部材11の少なくとも一つの端部の外周面のみを覆うように補強部材21が配置されている。   FIG. 8 is a side sectional view of a flow meter according to the second embodiment of the present invention. As shown in FIG. 8, in the flow meter 2, the reinforcing member 21 is disposed so as to cover only the outer peripheral surface of at least one end of the tubular member 11.

(効果)
上記のとおり、流量計2の補強部材21は管状部材11の少なくとも一つの端部の外周面のみを覆うように配置されており、第1実施形態の流量計1において用いられる補強部材21よりも少量である。よって、本実施形態によれば、第1実施形態の効果に加えて、測定装置の製造コストを削減することができる。
(effect)
As described above, the reinforcing member 21 of the flow meter 2 is disposed so as to cover only the outer peripheral surface of at least one end of the tubular member 11, and is more than the reinforcing member 21 used in the flow meter 1 of the first embodiment. A small amount. Therefore, according to this embodiment, in addition to the effect of 1st Embodiment, the manufacturing cost of a measuring apparatus can be reduced.

(他の実施形態)
本発明は、上記第1実施形態および第2実施形態に限定されることなく、種々に組み合わせることができ、変形して適用することが可能であり、各実施形態が有する各構成要素についても、種々に組み合わせることができ、変形して適用することが可能である。上記各実施形態においては、測定装置として流量計、環境センサとしてフローセンサ51を例に挙げて説明したが、これに限られず、配管の外壁にセンサを設置して構成される測定装置であればよく、たとえば、熱量計や温度計などであってもよい。
(Other embodiments)
The present invention is not limited to the first embodiment and the second embodiment, and can be combined in various ways, can be applied in a modified manner, and each component included in each embodiment is also It can be combined in various ways and can be applied in a modified manner. In each of the above embodiments, the flow meter was used as the measurement device and the flow sensor 51 was used as the environment sensor. For example, a calorimeter or a thermometer may be used.

本発明は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
管状部材の少なくとも一つの端部の外周面を覆うように前記外周面に補強部材を配置する工程と、
前記管状部材の外周面に環境センサを配置する工程と、を含む、
測定装置の製造方法。
(付記2)
複数の補強部材を開口が設けられるように前記管状部材の少なくとも一つの端部の外周面に配置する工程と、
前記開口に前記環境センサを配置する工程と、をさらに含む、
付記1に記載の測定装置の製造方法。
The present invention can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
Arranging a reinforcing member on the outer peripheral surface so as to cover an outer peripheral surface of at least one end of the tubular member;
Placing an environmental sensor on the outer peripheral surface of the tubular member,
Manufacturing method of the measuring device.
(Appendix 2)
Arranging a plurality of reinforcing members on the outer peripheral surface of at least one end of the tubular member so as to be provided with openings;
Further comprising disposing the environmental sensor in the opening.
A method for manufacturing the measuring apparatus according to appendix 1.

1,2 流量計
11 管状部材
15 チューブ
21 補強部材
31 接着剤
41 ボディ部材
43,47 フェラル部材
45,49 ナット部材
51 フローセンサ
71 センサ筐体
101 基板
102 キャビティ
103 絶縁膜
104 ヒータ
105 上流側測温抵抗素子
106 下流側測温抵抗素子
107 周囲温度センサ
200 付着装置
1, 2 Flow meter 11 Tubular member 15 Tube 21 Reinforcement member 31 Adhesive 41 Body member 43, 47 Ferrule member 45, 49 Nut member 51 Flow sensor 71 Sensor housing 101 Substrate 102 Cavity 103 Insulating film 104 Heater 105 Upstream temperature measurement Resistance element 106 Temperature measuring resistance element 107 on the downstream side Ambient temperature sensor 200 Adhering device

Claims (3)

管状部材と、
前記管状部材の少なくとも一つの端部の外周面を覆うように前記外周面に配置される補強部材と、
前記管状部材の外周面に配置される環境センサと、を備える、
測定装置。
A tubular member;
A reinforcing member disposed on the outer peripheral surface so as to cover an outer peripheral surface of at least one end of the tubular member;
An environmental sensor disposed on the outer peripheral surface of the tubular member,
measuring device.
センサ筐体をさらに備え、
前記補強部材に覆われた前記端部が継手部材により前記センサ筐体に固定されている、
請求項1に記載の測定装置。
A sensor housing;
The end covered with the reinforcing member is fixed to the sensor housing by a joint member;
The measuring apparatus according to claim 1.
前記環境センサは、前記補強部材に形成された開口に配置される、
請求項1又は2に記載の測定装置。
The environmental sensor is disposed in an opening formed in the reinforcing member.
The measuring apparatus according to claim 1 or 2.
JP2014266453A 2014-12-26 2014-12-26 Measuring apparatus Pending JP2016125896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266453A JP2016125896A (en) 2014-12-26 2014-12-26 Measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266453A JP2016125896A (en) 2014-12-26 2014-12-26 Measuring apparatus

Publications (1)

Publication Number Publication Date
JP2016125896A true JP2016125896A (en) 2016-07-11

Family

ID=56359347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266453A Pending JP2016125896A (en) 2014-12-26 2014-12-26 Measuring apparatus

Country Status (1)

Country Link
JP (1) JP2016125896A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222059A1 (en) 2016-06-24 2017-12-28 矢崎総業株式会社 Vehicle circuit structure
DE112017003148T5 (en) 2016-06-24 2019-03-14 Yazaki Corporation CIRCUIT BODY FOR VEHICLE
DE112017003145T5 (en) 2016-06-24 2019-03-14 Yazaki Corporation VEHICLE CIRCUIT STRUCTURE
DE112017003126T5 (en) 2016-06-24 2019-05-09 Yazaki Corporation Vehicle circuit structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222059A1 (en) 2016-06-24 2017-12-28 矢崎総業株式会社 Vehicle circuit structure
WO2017222060A1 (en) 2016-06-24 2017-12-28 矢崎総業株式会社 Vehicle circuit structure
DE112017003140T5 (en) 2016-06-24 2019-02-28 Yazaki Corporation Vehicle circuit structure
DE112017003148T5 (en) 2016-06-24 2019-03-14 Yazaki Corporation CIRCUIT BODY FOR VEHICLE
DE112017003145T5 (en) 2016-06-24 2019-03-14 Yazaki Corporation VEHICLE CIRCUIT STRUCTURE
DE112017003153T5 (en) 2016-06-24 2019-03-14 Yazaki Corporation VEHICLE CIRCUIT STRUCTURE
DE112017003134T5 (en) 2016-06-24 2019-04-04 Yazaki Corporation VEHICLE CIRCUIT STRUCTURE
DE112017003126T5 (en) 2016-06-24 2019-05-09 Yazaki Corporation Vehicle circuit structure
DE112017003121T5 (en) 2016-06-24 2019-05-09 Yazaki Corporation Vehicle circuit structure
DE112017003153B4 (en) 2016-06-24 2023-02-02 Yazaki Corporation VEHICLE CIRCUIT STRUCTURE
DE112017003121B4 (en) 2016-06-24 2023-03-09 Yazaki Corporation vehicle circuit structure
DE112017003134B4 (en) 2016-06-24 2023-03-16 Yazaki Corporation VEHICLE CIRCUIT STRUCTURE

Similar Documents

Publication Publication Date Title
US7908096B2 (en) Integrated micromachined thermal mass flow sensor and methods of making the same
US7603898B2 (en) MEMS structure for flow sensor
US7441950B2 (en) Probe for electronic clinical thermometer
US9581480B2 (en) Micro flow sensor
US6911894B2 (en) Sensor package for harsh environments
JP2016125896A (en) Measuring apparatus
CN102589622A (en) Vortex flowmeter with optimized temperature detection
US11959787B2 (en) Flow sensing device
Zhu et al. A robust and low-power 2-D thermal wind sensor based on a glass-in-silicon reflow process
EP3112819B1 (en) Miniature differential pressure flow sensor
KR101540177B1 (en) Pressure sensor and method for manufacturing the same
JP6535604B2 (en) Measuring device and manufacturing method of measuring device
CN107063373A (en) Determine device and determine the manufacture method of device
Wang et al. Sensitivity improvement of MEMS thermal wind senor using vertical stacking thermistors
JP2017026428A (en) Manufacturing method of measuring apparatus and measuring apparatus
JP2016125919A (en) Method of manufacturing measuring apparatus and measuring apparatus
JP2017026429A (en) Manufacturing method of measuring apparatus and measuring apparatus
JP2017009348A (en) Flow sensor
JP2020144124A (en) Flow sensor
CN103453958A (en) Thermo-differential flow sensor and production method thereof
WO2017203860A1 (en) Humidity measuring apparatus
JP2018146345A (en) Thermal flow rate sensor
JP5756274B2 (en) Flow sensor
Krogmann et al. Thermal based flow sensor with nearly zero temperature dependence and MID-based flow channel
JP6219769B2 (en) Flow sensor and method of manufacturing flow sensor