JP2016089100A - Manufacturing method of wood chip for fuel - Google Patents
Manufacturing method of wood chip for fuel Download PDFInfo
- Publication number
- JP2016089100A JP2016089100A JP2014227327A JP2014227327A JP2016089100A JP 2016089100 A JP2016089100 A JP 2016089100A JP 2014227327 A JP2014227327 A JP 2014227327A JP 2014227327 A JP2014227327 A JP 2014227327A JP 2016089100 A JP2016089100 A JP 2016089100A
- Authority
- JP
- Japan
- Prior art keywords
- chip
- wood
- wood chip
- fuel
- free water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
本発明は、木材チップを燃料として利用するために脱水処理する燃料用木材チップの製造方法に係る技術分野に属する。 The present invention belongs to a technical field related to a method for manufacturing a wood chip for fuel that is dehydrated in order to use the wood chip as a fuel.
地球温暖化防止を背景とした再生可能エネルギー利用の必然性が認識され、とくに形質が劣り林地に放置される林地残材や、木材加工工場から排出される背板、おが粉、樹皮などの工場残材等の、いわゆる未利用木質資源のエネルギー利用が注目されている。しかしこれら木質資源は一般に湿量含水率(以後、含水率と略す)が50〜70%と高く、そのままでは燃料として不適で、事前に燃料としてふさわしい含水率40%以下にまで含水率を低下させる必要がある。
製材や合板等の木質材料製造では、古くから割れや狂いの発生を抑えた天然(天日)乾燥や加熱乾燥といったマイルドな乾燥技術が実用化されているが、付加価値の低い燃料製造には、より低コストで短時間に目標含水率まで乾燥できる処理技術を必要とする。しかしそのような手段は見いだされていない。
Recognizing the necessity of using renewable energy against the backdrop of global warming prevention, remnants of forest land with poor traits, left behind in forest land, and backboards, sawdust and bark discharged from wood processing plants The energy utilization of so-called unused wood resources such as residual materials has attracted attention. However, these wood resources generally have a high moisture content (hereinafter abbreviated as "water content") of 50 to 70%, which is not suitable as a fuel as it is, and lowers the moisture content to 40% or less suitable for fuel in advance. There is a need.
In the manufacture of wood materials such as lumber and plywood, mild drying techniques such as natural (sunlight) drying and heat drying have been put into practical use for a long time. Therefore, a processing technique capable of drying to a target moisture content in a short time at a lower cost is required. However, no such means has been found.
例えば燃料用の木質ペレットの製造方法として、木材の加工過程で生じる湿った木粉を圧縮して水分を搾出(脱水)すると同時に、ペレットを成型する技術が特許文献1に記載されている。
しかし、特許文献1に係る燃料用木材ペレットの製造方法の概要は、木粉に100MPa以上の超高圧を作用して木材の細胞を一気に圧搾して脱水処理することを内容とし、超高圧を必要とすることから設備費用が大であると共に運転費用が嵩む等の問題点を抱えている。
For example, as a method for producing wood pellets for fuel, Patent Document 1 discloses a technique in which wet wood powder generated during the processing of wood is compressed to squeeze (dehydrate) moisture, and at the same time, pellets are molded.
However, the outline of the method for producing wood pellets for fuel according to Patent Document 1 is that the ultrahigh pressure of 100 MPa or more is applied to the wood flour to squeeze the cells of the wood at once and dehydration is required, and the ultrahigh pressure is required. Therefore, the facility cost is large and the operation cost is increased.
本発明は、木材中の水分のうち含水率が約23%以上の水分は細胞内腔等の粗大な間隙に存在する液状の自由水であり、この自由水は木材を圧縮することによって容易に脱水できることに着目したもので、極端な高圧力を要することなく、比較的簡単な設備で且つ効率的に、燃料として利用可能な低含水率の木材チップを得ることのできる製造方法を提供しようとするものである。 According to the present invention, water having a moisture content of about 23% or more of water in wood is liquid free water existing in coarse gaps such as cell lumens, and this free water can be easily compressed by compressing wood. Focusing on the fact that it can be dehydrated, an attempt is made to provide a production method capable of obtaining wood chips with a low water content that can be used as fuel efficiently and with relatively simple equipment without requiring extremely high pressure. To do.
前述の課題を解決するため、本発明に係る燃料用木材チップの製造方法は、特許請求の範囲の各請求項に記載の手段を採用する。 In order to solve the above-described problems, the fuel wood chip manufacturing method according to the present invention employs means described in each of the claims.
請求項1記載の燃料用木材チップの製造方法は、自由水を含む含水率50%以上で、繊維直角方向を厚さとする扁平又は細長の木材チップを対象とし、相対する一対の一定面積を備えたプレス面が互いに等間隔をもって対面するプレス機によって、該木材チップの繊維長軸方向をプレス面に対し平行方向に配列して堆積したチップマットの厚さ方向からプレスで加圧脱水する工程を備え、該加圧工程が、a)プレス面を降下させて、チップマット内に存する空気を抜く第1工程と、b)チップの厚さ方向に最大15〜25MPaの圧縮圧力を加えて、細胞内腔に溜まった自由水を細胞外に排出させる第2工程と、c)第2工程での最大圧縮圧力を少なくとも30秒以上保持して残存する自由水を排出し、木材チップの含水率を30〜40%とする第3工程とから成ることを特徴とする。
請求項2記載の燃料用木材チップの製造方法は、請求項1記載の木材チップは、形状が繊維直角方向を厚さとする扁平又は細長のもので、寸法が、ふるいの目開き32mmを通過し、8mmに溜まるチップの重量割合が全チップ重量の80%以上で、8mmを通過するものおよび63mmを通過し32mmに溜まるものがそれぞれ10%未満で、かつ長さが4〜120mmのものであることを特徴とする。
The method for producing a wood chip for fuel according to claim 1 is intended for flat or elongated wood chips having a moisture content of 50% or more including free water and having a thickness in the direction perpendicular to the fiber, and has a pair of opposed constant areas. A step of pressure dehydrating with a press from the thickness direction of the chip mat deposited by arranging the fiber major axis direction of the wood chips parallel to the press surface by a press machine in which the pressed surfaces face each other at equal intervals. The pressure step comprises: a) a first step of lowering the press surface to remove air present in the chip mat; and b) applying a compression pressure of 15 to 25 MPa at the maximum in the thickness direction of the chip, A second step of discharging the free water accumulated in the lumen to the outside of the cell; and c) discharging the remaining free water while maintaining the maximum compression pressure in the second step for at least 30 seconds, and increasing the moisture content of the wood chip. 30-40% It consists of three steps.
According to a second aspect of the present invention, there is provided a method for producing a wood chip for fuel, wherein the wood chip according to the first aspect is a flat or elongated shape having a thickness in a direction perpendicular to the fiber, and the size passes through a sieve opening of 32 mm. The weight ratio of chips collected at 8 mm is 80% or more of the total chip weight, those passing through 8 mm and those passing through 63 mm and collected at 32 mm are less than 10%, and the length is 4 to 120 mm. It is characterized by that.
本発明に係る燃料用木材チップの製造方法は、木材チップの繊維長軸方向をプレス面に対し平行方向に配列して堆積したチップマットを、その直角方向から相対する一対の一定面積を備えたプレス面が互いに等間隔をもって対面するプレス機で圧縮加圧すると、この圧縮力はチップの厚さ方向、すなわち中空紡錘形の木材繊維の直径方向に加わるため、比較的小さい力で細胞を押しつぶすことができ、細胞内腔等に存在する自由水を効果的に圧搾・脱水できる特徴を持つ。又、一回の加圧操作でチップマット全体を脱水処理することが可能となる。その加圧工程にあって、第1工程でチップマット内に存する空気を抜いた後、第2加圧工程では、チップの厚さ方向に最大15〜25MPaに達するまでの圧縮力を加えて細胞を直径(繊維直角)方向に押しつぶし、細胞内腔中の自由水の膨圧によって、末端壁に多く分布する壁孔に作用して細胞を破裂して自由水を細胞外に排出する。更に、第3加圧工程では、最大圧力を保持して細胞内腔をほぼ圧密した状態を30秒以上持続させて、残留する自由水の排出を促す。このような一連の圧縮脱水処理で、最終の第3工程を経た後には、当初50%以上あった木材チップの含水率を燃料として充分使用可能な30%〜40%の範囲にまで低減させることができる。その実現にあたって、特別な高圧を要することなく、通常のプレス機が備える圧力で、極めて効率の良い木材チップの脱水が可能となる。
木材チップは、形状が繊維直角方向を厚さとする扁平又は細長のもので、寸法が、ふるいの目開き32mmを通過し、8mmに溜まるチップの重量割合が全チップ重量の80%以上で、8mmを通過するものおよび63mmを通過し32mmに溜まるものがそれぞれ10%未満で、かつ長さが4〜120mmのものとすると、上記第2工程に基づく細胞破裂による細胞内腔からの自由水の搾出が有効に働く。
The method of manufacturing a wood chip for fuel according to the present invention comprises a pair of constant areas facing each other from a chip mat in which the fiber major axis direction of the wood chip is arranged in a direction parallel to the press surface. If the press surfaces are compressed and pressed by press machines that face each other at equal intervals, this compressive force is applied in the thickness direction of the chip, that is, in the diameter direction of the hollow spindle-shaped wood fiber, so that the cells can be crushed with a relatively small force. The free water present in the cell lumen can be effectively squeezed and dehydrated. In addition, the entire chip mat can be dehydrated with a single pressurization operation. In the pressurizing step, after the air existing in the chip mat is extracted in the first step, the second pressurizing step applies a compressive force up to 15 to 25 MPa in the thickness direction of the chip to apply cells. Is crushed in the direction of the diameter (perpendicular to the fiber), and the swell pressure of free water in the cell lumen acts on the wall holes distributed in the end wall, rupturing the cells and discharging the free water out of the cells. Further, in the third pressurizing step, the state in which the maximum pressure is maintained and the cell lumen is substantially consolidated is maintained for 30 seconds or more, and the remaining free water is discharged. In such a series of compression dehydration treatments, after passing through the final third step, the moisture content of the wood chips, which was initially 50% or more, is reduced to a range of 30% to 40% that can be sufficiently used as fuel. Can do. In order to realize this, it is possible to dehydrate wood chips very efficiently with the pressure of a normal press without requiring a special high pressure.
Wood chips are flat or slender with a thickness in the direction perpendicular to the fiber, and the dimensions are 8 mm when the weight ratio of chips passing through a sieve opening of 32 mm and collecting 8 mm is 80% or more of the total chip weight. Squeezing free water from the cell lumen due to cell rupture according to the second step, assuming that less than 10% of the sample passing through 63 mm and 32 mm passing through 63 mm and having a length of 4 to 120 mm are used. Out works effectively.
以下本発明燃料用木材チップの製造方法を実施するための形態を説明する。
上述の如く、木材加工工場からは大量の木材屑が排出され、又、森林からも林地残材などが多量に排出され、これらの有効な用途が求められている。これら低質材を燃料用として用いることができれば、有用な用途の一つとなり得るが、これら木材は生木が多く、そのままでは含水率が高いため燃料として不適とされてしまうことが少なくない。
Hereinafter, the form for implementing the manufacturing method of the wood chip | tip for fuel of this invention is demonstrated.
As described above, a large amount of wood debris is discharged from a wood processing factory, and a large amount of forest land residue is discharged from a forest, and these effective uses are required. If these low-quality materials can be used for fuel, they can be one of useful applications. However, these woods are often unsuitable as fuel because they have a lot of raw wood and have a high moisture content.
そこで、本発明は、これら生木に近い状態の木材を対象とするが、具体的には、含水率50%以上、望ましくは55%以上の含水率を有するものを対象とする。
この含水率は、針葉樹においては心材よりも辺材の方が高いとされるが、スギやトドマツなどでは心材も辺材と同等に高いものもあり、本発明で対象とする木材は針葉樹および広葉樹のこれら心・辺材を含むものである。
これら含水率の高いものに、後述する本発明の加圧脱水工程は有効に働くからである。
Therefore, the present invention is intended for wood in a state close to these raw trees, and specifically, for wood having a moisture content of 50% or more, desirably 55% or more.
This moisture content is said to be higher for sapwood than for sapwood in coniferous trees, but for cedar and todomatsu, the sapwood is also as high as sapwood, and the target wood in the present invention is coniferous and hardwood This includes the heart and sapwood.
This is because the pressure dehydration step of the present invention, which will be described later, works effectively on those having a high water content.
本発明にあっては、上記木材チップの形状はその製造方法にかかわらず、繊維直角方向を厚さとする扁平又は細長のチップとし、例えば図1に示す如くの切削チップ又は破砕チップを用いる。繊維とは、針葉樹及び広葉樹にみられる主として仮道管、木繊維を指し、上記形状のものであればそのいずれを問わない。 後述するプレスとの関係にあって、扁平又は細長となった木材チップの厚さ方向に押圧することで有効な脱水作用が得られるからである。
上記木材チップの形状は、具体的には、例えば、寸法がふるいの目開き32mmを通過し、8mmに溜まるチップの重量割合が全チップ重量の80%以上で、8mmを通過するものおよび63mmを通過し32mmに溜まるものがそれぞれ10%未満で、かつ長さが4〜120mmのものを指す。
In the present invention, the shape of the wood chip is a flat or slender chip having a thickness in the direction perpendicular to the fiber regardless of the manufacturing method. For example, a cutting chip or a crushing chip as shown in FIG. 1 is used. The fiber mainly refers to a temporary canal and a wood fiber found in conifers and broad-leaved trees, and any of them may be used as long as it has the above shape. This is because an effective dehydrating action can be obtained by pressing in the thickness direction of the flat or elongated wood chip in relation to the press described later.
Specifically, the shape of the wood chip is, for example, passing through a sieve opening of 32 mm, and the weight ratio of chips accumulated in 8 mm is 80% or more of the total chip weight, passing 8 mm and 63 mm. Those that pass and accumulate at 32 mm are each less than 10% and have a length of 4 to 120 mm.
本発明で用いるプレス機とは、相対する一対の一定面積を備えたプレス面が互いに等間隔をもって対面するプレス機をいう。例えば、上下又は左右に2つ(一対)のプレス面を有し、その相対するプレス面がローラーの如く線状に向き合うのではなく、一定面積を備えた面として相対するものを指す。そのプレス面は、平坦面を主とするが、それに限らず、彎曲面、球面の一部、折面等であっても良く、但し、相対する面が互いに等間隔をもって相対することを要件とする。後述する如く、一対のプレス面の間に木材チップを挟んだとき、チップ全体をできるだけ均等な圧力で、且つ、繊維長軸方向に対し直角方向に加圧する為である。 The press used in the present invention refers to a press in which a pair of opposed press surfaces having a certain area face each other at equal intervals. For example, it has two (a pair) press surfaces on the upper and lower sides or the right and left sides, and the opposed press surfaces do not face each other linearly like a roller, but are opposed as surfaces having a certain area. The press surface is mainly a flat surface, but is not limited to this, and may be a curved surface, a part of a spherical surface, a folded surface, etc. provided that the opposing surfaces face each other at equal intervals. To do. This is because, as will be described later, when a wood chip is sandwiched between a pair of press surfaces, the entire chip is pressed with as even pressure as possible and in a direction perpendicular to the fiber major axis direction.
そして、該木材チップの繊維長軸方向をプレス面に対し平行方向に配列して堆積したチップマットを形成する。ここでプレス面に対して平行方向とは、扁平又は細長の木材チップにあって、チップの傾きや繊維の絡み合い等によって、直線的平行が若干不揃いとなる場合も想定されるが、これらを含める意である。要するに、圧縮力をチップの長軸に対し、できるだけ繊維直角方向に作用させる関係を意味するものである(図2参照)。 Then, the chip mat is formed by arranging the fiber major axis direction of the wood chip in a direction parallel to the press surface. Here, the direction parallel to the press surface is a flat or slender wood chip, and it may be assumed that linear parallelism may be slightly uneven due to the inclination of the chip or the entanglement of the fibers. I mean. In short, this means a relationship in which the compressive force is applied in the direction perpendicular to the fiber as much as possible with respect to the long axis of the chip (see FIG. 2).
次に、該チップマットに対し、その厚さ方向からプレスで圧縮加圧して脱水する加圧脱水工程を加えるが、その工程は、以下の第1工程〜第3工程から成る加圧脱水工程を構成するが、この工程の実施にあたって本発明は、木材の結合水と自由水を備えた細胞の構造に着目したものである。
即ち、木材中の水分は、細胞壁に含まれ木材実質と水素結合などの物理・化学的結合力で保持される結合水と、細胞内腔等の粗大な空隙に毛管力により保持される液状の自由水とが存在する。このうち加圧で容易に脱水されるのは自由水に限られるため、本発明では加圧脱水する対象を自由水とした。そして、この自由水は、壁孔(ピット)と呼ばれる小さな孔を通して隣接する細胞内腔間を移動できる。とくに繊維長軸方向に隣接する末端壁には多くの壁孔が分布し、繊維長軸方向への流動を容易にしている。他方、壁孔は強度的に弱点で、加圧による自由水の急激な膨圧発生に対して細胞破裂の起点ともなる。つまり、本発明は木材チップ内での細胞の配列と自由水の搾出に関係する細胞構造に着目したものである(図2参照)。
Next, a pressure dehydration step is performed on the chip mat by pressurizing and depressurizing with a press from the thickness direction. The pressure dehydration step includes the following first to third steps. Although it constitutes, in carrying out this process, the present invention pays attention to the structure of a cell provided with wood-bound water and free water.
In other words, the moisture in the wood is liquid water that is contained in the cell wall and retained by physical and chemical bonding forces such as hydrogen bonds and the wood substance, and liquid that is retained in the coarse voids such as the cell lumens by capillary force. There is free water. Of these, since it is only free water that can be easily dehydrated by pressurization, in the present invention, the object to be pressure dehydrated is free water. This free water can move between adjacent cell lumens through small holes called wall holes (pits). In particular, many wall holes are distributed in the end wall adjacent in the fiber long axis direction, facilitating the flow in the fiber long axis direction. On the other hand, the wall hole is weak in strength, and also serves as a starting point for cell rupture against the sudden expansion of free water caused by pressurization. That is, the present invention focuses on the cell structure related to cell arrangement and free water extraction in the wood chip (see FIG. 2).
先ず、該加圧脱水工程にあっては、図3に示す如く加圧初期においてはマットに圧縮変形を与えても応力が発生しない領域がある。これが第1工程でチップマットの押圧によってチップ間隙に存在する空気が抜け、結果としてチップマットの密度を高めている。この第1工程は、加圧開始からチップマットの厚さが初期厚さの約6割に縮まるまで続く(図3と4参照)。この場合の圧縮変形速度は比較的速くすることが可能で、例えば5mm/s〜200mm/sに設定することができる。 First, in the pressure dehydration step, as shown in FIG. 3, there is a region where no stress is generated even when the mat is subjected to compressive deformation in the initial stage of pressurization. This is the first step, and air present in the chip gap is released by pressing the chip mat, and as a result, the density of the chip mat is increased. This first step continues from the start of pressurization until the thickness of the chip mat is reduced to about 60% of the initial thickness (see FIGS. 3 and 4). In this case, the compression deformation speed can be made relatively fast, and can be set to, for example, 5 mm / s to 200 mm / s.
第2工程は圧縮応力の発生で始まる。チップ自体に直接圧縮力が作用し細胞は直径方向に圧縮変形を始める。マットの厚さが初期厚さの3割強にまで縮んだ時点=圧縮応力が木材の横圧縮破壊強度に相当する1MPa程度に達した時点で細胞は押しつぶされ、内腔に存在した自由水も圧迫されてその圧力で細胞を破裂し、自由水の搾出が始まる。さらに圧縮変形を加えるとチップおよび細胞の圧密化が一層促進され応力も急増し、それに伴って自由水の噴出も急激となる。第2工程では15〜25MPaの圧縮最大応力に達した時点で押圧を停止する。その時のマットの厚さが初期厚さの約10%程度と極端に薄くなっている(図3及び4参照)。
第3工程は、第2工程でマットの押圧を停止した時点から始まり、一定時間最大応力を保持し解圧するまでの期間である。この状態ではチップ細胞はほぼ圧密化されており、マット内に残留した自由水の外部への排出を促す効果を期待する。最大応力の保持時間は原則的には搾出水の排出が終了するまでである。ただし水分の排出が完全に止むには相当の時間を要するため、応力保持時間は押圧停止から排水速度が少なくなった時点までとした。
以上の工程を通じて、最大圧締応力と保持時間を独立変数として得られた結果を表1に示す。この表1の試験に用いた木材チップの形状は、寸法がふるいの目開き32mmを通過し、8mmに溜まるチップの重量割合が全チップ重量の80%以上で、8mmを通過するものおよび63mmを通過し32mmに溜まるものがそれぞれ10%未満で、かつ長さが4〜120mmのものである。
The second step begins with the generation of compressive stress. A compressive force acts directly on the chip itself, and the cells start to compressively deform in the diameter direction. When the thickness of the mat is reduced to a little over 30% of the initial thickness = When the compressive stress reaches about 1 MPa, which corresponds to the lateral compressive fracture strength of wood, the cells are crushed and the free water present in the lumen is also When pressure is applied, cells are ruptured by the pressure, and free water begins to be squeezed. Furthermore, when compressive deformation is applied, the consolidation of the chip and cells is further promoted, the stress increases rapidly, and the ejection of free water is also accelerated accordingly. In the second step, pressing is stopped when the maximum compression stress of 15 to 25 MPa is reached. The mat thickness at that time is extremely thin, about 10% of the initial thickness (see FIGS. 3 and 4).
The third step is a period from the time when the pressing of the mat is stopped in the second step until the maximum stress is maintained for a certain time and the pressure is released. In this state, the chip cells are almost consolidated, and an effect of promoting discharge of free water remaining in the mat is expected. The holding time of the maximum stress is in principle until the discharge of the squeezed water ends. However, since a considerable amount of time is required for the water discharge to stop completely, the stress holding time is from the stop of pressing until the time when the drainage speed decreases.
Table 1 shows the results obtained through the above steps using the maximum pressing stress and holding time as independent variables. The shape of the wood chips used in the tests in Table 1 is that the size of the chips that pass through a sieve opening of 32 mm, the weight ratio of the chips that accumulate in 8 mm is 80% or more of the total chip weight, those that pass 8 mm, and 63 mm Those that pass and accumulate at 32 mm are each less than 10% and 4 to 120 mm in length.
即ち、図3および4に示す如く、チップマットの厚さ方向に圧縮圧力を加えると、チップマットの厚さは低くなりやがて応力が発生する。さらに加圧を続けるとある時点で脱水が開始され、上記の如く、チップマットの周囲にザーと多量の水の流出が観察される。設定した最大応力に達したところで加圧を停止し、一定時間最大応力を保持した後に解圧し一連の圧縮脱水処理を終了する。
図5(A)、(B)、図6(C)、(D)に最大設定応力を100kg/cm2(10MPa)〜250kg/cm2(25MPa)に設定して実測した圧縮応力とマット厚さの時間曲線を示す。図4の応力発生、脱水開始および最大応力の各時点でのマット厚さ割合は、この実測結果を基に割り出したものである。該試験においては変形速度が一定のプレス試験器を用いた関係で、変形速度は図3のものとは異なっている。
さらに最大設定応力と含水率の関係(図7および表1参照)からは、圧縮脱水処理前のチップ含水率はいずれも60〜70%の高率を示すが、処理後の含水率は最大設定応力が増すに従って約40%から約35%に減少しており、とくに最大応力15MPa以上では60%を超える高含水率チップであっても目標の40%以下とすることが可能となることが確認された。
一方、25MPaを超える最高圧力の採用は、含水率のより低いチップ製造に有効であるが、設定圧力を高くするとプレス装置の大型化が不可避で、それに伴うチップ品質のメリットと装置導入の初期投資やランニングコストの高騰によるリスクとの兼ね合いで決定すべきと判断した。
That is, as shown in FIGS. 3 and 4, when compressive pressure is applied in the thickness direction of the chip mat, the thickness of the chip mat becomes lower and stress is generated. When the pressurization is continued, dehydration is started at a certain point, and as described above, the outflow of the zir and a large amount of water is observed around the chip mat. When the set maximum stress is reached, the pressurization is stopped, the maximum stress is maintained for a certain period of time, the pressure is released, and a series of compression and dehydration processes are completed.
FIGS. 5A, 5B, 6C, and 6D show the measured compressive stress and mat thickness when the maximum set stress is set to 100 kg / cm 2 (10 MPa) to 250 kg / cm 2 (25 MPa). The time curve is shown. The mat thickness ratio at each time point of stress generation, dehydration start and maximum stress in FIG. 4 is determined based on the actual measurement results. In this test, the deformation speed is different from that shown in FIG. 3 because a press tester having a constant deformation speed is used.
Furthermore, from the relationship between the maximum set stress and the moisture content (see Fig. 7 and Table 1), the moisture content of chips before compression dehydration shows a high rate of 60-70%, but the moisture content after treatment is set to the maximum. As the stress increases, it is reduced from about 40% to about 35%. Especially when the maximum stress is 15MPa or more, it is confirmed that even a high moisture content chip exceeding 60% can be reduced to the target of 40% or less. It was done.
On the other hand, adoption of the maximum pressure exceeding 25 MPa is effective for manufacturing chips with a lower moisture content, but increasing the set pressure inevitably increases the size of the press machine. It was decided that the decision should be made in view of the risks caused by rising running costs.
この優れた脱水作用が惹起されるのは以下の如くに推察される。
先ず、上述の如く、木材中の水分には結合水と自由水とが存在し、自由水は壁孔(ピット)を通過して隣接細胞内腔間を移動できる。図2に示す如くとくに繊維長軸方向に隣接する末端壁には多くの壁孔が分布し、繊維長軸方向への流動を容易にしている。他方、壁孔は強度的に弱点で、加圧による自由水の急激な膨圧発生に対して細胞破裂の起点ともなる。そこで、木材チップの繊維長軸方向をプレス面に対し平行方向に配列して直角方向に加圧すると、細胞は直径方向に押しつぶされ、自由水も押されてその圧力によってついには強度的弱点である壁孔の破壊ひいては細胞破裂が引き起こされる。このような細胞破壊は10kg/cm2(1MPa)程度の小さい圧力で発生し、圧力の増加により順次強度レベルの高い組織破壊に進展すると考えられる。因みに燃料用チップの品質は材料用木材と異なり組織破壊とは無関係であることを付言する。
The reason why this excellent dehydrating effect is induced is assumed as follows.
First, as described above, the water in the wood includes bound water and free water, and the free water can move between adjacent cell lumens through a wall hole (pit). As shown in FIG. 2, many wall holes are distributed particularly in the end wall adjacent to the fiber long axis direction to facilitate the flow in the fiber long axis direction. On the other hand, the wall hole is weak in strength, and also serves as a starting point for cell rupture against the sudden expansion of free water caused by pressurization. Therefore, when the fiber major axis direction of the wood chip is arranged in a direction parallel to the press surface and pressurized in the perpendicular direction, the cells are crushed in the diametrical direction, and free water is also pressed, which eventually causes a weakness in strength. The destruction of a wall hole and cell rupture is caused. Such cell destruction occurs at a pressure as low as about 10 kg / cm 2 (1 MPa), and it is considered that the increase in pressure gradually leads to tissue destruction at a high strength level. By the way, it is added that the quality of the fuel chip is not related to the tissue destruction unlike the wood for material.
とくに第2工程は、搾出された自由水が堆積チップ内から外部へと流出できることが肝心で、そのため流路確保を目的に、マット圧締速度を比較的ゆっくりすることが好ましい。少なくとも第1加圧工程より遅い速度で降下させるものとし、例えば、1〜10mm/s程度の降下速度とするのが望ましい。 In particular, in the second step, it is important that the squeezed free water can flow out from the deposited chip to the outside. Therefore, it is preferable to relatively slow the mat pressing speed in order to secure the flow path. The lowering speed is at least slower than that of the first pressurizing step, and is preferably about 1 to 10 mm / s, for example.
そして第3加圧工程では最大圧力状態を保持する(図3および5参照)。これは、上記第2加圧工程の終期では、細胞内腔に存在した自由水の大部分が排出されるだろうが、なお一定の割合で自由水が残存する可能性があり、それの排出を促すために行うものである。
このときの保持時間については図8に示す如くで、150kg/cm2(15MPa)〜250kg/cm2(25MPa)の圧力の場合20秒では不足で、少なくとも30秒以上が必要であることが分かる。ただし30秒以上にしても脱水後の含水率はほとんど低下しないことから、30秒が適切と判断した。
斯くして、木材チップの含水率は40%以下とすることができ、燃料として使用するに適した含水率とすることが可能となる。
一方、脱水による到達含水率の最小値は30%とした。チップ燃料の含水率としては30〜40%にあれば品質的にも実用的にも十分であることによる。
In the third pressurizing step, the maximum pressure state is maintained (see FIGS. 3 and 5). This is because, at the end of the second pressurization step, most of the free water present in the cell lumen will be discharged, but there is still a possibility that the free water may remain at a certain rate, Is to encourage
As shown in FIG. 8, the holding time at this time is 150 kg / cm 2 (15 MPa) to 250 kg / cm 2 (25 MPa). It can be seen that 20 seconds is insufficient and at least 30 seconds or more is necessary. However, even after 30 seconds or more, the water content after dehydration hardly decreased, so 30 seconds was judged appropriate.
Thus, the moisture content of the wood chips can be 40% or less, and the moisture content suitable for use as fuel can be achieved.
On the other hand, the minimum water content achieved by dehydration was 30%. The chip fuel moisture content of 30-40% is sufficient for quality and practical use.
上記第1加圧工程〜第3加圧工程の前後にあっては、プレス面が堆積物まで降下する前工程と、解圧後にプレス面を上昇する後工程が付加され、これら工程を加えて再度の加圧脱水工程を実施し、これらを繰り返すことで所定量の木材チップの圧縮脱水処理が完了する(図3参照)。 Before and after the first pressurization process to the third pressurization process, a pre-process in which the press surface descends to the deposit and a post-process in which the press surface is lifted after depressurization are added. The pressure dehydration process is performed again, and the compression dehydration process for a predetermined amount of wood chips is completed by repeating these steps (see FIG. 3).
以上を総合すると、本発明は含水率50%以上の木材に対し、繊維直角方向を厚さとする扁平又は細長のチップ形状とし、該チップの繊維長軸方向をプレス面に対し並行に配列して堆積させたチップマットに直角方向から面プレスで圧縮加圧することから、細胞内腔に存する自由水を細胞外へと排出する方向に有効に働く。又、一回の加圧操作で比較的多量のチップを脱水処理することができる。
その加圧工程にあって、第1工程では堆積された扁平チップの隙間に存する空気を排出し、互いを密接状態まで高密度化することができる。
その密接状態の後、内部に応力が発生する第2工程に至り、圧縮応力が1MPa程度の極めて小さい値から脱水が開始し、15〜25MPaの最大設定応力の達するまで圧密化の進行により脱水は継続される。これはチップを構成する中空紡錘状の細胞の直径方向を縮める応力の作用によって、細胞内腔に存在する自由水に発生した膨圧が原因で細胞破壊が起こり、自由水が組織外にひいてはチップ外部に搾出されることとなる。
第3工程では、最大圧力を一定時間(30秒以上)保持し、残存する自由水の排出を促すことを目的とする。
これらによって、上記含水率50%以上の水を含む木材チップは30〜40%以下へと脱水され、当該木材チップが燃料として使用するに適した含水率まで低減させることができる。
これを具現させるにあたって、特別な高圧や大規模な装置を要することなく、通常のプレス機の圧力によって効率的で経済的な木材チップの脱水が実現されるものとなる。
Summing up the above, the present invention has a flat or slender chip shape with a thickness in the direction perpendicular to the fiber for wood having a moisture content of 50% or more, and the fiber long axis direction of the chip is arranged in parallel to the press surface. Since the deposited chip mat is compressed and pressed by a surface press from a right angle direction, it effectively works in the direction of discharging free water existing in the cell lumen to the outside of the cell. In addition, a relatively large amount of chips can be dehydrated by a single pressurizing operation.
In the pressurization step, in the first step, the air existing in the gaps between the accumulated flat chips can be discharged, and the density can be increased to a close state.
After the intimate state, the process reaches a second step in which stress is generated inside, and dehydration starts from a very small value of compressive stress of about 1 MPa, and dehydration is progressed by consolidation until the maximum set stress of 15 to 25 MPa is reached. Will continue. This is due to the action of stress that shrinks the diameter of the hollow spindle-shaped cells that make up the chip, causing cell destruction due to turgor pressure generated in the free water present in the cell lumen. It will be squeezed out.
The third step aims to maintain the maximum pressure for a certain period of time (30 seconds or more) and to promote the discharge of remaining free water.
By these, the wood chip containing water having a water content of 50% or more is dehydrated to 30 to 40% or less, and the wood chip can be reduced to a water content suitable for use as fuel.
In realizing this, the wood chip can be efficiently and economically dehydrated by the pressure of a normal press without requiring a special high pressure or a large-scale apparatus.
Claims (2)
該木材チップの繊維長軸方向をプレス面に対し平行方向に配列して堆積したチップマットの厚さ方向からプレスで加圧脱水する工程を備え、
該加圧工程が、
a)プレス面を降下させて、チップマット内に存する空気を抜く第1工程と、
b)チップの厚さ方向に最大15〜25MPaの圧縮圧力を加えて、細胞内腔に溜まった自由水を細胞外に排出させる第2工程と、
c)第2工程での最大圧縮圧力を少なくとも30秒以上保持して残存する自由水を排出し、木材チップの含水率を30〜40%とする第3工程とから成る、
ことを特徴とする燃料用木材チップの製造方法。 With a press machine with a moisture content of 50% or more including free water and a flat or elongated wood chip having a thickness in the direction perpendicular to the fiber as a target, a pair of opposed press surfaces having a constant area face each other at equal intervals,
Comprising the step of pressure dehydrating with a press from the thickness direction of the chip mat deposited by arranging the fiber major axis direction of the wood chips in a direction parallel to the press surface;
The pressurizing step
a) a first step of lowering the pressing surface and removing air existing in the chip mat;
b) a second step of applying a compression pressure of up to 15 to 25 MPa in the thickness direction of the chip to discharge free water accumulated in the cell lumen to the outside of the cell;
c) comprising the third step of maintaining the maximum compression pressure in the second step for at least 30 seconds or more and discharging the remaining free water and setting the moisture content of the wood chips to 30 to 40%.
A method for producing a wood chip for fuel.
The shape of the wood chip according to claim 1 is a flat or slender shape having a thickness in the direction perpendicular to the fiber, and the size passes through a sieve opening of 32 mm, and the weight ratio of chips collected at 8 mm is 80% of the total chip weight. The method for producing a wood chip for fuel according to the above, wherein what passes through 8 mm and what passes through 63 mm and accumulates at 32 mm are each less than 10% and have a length of 4 to 120 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014227327A JP6231464B2 (en) | 2014-11-07 | 2014-11-07 | Manufacturing method of wood chip for fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014227327A JP6231464B2 (en) | 2014-11-07 | 2014-11-07 | Manufacturing method of wood chip for fuel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016089100A true JP2016089100A (en) | 2016-05-23 |
JP6231464B2 JP6231464B2 (en) | 2017-11-15 |
Family
ID=56018829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014227327A Active JP6231464B2 (en) | 2014-11-07 | 2014-11-07 | Manufacturing method of wood chip for fuel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6231464B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018080295A (en) * | 2016-11-18 | 2018-05-24 | 株式会社トーセン | Manufacturing device with hopper for wood chip for fuel |
JP2018095685A (en) * | 2016-12-09 | 2018-06-21 | 日本製紙株式会社 | Method of producing biomass fuel |
JP2022035743A (en) * | 2020-08-21 | 2022-03-04 | 高砂熱学工業株式会社 | Wood-fuel production system and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03172199A (en) * | 1989-05-13 | 1991-07-25 | Albert Baehr | Device for squeezing vegetable substance particularly for repressing sugar cane chips |
JPH1151561A (en) * | 1997-07-31 | 1999-02-26 | Shinshiba Setsubi:Kk | Compression dehydrator for wood |
JP2008036666A (en) * | 2006-08-04 | 2008-02-21 | Iwate Univ | Water-containing dehydration equipment |
-
2014
- 2014-11-07 JP JP2014227327A patent/JP6231464B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03172199A (en) * | 1989-05-13 | 1991-07-25 | Albert Baehr | Device for squeezing vegetable substance particularly for repressing sugar cane chips |
JPH1151561A (en) * | 1997-07-31 | 1999-02-26 | Shinshiba Setsubi:Kk | Compression dehydrator for wood |
JP2008036666A (en) * | 2006-08-04 | 2008-02-21 | Iwate Univ | Water-containing dehydration equipment |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018080295A (en) * | 2016-11-18 | 2018-05-24 | 株式会社トーセン | Manufacturing device with hopper for wood chip for fuel |
JP2018095685A (en) * | 2016-12-09 | 2018-06-21 | 日本製紙株式会社 | Method of producing biomass fuel |
JP2022035743A (en) * | 2020-08-21 | 2022-03-04 | 高砂熱学工業株式会社 | Wood-fuel production system and method |
JP7558508B2 (en) | 2020-08-21 | 2024-10-01 | 高砂熱学工業株式会社 | Wood fuel production system and method |
Also Published As
Publication number | Publication date |
---|---|
JP6231464B2 (en) | 2017-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7260861B2 (en) | How to use palm wood | |
JP6231464B2 (en) | Manufacturing method of wood chip for fuel | |
US3674219A (en) | Green-wood fibrating means and method | |
CN101607411A (en) | Bamboo fiber reinforced composite material and manufacturing method thereof | |
JP2009166397A (en) | Assembly of long vascular bundle of bamboo, its manufacturing method, and block material using the same | |
JP2000246707A (en) | Explosive strips obtained by steam explosion of wood-based materials, wood-based materials using these explosive strips as aggregates, and methods and apparatuses for manufacturing them. | |
JP6083700B2 (en) | Oil palm drying apparatus and drying method thereof | |
JP6616271B2 (en) | Manufacturing method of wood chip for fuel | |
JP2003200407A (en) | Binderless board and its manufacturing method | |
JP6353404B2 (en) | Wood chip manufacturing equipment for fuel | |
RU2613225C2 (en) | Method and apparatus for treating vegetable tissues in order to extract therefrom vegetable substance, in particular juice | |
JP5963195B2 (en) | Oil palm compact | |
JP6143046B2 (en) | Laminated plywood | |
CN101544011A (en) | Preparation method for producing wood board or flitch beam | |
JP6083692B2 (en) | Manufacturing method of laminated plywood | |
CN202192653U (en) | A kind of bamboo board without adhesive | |
JP6086522B2 (en) | Oil palm compact | |
JP6083701B2 (en) | Consolidation material and manufacturing method thereof | |
JP6963837B2 (en) | How to compact the log directly onto the board | |
JPWO2020044452A1 (en) | Oil palm trunk pretreatment method, biomass fuel production method | |
JPWO2017204360A1 (en) | Method for producing compression-cured bamboo fiber and compression-cured bamboo fiber produced by the method | |
JP6083894B2 (en) | Strain-removed compacted material, manufacturing apparatus thereof, and manufacturing method thereof | |
RU2541323C1 (en) | Method of production of wood boards | |
JP6086523B2 (en) | Oil palm compact | |
JP2018080295A (en) | Manufacturing device with hopper for wood chip for fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170919 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6231464 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |