JP2016120480A - 湿式排煙脱硫装置の廃水からのガス排出を低減するためのシステム及び方 - Google Patents
湿式排煙脱硫装置の廃水からのガス排出を低減するためのシステム及び方 Download PDFInfo
- Publication number
- JP2016120480A JP2016120480A JP2015229619A JP2015229619A JP2016120480A JP 2016120480 A JP2016120480 A JP 2016120480A JP 2015229619 A JP2015229619 A JP 2015229619A JP 2015229619 A JP2015229619 A JP 2015229619A JP 2016120480 A JP2016120480 A JP 2016120480A
- Authority
- JP
- Japan
- Prior art keywords
- flue gas
- wastewater
- ammonia
- waste water
- duct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0068—General arrangements, e.g. flowsheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/96—Regeneration, reactivation or recycling of reactants
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/002—Construction details of the apparatus
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/12—Heat utilisation in combustion or incineration of waste
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Organic Chemistry (AREA)
- Sustainable Development (AREA)
- Medicinal Chemistry (AREA)
- Treating Waste Gases (AREA)
- Physical Water Treatments (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
【課題】湿式排煙脱硫の廃水流からのガス排出を低減するための効率的かつ経済的なシステム及び方法の提供。【解決手段】燃焼ユニット1からの排ガスFGは、窒素酸化物除去装置3で窒素酸化物が除去され、さらに予熱器5及び粒子捕集装置9を通り、湿式排煙脱硫システム13で硫黄酸化物が除去され、湿式排煙脱硫システム13の廃水は廃水貯蔵槽プラント19に送られ、廃水貯蔵槽プラント19ではアンモニアGが分離され、アンモニアGは燃焼ユニット1の上流に戻されて燃焼処理され、これによって、環境又は大気へのアンモニア/アンモニウムイオンの排出を低減し、湿式排煙脱硫システム13のような下流側の設備におけるアンモニア/アンモニウムイオンの蓄積を低減する方法。【選択図】図1
Description
本開示は、湿式排煙脱硫装置の廃水からのガス排出を低減するためのシステム及び方法に関し、より詳細には、蒸発装置において廃水を蒸発させる前に、湿式排煙脱硫装置の廃水中に存在するアンモニア/アンモニウムイオンを低減させ、これによって環境への排出物及び/又はシステムの貯蔵物からアンモニア/アンモニウムイオンを低減又は除去する方法に関する。
用役プラント及び産業プラントは、大気排出及び廃水放出に関してますます厳しい規制の対象となっている。政府による規制の順守は、化石燃料を動力とする用役プラント及び産業プラントの資本コスト及び運用コストを大幅に増加させる。伝統的に、大気排出規制の順守は、湿式排煙脱硫(WFGD)システム又は乾式排煙脱硫(DFGD)システムの使用によって実現されていた。このようなシステムの資本コストと、関連する周辺設備(BOP)システムとによれば、発電コスト全体が著しく増加してしまう。BOPシステムは、例えば関連するダクト構造、ファン、バルクマテリアルハンドリングシステム、及び同様の関連するプラント設備及びシステムを含む。BOPシステムには、典型的には200〜500USドル/キロワット($/kW)のコストがかかる。後から追加導入される状況では、環境コンプライアンスに関連した資本コストによってプラントが不経済になるおそれがある。資本投資に加えて、WFGD及びDFGDシステムには、反応剤の消費量、補助電力の使用量、運用、保守人員に関連する実質的な運用コストも伴う。
現在の廃水放出規制の遵守は、以下のような種々の方法によって、すなわち、複数のプラント廃水流を組み合わせて/希釈して単一の適合した流れにするといった簡単な方法によって、又は、中和、重金属の沈殿、生物処理、ろ過、及び/又はこのような処理と同様の工程を含む廃水処理システムといった複雑な方法によって達成することができる。排煙浄化システム及び/又は廃水処理システムの例は、国際公開第2006/030398号、米国特許出願公開第2009/0294377号明細書、米国特許出願公開第2011/0262331号明細書、米国特許出願公開第2012/0240761号明細書、米国特許出願公開第2013/0248121号明細書、米国特許出願公開第2013/0220792号明細書、米国特許第6076369号明細書、米国特許第7524470号明細書、米国特許第7625537号明細書、米国特許第8388917号明細書、米国特許第8475750号明細書、欧州特許出願公開第1955755号明細書、特開2012−200721号明細書から理解することができる。
大気排出及び廃水放出に対してますます厳しい規制が制定されることに伴い、WFGDの廃水流からのガス排出を低減するための効率的かつ経済的なシステム及び方法が必要とされる。
本明細書で説明される態様によれば、ガス排出を低減するための方法であって、少なくとも、廃水貯蔵層の廃水を、分離剤である蒸気、又は空気、又は蒸気及び空気に接触させて、前記廃水貯蔵層における前記廃水からのアンモニアの分離を引き起こして、分離されたアンモニア流を生成するステップと、前記分離されたアンモニア流を、前記廃水貯蔵層から、燃焼ユニットの上流側の流れに、及び/又は、前記燃焼ユニットに直接的に、及び/又は、窒素酸化物除去装置の上流側の流れに、及び/又は、前記窒素酸化物除去装置に直接的に誘導して、環境又は大気へのアンモニア/アンモニウムイオンの排出を低減又は防止する、及び/又は、例えば湿式排煙脱硫(WFGD)システムのような下流側の設備におけるアンモニア/アンモニウムイオンの蓄積を低減又は防止するステップと、を含む方法が提供される。
本明細書で説明されるさらなる態様によれば、ガス排出を低減するためのシステムであって、前記システムは、廃水貯蔵槽とダクト構造とを含み、前記廃水貯蔵槽は、廃水を含み、分離剤である蒸気、又は空気、又は蒸気及び空気を受け取るために機能し、前記廃水からのアンモニアの分離を引き起こして、分離されたアンモニア流を生成し、前記ダクト構造は、前記分離されたアンモニア流を、前記廃水貯蔵層から、燃焼ユニットの上流側の流れに、及び/又は、前記燃焼ユニットに直接的に、及び/又は、窒素酸化物除去装置の上流側の流れに、及び/又は、前記窒素酸化物除去装置に直接的に誘導して、環境又は大気へのアンモニア/アンモニウムイオンの排出を低減又は防止する、及び/又は、例えば湿式排煙脱硫(WFGD)システムのような下流側の設備におけるアンモニア/アンモニウムイオンの蓄積を低減又は防止する、システムが提供される。窒素酸化物除去装置におけるアンモニア消費量が低減されるという間接効果も実現される。
要約すると、環境へのプラントのガス排出を低減するための方法であって、前記プラントの排煙処理システムからの廃水を、蒸気、又は空気、又は蒸気及び空気に接触させることによって、前記廃水から分離されたアンモニアガスを生成し、前記分離されたアンモニアガスの流れを、燃焼ユニットの上流側の流れに、又は、前記燃焼ユニットに、又は、窒素酸化物除去装置の上流側の流れに、又は、前記窒素酸化物除去装置に誘導して、前記分離されたアンモニアガスと反応させることによって、前記分離されたアンモニアガスの環境への排出を低減する、ことを特徴とする方法が提供される。窒素酸化物除去装置におけるアンモニア消費量が低減されるという間接効果も実現される。本方法によれば、前記廃水は、アンモニア、アンモニウムイオン、又はアンモニアとアンモニアイオンとの混合物と、蒸気とを含む。本方法によればさらに、前記燃焼ユニットは、焼却炉又はボイラであり、前記窒素酸化物除去装置は、選択触媒除去装置又は選択的非触媒除去装置であり、前記プラントは、発電プラント又は産業プラントであり、前記排煙処理装置は、湿式排煙脱硫システムである。
要約すると、環境へのプラントのガス排出を低減するためのシステムであって、前記システムは、廃水を含む廃水貯蔵槽と、蒸気源/空気源と、ダクト構造とを含み、前記廃水貯蔵槽は、前記プラントの排煙処理システムからのアンモニア/アンモニウムイオンを一時的に貯蔵するために有し、前記蒸気源/空気源は、前記廃水から分離されたアンモニアガスを生成するために、前記廃水貯蔵槽内の廃水に蒸気、又は空気、又は蒸気及び空気を供給すべく機能し、前記ダクト構造は、前記分離されたアンモニアガスを、燃焼ユニットの上流側の流れに、又は、前記燃焼ユニットに、又は、窒素酸化物除去装置の上流側の流れに、又は、前記窒素酸化物除去装置に流して、前記燃焼ユニット又は前記窒素酸化物除去装置において前記分離されたアンモニアガスを反応させることによって、前記分離されたアンモニアの環境への排出を低減するように配置されている、ことを特徴とするシステムが提供される。本システムによれば、前記燃焼ユニットの上流側の流れは、空気流であり、前記窒素酸化物除去装置の上流側の流れは、排煙流である。本システムによればさらに、前記燃焼ユニットは、焼却炉又はボイラであり、前記窒素酸化物除去装置は、選択触媒除去装置又は選択的非触媒除去装置であり、前記プラントは、発電プラント又は産業プラントであり、前記排煙処理システムは、湿式排煙脱硫システムであり、前記廃水貯蔵槽は、アンモニアガスの分離後に、廃水を蒸発させる蒸発装置へと廃水流を放出する。
上に記載された方法及びシステム、並びに他の特徴は、以下の図面及び発明の詳細な説明によって例示される。
図面の簡単な説明
以下、例示的な実施形態を示す図面が参照される。これらの図面では、同様の要素は、同様の参照番号及び/又は文字を用いて示されている。
以下、例示的な実施形態を示す図面が参照される。これらの図面では、同様の要素は、同様の参照番号及び/又は文字を用いて示されている。
本明細書で開示される本システム及び本方法のさらなる詳細、課題、及び利点は、一例として示される実施例、及び関連する方法についての以下の説明から明らかになるであろう。
発明の詳細な説明
図1には、発電プラント、用役プラント、又は工業プラント10と、環境又は大気へのアンモニア/アンモニウムイオンの排出を低減又は防止するための、ガス排出を低減するためのシステム12と、このガス排出を低減するためのシステム12を動作させる方法とが最も良好に図示されている。ガス排出を低減するためのシステム12の各実施形態は、発電プラント、用役プラント、及び工業プラントにおいて利用することができる。
図1には、発電プラント、用役プラント、又は工業プラント10と、環境又は大気へのアンモニア/アンモニウムイオンの排出を低減又は防止するための、ガス排出を低減するためのシステム12と、このガス排出を低減するためのシステム12を動作させる方法とが最も良好に図示されている。ガス排出を低減するためのシステム12の各実施形態は、発電プラント、用役プラント、及び工業プラントにおいて利用することができる。
図示されているようにプラント10は、ガスタービン、焼却炉、又はボイラのような燃焼ユニット1を含む。燃焼ユニット1は、燃料Fを燃焼し、これによって蒸気及び/又は高温の排煙FGを生成する。燃焼ユニット1には、ダクト2bを介して、少なくとも1つの酸素含有ガス流A、例えば空気、O2ガス、又はO2ガスを含有する別の種類のガスのような酸化体流を供給することができ、さらにはダクト2aを介して、燃焼ユニット1における燃料Fの燃焼のために燃料Fを供給することができる。燃料Fは、石炭、石油、又は天然ガスのような化石燃料とすることも、生物学的廃棄物又は一般廃棄物を含む他の燃料とすることもできる。燃料Fの燃焼によって蒸気の他に高温の排煙FGも形成され、この排煙FGは、ダクト1aを介して燃焼ユニット1から流出する。蒸気は、発電に使用するためにタービン(図示せず)へと搬送することができるか、又は、例えば地域暖房やプロセス加熱等の他の用途のために搬送することができる。高温の排煙FGは、この排煙FGの熱を利用する、システム12の他の要素へと搬送することができ、その後、排煙FGの少なくとも一部は、環境又は大気へと放出される。
ダクト1aは、燃焼ユニット1と窒素酸化物除去装置3との間に流体接続されており、燃焼ユニット1から窒素酸化物除去装置3へと排煙FGを通流させる。窒素酸化物除去装置3は、選択触媒還元(SCR)ユニットとして、又は、選択的非触媒還元(SNCR)ユニットとして、又は、排煙FGから窒素酸化物(例えばNO2、NO3、NOx)を除去するように構成された別の種類の要素として構成することができる。
排煙FGは、窒素酸化物除去装置3を通流した後、流体接続されたダクト3aを介して、さらなる処理又は使用のために流体接続された予熱器5へと流れる。予熱器5を通流する排煙FGによって、予熱器5を通流する循環流体(図示せず)が加熱される。この循環流体は、その後、燃焼ユニット1へと流れる。排煙FGは、予熱器5から、流体接続されたダクト5aを通って粒子捕集装置9へと流れる。しかしながら、ダクト3aを通流する排煙FGの一部は、流体接続されたダクト4を通って流体接続された蒸発装置7へと流れ、これによって予熱器5を迂回する。システム12の或る実施形態では、蒸発装置7へと供給される排煙FGのこの部分を“スリップストリーム”と見なすことができる。
蒸発装置7は、ダクト4を介して排煙FGを受け取るように、かつ、流体接続されたパイプ23を介して廃水貯蔵槽19から液体廃水Wを受け取るように寸法設計された容器である。廃水貯蔵槽19は、プラント10の1つ以上の廃水源17から、流体接続されたパイプ17aを介して液体廃水Wを受け取り、以下により詳細に説明するように、予め規定された流量又は制御された流量で蒸発装置7へと供給するためにこの液体廃水Wを保持するように動作する。
さらには蒸気、又は空気、又は蒸気及び空気Sが、蒸気源/空気源21から廃水貯蔵槽19へと、これらの間に流体接続されたダクト21aを介して供給される。分離剤としてダクト21aを介して廃水貯蔵槽19へと供給されるこの蒸気、又は空気、又は蒸気及び空気Sは、廃水Wからのアンモニアの分離を引き起こして、廃水貯蔵槽19の上側部分又は頂部空間19b内へとこのアンモニアを誘導する。頂部空間19b中の分離されたアンモニアガスGは、廃水貯蔵槽19からダクト19aを介して、燃焼ユニット1に流入するダクト2bに流体接続されたダクト19cへと流れ、及び/又は、燃焼ユニット1に直接流入する流体接続されたダクト19dへと流れ、及び/又は、窒素酸化物除去装置3に流入するダクト1aに流体接続されたダクト19eへと流れ、及び/又は、窒素酸化物除去装置3に直接流入する流体接続されたダクト19fへと流れる。従って、ダクト19c及び/又は19dを介して燃焼ユニット1へと流れる、又は、ダクト19e及び/又は19fを介して窒素酸化物除去装置3へと流れる、分離されたアンモニアガスGは、廃水Wが蒸発装置7へと流れる前に、分離されたアンモニアガスGをシステム12から除去し、こうすることによって、環境又は大気へのアンモニア/アンモニウムイオンの排出を低減又は防止している。
廃水貯蔵槽19からパイプ23を介して廃水Wが供給される蒸発装置7は、噴霧乾燥吸収装置(SDA:spray dryer absorber)として構成することができるか、又は、廃水Wを排煙FGと直接的に接触させて、廃水Wを蒸発させることによって、排煙FGを低減された温度まで冷却し、かつ排煙FGの湿度を増加させることが可能な別の装置又は容器として構成することができる。蒸発装置7は、廃水Wを蒸発させ、かつ排煙FGを冷却及び増湿させるために、回転式噴霧器、二流体ノズル、又は、廃水Wを排煙FG中に噴霧又は分散させる他の分散要素を含むことができる。
燃焼ユニット1によって排出された排煙FGの一部を、予熱器5から分流して蒸発装置7へと流すことによって、例えば約700°F、370℃の温度、又は約600°F〜800°Fの間の温度、又は約300℃〜450℃の間の温度を有する比較的高温の排煙FGを、蒸発装置7へと通流させることが可能となる。上に挙げた温度範囲は、蒸気発電プラント10に適用した場合を表したものである。他の産業プラント又はガス火力プラントに適用した場合には、温度範囲が異なる可能性がある。蒸発装置7において、このような比較的高温の排煙FGを使用することによって、例えば排煙FGが予熱器5を通過した後の、既に他の熱伝達動作において使用済みの、比較的低温の排煙FGを使用した場合に比べて、比較的多量の廃水Wを蒸発させることが可能となる。予熱器5から蒸発装置7へと排煙FGを分流したことによって得られる、比較的高温の排煙FGの温度によって、蒸発装置7をより低コストに製造することも可能となる。本システム12及び本方法を使用することによって低コストの製造が可能となる。なぜなら、蒸発のために比較的高温の排煙FGを使用すれば、蒸発のために比較的低温の排煙FGを使用する他の実施形態に比べて、規定量の廃水Wを蒸発させるために必要となる蒸発装置7の寸法をより小さくすることができるからである。製造コストが低減される以外にも、より小さな蒸発装置7を使用することによって、蒸発装置7、ダクト4、及び出力ダクト8が占める設置面積がより小さくなり、このことは、比較的小さいスペースしか利用できないプラント10の内部にシステム12を後から追加導入するためには、しばしば有利である。
予熱器5の上流側からの比較的高温の排煙FGを使用することは、この上流位置からの排煙FGの圧力が、予熱器5の下流側における排煙FGの圧力よりも高いという追加的な利点を有する。排煙FGのより高い圧力によって、排煙FGがダクト4を通過して蒸発装置7に流入し、流体接続されたダクト8を介して蒸発装置7から流出するという自然循環を促進することができる。このような自然循環は有利である。なぜならこれによって、蒸発装置7への排煙FGの流れ、又は蒸発装置7からの排煙FGの流れを駆動するために、ポンプ又はファン31が必要なくなるからである。もちろん、バックアップ手段として、又は、所期の流量範囲内に排煙FGの流量制御を維持できるよう保証するために、このようなシステム12のダクト8においてポンプ又はファン31を使用してもよい。このようなシステム12においてポンプ又はファン31を使用する場合には、比較的高温の排煙FGの使用によってより大きな圧力降下がもたらされることに基づいて、このポンプ又はファンを低電力で動作させることが可能であり、これによってエネルギ又は関連コストを節約することができる。
蒸発装置7に流入する排煙FGの流量、及び/又は、蒸発装置7から流出する排煙FGの温度及び/又は湿度は、蒸発装置7の入口35に隣接する少なくとも1つの流量センサ33によって、及び/又は、蒸発装置7の出口41に隣接して配置された又は蒸発装置7のダクト8内に配置された少なくとも1つの温度センサ37及び/又は少なくとも1つの湿度センサ39によって監視することができ、これによって蒸発装置7の動作が制御され、排煙FGが少なくとも1つの予め規定された温度まで冷却されること、及び、予め規定された湿度を有することが保証される。ダクト4を通過する排煙FGの流量、及び/又は、蒸発装置7に供給される廃水Wの流量は、1つ以上のセンサ33,37,39によって検出された排煙FGの流量、温度、及び湿度に基づいて調整することができる。これに代えて、排煙FGの流量は維持したまま、一方で廃水Wの流量を制御することにより、排煙FGの所期の温度及び湿度状況を実現することもできる。
例えばダクト8内部の排煙FGが予め規定された温度範囲に、例えば約180°F〜約400°Fの間、又は約80℃〜約205℃の間の温度に維持されるように、排煙FGを監視することができる。別の例として、固体粒子の濡れ及び/又は腐食を回避するために、排煙FGの温度が自身の断熱的飽和温度を少なくとも約10℃又は約20°F上回ることが保証されるように、蒸発装置7及び/又はダクト8内部の排煙FGの温度を監視することができる。排煙FGが予め規定された温度閾値を下回ると判断された場合には、制御弁4aによって制御される排煙FGを、ダクト4内へとより多量に分流させて蒸発装置7に流入させることができ、及び/又は、制御弁23aによって制御される蒸発装置7に供給される廃水Wの量を低減して、排煙FGに接触する廃水Wをより少なくすることができる。排煙FGが予め規定された温度閾値を上回ると判断された場合には、制御弁23aによって制御される廃水Wを、蒸発装置7へとより多く供給することができ、及び/又は、制御弁4aによって制御される排煙FGを、ダクト4を通して蒸発装置7へとより少なく分流させることができる。
蒸発装置7へと供給される廃水Wは、アンモニア/アンモニウムイオンが既に除去された状態であり、廃水W中に懸濁された固体粒子のような固体材料を含むことができる。廃水Wはまた、廃水Wから沈殿可能な成分も含むことができる。なぜならこの液体廃水Wは、蒸発装置7において加熱され、次いで蒸発されるからである。廃水W中に固体が存在する場合には、この固体によって乾燥動作を改善することができる。
少なくとも幾つかの用途にとって好まれうる1つの実施例では、廃水Wの蒸発と、溶解及び懸濁した固体の乾燥とを促進するために、廃水Wに固体材料が添加され、こうすることによって、ダクト/パイプ及び容器の下流側における湿潤粒子の堆積が回避される。例えば粒子捕集装置9からの固体粒子、又は、排煙脱硫(FGD)システムからの固体副生物を、廃水貯蔵槽19へと供給することができるか、又は、廃水貯蔵槽19内の廃水と混合させることができ、これによって、貯蔵されている廃水Wに固体粒子が添加される。廃水W中への固体粒子の混合は、廃水貯蔵槽19内にて実施することができるか、又は、廃水Wが蒸発装置7に供給される前に実施することができる。
液体廃水Wはまた、他の成分を含むことができ、これらの成分は、液体廃水Wに混合又は添加される。廃水Wには、例えば石灰、消石灰、炭酸ナトリウム、トロナ、又はアルカリ性フライアッシュのようなアルカリ性反応剤Rを含む材料を添加することができる。このような材料を保持する容器等のようなアルカリ性反応剤源51を、ダクト51aを介して廃水貯蔵槽19に流体接続させることができ、これによって、廃水Wが廃水貯蔵槽19内に保持されている間に、アルカリ性反応剤Rが廃水Wに供給される。
廃水Wには予め規定された量のアルカリ性反応剤Rを供給することができ、こうすることによって廃水Wは、アルカリ性に富み、蒸発装置7における排煙FGとの接触によって廃水Wが蒸発するときに不溶性の重金属化合物を沈殿させるために必要とされる程度を超過する。アルカリ性反応剤Rを添加して、廃水貯蔵槽19の内容物のpH値を好ましくは約12.0以上に上昇させることにより、アンモニアの分離が改善される。廃水W中に過剰量のアルカリ性反応剤Rが存在することにより、塩化水素(HCl)、フッ化水素(HF)、二酸化硫黄(SO2)、三酸化硫黄(SO3)、及び硫酸(H2SO4)のような排煙FG中の酸性ガス成分が捕捉され、かつ、亜硫酸カルシウム(CaSO3)、硫酸カルシウム(SaSO4)、塩化カルシウム(CaCl2)、及びフッ化カルシウム(CaF2)のような固体粒子が形成され、これによって腐食の防止と、汚染物質の排出の低減とを支援することもできる。これに加えて、固体中の未反応のアルカリ性反応剤Rがあれば、冷却及び加湿された排煙FGと、予熱器5から流体接続されたダクト5aを通流する固体粒子とを混合するために排煙FGが蒸発装置7からダクト8を通流する際に、排煙FG中で反応し続ける吸収剤は、追加的な酸性ガス成分を捕捉し続けることが可能となる。このような吸収剤成分の存在は、排煙FG中の酸化性成分の捕集によって、下流側の設備の腐食防止を支援することができ、さらには、このような酸性ガス関連成分を下流側で捕集する付加的な吸収剤を提供して、酸性ガス関連成分の大気中への放出を防止することができる。
湿式排煙脱硫システム13が蒸発装置7の下流側に配置されている実施形態では、アルカリ性反応剤Rを使用して、排煙FG中のHClを上流側で捕捉することによって、パージ廃水Wの量を低減することが可能である。従って、このような実施形態では、蒸発装置7の寸法を小さくすることができる。なぜなら、比較的少量の廃水を蒸発させるためには、比較的少量の排煙FGしか要求されないからである。
これに加えて、廃水Wが蒸発装置7に供給される前に、活性炭素源又は活性コークス源53からの活性炭素又は活性コークスACを、活性炭素又は活性コークスACを廃水Wに添加するために流体接続されたダクト53aを介して、廃水貯蔵槽19へと添加することができる。活性炭素又は活性コークスのACの存在によって、水銀、セレン、及びヒ素のような金属の化合物の吸収が可能となり、また、蒸発装置7において廃水Wが蒸発する際に、このような化合物が蒸発する可能性を抑えることが可能となる。これに加えて、活性炭素又は活性コークスACの存在によって、蒸発装置7を通過して排煙FG中に存在しうる金属化合物(例えば水銀)の吸収が可能となる。
或る実施形態では、活性炭素又は活性コークスACを、廃水貯蔵槽19に供給する前にアルカリ性反応剤Rと混合させることができる。別の実施形態では、活性炭素又は活性コークスACをアルカリ性反応剤Rとは別個に保持して、別個に廃水Wに添加するようにしてもよい。
蒸発装置7からダクト8を通ってダクト5aに流入する排煙FGの第1部分は、予熱器5からダクト5aを通流する排煙FGの第2部分と混合され、その後、混合された排煙FGが、流体接続された粒子捕集装置9に流入する。これに代えて、粒子捕集装置9を、蒸発装置7と予熱器5のそれぞれに、別個に流体接続された別個のダクトを介して直接的に流体接続させ、粒子捕集装置9において排煙FGの第1部分と第2部分の双方を別個に受け取るようにしてもよい。粒子捕集装置9は、電気集塵装置のような集塵装置か、又は布フィルタのようなフィルタとして構成することができる。これに代えて粒子捕集装置9を、排煙FGから固体粒子を分離するように構成された、及び/又は、排煙FGから固体粒子Pを分離するために排煙FGから固体粒子を沈殿させるように構成された、別の種類の粒子捕集装置として構成してもよい。これに代えて、蒸発装置7の下流側に別個の粒子捕集装置90を構成して、ダクト90aを介して、分離及び隔離された粒子SPを捕集及び排出するようにしてもよい。この場合には、粒子捕集装置90に後続してファン31を設けることができ、これによって、粒子捕集装置90からダクト8に流入する排煙が、ダクト5aを通流する排煙と混合される。
分離された排煙FGは、粒子捕集装置9から、流体接続されたダクト9aを介して、流体接続された湿式排煙脱硫システム13へと流入する。湿式排煙脱硫システム13内で排煙FGから硫黄が除去され、その後、この排煙FGは、流体接続されたダクト13a介して、“浄化済みの”排煙CGを大気に放出するための煙突又は熱回収蒸気発生器のような、流体接続されたスタック15へと流れる。これに代わる実施形態では、湿式排煙脱硫システムの代わりに乾式排煙脱硫システムを使用してもよい。
湿式排煙脱硫システム13からの廃水Wは、流体接続されたパイプ14を介して、流体接続された廃水貯蔵槽19へと供給することができる。これに加えて、例えば反応槽、一次液体サイクロンのオーバーフロー、及び/又は、真空濾液のような、別の廃水源17からの廃水Wを、流体接続されたパイプ17aを介して廃水貯蔵槽19へと供給することができる。例えば冷却塔のブローダウン、雨水及び貯炭の流出物、化学的浄化廃棄物、及び/又は、発電所の灰捨池のオーバーフローのような、他の廃水源からの廃水Wを収集することができるか、又は、廃水貯蔵槽19へと搬送して廃水貯蔵槽19内に保持することができる。廃水W源は、プラント10の作業員の顧客である別の産業団体からであってもよく、このプラント10の作業員が、“顧客(customer)”の廃水Wをプラント10に搬送してこの“顧客”の廃水Wを処理する。
排煙FGから分離された、粒子捕集装置9からの固体Pは、燃焼ユニット1での化石燃料Fの本来の燃焼中に生成され、このようにして生成された排煙FG中に飛沫同伴される固体材料を含むことができる。これに加えて、排煙FGから分離された、粒子捕集装置9からの固体Pは、排煙FG、及び/又は、形成されうる排煙の沈殿物、及び/又は、フライアッシュのような排煙中に飛沫同伴される粒子を冷却及び加湿するための、排煙FGに接触した廃水Wから形成された固体を含むことができる。粒子捕集装置9によって排煙FGから分離された固体Pは、貯蔵、処理、又は他の分配のために、流体接続されたダクト11を介して搬送することができる。
択一的な実施形態では、廃水Wを、混合装置25へと供給して、アルカリ性反応剤R、及び、活性コークス又は活性炭素AC、及び、粒子捕集装置9によって分離された固体Pの少なくとも一部と混合させることができる。図2は、このような択一的実施形態を図示している。簡単化及び明確化のため、さらには明細書の説明の重複を回避するために、図1のシステム及び方法の特徴に類似している図2のシステム及び方法の特徴は、類似の参照符号又は文字によって識別される。
図2に示されるように、燃焼ユニット1から流出した排煙FGは、排煙FGから窒素酸化物成分を除去する窒素酸化物除去装置3を通流し、その後、排煙FGの一部が、予熱器5を迂回するダクト6へと流入する。湿式排煙脱硫システム13からパイプ14を通流する廃水Wと、少なくとも1つの他の廃水源17からパイプ17aを通流する廃水Wとは、廃水貯蔵槽19内に一時的に保持することができる。従って、廃水貯蔵槽19は、湿式排煙脱硫システム13と、プラント10の1つ以上の廃水源とから、それぞれ流体接続されたパイプ14,17aを介して液体廃水Wを受け取り、予め規定された流量又は制御弁23aによって制御された流量で蒸発装置7へと供給するためにこの廃水Wを保持するように配置されている。液体排水Wはまた、他の成分を含むこともでき、これらの成分は、液体廃水Wに混合又は添加される。廃水Wには、例えば石灰、消石灰、炭酸ナトリウム、トロナ、又はアルカリ性フライアッシュのようなアルカリ性反応剤Rを含む材料を添加することができる。このような材料を保持する容器等のようなアルカリ性反応剤源51を、ダクト51aを介して廃水貯蔵槽19に流体接続させることができ、これによって、廃水Wが廃水貯蔵槽19内に保持されている間に、アルカリ性反応剤Rが廃水Wに供給される。従って、廃水Wには予め規定された量のアルカリ性反応剤Rを供給することができ、こうすることによって廃水Wは、アルカリ性に富み、蒸発装置7における排煙FGとの接触によって廃水Wが蒸発するときに不溶性の重金属化合物を沈殿させるために必要とされる程度を超過する。アルカリ性反応剤Rを添加して、廃水貯蔵槽19の内容物のpH値を好ましくは約12.0以上に上昇させることにより、アンモニアの分離が改善される。廃水W中に過剰量のアルカリ性反応剤Rが存在することにより、塩化水素(HCl)、フッ化水素(HF)、二酸化硫黄(SO2)、三酸化硫黄(SO3)、及び硫酸(H2SO4)のような排煙FG中の酸性ガス成分が捕捉され、かつ、亜硫酸カルシウム(CaSO3)、硫酸カルシウム(SaSO4)、塩化カルシウム(CaCl2)、及びフッ化カルシウム(CaF2)のような固体粒子が形成され、これによって腐食の防止と、汚染物質の排出の低減とを支援することもできる。これに加えて、固体中の未反応のアルカリ性反応剤Rがあれば、冷却及び加湿された排煙FGと、予熱器5から流体接続されたダクト5aを通流する固体粒子とを混合するために排煙FGが蒸発装置7からダクト8を通流する際に、排煙FG中で反応し続ける吸収剤は、追加的な酸性ガス成分を捕捉し続けることが可能となる。このような吸収剤成分の存在は、排煙FG中の酸化性成分の捕集によって、下流側の設備の腐食防止を支援することができ、さらには、このような酸性ガス関連成分を下流側で捕集する付加的な吸収剤を提供して、酸性ガス関連成分の大気中への放出を防止することができる。さらには蒸気、又は空気、又は蒸気及び空気Sが、蒸気源/空気源21から廃水貯蔵槽19へと、これらの間に流体接続されたダクト21aを介して供給される。分離剤としてダクト21aを介して廃水貯蔵槽19へと供給されるこの蒸気、又は空気、又は蒸気及び空気Sは、廃水Wからのアンモニアの分離を引き起こして、廃水貯蔵槽10の上側部分又は頂部空間19b内へとこのアンモニアを誘導する。頂部空間19b内の分離されたアンモニアガスGは、廃水貯蔵槽19からダクト19aを介して、燃焼ユニット1に流入するダクト2bに流体接続されたダクト19cへと流れ、及び/又は、燃焼ユニット1に直接流入する流体接続されたダクト19dへと流れ、及び/又は、窒素酸化物除去装置3に流入するダクト1aに流体接続されたダクト19eへと流れ、及び/又は、窒素酸化物除去装置3に直接流入する流体接続されたダクト19fへと流れる。従って、ダクト19c及び/又は19dを介して燃焼ユニット1へと流れる、又は、ダクト19e及び/又は19fを介して窒素酸化物除去装置3へと流れる、分離されたアンモニアガスGは、廃水Wが蒸発装置7へと流れる前に、分離されたアンモニアガスGをシステム12から除去し、こうすることによって、環境又は大気へのアンモニア/アンモニウムイオンの排出が低減又は防止している。廃水貯蔵槽19内の廃水WからアンモニアガスGが分離された後、この廃水Wは、制御弁23aの制御によってパイプ23を通って混合装置25へと流れ、アルカリ性反応剤源51に流体接続されたダクト51bを介して混合装置25に供給されたアルカリ性反応剤Rと混合される。このような実施形態に対しては、混合装置25を、フランス・パリに在所のALSTOM Power社から入手可能なNID(登録商標)乾式排煙脱硫システムの混合器として構成することが考えられる。もちろん、これに代えて他の種類の混合装置25を使用してもよい。
活性炭素源又は活性コークス源53から、混合装置25に流体接続されたダクト53aを介して活性炭素又は活性コークスACも供給され、同様にして混合装置25に供給された廃水Wと混合される。混合装置25を、流体接続されたダクト9bを介して粒子捕集装置9に接続させることもでき、これによって、粒子捕集装置9によって分離されて捕集された固体Pの少なくとも一部を混合装置25に供給することができる。
混合装置25は、アルカリ性反応剤源51からダクト51bを介してアルカリ性反応剤Rを受け取り、粒子捕集装置9からダクト9bを介して固体Pを受け取り、活性炭素源又は活性コークス源53からダクト53aを介して活性炭素又は活性コークスACを受け取り、廃水貯蔵槽19からパイプ23を介して液体廃水Wを受け取ることができる。混合装置25は、これらの要素を撹拌又は混合して、混合物Mを形成することができる。混合装置25によって形成される混合物は、湿潤粉体、例えば高湿粉塵又は湿潤粉塵、又はスラリーとして形成されうる。湿潤粉体として形成される場合には、混合物Mは、少なくとも1重量%の水含有量、又は2重量%〜5重量%の間の水含有量を有しうる。混合装置25によって1重量%〜8重量%の間の水を含む混合物Mが形成されるように、実施形態を構成しうることも考えられる。さらに別の実施形態では、1重量%から8重量%を超える範囲の水含有量を有する湿潤粉体が形成されるように、混合装置25を構成しうることも考えられる。
混合装置25内で形成された混合物Mは、その後、混合装置25からダクト27を介して出力することができる。少なくとも1つの混合物分配ダクト27は、混合装置25をバイパス導管6に流体接続しており、バイパス導管6を通流する排煙FGに混合物Mを供給する。バイパス導管6内に混合物を分散又は噴霧して、排煙FGに混合物Mを供給するために、1つ又は複数のノズル、又は他の分散機構27aを使用することができる。バイパス導管6を通過する排煙FGに接触させるために、混合装置25によって形成された混合物Mが、バイパス導管6の1つの個別の位置内で分散可能となるように、又は、バイパス導管6内の複数の異なる離間した位置で分散可能となるように、混合物分配ダクト27を構成することができる。その後、排煙FG及び混合物Mは、バイパス導管6の残りの部分を通過して蒸発装置7に流入することができ、次いで、予熱器5から流出してダクト5aを通流する排煙FGと、ダクト8を介して混合される。システム12の択一的実施形態は、任意の廃水W、又は粒子捕集装置9からの固体Pが、バイパス導管6又は蒸発装置7に別個に加えられるように構成することができる。
ダクト8を介して粒子捕集装置9に流入する垂直方向の流れに関して、混合物Mからの廃水Wが充分に蒸発されること、及び、排煙FGが予め規定された温度まで冷却されること、及び、固体粒子が予め規定された乾燥度まで乾燥されることを保証するために、排煙FGと、混合装置25からの混合物Mとを、予め規定された滞留時間の間、蒸発装置7内に留めておくことが考えられる。これに代えて、蒸発装置7の下流側に別個の粒子捕集装置90を構成して、ダクト90aを介して、分離及び隔離された粒子SPを捕集及び排出するようにしてもよい。この場合には、粒子捕集装置90に後続してファン31を設けることができ、これによって、粒子捕集装置90からダクト8に流入する排煙が、ダクト5aを通流する排煙と混合される。予熱器5の上流側からの比較的高温の排煙FGを使用することは、この上流位置からの排煙FGの圧力が、予熱器5の下流側における排煙FGの圧力よりも高いという追加的な利点を有する。排煙FGのより高い圧力によって、排煙FGがダクト6を通過して蒸発装置7に流入し、流体接続されたダクト8を介して蒸発装置7から流出するという自然循環を促進することができる。このような自然循環は有利である。なぜならこれによって、蒸発装置7への排煙FGの流れ、又は蒸発装置7からの排煙FGの流れを駆動するために、ポンプ又はファン31が必要なくなるからである。もちろん、バックアップ手段として、又は、所期の流量範囲内に排煙FGの流量制御を維持できるよう保証するために、このようなシステム12のダクト8においてポンプ又はファン31を使用してもよい。このようなシステム12においてポンプ又はファン31を使用する場合には、比較的高温の排煙FGの使用によってより大きな圧力降下がもたらされることに基づいて、このポンプ又はファンを低電力で動作させることが可能であり、これによってエネルギ又は関連コストを節約することができる。
予熱器5から流出した排煙FGは、ダクト5a内にて、流体接続されたダクト8を介してダクト5aに流入した固体粒子と、排煙FGとを結合させる。結合された排煙FG及び固体粒子は、ダクト8から、排煙FGから固体Pを分離するための流体接続された粒子捕集装置9に流入する。粒子捕集装置9において排煙FGから分離された固体Pの少なくとも一部は、流体接続されたダクト9bを介して混合装置25に再循環される。固体P材料の他の部分は、後続の処理及び分配のためにダクト11を介して出力することができる。
排煙FGは、粒子捕集装置9から、脱硫のための湿式排煙脱硫システム13へと流れ、その後、“浄化済みの”排煙CGが、流体接続されたダクト13aを介して流体接続されたスタック15へと流れ、環境又は大気へと放出される。湿式排煙脱硫システム13からの廃水Wと、他のプラント10の廃水W源17からの廃水Wとを、それぞれパイプ14,17aを介して廃水貯蔵槽19に供給して、アンモニアを分離し、その後、混合装置25において使用することができる。これに代わる実施形態では、湿式排煙脱硫システムの代わりに乾式排煙脱硫装置を使用してもよい。
或る実施形態では、混合装置25において形成された混合物Mの一部を、流体接続されたダクト25a(図2の破線で図示)を介して、予熱器5を出た後に流体接続されたダクト5aを通流する排煙FGへと搬送することが考えられ、これによって、排煙FGを冷却及び加湿することができ、粒子捕集装置9に流入する前に、混合物M中の固体粒子を乾燥させることができる。システム12のこのような実施形態は有利である。なぜなら、これによって設置面積が比較的小さくなるので、プラント10を最小限の資本コストの負担で後から追加導入することができるからである。
例えば、混合装置25によって形成された混合物Mが、予熱器5を出た後、ダクト5aを介して粒子捕集装置9に流入する前に排煙FGに供給されるように構成されたシステム12の実施形態の場合には、バイパス導管6は必ずしも必要とされない。さらには、排煙FGを予熱器5から粒子捕集装置9に搬送するためのプラント10内の既存の導管を、混合物M及び排煙FGを粒子捕集装置9に搬送するために最小限の修正で利用することが考えられる。排煙FGが充分に冷却されること、及び、混合物Mからの固体粒子が、粒子捕集装置9に流入する前に充分に乾燥されることを保証するために、混合物M及び排煙FGの両方を搬送するこの導管の一部は、混合物Mが、この導管を通過する排煙FGと共に充分な滞留時間を有するように構成することができる。例えば排煙は、予熱器5の通過後には、約250°F〜約400°Fの間の温度、又は約120℃〜約205℃の間の温度となることができ、その後、混合装置25からの混合物Mと接触することによって約180°F〜約300°Fの間の温度、又は約80℃〜約150℃の間の温度まで冷却させることができ、これによって固体粒子が充分に乾燥され、かつ排煙FGは、粒子捕集装置9に流入する前に冷却及び加湿される。
システム12及びシステム12を使用する方法は、廃水Wが排煙FG流中に蒸発する前に、廃水W中のアンモニア/アンモニウムイオンの含有量を低減するプロセスを提供する。従って、このプロセスは、排煙FG流中へのアンモニアの放出を低減し、これによって環境又は大気へのアンモニアの排出、及び/又は、湿式排煙脱硫システム13のような下流側の設備における蓄積を低減する。プラント10内のアンモニアとして、排煙FG流は望ましくない排出であり、多くの場合、操業許可のために所定の排出水準内でのプラントの運転が要求される。実際には、アンモニアは一般的に、窒素酸化物化合物を還元する選択触媒還元装置(SCR)の上流側にアンモニアが加えられるプラント環境において使用される。多くの場合、やや過剰状態にあるアンモニアがSCRを通過し、下流側の設備へと移行し、そこでその設備に応じた種々の水準まで除去されうる。湿式排煙脱硫システム(WFGD)がSCRの下流側に位置する場合には、このWFGDシステムが、排煙FGから若干のアンモニアを除去し、その後このアンモニアが、水性WFGDスラリー中に蓄積される。WFGDシステムの水性蒸気の一部は、所定の内部の化学的性質を維持するために、例えば近似的な塩化物水準を制御するために、通常は廃水Wとしてパージされ、廃水W中のアンモニアは、パージされた廃水W流と共に大部分がWFGDシステムから流出される。本明細書に開示されたシステム及び方法は、プラントによってアンモニアが排煙FG及び環境の中に放出される可能性を低減する。従って、本システム及び方法によれば、プラントは、アンモニア/アンモニウムイオンに接触しない廃水W流のための蒸発システムを使用することが可能となり、アンモニア/アンモニアイオンを含む廃水Wの蒸発によって引き起こされる排煙FG流によってアンモニアの排出が除去され、廃水W蒸発装置7の下流側にあるWFGDシステムにおけるアンモニアの蓄積が回避され、SCR又はSNCR3システムに対して要求されるアンモニア補給量(ammonia make-up supplies)が低減される。
複数の異なる設計基準を考慮するために、ガス排出を低減するためのシステム12の各実施例に対して種々の変更を加えることができることを理解すべきである。例えば、種々の固体/流体を搬送するためにシステム12の種々の要素に接続される各ダクトの寸法、形状、又は構造は、任意の個数の適切な形状、寸法、又は構成のダクトとすることができ、また、任意の個数の種々の要素、例えば容器、弁、パイプ(パイプ)、チューブ、槽(タンク)、又はダクトを含むことができ、これらの要素は、これらの要素と流体接続されたポンプ又はファンによって作用される同伴粒子を含む又は含まない流体の流速を有する。排煙、廃水、及び他の流体の流れが維持又は保持される温度及び/又は圧力も、設計目標の特定の設定を満たす適切な範囲の任意の数値とすることができる。また別の例としては、蒸発装置7において廃水Wによって吸収された酸性ガスを中和するために、任意の種類の適切なアルカリ性反応剤Rを廃水W中に注入することができるか、又は廃水Wと混合させることができる。
環境へのガス排出を低減するための本システム及び方法を、種々の実施例を参照しながら説明してきたが、本発明の範囲から逸脱することなく様々な変更を実施可能であること、及び、本発明の各要素を同等物によって置換可能であることは、当業者に理解されるであろう。これに加えて、特定の状況または材料を、本発明の教示の本質的範囲から逸脱することなく本発明の教示に適合させることができる。従って、本システム及び本方法は、開示された特定の実施形態に限定されず、添付の特許請求の範囲内に含まれる全ての実施形態を含むことが意図される。
Claims (15)
- 環境へのプラントのガス排出を低減するための方法であって、
前記プラントの排煙処理システムからの廃水を分離剤に接触させることによって、前記廃水から分離されたアンモニアガスを生成し、
前記分離されたアンモニアガスの流れを、燃焼ユニットの上流側の流れに、又は、前記燃焼ユニットに、又は、窒素酸化物除去装置の上流側の流れに、又は、前記窒素酸化物除去装置に誘導して、前記分離されたアンモニアガスと反応させることによって、前記分離されたアンモニアガスの環境への排出を低減する
ことを特徴とする、方法。 - 前記廃水は、アンモニア、又はアンモニウムイオン、又はアンモニアとアンモニウムイオンの混合物を含む
請求項1記載の方法。 - 前記分離剤は、蒸気、又は空気、又は蒸気及び空気である
請求項1記載の方法。 - 前記燃焼ユニットは、焼却炉又はボイラである
請求項1記載の方法。 - 前記窒素酸化物除去装置は、選択触媒除去装置又は選択的非触媒除去装置である
請求項1記載の方法。 - 前記プラントは、発電プラント又は産業プラントである
請求項1記載の方法。 - 前記排煙処理システムは、湿式排煙脱硫システムである
請求項1記載の方法。 - 環境へのプラントのガス排出を低減するためのシステムであって、
前記システムは、廃水を含む廃水貯蔵槽と、分離剤源と、ダクト構造とを含み、
前記廃水貯蔵槽は、前記プラントの排煙処理システムからのアンモニア/アンモニウムイオンを一時的に貯蔵するために有し、
前記分離剤源は、前記廃水から分離されたアンモニアガスを生成するために、前記廃水貯蔵槽内の廃水に分離剤を供給すべく機能し、
前記ダクト構造は、前記分離されたアンモニアガスを、燃焼ユニットの上流側の流れに、又は、前記燃焼ユニットに、又は、窒素酸化物除去装置の上流側の流れに、又は、前記窒素酸化物除去装置に流して、前記燃焼ユニット又は前記窒素酸化物除去装置において前記分離されたアンモニアガスを反応させることによって、前記分離されたアンモニアの環境への排出を低減するように配置されている
ことを特徴とする、システム。 - 前記燃焼ユニットの上流側の流れは、空気流である
請求項8記載のシステム。 - 前記窒素酸化物除去装置の上流側の流れは、排煙流である
請求項8記載のシステム。 - 前記燃焼ユニットは、焼却炉又はボイラである
請求項8記載のシステム。 - 前記窒素酸化物除去装置は、選択触媒除去装置又は選択的非触媒除去装置である
請求項8記載のシステム。 - 前記分離剤は、蒸気、又は空気、又は蒸気及び空気である
請求項8記載のシステム。 - 前記排煙処理システムは、湿式排煙脱硫システムである
請求項8記載のシステム。 - 前記廃水貯蔵槽は、アンモニアガスの分離後に、廃水を蒸発させる蒸発装置へと廃水流を放出する
請求項8記載のシステム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/552,931 | 2014-11-25 | ||
US14/552,931 US9650269B2 (en) | 2014-11-25 | 2014-11-25 | System and method for reducing gas emissions from wet flue gas desulfurization waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016120480A true JP2016120480A (ja) | 2016-07-07 |
Family
ID=55177691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015229619A Pending JP2016120480A (ja) | 2014-11-25 | 2015-11-25 | 湿式排煙脱硫装置の廃水からのガス排出を低減するためのシステム及び方 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9650269B2 (ja) |
EP (1) | EP3025774A1 (ja) |
JP (1) | JP2016120480A (ja) |
KR (1) | KR20160062707A (ja) |
CN (1) | CN105617829A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019098204A (ja) * | 2017-11-29 | 2019-06-24 | オルガノ株式会社 | アンモニア処理方法及び装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10267517B2 (en) * | 2016-07-08 | 2019-04-23 | Arvos Ljungstrom Llc | Method and system for improving boiler effectiveness |
DK3323496T3 (da) * | 2016-11-18 | 2020-12-14 | General Electric Technology Gmbh | Apparat og fremgangsmåde til reduktion af emissioner af sur gas med nul-væskeudledning af spildevand |
CN106477825A (zh) * | 2016-12-02 | 2017-03-08 | 东北大学 | 焦化废水处理方法 |
CN109133235A (zh) * | 2017-06-28 | 2019-01-04 | 北京朗新明环保科技有限公司 | 一种脱硫废水处理零排放工艺系统及方法 |
MX2020007576A (es) | 2018-01-16 | 2020-09-14 | Nuorganics LLC | Sistemas y metodos para concentrar una sustancia recuperada de una corriente de gas. |
CN112062377B (zh) * | 2020-09-23 | 2021-09-03 | 大唐环境产业集团股份有限公司 | 一种烧结烟气脱硫废水资源化处理系统及方法 |
KR102732049B1 (ko) * | 2023-07-21 | 2024-11-18 | 에스케이이노베이션 주식회사 | 디지털 트윈 기술을 활용한 암모니아의 흐름을 최적화하기 위한 시스템 및 방법 |
CN116764435B (zh) * | 2023-08-17 | 2023-11-03 | 山西毅诚科信科技有限公司 | 一种烟气scr脱硝混合反应装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3429999A1 (de) | 1984-08-16 | 1986-02-27 | Bergwerksverband Gmbh, 4300 Essen | Verfahren zur abscheidung von so(pfeil abwaerts)2(pfeil abwaerts) und no(pfeil abwaerts)x(pfeil abwaerts) |
CH673593A5 (ja) * | 1986-10-13 | 1990-03-30 | Von Roll Ag | |
CH677885A5 (ja) * | 1988-09-08 | 1991-07-15 | Von Roll Ag | |
DE4218300A1 (de) | 1992-06-03 | 1993-12-09 | Linde Ag | Verfahren zur Reinigung eines zumindest H¶2¶S- und NO¶x¶-haltigen Gasgemisches |
JP3448201B2 (ja) | 1998-01-28 | 2003-09-22 | 三菱重工業株式会社 | 排水の蒸発濃縮装置 |
WO2006030398A1 (en) | 2004-09-16 | 2006-03-23 | Elsam Engineering A/S | Method of operating a flue gas cleaning plant |
US7625537B2 (en) | 2006-06-12 | 2009-12-01 | Alstom Technology Ltd | Integrated dry and wet flue gas cleaning process and system |
US7524470B2 (en) | 2006-07-13 | 2009-04-28 | Alstom Technology Ltd | Reduced liquid discharge in wet flue gas desulfurization |
FI20070111A0 (fi) | 2007-02-07 | 2007-02-07 | Petteri Mikko Samuli Penttinen | Savukaasun puhdistus ja lämmön talteenottolaite |
AU2008251756B2 (en) | 2007-05-11 | 2013-06-06 | Metaproteomics, Llc | Methods and compositions for heavy metal detoxification |
US8052763B2 (en) | 2008-05-29 | 2011-11-08 | Hpd, Llc | Method for removing dissolved solids from aqueous waste streams |
US20100089740A1 (en) * | 2008-10-15 | 2010-04-15 | Dinh-Cuong Vuong | Method and systems for processing waste water using zero process water discharge |
PL2540379T3 (pl) | 2010-02-25 | 2020-06-15 | Mitsubishi Heavy Industries, Ltd. | Układ oczyszczania gazów spalinowych i sposób oczyszczania gazów spalinowych |
WO2011104840A1 (ja) | 2010-02-25 | 2011-09-01 | 三菱重工業株式会社 | 排ガス処理システム及び排ガス処理方法 |
JP2012200721A (ja) | 2011-03-28 | 2012-10-22 | Mitsubishi Heavy Ind Ltd | 脱硫排液からの脱水濾液の噴霧乾燥装置、脱水濾液の噴霧乾燥方法及び排ガス処理システム |
US8715402B2 (en) | 2011-03-22 | 2014-05-06 | Mitsubishi Heavy Industries, Ltd. | Air pollution control system and air pollution control method, spray drying device of dewatering filtration fluid from desulfurization discharged water, and method thereof |
JP2012200657A (ja) | 2011-03-24 | 2012-10-22 | Mitsubishi Heavy Ind Ltd | 脱硫排液からの脱水濾液の噴霧乾燥装置、排ガス処理システム及び方法 |
US9028654B2 (en) | 2012-02-29 | 2015-05-12 | Alstom Technology Ltd | Method of treatment of amine waste water and a system for accomplishing the same |
US20140105800A1 (en) * | 2012-03-30 | 2014-04-17 | Alstom Technology Ltd | Method for processing a power plant flue gas |
CN103933838B (zh) * | 2013-01-21 | 2016-06-15 | 山东大学 | 煤中氯元素循环利用实现污染物联合脱除的装置及方法 |
-
2014
- 2014-11-25 US US14/552,931 patent/US9650269B2/en not_active Expired - Fee Related
-
2015
- 2015-11-23 EP EP15195890.7A patent/EP3025774A1/en not_active Withdrawn
- 2015-11-24 KR KR1020150164578A patent/KR20160062707A/ko not_active Withdrawn
- 2015-11-25 JP JP2015229619A patent/JP2016120480A/ja active Pending
- 2015-11-25 CN CN201510826869.6A patent/CN105617829A/zh active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019098204A (ja) * | 2017-11-29 | 2019-06-24 | オルガノ株式会社 | アンモニア処理方法及び装置 |
Also Published As
Publication number | Publication date |
---|---|
US20160145127A1 (en) | 2016-05-26 |
EP3025774A1 (en) | 2016-06-01 |
US9650269B2 (en) | 2017-05-16 |
CN105617829A (zh) | 2016-06-01 |
KR20160062707A (ko) | 2016-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102048058B1 (ko) | 폐수를 증발시키고 산성 가스 배출물을 감소시키는 장치 및 방법 | |
JP7005166B2 (ja) | 廃水を蒸発させて酸性ガス排出を減らすための装置及び方法 | |
JP2016120480A (ja) | 湿式排煙脱硫装置の廃水からのガス排出を低減するためのシステム及び方 | |
US8877152B2 (en) | Oxidation system and method for cleaning waste combustion flue gas | |
US8883106B2 (en) | Method and a device for removing nitrogen oxides and sulphur trioxide from a process gas | |
WO2014129030A1 (ja) | 排ガス処理システム及び排ガス処理方法 | |
KR100287634B1 (ko) | 배연처리설비 | |
US9724638B2 (en) | Apparatus and method for evaporating waste water and reducing acid gas emissions | |
CN101385943A (zh) | 基于半干法同时脱除工艺 | |
JP2015144986A (ja) | 排ガス処理装置 | |
WO2004023040A1 (ja) | 排煙処理システム | |
EP2878889B1 (en) | Dry scrubber system with air preheater protection | |
RU2698835C2 (ru) | Способ и устройство для частичного удаления загрязнений из технологического газового потока | |
US10005026B2 (en) | Limestone supply device and air pollution control system | |
CN101332410A (zh) | 排气处理装置以及排气处理方法 | |
CN209564826U (zh) | 一种烟气脱硫脱硝脱白的一体化装置 | |
CN104874272A (zh) | 集成脱硫和二氧化碳捕集的设备和方法 | |
JPH1135957A (ja) | ガス精製方法及びガス精製設備 | |
JP2003205222A (ja) | 排煙脱硫装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20160331 |