[go: up one dir, main page]

JP2016108520A - Dispersant - Google Patents

Dispersant Download PDF

Info

Publication number
JP2016108520A
JP2016108520A JP2014255588A JP2014255588A JP2016108520A JP 2016108520 A JP2016108520 A JP 2016108520A JP 2014255588 A JP2014255588 A JP 2014255588A JP 2014255588 A JP2014255588 A JP 2014255588A JP 2016108520 A JP2016108520 A JP 2016108520A
Authority
JP
Japan
Prior art keywords
dispersant
parts
resin
added
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014255588A
Other languages
Japanese (ja)
Inventor
淳二 鈴木
Junji Suzuki
淳二 鈴木
志保 伊藤
Shiho Ito
志保 伊藤
西田 充志
Mitsuji Nishida
充志 西田
一之 梅村
Kazuyuki Umemura
一之 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dmrd Corp
Original Assignee
Dmrd Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmrd Corp filed Critical Dmrd Corp
Priority to JP2014255588A priority Critical patent/JP2016108520A/en
Publication of JP2016108520A publication Critical patent/JP2016108520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dispersant which prevents color material to be dispersed from suffering from color contamination caused by a color of the dispersant and realizes low viscosity, long-term storage stability and high weather resistance.SOLUTION: The dispersant is represented by the general formula (1), where X is represented by one of the general formulas (2)-(4), and R is a sulfonic acid, sulfonic acid metal salt, carboxylic acid, or carboxylic acid metal salt.SELECTED DRAWING: None

Description

本発明は、色素や機能性材料の粒子素材を分散するために用いられる分散剤に関するものであり、更に詳しくは、色素として有機顔料を用いるインキ、塗料、インクジェットインク、カラーフィルターインキや、機能性材料として無機材料を用いる電池電極材料、光活性材料、半導体研磨用スラリー等に有効な分散剤に関するものである。  The present invention relates to a dispersant used to disperse particles of pigments and functional materials, and more specifically, inks using organic pigments as pigments, paints, inkjet inks, color filter inks, and functionalities. The present invention relates to a dispersing agent effective for battery electrode materials using inorganic materials as materials, photoactive materials, semiconductor polishing slurries, and the like.

近年、色素や機能性材料の粒子素材を微細化させたナノマテリアルが、様々な用途で製品を高付加価値化する事が期待されている。微細化することにより、色素であれば鮮明な色調と高い着色力を発揮し、機能性材料においては素材の導電性や絶縁性を発揮する効果が確認されている。
しかし、実際には様々な用途で製品を高付加価値化することを期待されていながら、微細な粒子素材であるナノマテリアルを使いこなせていないために、ナノマテリアルを最終製品として一般消費者に高付加価値商品を提供できていない事が多い。
微細な粒子素材であるナノマテリアルを使いこなせていない理由はいくつかあるが、主な要因として、微細な粒子素材であるナノマテリアルを分散出来ないために、最終製品に上手く組み込めない事が考えられている。
In recent years, nanomaterials made by miniaturizing pigments and functional material particles are expected to increase the value of products in various applications. By miniaturization, if it is a pigment, a clear color tone and high coloring power are exhibited, and in a functional material, the effect of exhibiting the conductivity and insulating properties of the material has been confirmed.
However, in reality, it is expected that products will have high added value in various applications, but because nanomaterials, which are fine particle materials, cannot be used well, nanomaterials are added to general consumers as final products. There are many cases where value products cannot be provided.
There are several reasons why nanomaterials, which are fine particle materials, are not fully used, but the main factor is that nanomaterials, which are fine particle materials, cannot be dispersed, so it may be difficult to incorporate them into the final product. Yes.

分散出来ない理由として、粒子素材が微細なため、微細粒子の凝集が強く、安定な分散体を得るのは難しいことが考えられる。
例えば、微細な粒子素材からなる分散体は往々にして高粘度を示し、製品を分散機からの取り出し、分散機からタンク等への移送が困難となるばかりでなく、更に悪い場合は貯蔵中にゲル化を起こし使用困難となることがある。また、異種の微細な粒子素材を混合して使用する場合、それぞれの分散体の凝集による色分れや沈降などの現象により、塗布ムラや著しい着色力や機能性の低下を引き起こすことがある。さらに、塗膜表面に関しては光沢の低下、レベリング不良、導電性や絶縁性の不良等の品質不良が生じてしまう。
The reason why it is impossible to disperse may be that it is difficult to obtain a stable dispersion because the particle material is fine and the aggregation of fine particles is strong.
For example, dispersions made of fine particulate materials often show high viscosity, making it difficult to remove the product from the disperser and transfer it from the disperser to a tank, etc. It may cause gelation and become difficult to use. In addition, when different types of fine particle materials are used as a mixture, phenomena such as color separation and sedimentation due to aggregation of the respective dispersions may cause uneven coating, marked coloring power, and reduced functionality. Furthermore, quality defects such as a decrease in gloss, leveling defects, and poor conductivity and insulation are caused on the coating film surface.

以上のように分散の問題点を解決するために、一般的な種々分野においては、有機顔料の骨格に酸性基、塩基性基、フタルイミドメチル基等の官能基を導入した顔料誘導体や、あるいは、アクリルポリマーやポリエステル樹脂の一部に酸性基や塩基性基を導入した樹脂型分散剤が開発され、単独又は併用にて使用されており、極めて効果的である。また、樹脂の一部に顔料骨格を結合したいわゆる樹脂型顔料誘導体も開発されている。  In order to solve the problem of dispersion as described above, in various general fields, pigment derivatives obtained by introducing functional groups such as acidic groups, basic groups, and phthalimidomethyl groups into the skeleton of organic pigments, or Resin-type dispersants in which acidic groups or basic groups are introduced into a part of an acrylic polymer or polyester resin have been developed and are used alone or in combination, and are extremely effective. In addition, so-called resin-type pigment derivatives in which a pigment skeleton is bonded to a part of the resin have been developed.

これらの中で、酸性基を有する誘導体(以下、酸性誘導体とする)は、フタロシアニン顔料、キナクリドン顔料、アゾ顔料、アントラキノン系顔料、ジケトピロロピロール系顔料、イソインドリン顔料等の骨格に対して、スルホン酸基やカルボキシル基の酸性基を導入した構造が開示されており、分散剤や粒子成長防止剤として古くから用いられている。この技術は、近年、カラーフィルターインキ等に広く展開されている。しかし、更なる微細な粒子素材を分散する要望が多くなってきている近年においては、粘度、流動特性、経時粘度安定性においては、十分に満足すべきものには至らなかった(特許文献1、特許文献2、特許文献3を参照)。  Among these, derivatives having an acidic group (hereinafter referred to as acidic derivatives) are skeletons such as phthalocyanine pigments, quinacridone pigments, azo pigments, anthraquinone pigments, diketopyrrolopyrrole pigments, isoindoline pigments, etc. A structure in which an acidic group such as a sulfonic acid group or a carboxyl group is introduced has been disclosed and has been used for a long time as a dispersant or a particle growth inhibitor. In recent years, this technology has been widely applied to color filter inks and the like. However, in recent years when there is an increasing demand for dispersing finer particle materials, the viscosity, flow characteristics, and viscosity stability over time have not been fully satisfactory (Patent Document 1, Patent). Reference 2 and Patent Reference 3).

特開平09−176511号公報JP 09-176511 A 特開2002−179979号公報JP 2002-179799 A 特開2004−307854号公報JP 2004-307854 A

解決しようとする課題は、分散対象となる色材に対して、分散剤の色が原因となり色汚れとなることを防ぎ、低粘度性、長期保存安定性、さらに高耐候性を得ることである。  The problem to be solved is to prevent color stains due to the color of the dispersing agent, and to obtain low viscosity, long-term storage stability, and high weather resistance for the color material to be dispersed. .

分散剤の特徴として、1つの化合物で2つの特徴を持っている。1つは微細な粒子に分散剤が吸着する吸着基をもつ事、もう1つは微細な粒子同士を凝集させない立体障害となる分散基をもつ事である。
上記特許文献で満足できる効果が得られない原因として、吸着基として有機顔料を用いているため着色力が強くなり、分散剤を少量用いたとしてもその着色力の強さから色汚れの原因となってしまう。
また、分散基として単純な置換基ではなく、スルホンアミド等の複雑な置換基を用いており、分散剤への色に影響を与えると考えている。
As a characteristic of the dispersant, one compound has two characteristics. One is that the fine particles have an adsorbing group that adsorbs the dispersant, and the other is that the fine particles have a steric hindrance that does not aggregate the fine particles.
The reason why satisfactory effects cannot be obtained in the above-mentioned patent document is that the coloring power becomes strong because an organic pigment is used as an adsorbing group, and even if a small amount of dispersant is used, the cause of color stains from the strength of the coloring power. turn into.
In addition, it is considered that a complex substituent such as sulfonamide is used as a dispersing group instead of a simple substituent, which affects the color of the dispersing agent.

そこで本発明の分散剤は、着色力が強くない吸着基を用い、さらにスルホン酸、カルボン酸、それらの金属塩とすることで、分散剤自体の色に影響の少ない分散剤であり、分散剤として用いた場合、発色性、低粘度性、保存安定性、耐候性の高い分散体を得ることができる。  Therefore, the dispersant of the present invention is a dispersant that has little influence on the color of the dispersant itself by using an adsorbing group that does not have strong coloring power, and further using sulfonic acid, carboxylic acid, or a metal salt thereof. When used as a dispersion, a dispersion having high color developability, low viscosity, storage stability and high weather resistance can be obtained.

即ち本発明は、下記一般式(1)で示される分散剤を提供することである。

Figure 2016108520
(式中、Xは一般式(2)〜(4)のいずれか1つであり、Rはスルホン酸、スルホン酸金属塩、カルボン酸、カルボン酸金属塩を示す。)That is, this invention is providing the dispersing agent shown by following General formula (1).
Figure 2016108520
(In the formula, X is any one of the general formulas (2) to (4), and R represents a sulfonic acid, a sulfonic acid metal salt, a carboxylic acid, or a carboxylic acid metal salt.)

吸着基となる化合物が3つある理由として、印刷に用いる色の3原色が一般的に、シアン、マゼンタ、イエローに分類されている。それぞれの目的色により化合物が異なり、一般式(2)はシアン、一般式(3)はマゼンタ、一般式(4)はイエローに対して最適に用いられる様に設計している。  The three primary colors used for printing are generally classified into cyan, magenta, and yellow as the reason for the three compounds serving as adsorbing groups. The compounds differ depending on the target color, and are designed so that the general formula (2) is optimally used for cyan, the general formula (3) is magenta, and the general formula (4) is optimally used for yellow.

本発明の分散剤を用いることにより、分散塗膜の色汚れを防ぎ、発色性に優れ、高耐候性を実現するだけでなく、低粘度、低チキソトロピック性、経時粘度安定性に良好な分散体を得ることが容易に達成できる。  By using the dispersing agent of the present invention, it is possible not only to prevent discoloration of the dispersed coating film, excellent color developability and high weather resistance, but also good dispersion with low viscosity, low thixotropic property, and stability over time. Getting a body can be easily achieved.

本発明の分散剤に用いる吸着基について説明をする。
吸着基は一般式(2)〜(4)の3種類あり、理由は色の3原色の各色に最適化した構造である。
一般式(2)〜(4)の化合物は、一般的に知られている方法でつくることができる。
The adsorbing group used in the dispersant of the present invention will be described.
There are three types of adsorbing groups of the general formulas (2) to (4), and the reason is the structure optimized for each of the three primary colors.
The compounds of the general formulas (2) to (4) can be prepared by a generally known method.

次に本発明の分散剤に用いる分散基について説明をする。
分散基はスルホン酸、スルホン酸金属塩、カルボン酸、カルボン酸金属塩を用いる。
本発明では分散剤の色をコントロールするため、スルホンアミドのような製造プロセスが多段階かつ、色コントロールが難しい反応を行わない観点から、吸着基に対してスルホン化やカルボキシル化のようなシンプルな構造が必要となる。
また、分散塗膜の耐候性の観点から、造塩することができるが、分散剤の色コントロールの観点から金属塩が良い。
Next, the dispersing group used for the dispersant of the present invention will be described.
As the dispersing group, sulfonic acid, sulfonic acid metal salt, carboxylic acid, or carboxylic acid metal salt is used.
In the present invention, since the color of the dispersant is controlled, the production process such as sulfonamide is a multi-step process, and from the viewpoint of not performing a reaction that is difficult to control the color, a simple method such as sulfonation or carboxylation is performed on the adsorbing group. A structure is required.
Moreover, although salt formation can be performed from the viewpoint of the weather resistance of the dispersed coating film, a metal salt is preferable from the viewpoint of color control of the dispersant.

分散基を金属塩とする場合、原子量が25.0以上110.0以下のアルカリ金属、アルカリ土類金属、還移元素、卑金属が好ましい。
具体例としては、アルミニウム、カリウム、カルシウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルビジウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブテン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀である。
これらの中でも原子量65.4の亜鉛と87.6のストロンチウムが、分散剤の色コントロールがしやすく、製造における単離性、及び分散性に優れ、さらに低粘度、経時粘度安定性、耐候性に最も優れた効果を発揮する。
When the dispersing group is a metal salt, an alkali metal, an alkaline earth metal, a transfer element, or a base metal having an atomic weight of 25.0 to 110.0 is preferable.
Specific examples include aluminum, potassium, calcium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, rubidium, strontium, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver It is.
Among these, zinc with an atomic weight of 65.4 and strontium with 87.6 are easy to control the color of the dispersant, have excellent isolation and dispersibility in production, and have low viscosity, stable viscosity over time, and weather resistance. The most excellent effect is demonstrated.

次に本発明の分散剤の製造方法について説明をする。
本発明の分散剤は、吸着基をスルホン化やカルボキシル化する事により、製造することができる。
スルホン化を具体例として製造方法の概要を説明する。
まず、クロロスルホン酸や発煙硫酸等に吸着基となる化合物を投入し、加熱することによりスルホン化する。その後必要に応じて、スルホン化された物質に金属溶液を投入することにより造塩する。不純物を洗浄することで、本発明の分散剤を得ることができる。
また、効率よくスルホン化を行うために、五酸化二りんや無水酢酸等の触媒を添加することができる。
この方法の利点は、スルホン化をコントロールできる事である。スルホン化をコントロールできれば、分散剤の品質を安定化することが容易となる。
Next, the manufacturing method of the dispersing agent of this invention is demonstrated.
The dispersant of the present invention can be produced by sulfonating or carboxylating the adsorbing group.
The outline of the production method will be described using sulfonation as a specific example.
First, a compound that becomes an adsorbing group is added to chlorosulfonic acid, fuming sulfuric acid, or the like, and is sulfonated by heating. Thereafter, if necessary, salt formation is performed by introducing a metal solution into the sulfonated substance. The dispersant of the present invention can be obtained by washing the impurities.
In addition, a catalyst such as diphosphorus pentoxide or acetic anhydride can be added for efficient sulfonation.
The advantage of this method is that the sulfonation can be controlled. If the sulfonation can be controlled, it becomes easy to stabilize the quality of the dispersant.

次に、カルボキシル化を具体例として製造方法の概要を説明する。
まず、クロロホルムや二硫化炭素等に吸着基となる化合物を投入し、塩化アルミニウムや塩化銅を添加し、塩化オキサリルを添加後、水を加えることによりカルボキシル化する。その後必要に応じて、カルボキシル化された物質に金属溶液を投入することにより造塩する。不純物を洗浄することで、本発明の分散剤を得ることができる。
この方法の利点は、カルボキシル化をコントロールできる事である。カルボキシル化をコントロールできれば、分散剤の品質を安定化することが容易となる。
Next, the outline of the production method will be described using carboxylation as a specific example.
First, a compound that becomes an adsorbing group is added to chloroform, carbon disulfide, or the like, aluminum chloride or copper chloride is added, oxalyl chloride is added, and then carboxylated by adding water. Thereafter, if necessary, salt formation is performed by introducing a metal solution into the carboxylated substance. The dispersant of the present invention can be obtained by washing the impurities.
The advantage of this method is that the carboxylation can be controlled. If the carboxylation can be controlled, it becomes easy to stabilize the quality of the dispersant.

本発明の分散剤は、分散を行おうとする微細な粒子素材であるナノマテリアルに対してより高い分散性を発揮する。
ナノマテリアルとは具体的に、フラーレン(C60)、水溶性フラーレン誘導体、単層カーボンナノチューブ、多層カーボンナノチューブ、鉄ナノ粒子、銀ナノ粒子、カーボンブラック、ルチル型酸化チタン微粒子、アナタース型酸化チタン微粒子、酸化アルミニウム微粒子、酸化セリウム微粒子、二酸化亜鉛微粒子、二酸化ケイ素、ポリスチレン微粒子、デンドリマー、ナノクレイ、カーボンナノファイバー、顔料微粒子、アクリル微粒子、リボソーム、白金ナノコロイド、量子ドット、ニッケルナノ粒子等があげられる。
The dispersant of the present invention exhibits higher dispersibility with respect to a nanomaterial which is a fine particle material to be dispersed.
Specifically, nanomaterials include fullerene (C60), water-soluble fullerene derivatives, single-walled carbon nanotubes, multi-walled carbon nanotubes, iron nanoparticles, silver nanoparticles, carbon black, rutile-type titanium oxide fine particles, anatase-type titanium oxide fine particles, Examples thereof include aluminum oxide fine particles, cerium oxide fine particles, zinc dioxide fine particles, silicon dioxide, polystyrene fine particles, dendrimers, nanoclays, carbon nanofibers, pigment fine particles, acrylic fine particles, ribosomes, platinum nanocolloids, quantum dots, and nickel nanoparticles.

また顔料微粒子としてさらに具体例として、次に上げられる色素があげられる。アゾ系、アンサンスロン系、アンスラピリミジン系、アントラキノン系、イソインドリノン系、イソインドリン系、インダンスロン系色素、キナクリドン系、キノフタロン系、ジオキサジン系、ジケトピロロピロール系、チオインジゴ系色素、ピランスロン系色素、フタロシアニン系、フラバンスロン系色素、ペリノン系色素、ペリレン系色素、ベンズイミダゾロン系等に用いることが出来る。また、これらを併用して用いてもかまわない。  Further, specific examples of the pigment fine particles include the following dyes. Azo, Anthanthrone, Anthrapyrimidine, Anthraquinone, Isoindolinone, Isoindoline, Indanthrone, Quinacridone, Quinophthalone, Dioxazine, Diketopyrrolopyrrole, Thioindigo Dye, Pyranthrone It can be used for dyes, phthalocyanine dyes, flavanthrone dyes, perinone dyes, perylene dyes, benzimidazolone dyes, and the like. Further, these may be used in combination.

本発明の分散剤は、必要により各種有機溶剤、水、樹脂(ワニス)、添加剤、市販分散剤等と混合して、横型サンドミル、縦型サンドミル、アニュラー型ビーズミル、アトライター等で分散することにより、分散体を製造することができる。微細な粒子、分散剤、樹脂(ワニス)、樹脂型分散剤、添加剤、有機溶剤は、すべての成分を混合してから分散してもよいが、初めに微細な粒子と本発明の分散剤を有機溶剤や水に分散し、次いで、樹脂型分散剤、樹脂を添加して分散することが望ましい。  The dispersant of the present invention is mixed with various organic solvents, water, resin (varnish), additives, commercially available dispersants, etc., if necessary, and dispersed with a horizontal sand mill, vertical sand mill, annular bead mill, attritor or the like. Thus, a dispersion can be produced. Fine particles, dispersant, resin (varnish), resin-type dispersant, additive, and organic solvent may be dispersed after mixing all the components. First, fine particles and the dispersant of the present invention Is preferably dispersed in an organic solvent or water, and then dispersed by adding a resin-type dispersant and a resin.

また、横型サンドミル、縦型サンドミル、アニュラー型ビーズミル、アトライター等で分散を行う前に、ニーダー、3本ロールミル等の練肉混合機を使用した前分散、2本ロールミル等による固形分散、または顔料への顔料誘導体の処理を行ってもよい。また、ビーズミル等で分散した後、30〜80℃の加温状態にて数時間〜1週間保存するエージングと言われる後処理や、超音波分散機や衝突型ビーズレス分散機を用いて後処理する工程は、分散体の安定性に対して有効である。この他、マイクロフルイタイザー、ハイスピードミキサー、ホモミキサー、ボールミル、ロールミル、石臼式ミル、超音波分散機等のあらゆる分散機や混合機が本発明の分散体を製造するために利用できる。  Also, before dispersing with a horizontal sand mill, vertical sand mill, annular bead mill, attritor, etc., pre-dispersion using a kneader mixer such as a kneader, 3-roll mill, solid dispersion with 2-roll mill, etc., or pigment The pigment derivative may be treated. In addition, after being dispersed in a bead mill or the like, post-treatment is said to be stored for several hours to one week in a heated state at 30 to 80 ° C., or post-treatment using an ultrasonic disperser or a collision type beadless disperser. This step is effective for the stability of the dispersion. In addition, any disperser or mixer such as a microfluidizer, a high speed mixer, a homomixer, a ball mill, a roll mill, a stone mill, or an ultrasonic disperser can be used for producing the dispersion of the present invention.

本発明の分散剤を用いて分散体を製造する場合に各種ポリマーを用いる事ができる。例えば、石油樹脂、カゼイン、セラック、ロジン変性マレイン酸樹脂、ロジン変性フェノール樹脂、ニトロセルロース、セルロースアセテートブチレート、環化ゴム、塩化ゴム、酸化ゴム、塩酸ゴム、フェノール樹脂、アルキド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、アミノ樹脂、エポキシ樹脂、ビニル樹脂、塩化ビニル、塩化ビニル−酢酸ビニル共重合体、アクリル樹脂、メタクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂、乾性油、合成乾性油、スチレン変性マレイン酸、ポリアミド樹脂、ポリイミド樹脂、ベンゾグアナミン樹脂、メラミン樹脂、尿素樹脂塩素化ポリプロピレン、ブチラール樹脂、塩化ビニリデン樹脂等が挙げられる。  Various polymers can be used when producing a dispersion using the dispersant of the present invention. For example, petroleum resin, casein, shellac, rosin modified maleic resin, rosin modified phenolic resin, nitrocellulose, cellulose acetate butyrate, cyclized rubber, chlorinated rubber, oxidized rubber, hydrochloric acid rubber, phenol resin, alkyd resin, polyester resin, Unsaturated polyester resin, amino resin, epoxy resin, vinyl resin, vinyl chloride, vinyl chloride-vinyl acetate copolymer, acrylic resin, methacrylic resin, polyurethane resin, silicone resin, fluorine resin, drying oil, synthetic drying oil, styrene modified Examples include maleic acid, polyamide resin, polyimide resin, benzoguanamine resin, melamine resin, urea resin chlorinated polypropylene, butyral resin, and vinylidene chloride resin.

また、感光性樹脂を用いることもできる。感光性樹脂としては、水酸基、カルボキシル基、アミノ基等の反応性の置換基を有する線状高分子にイソシアネート基、アルデヒド基、エポキシ基等の反応性置換基を有する(メタ)アクリル化合物やケイヒ酸を反応させて、(メタ)アクリロイル基、スチリル基等の光架橋性基を該線状高分子に導入した樹脂が用いられる。また、スチレン−無水マレイン酸共重合物やα−オレフィン−無水マレイン酸共重合物等の酸無水物を含む線状高分子をヒドロキシアルキル(メタ)アクリレート等の水酸基を有する(メタ)アクリル化合物によりハーフエステル化したものも用いられる。  A photosensitive resin can also be used. Examples of the photosensitive resin include (meth) acrylic compounds having a reactive substituent such as an isocyanate group, an aldehyde group, and an epoxy group on a linear polymer having a reactive substituent such as a hydroxyl group, a carboxyl group, or an amino group, A resin obtained by reacting an acid and introducing a photocrosslinkable group such as a (meth) acryloyl group or a styryl group into the linear polymer is used. Further, a linear polymer containing an acid anhydride such as a styrene-maleic anhydride copolymer or an α-olefin-maleic anhydride copolymer is converted into a (meth) acrylic compound having a hydroxyl group such as hydroxyalkyl (meth) acrylate. Half-esterified products are also used.

溶剤としては、一般に有機溶剤として用いられるものは、全て用いることが出来る。例えばシクロヘキサノン、エチルセロソルブアセテート、ブチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、エチルベンゼン、エチレングリコールジエチルエーテル、トルエン、キシレン、エチルセロソルブ、メチル−nアミルケトン、プロピレングリコールモノメチルエーテル、トルエン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、n−ヘキサン、メタノール、エタノール、イソプロピルアルコール、ブタノール、ジオキサン、ジメチルホルムアミド、ソルベッソ100(エクソン化学株式会社製)、スワゾール1000、石油系溶剤等が挙げられ、これらを単独もしくは混合して用いる。  As the solvent, any solvent generally used as an organic solvent can be used. For example, cyclohexanone, ethyl cellosolve acetate, butyl cellosolve acetate, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, ethylbenzene, ethylene glycol diethyl ether, toluene, xylene, ethyl cellosolve, methyl-n amyl ketone, propylene glycol monomethyl ether, toluene, methyl ethyl ketone, methyl isobutyl ketone , Ethyl acetate, butyl acetate, n-hexane, methanol, ethanol, isopropyl alcohol, butanol, dioxane, dimethylformamide, Solvesso 100 (manufactured by Exxon Chemical Co., Ltd.), Swazol 1000, petroleum solvent, etc. Used by mixing.

以下、実施例により本発明を説明する。例中、部とは重量部を、%とは重量%をそれ ぞれ表す。    Hereinafter, the present invention will be described by way of examples. In the examples, “part” means “part by weight” and “%” means “% by weight”.

<分散剤Aの合成>
1000ml4ツ口フラスコに、クロロスルホン酸450部を仕込み、1−アミノ−4−(エチルアミノ)−9,10−ジオキソ−9,10−ジヒドロアントラセン−2−カルボニトリル45部を少しずつ添加した。80℃で3時間攪拌を行い、原料の消失を液体クロマトグラフィーにより確認した。反応溶液を氷水5000部中に攪拌しながら加えてスルホン化物を析出させた。次いで、濾別して、0.1%塩酸2000部で洗浄し、更に精製水2000部で洗浄し、青色の分散剤Aを得た。
<分散剤Bの合成>
1000ml4ツ口フラスコに、アルゴンガス雰囲気下で塩化アルミニウム90部と二硫化炭素100部を仕込み、二硫化炭素200部に溶解させた塩化オキサリル80部を添加した。その後、二硫化炭素250部に縣濁させた1−アミノ−4−(エチルアミノ)−9,10−ジオキソ−9,10−ジヒドロアントラセン−2−カルボニトリル20部を1時間かけて滴下した。30℃で2時間攪拌を行い、原料の消失を液体クロマトグラフィーにより確認した。反応溶液を氷水5000部中に攪拌しながら加えてカルボキシル化物を析出させた。次いで、濾別して、0.1%塩酸2000部で洗浄し、更に精製水2000部で洗浄し、青色の分散剤Bを得た。
<分散剤Cの合成>
1000ml4ツ口フラスコに、クロロスルホン酸450部を仕込み、1−アミノ−4−ヒドロキシ−2−フェノキシ−9,10−ジヒドロアントラセン−9,10−ジオン45部を少しずつ添加した。80℃で3時間攪拌を行い、原料の消失を液体クロマトグラフィーにより確認した。反応溶液を氷水5000部中に攪拌しながら加えてスルホン化物を析出させた。次いで、濾別して、0.1%塩酸2000部で洗浄し、更に精製水2000部で洗浄し、赤色の分散剤Cを得た。
<分散剤Dの合成>
1000ml4ツ口フラスコに、アルゴンガス雰囲気下で塩化アルミニウム90部と二硫化炭素100部を仕込み、二硫化炭素200部に溶解させた塩化オキサリル80部を添加した。その後、二硫化炭素250部に縣濁させた1−アミノ−4−ヒドロキシ−2−フェノキシ−9,10−ジヒドロアントラセン−9,10−ジオン20部を1時間かけて滴下した。30℃で2時間攪拌を行い、原料の消失を液体クロマトグラフィーにより確認した。反応溶液を氷水5000部中に攪拌しながら加えてカルボキシル化物を析出させた。次いで、濾別して、0.1%塩酸2000部で洗浄し、更に精製水2000部で洗浄し、赤色の分散剤Dを得た。
<分散剤Eの合成>
1000ml4ツ口フラスコに、クロロスルホン酸450部を仕込み、2−(3−ヒドロキシ−2−キノリル)−2,3−ジヒドロ−1H−インデン−1,3−ジオン45部を少しずつ添加した。80℃で3時間攪拌を行い、原料の消失を液体クロマトグラフィーにより確認した。反応溶液を氷水5000部中に攪拌しながら加えてスルホン化物を析出させた。次いで、濾別して、0.1%塩酸2000部で洗浄し、更に精製水2000部で洗浄し、黄色の分散剤Eを得た。
<分散剤Fの合成>
1000ml4ツ口フラスコに、アルゴンガス雰囲気下で塩化アルミニウム90部と二硫化炭素100部を仕込み、二硫化炭素200部に溶解させた塩化オキサリル80部を添加した。その後、二硫化炭素250部に縣濁させた2−(3−ヒドロキシ−2−キノリル)−2,3−ジヒドロ−1H−インデン−1,3−ジオン20部を1時間かけて滴下した。30℃で2時間攪拌を行い、原料の消失を液体クロマトグラフィーにより確認した。反応溶液を氷水5000部中に攪拌しながら加えてカルボキシル化物を析出させた。次いで、濾別して、0.1%塩酸2000部で洗浄し、更に精製水2000部で洗浄し、黄色の分散剤Fを得た。
<Synthesis of Dispersant A>
To a 1000 ml four-necked flask, 450 parts of chlorosulfonic acid was charged, and 45 parts of 1-amino-4- (ethylamino) -9,10-dioxo-9,10-dihydroanthracene-2-carbonitrile was added little by little. Stirring was performed at 80 ° C. for 3 hours, and disappearance of raw materials was confirmed by liquid chromatography. The reaction solution was added to 5000 parts of ice water with stirring to precipitate a sulfonated product. Subsequently, it was separated by filtration, washed with 2000 parts of 0.1% hydrochloric acid, and further washed with 2000 parts of purified water to obtain a blue dispersant A.
<Synthesis of Dispersant B>
A 1000 ml four-necked flask was charged with 90 parts of aluminum chloride and 100 parts of carbon disulfide under an argon gas atmosphere, and 80 parts of oxalyl chloride dissolved in 200 parts of carbon disulfide was added. Thereafter, 20 parts of 1-amino-4- (ethylamino) -9,10-dioxo-9,10-dihydroanthracene-2-carbonitrile suspended in 250 parts of carbon disulfide was added dropwise over 1 hour. Stirring was performed at 30 ° C. for 2 hours, and disappearance of the raw materials was confirmed by liquid chromatography. The reaction solution was added to 5000 parts of ice water with stirring to precipitate a carboxylated product. Subsequently, it was separated by filtration, washed with 2000 parts of 0.1% hydrochloric acid, and further washed with 2000 parts of purified water to obtain a blue dispersant B.
<Synthesis of Dispersant C>
To a 1000 ml four-necked flask, 450 parts of chlorosulfonic acid was charged, and 45 parts of 1-amino-4-hydroxy-2-phenoxy-9,10-dihydroanthracene-9,10-dione was added little by little. Stirring was performed at 80 ° C. for 3 hours, and disappearance of raw materials was confirmed by liquid chromatography. The reaction solution was added to 5000 parts of ice water with stirring to precipitate a sulfonated product. Subsequently, it was separated by filtration, washed with 2000 parts of 0.1% hydrochloric acid, and further washed with 2000 parts of purified water to obtain a red dispersant C.
<Synthesis of Dispersant D>
A 1000 ml four-necked flask was charged with 90 parts of aluminum chloride and 100 parts of carbon disulfide under an argon gas atmosphere, and 80 parts of oxalyl chloride dissolved in 200 parts of carbon disulfide was added. Thereafter, 20 parts of 1-amino-4-hydroxy-2-phenoxy-9,10-dihydroanthracene-9,10-dione suspended in 250 parts of carbon disulfide was added dropwise over 1 hour. Stirring was performed at 30 ° C. for 2 hours, and disappearance of the raw materials was confirmed by liquid chromatography. The reaction solution was added to 5000 parts of ice water with stirring to precipitate a carboxylated product. Subsequently, it was separated by filtration, washed with 2000 parts of 0.1% hydrochloric acid, and further washed with 2000 parts of purified water to obtain a red dispersant D.
<Synthesis of Dispersant E>
To a 1000 ml four-necked flask, 450 parts of chlorosulfonic acid was charged, and 45 parts of 2- (3-hydroxy-2-quinolyl) -2,3-dihydro-1H-indene-1,3-dione was added little by little. Stirring was performed at 80 ° C. for 3 hours, and disappearance of raw materials was confirmed by liquid chromatography. The reaction solution was added to 5000 parts of ice water with stirring to precipitate a sulfonated product. Subsequently, the mixture was filtered, washed with 2000 parts of 0.1% hydrochloric acid, and further washed with 2000 parts of purified water to obtain a yellow dispersant E.
<Synthesis of Dispersant F>
A 1000 ml four-necked flask was charged with 90 parts of aluminum chloride and 100 parts of carbon disulfide under an argon gas atmosphere, and 80 parts of oxalyl chloride dissolved in 200 parts of carbon disulfide was added. Thereafter, 20 parts of 2- (3-hydroxy-2-quinolyl) -2,3-dihydro-1H-indene-1,3-dione suspended in 250 parts of carbon disulfide was added dropwise over 1 hour. Stirring was performed at 30 ° C. for 2 hours, and disappearance of the raw materials was confirmed by liquid chromatography. The reaction solution was added to 5000 parts of ice water with stirring to precipitate a carboxylated product. Subsequently, the mixture was filtered, washed with 2000 parts of 0.1% hydrochloric acid, and further washed with 2000 parts of purified water to obtain a yellow dispersant F.

<分散剤A−1の合成>
分散剤Aを80℃で乾燥させ、分散剤A−1(一般式(2)のスルホン酸)を得た。
<分散剤A−2の合成>
分散剤Aを水5000部に再分散し(再分散したスラリーのpHは2.3)、25%カセイソーダ液を攪拌しながら加え、pH11.5に1時間続けて調整した。更に、pH11.5にて60℃に加熱し、3時間攪拌を行った。この溶液に、塩化亜鉛47部を溶解した水溶液を少しずつ滴下し析出物を得た。その後、析出物を濾過し多量の水で水洗した後、80℃で乾燥させ、分散剤A−2(一般式(2)のスルホン酸亜鉛塩)を得た。
<分散剤A−3の合成>
分散剤A−2の、塩化亜鉛を塩化ストロンチウムに変更した以外は同様に作成し、分散剤A−3(一般式(2)のスルホン酸ストロンチウム塩)を得た。
<Synthesis of Dispersant A-1>
Dispersant A was dried at 80 ° C. to obtain Dispersant A-1 (sulfonic acid of general formula (2)).
<Synthesis of Dispersant A-2>
Dispersant A was redispersed in 5000 parts of water (pH of the redispersed slurry was 2.3), and 25% caustic soda solution was added with stirring, and adjusted to pH 11.5 for 1 hour. Furthermore, it heated at 60 degreeC at pH11.5, and stirred for 3 hours. To this solution, an aqueous solution in which 47 parts of zinc chloride was dissolved was added dropwise little by little to obtain a precipitate. Thereafter, the precipitate was filtered, washed with a large amount of water, and then dried at 80 ° C. to obtain Dispersant A-2 (a zinc sulfonate salt of the general formula (2)).
<Synthesis of Dispersant A-3>
Dispersant A-3 was prepared in the same manner except that zinc chloride was changed to strontium chloride to obtain dispersant A-3 (strontium sulfonate salt of general formula (2)).

<分散剤B−1の合成>
分散剤Bを80℃で乾燥させ、分散剤B−1(一般式(2)のカルボン酸)を得た。
<分散剤B−2の合成>
分散剤Bを水5000部に再分散し(再分散したスラリーのpHは2.3)、25%カセイソーダ液を攪拌しながら加え、pH11.5に1時間続けて調整した。更に、pH11.5にて60℃に加熱し、3時間攪拌を行った。この溶液に、塩化亜鉛47部を溶解した水溶液を少しずつ滴下し析出物を得た。その後、析出物を濾過し多量の水で水洗した後、80℃で乾燥させ、分散剤B−2(一般式(2)のカルボン酸亜鉛塩)を得た。
<分散剤B−3の合成>
分散剤B−2の、塩化亜鉛を塩化ストロンチウムに変更した以外は同様に作成し、分散剤B−3(一般式(2)のカルボン酸ストロンチウム塩)を得た。
<Synthesis of Dispersant B-1>
Dispersant B was dried at 80 ° C. to obtain Dispersant B-1 (carboxylic acid of general formula (2)).
<Synthesis of Dispersant B-2>
Dispersant B was redispersed in 5000 parts of water (the pH of the redispersed slurry was 2.3), and 25% caustic soda solution was added with stirring to adjust the pH to 11.5 for 1 hour. Furthermore, it heated at 60 degreeC at pH11.5, and stirred for 3 hours. To this solution, an aqueous solution in which 47 parts of zinc chloride was dissolved was added dropwise little by little to obtain a precipitate. Thereafter, the precipitate was filtered, washed with a large amount of water, and then dried at 80 ° C. to obtain Dispersant B-2 (a carboxylic acid zinc salt of the general formula (2)).
<Synthesis of Dispersant B-3>
Dispersant B-3 was prepared in the same manner except that zinc chloride was changed to strontium chloride to obtain dispersant B-3 (carboxylic acid strontium salt of general formula (2)).

<分散剤C−1の合成>
分散剤Cを80℃で乾燥させ、分散剤C−1(一般式(3)のスルホン酸)を得た。
<分散剤C−2の合成>
分散剤Cを水5000部に再分散し(再分散したスラリーのpHは2.3)、25%カセイソーダ液を攪拌しながら加え、pH11.5に1時間続けて調整した。更に、pH11.5にて60℃に加熱し、3時間攪拌を行った。この溶液に、塩化亜鉛47部を溶解した水溶液を少しずつ滴下し析出物を得た。その後、析出物を濾過し多量の水で水洗した後、80℃で乾燥させ、分散剤C−2(一般式(3)のスルホン酸亜鉛塩)を得た。
<分散剤C−3の合成>
分散剤C−2の、塩化亜鉛を塩化ストロンチウムに変更した以外は同様に作成し、分散剤C−3(一般式(3)のスルホン酸ストロンチウム塩)を得た。
<Synthesis of Dispersant C-1>
Dispersant C was dried at 80 ° C. to obtain Dispersant C-1 (sulfonic acid of general formula (3)).
<Synthesis of Dispersant C-2>
Dispersant C was redispersed in 5000 parts of water (pH of the redispersed slurry was 2.3), and 25% caustic soda solution was added with stirring and adjusted to pH 11.5 for 1 hour. Furthermore, it heated at 60 degreeC at pH11.5, and stirred for 3 hours. To this solution, an aqueous solution in which 47 parts of zinc chloride was dissolved was added dropwise little by little to obtain a precipitate. Thereafter, the precipitate was filtered, washed with a large amount of water, and then dried at 80 ° C. to obtain dispersant C-2 (a sulfonic acid zinc salt of the general formula (3)).
<Synthesis of Dispersant C-3>
Dispersant C-2 was prepared in the same manner except that zinc chloride was changed to strontium chloride to obtain dispersant C-3 (strontium sulfonate salt of general formula (3)).

<分散剤D−1の合成>
分散剤Dを80℃で乾燥させ、分散剤D−1(一般式(3)のカルボン酸)を得た。
<分散剤D−2の合成>
分散剤Dを水5000部に再分散し(再分散したスラリーのpHは2.3)、25%カセイソーダ液を攪拌しながら加え、pH11.5に1時間続けて調整した。更に、pH11.5にて60℃に加熱し、3時間攪拌を行った。この溶液に、塩化亜鉛47部を溶解した水溶液を少しずつ滴下し析出物を得た。その後、析出物を濾過し多量の水で水洗した後、80℃で乾燥させ、分散剤D−2(一般式(3)のカルボン酸亜鉛塩)を得た。
<分散剤D−3の合成>
分散剤D−2の、塩化亜鉛を塩化ストロンチウムに変更した以外は同様に作成し、分散剤D−3(一般式(3)のカルボン酸ストロンチウム塩)を得た。
<Synthesis of Dispersant D-1>
Dispersant D was dried at 80 ° C. to obtain Dispersant D-1 (carboxylic acid of general formula (3)).
<Synthesis of Dispersant D-2>
Dispersant D was redispersed in 5000 parts of water (the pH of the redispersed slurry was 2.3), and 25% caustic soda solution was added with stirring to adjust the pH to 11.5 for 1 hour. Furthermore, it heated at 60 degreeC at pH11.5, and stirred for 3 hours. To this solution, an aqueous solution in which 47 parts of zinc chloride was dissolved was added dropwise little by little to obtain a precipitate. Thereafter, the precipitate was filtered, washed with a large amount of water, and then dried at 80 ° C. to obtain Dispersant D-2 (a carboxylic acid zinc salt of the general formula (3)).
<Synthesis of Dispersant D-3>
Dispersant D-3 was prepared in the same manner except that zinc chloride was changed to strontium chloride to obtain dispersant D-3 (carboxylic acid strontium salt of general formula (3)).

<分散剤E−1の合成>
分散剤Eを80℃で乾燥させ、分散剤E−1(一般式(4)のスルホン酸)を得た。
<分散剤E−2の合成>
分散剤Eを水5000部に再分散し(再分散したスラリーのpHは2.3)、25%カセイソーダ液を攪拌しながら加え、pH11.5に1時間続けて調整した。更に、pH11.5にて60℃に加熱し、3時間攪拌を行った。この溶液に、塩化亜鉛47部を溶解した水溶液を少しずつ滴下し析出物を得た。その後、析出物を濾過し多量の水で水洗した後、80℃で乾燥させ、分散剤E−2(一般式(4)のスルホン酸亜鉛塩)を得た。
<分散剤E−3の合成>
分散剤E−2の、塩化亜鉛を塩化ストロンチウムに変更した以外は同様に作成し、分散剤E−3(一般式(4)のスルホン酸ストロンチウム塩)を得た。
<Synthesis of Dispersant E-1>
Dispersant E was dried at 80 ° C. to obtain Dispersant E-1 (sulfonic acid of general formula (4)).
<Synthesis of Dispersant E-2>
Dispersant E was redispersed in 5000 parts of water (pH of the redispersed slurry was 2.3), and 25% caustic soda solution was added with stirring, and adjusted to pH 11.5 for 1 hour. Furthermore, it heated at 60 degreeC at pH11.5, and stirred for 3 hours. To this solution, an aqueous solution in which 47 parts of zinc chloride was dissolved was added dropwise little by little to obtain a precipitate. Thereafter, the precipitate was filtered, washed with a large amount of water, and then dried at 80 ° C. to obtain Dispersant E-2 (a sulfonic acid zinc salt of the general formula (4)).
<Synthesis of Dispersant E-3>
Dispersant E-2 was prepared in the same manner except that zinc chloride was changed to strontium chloride to obtain dispersant E-3 (strontium sulfonate salt of general formula (4)).

<分散剤F−1の合成>
分散剤Fを80℃で乾燥させ、分散剤F−1(一般式(4)のカルボン酸)を得た。
<分散剤F−2の合成>
分散剤Fを水5000部に再分散し(再分散したスラリーのpHは2.3)、25%カセイソーダ液を攪拌しながら加え、pH11.5に1時間続けて調整した。更に、pH11.5にて60℃に加熱し、3時間攪拌を行った。この溶液に、塩化亜鉛47部を溶解した水溶液を少しずつ滴下し析出物を得た。その後、析出物を濾過し多量の水で水洗した後、80℃で乾燥させ、分散剤F−2(一般式(4)のカルボン酸亜鉛塩)を得た。
<分散剤F−3の合成>
分散剤F−2の、塩化亜鉛を塩化ストロンチウムに変更した以外は同様に作成し、分散剤F−3(一般式(4)のカルボン酸ストロンチウム塩)を得た。
<Synthesis of Dispersant F-1>
Dispersant F was dried at 80 ° C. to obtain Dispersant F-1 (carboxylic acid of general formula (4)).
<Synthesis of Dispersant F-2>
Dispersant F was redispersed in 5000 parts of water (the pH of the redispersed slurry was 2.3), and 25% caustic soda solution was added with stirring, and the pH was adjusted to 11.5 for 1 hour. Furthermore, it heated at 60 degreeC at pH11.5, and stirred for 3 hours. To this solution, an aqueous solution in which 47 parts of zinc chloride was dissolved was added dropwise little by little to obtain a precipitate. Thereafter, the precipitate was filtered, washed with a large amount of water, and then dried at 80 ° C. to obtain dispersant F-2 (carboxylic acid zinc salt of general formula (4)).
<Synthesis of Dispersant F-3>
Dispersant F-3 was prepared in the same manner except that zinc chloride was changed to strontium chloride to obtain dispersant F-3 (carboxylic acid strontium salt of general formula (4)).

実施例1〜18、及び比較例1〜4Examples 1-18 and Comparative Examples 1-4

表1に示すように、各種顔料、上記で得られた各種分散剤、樹脂(ビックケミー社製: BYK2012)、溶媒(水)を配合し、ビーズミル(浅田鉄工社製:PCM−LR) を用いて、直径0.3mmのジルコニアビーズと共に6時間分散を行い、顔料分散体を 作成した。  As shown in Table 1, various pigments, various dispersants obtained above, resin (BYK 2012: BYK2012), solvent (water) are blended, and a bead mill (Asada Tekko Co., Ltd .: PCM-LR) is used. Then, dispersion was performed for 6 hours together with zirconia beads having a diameter of 0.3 mm to prepare a pigment dispersion.

(各分散体の評価)
各分散体の粘度を、B型粘度計を用いて測定した。また、PETフィルムにウェット1μmで塗布した塗布フィルムを、耐候性試験機(スガ試験機株式会社製:キセノンウェザ

Figure 2016108520
価結果を表1に示す。
Figure 2016108520
(Evaluation of each dispersion)
The viscosity of each dispersion was measured using a B-type viscometer. In addition, a coated film coated on a PET film with a wet thickness of 1 μm was subjected to a weather resistance tester (manufactured by Suga Test Instruments Co., Ltd .: Xenon Weather).
Figure 2016108520
The results are shown in Table 1.
Figure 2016108520

表1の実施例1〜3と比較例1、実施例4〜6と比較例1、実施例7〜9と比較例2、実施例10〜12と比較例2、実施例13〜15と比較例3、実施例16〜18と比較例3、のそれぞれの比較結果が共通して、低粘度性、保存安定性、耐候性に優れている事が分かり、さらに金属塩である場合にはより優れた耐候性を示していた。一方で金属塩ではないタイプは低粘度性が高く、それぞれのタイプで優れた特徴があることが確認された。
さらに、実施例1〜3と比較例4から、本発明の分散剤は旧来のものに比べて色汚れがなく、高い発色性を示していると言える。
In Table 1, Examples 1 to 3 and Comparative Example 1, Examples 4 to 6 and Comparative Example 1, Examples 7 to 9 and Comparative Example 2, Examples 10 to 12 and Comparative Example 2, and Examples 13 to 15 are compared. The comparison results of Example 3 and Examples 16 to 18 and Comparative Example 3 are common, and it is found that they are excellent in low viscosity, storage stability and weather resistance, and more in the case of a metal salt. Excellent weather resistance was exhibited. On the other hand, types that are not metal salts have high low viscosity, and it was confirmed that each type has excellent characteristics.
Furthermore, it can be said from Examples 1 to 3 and Comparative Example 4 that the dispersant of the present invention has no color stain and exhibits high colorability as compared with the conventional one.

本発明の分散剤を用いることにより、非集合性、非結晶性、塗膜の光沢、透明性に優れるだけでなく、低粘度、低チキソトロピック性、経時粘度安定性に良好な分散体を得ることが容易に達成でき、グラビアインキ、自動車用、木材用、金属用等の各種一般塗料、磁気テープのバックコート塗料、ラジエーションキュアー型インキ、インクジェットプリンター用インキ、カラーフィルター用インキ、電池電極用インキ、半導体ウェーハ研磨用スラリー等の用途に適当出来る。  By using the dispersant of the present invention, a dispersion having not only excellent non-aggregation property, non-crystallinity, gloss and transparency of the coating film, but also low viscosity, low thixotropic property, and stability over time is obtained. Gravure ink, automotive, wood, metal, etc., various general paints, magnetic tape back coat paint, radiation cure ink, ink jet printer ink, color filter ink, battery electrode ink Suitable for applications such as semiconductor wafer polishing slurry.

Claims (1)

下記一般式(1)で示される分散剤。
Figure 2016108520
(式中、Xは一般式(2)〜(4)のいずれか1つであり、Rはスルホン酸、スルホン酸金属塩、カルボン酸、カルボン酸金属塩を示す。)
Figure 2016108520
Figure 2016108520
Figure 2016108520
A dispersant represented by the following general formula (1).
Figure 2016108520
(In the formula, X is any one of the general formulas (2) to (4), and R represents a sulfonic acid, a sulfonic acid metal salt, a carboxylic acid, or a carboxylic acid metal salt.)
Figure 2016108520
Figure 2016108520
Figure 2016108520
JP2014255588A 2014-12-02 2014-12-02 Dispersant Pending JP2016108520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255588A JP2016108520A (en) 2014-12-02 2014-12-02 Dispersant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255588A JP2016108520A (en) 2014-12-02 2014-12-02 Dispersant

Publications (1)

Publication Number Publication Date
JP2016108520A true JP2016108520A (en) 2016-06-20

Family

ID=56123411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255588A Pending JP2016108520A (en) 2014-12-02 2014-12-02 Dispersant

Country Status (1)

Country Link
JP (1) JP2016108520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038747A1 (en) * 2015-08-31 2017-03-09 山陽色素株式会社 Aqueous dye dispersion for aqueous inks, and aqueous ink

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038747A1 (en) * 2015-08-31 2017-03-09 山陽色素株式会社 Aqueous dye dispersion for aqueous inks, and aqueous ink
US20190031898A1 (en) * 2015-08-31 2019-01-31 Sanyo Color Works, Ltd. Aqueous Ink and Aqueous Dye Dispersion for Aqueous Ink
US10570302B2 (en) 2015-08-31 2020-02-25 Sanyo Color Works, Ltd. Aqueous ink and aqueous dye dispersion for aqueous ink

Similar Documents

Publication Publication Date Title
US7255734B2 (en) Phthalocyanine pigment preparations
TWI383026B (en) Pigment dispersing agent, pigment composition and pigment dispersion
US7311769B2 (en) Pigment compositions consisting of a yellow disazo pigment and an organic pigment
JP2004217842A (en) Pigment dispersant, pigment composition containing the same, and pigment dispersion
JP4983061B2 (en) Pigment dispersant, pigment composition using the same, and pigment dispersion
JP2009132911A (en) Coloring composition, production method and coloring method
JP2006057044A (en) Pigment dispersion for aqueous recording liquid and aqueous recording liquid
JP3900161B2 (en) Method for producing carbon black dispersion
JP2017100116A (en) Dispersant
JP3858825B2 (en) Method for producing adsorption-treated carbon black
JP2016108520A (en) Dispersant
WO2019187058A1 (en) Method for producing quinacridone solid-solution pigment, pigment dispersion, and ink-jet ink
JP2014177575A (en) Method for preparing monoazo pigment composition, toner, and inkjet ink
JP4396210B2 (en) Pigment dispersant, pigment composition, and pigment dispersion
JP4816135B2 (en) Metal complex pigment and coloring composition using the same
JP2018529785A (en) Naphthol AS pigment mixture
JP2017100115A (en) Dispersant
JP2006518400A (en) Method for producing transparent pigment preparation mainly comprising perylene-3,4,9,10-tetracarboxylic acid diimine
WO2019107166A1 (en) Dioxazine pigment and colorant
JP2015232105A (en) Dispersant
JP4492217B2 (en) Pigment and pigment composition
JP4069873B2 (en) Method for producing organic pigment dispersion
CN1136818A (en) Delta type indanthrone blue pigment and producing method
JP2005179489A (en) Pigment dispersant and pigment composition containing the same
JP2016108519A (en) Dispersant