JP2016079877A - Screw compressor - Google Patents
Screw compressor Download PDFInfo
- Publication number
- JP2016079877A JP2016079877A JP2014211312A JP2014211312A JP2016079877A JP 2016079877 A JP2016079877 A JP 2016079877A JP 2014211312 A JP2014211312 A JP 2014211312A JP 2014211312 A JP2014211312 A JP 2014211312A JP 2016079877 A JP2016079877 A JP 2016079877A
- Authority
- JP
- Japan
- Prior art keywords
- male
- female
- rotor shaft
- rotor
- casing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
本発明は、互いに噛み合う雌雄ロータの歯溝とケーシングによって形成されるスクリュー圧縮機に関する。
The present invention relates to a screw compressor formed by a tooth groove and a casing of a male and female rotor meshing with each other.
図2に従来のスクリュー圧縮機を示す。スクリュー圧縮機1は、ねじれたローブを持ち互いに噛み合って回転する雄ロータ2と雌ロータ3、それらを収納するケーシング4、および雌雄両ロータをそれぞれ回転自在に支持するための吸込側軸受5と吐出側軸受6によって構成される。一般的には、雄ロータ2は吸込側端部(紙面左方)にロータ軸を介して外部の回転駆動源(図に示さず)に接続される。 FIG. 2 shows a conventional screw compressor. The screw compressor 1 includes a male rotor 2 and a female rotor 3 that rotate while meshing with each other with a twisted lobe, a casing 4 that accommodates them, and a suction-side bearing 5 for rotatably supporting the male and female rotors and a discharge. A side bearing 6 is used. Generally, the male rotor 2 is connected to an external rotational drive source (not shown) via a rotor shaft at the suction side end (left side of the drawing).
回転駆動源によって回転駆動された雄ロータ2は、雌ロータ3を回転駆動し、雌雄両ロータの歯溝とそれを囲むケーシング4の内壁面とで形成される作動空間が膨張および収縮することによって、空気等の流体を吸込口7から吸入し、所定の圧力まで圧縮したのち、吐出ポート8から吐出する。 The male rotor 2 that is rotationally driven by the rotational drive source rotationally drives the female rotor 3, and the working space formed by the tooth grooves of both the male and female rotors and the inner wall surface of the casing 4 that surrounds them expands and contracts. Then, a fluid such as air is sucked from the suction port 7, compressed to a predetermined pressure, and then discharged from the discharge port 8.
図3に、図2におけるA部の拡大図を示す。雄ロータ2および雌ロータ3と、それらの端面に対向するケーシング4の壁面との間には吐出端面すき間9が存在する。また、雄ロータ2のロータ軸10および雌ロータ3のロータ軸11と、それを内包するケーシング4の壁面との間においても、それぞれ雄ロータ軸すき間12および雌ロータ軸すき間13が存在する。従って、作動空間および吐出ポート8から吐出端面すき間9内に漏洩した圧縮気体は、軸受室14との圧力差により、雄ロータ軸すき間12および雌ロータ軸すき間13を介して軸受室14内に漏洩する。そして、この漏洩現象は圧縮機効率を低下させる要因となる懸念がある。 FIG. 3 shows an enlarged view of a portion A in FIG. A discharge end face gap 9 exists between the male rotor 2 and the female rotor 3 and the wall surface of the casing 4 facing the end faces thereof. A male rotor shaft gap 12 and a female rotor shaft gap 13 also exist between the rotor shaft 10 of the male rotor 2 and the rotor shaft 11 of the female rotor 3 and the wall surface of the casing 4 containing the rotor shaft 10. Therefore, the compressed gas leaked from the working space and the discharge port 8 into the discharge end face gap 9 leaks into the bearing chamber 14 through the male rotor shaft gap 12 and the female rotor shaft gap 13 due to a pressure difference with the bearing chamber 14. To do. This leakage phenomenon may cause a reduction in compressor efficiency.
雌雄ロータ軸すき間を介した圧縮気体の漏洩を防ぐことを目的として、例えば特許文献1に記載の給油式スクリュー圧縮機が開示されている。特許文献1においては、スクリューロータ吐出側端面と吐出側軸受との間にスクリュー軸とケーシングとのすき間を一定とした単純すき間シールを設け、このシールの反ロータ側に軸受給油孔をケーシングに形成している。軸受給油口から単純すき間シール内に供給された潤滑油は、作動空間からスクリューロータ端面を経由して漏洩する圧縮空気をシールする。
For the purpose of preventing leakage of compressed gas through the male and female rotor shaft gaps, for example, an oil supply type screw compressor described in Patent Document 1 is disclosed. In Patent Document 1, a simple gap seal with a constant gap between the screw shaft and the casing is provided between the screw rotor discharge side end face and the discharge side bearing, and a bearing oil supply hole is formed in the casing on the opposite side of the seal to the rotor. doing. The lubricating oil supplied from the bearing oil supply port into the simple gap seal seals the compressed air leaking from the working space via the screw rotor end face.
図4に、図2において吐出ポートを通るB断面を示す。雌雄両ロータの回転に伴い作動空間内の圧力が変化すること、および吐出ポート8の影響により、吐出端面すき間9における圧縮気体の圧力分布は一様でなく、特に吐出ポート8近傍において高い。従って、雄ロータ軸すき間12および雌ロータ軸すき間13における圧縮気体の漏洩量は、吐出ポート近傍領域15において大きくなると考えられる。 FIG. 4 shows a B section passing through the discharge port in FIG. The pressure distribution of the compressed gas in the gap 9 between the discharge end faces is not uniform due to the change in the pressure in the working space with the rotation of the male and female rotors and the influence of the discharge port 8, and is particularly high in the vicinity of the discharge port 8. Therefore, it is considered that the amount of compressed gas leakage in the male rotor shaft gap 12 and the female rotor shaft gap 13 increases in the discharge port vicinity region 15.
特許文献1に記載の給油式スクリュー圧縮機では、シール内のすき間の大きさが一様であるため、スクリュー圧縮機のロータ軸すき間に特有の圧力分布を考慮したものではなく、特に圧縮気体の漏洩量の多い領域において効果的に漏洩を防ぐ効果は無い。 In the oil supply type screw compressor described in Patent Document 1, since the gap in the seal is uniform, the pressure distribution peculiar to the rotor shaft gap of the screw compressor is not taken into consideration. There is no effect of effectively preventing leakage in a region with a large amount of leakage.
本発明の目的は、雌雄ロータ軸すき間を介した圧縮気体の漏洩に対して、特に吐出端面すき間と軸受室との間の圧力差の大きい吐出ポート近傍における封止性能を向上し、高効率な圧縮機を実現することにある。
The object of the present invention is to improve the sealing performance in the vicinity of the discharge port where the pressure difference between the discharge end surface gap and the bearing chamber is large, with respect to the leakage of compressed gas through the male and female rotor shaft gaps. To realize a compressor.
上記の目的を達成するため、本発明では、互いに噛み合って回転する雌雄一対のロータと、それらを収納するケーシングによって構成され、ロータ軸とケーシングとの間のすき間に液体を供給しうる機能を備えたスクリュー圧縮機において、雌雄ロータ軸の少なくともいずれか一方を収納するケーシングの内面に環状の溝を有し、ロータ軸中心と吐出ポートの吐出開始位置を結ぶ線分から、ロータ軸中心と雌雄ロータの最終接触点を結ぶ線分までの範囲において、溝深さが最少となる部分が存在することを特徴とする。 In order to achieve the above object, the present invention comprises a pair of male and female rotors that rotate in mesh with each other and a casing that houses them, and has a function of supplying liquid between the rotor shaft and the casing. The screw compressor has an annular groove on the inner surface of the casing that accommodates at least one of the male and female rotor shafts, and from the line connecting the rotor shaft center and the discharge start position of the discharge port, the rotor shaft center and the male and female rotors In the range up to the line connecting the final contact points, there is a portion where the groove depth is minimized.
また、溝の深さが最少となる部分において、溝の深さはロータ軸の回転方向に不連続に拡大することを特徴とする。
Further, the groove depth is discontinuously enlarged in the rotation direction of the rotor shaft in a portion where the groove depth is minimized.
本発明によれば、溝深さが最少となる部分の近傍において溝内の液体の圧力が最も高くなるため、特に吐出端面すき間から圧縮室外部に漏洩する圧縮気体の量の多い領域を高圧の液膜が効果的に封止することが可能となる。これによりスクリュー圧縮機の高効率化が可能となる。
According to the present invention, since the pressure of the liquid in the groove is the highest in the vicinity of the portion where the groove depth is the smallest, particularly in a region where a large amount of compressed gas leaks from the gap between the discharge end faces to the outside of the compression chamber. The liquid film can be effectively sealed. This makes it possible to increase the efficiency of the screw compressor.
以下、本発明の第1の実施例を図1、図5、および図6により説明する。なお、本実施例は空気を圧縮するスクリュー型空気圧縮機に関するものである。また、構成は図2、図3、および図4に示される構成と同一であることから、同一の符号を付して説明を省略する。 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1, 5, and 6. FIG. In addition, a present Example is related with the screw type air compressor which compresses air. Further, since the configuration is the same as the configuration shown in FIGS. 2, 3, and 4, the same reference numerals are given and description thereof is omitted.
本実施例において、図2、3、および図4と異なる点は、雄ロータ軸すき間12および雌ロータ軸すき間13を形成するケーシング4の内面に環状の雄側封止溝16および雌側封止溝17を設けたこと、およびそれらに潤滑油を供給するための雄側給油孔18および雌側給油孔19を設けたことにある。 In this embodiment, the difference from FIGS. 2, 3, and 4 is that an annular male sealing groove 16 and female sealing are formed on the inner surface of the casing 4 that forms the male rotor shaft gap 12 and the female rotor shaft gap 13. The groove 17 is provided, and the male side oil supply hole 18 and the female side oil supply hole 19 for supplying lubricating oil thereto are provided.
図5に、図1におけるC断面図を示す。雄ロータ2の軸中心に対して、雄ロータ2の吐出開始位置20と作動空間の吐出完了時における雌雄両ロータの最終接触点21の間の角度範囲において、雄側軸封溝16の溝深さが最少となる位置22がある。また、雌ロータ3の軸中心に対して、雌ロータ3の吐出開始位置23と作動空間の吐出完了時における雌雄両ロータの最終接触点21の間の角度範囲において、雌側軸封溝16の溝深さが最少となる位置24がある。 FIG. 5 shows a C cross-sectional view in FIG. The groove depth of the male-side shaft sealing groove 16 in the angular range between the discharge start position 20 of the male rotor 2 and the final contact point 21 of both male and female rotors when the discharge of the working space is completed with respect to the axial center of the male rotor 2 There is a position 22 where the distance is minimized. In addition, the female-side shaft sealing groove 16 has an angular range between the discharge start position 23 of the female rotor 3 and the final contact point 21 of the male and female rotors when the discharge of the working space is completed with respect to the axial center of the female rotor 3. There is a position 24 where the groove depth is minimized.
図6に、本実施例における雄側封止溝16内の潤滑油の圧力分布を示す。溝の深さが雄ロータ2の回転方向に変化し、また雄ロータ軸10が回転するため、くさび効果によって雄側封止溝16内の圧力は溝深さが最も小さい位置22において最も高くなる。本実施例において、溝深さが最も小さい位置22は、雄ロータ2の軸中心に対して、雄ロータ2の吐出開始位置20と作動空間の吐出完了時における雌雄両ロータの最終接触点21の間の角度範囲であり、すなわち吐出ポート近傍領域15である。従って、吐出端面すき間9の圧力が最も高く、雄ロータ軸すき間12における圧縮空気の漏洩速度が最も大きい吐出ポート近傍領域15において、雄側封止溝16内の潤滑油の圧力が高くなる。この効果は、雌側封止溝17においても同様である。以上により、雄ロータ軸すき間12および雌ロータ軸すき間13における圧縮空気の漏洩を効果的に抑制し、圧縮機の高効率化を実現することができる。
FIG. 6 shows the pressure distribution of the lubricating oil in the male side sealing groove 16 in the present embodiment. Since the groove depth changes in the rotation direction of the male rotor 2 and the male rotor shaft 10 rotates, the pressure in the male-side sealing groove 16 is highest at the position 22 where the groove depth is the smallest due to the wedge effect. . In this embodiment, the position 22 where the groove depth is the smallest is the discharge start position 20 of the male rotor 2 and the final contact point 21 of the male and female rotors when the discharge of the working space is completed with respect to the axial center of the male rotor 2. It is the angle range between them, that is, the discharge port vicinity region 15. Accordingly, the pressure of the lubricating oil in the male-side sealing groove 16 becomes high in the discharge port vicinity region 15 where the pressure at the discharge end face gap 9 is the highest and the compressed air leakage rate at the male rotor shaft gap 12 is the highest. This effect is the same in the female side sealing groove 17. As described above, it is possible to effectively suppress the leakage of compressed air in the male rotor shaft gap 12 and the female rotor shaft gap 13 and realize high efficiency of the compressor.
以下、本発明の第2の実施例を図1、図7、および図8により説明する。なお、本実施例は実施例1と同様にスクリュー型空気圧縮機に関するものであり、実施例1と同じ箇所については、同じ記号を付して説明する。 Hereinafter, a second embodiment of the present invention will be described with reference to FIG. 1, FIG. 7, and FIG. In addition, a present Example is related with a screw type air compressor similarly to Example 1, and it attaches | subjects and demonstrates the same code | symbol about the same location as Example 1. FIG.
図1におけるC断面図を図7に示す。本実施例が実施例1と異なる点は、雄側封止溝16および雌側封止溝17それぞれの溝深さの最も小さい位置22および24が、実施例1に比べてそれぞれの正の回転方向にあること、およびその位置においてそれぞれの溝深さが不連続に拡大することにある。 A C cross-sectional view in FIG. 1 is shown in FIG. This embodiment is different from the first embodiment in that the positions 22 and 24 where the groove depths of the male side sealing groove 16 and the female side sealing groove 17 are the smallest are the respective positive rotations compared to the first embodiment. It is in the direction and the depth of each groove discontinuously expands at that position.
図8に、本実施例における雄側封止溝16内の潤滑油の圧力分布を示す。スクリュー圧縮機1の圧縮比に対して吐出ポート8下流側の圧力が小さい場合においては、吐出ポート8における圧縮空気の圧力よりも吐出完了直前における作動空間25内の圧縮空気の圧力の方が高くなる。従って、雄ロータ軸すき間12内の圧縮空気の漏洩流量は吐出ポート近傍15よりも吐出完了直前における作動空間25近傍の方が大きくなる懸念がある。従って、雄側軸封溝16の溝深さが最も小さい位置22を、雄ロータ2の軸中心と雌ロータ3の軸中心を結ぶ線分より正の回転方向位置に設けた。また、雄側軸封溝16の溝深さが最も小さい位置22において溝深さを不連続に拡大させることにより、雄側封止溝16内の潤滑油の圧力を、溝深さが最も小さい位置22において局所的に大きくすることが可能となる。これらの構成と効果は、雌側軸封溝17においても同様である。 FIG. 8 shows the pressure distribution of the lubricating oil in the male side sealing groove 16 in the present embodiment. When the pressure downstream of the discharge port 8 is smaller than the compression ratio of the screw compressor 1, the pressure of the compressed air in the working space 25 immediately before the completion of discharge is higher than the pressure of the compressed air at the discharge port 8. Become. Accordingly, there is a concern that the leakage flow rate of the compressed air in the male rotor shaft gap 12 is larger in the vicinity of the working space 25 immediately before the completion of discharge than in the vicinity of the discharge port 15. Therefore, the position 22 where the groove depth of the male side shaft sealing groove 16 is the smallest is provided at a position in the positive rotational direction from the line segment connecting the axis center of the male rotor 2 and the axis center of the female rotor 3. Further, by increasing the groove depth discontinuously at the position 22 where the groove depth of the male side shaft sealing groove 16 is the smallest, the pressure of the lubricating oil in the male side sealing groove 16 is reduced to the smallest. It is possible to enlarge locally at the position 22. These configurations and effects are the same in the female side shaft sealing groove 17.
以上により、雄ロータ軸すき間12および雌ロータ軸すき間13における圧縮空気の漏洩量に対して、吐出ポート8下流側の影響よりも吐出完了直前における作動空間25の圧力の影響の方が大きい場合においても、雄側軸封溝16および雌側軸封溝17の溝深さが最少となる部分の位置を雌雄ロータの軸中心を結ぶ線分に対して正の回転方向位置に設けることによって、雄ロータ軸すき間12および雌ロータ軸すき間13において特に圧縮空気の漏洩量の大きい領域を効果的に封止し、圧縮機を高効率化することが可能となる。
As described above, when the influence of the pressure in the working space 25 immediately before the completion of discharge is larger than the influence on the downstream side of the discharge port 8 with respect to the leakage amount of the compressed air in the male rotor shaft gap 12 and the female rotor shaft gap 13. Also, by providing the position of the portion where the groove depth of the male side shaft sealing groove 16 and the female side shaft sealing groove 17 is minimum at the position in the positive rotation direction with respect to the line segment connecting the axial centers of the male and female rotors, In the rotor shaft gap 12 and the female rotor shaft gap 13, it is possible to effectively seal a particularly large area where the amount of compressed air leaks, and to increase the efficiency of the compressor.
1…スクリュー圧縮機 2…雄ロータ 3…雌ロータ 4…ケーシング 5…吸込側軸受 6…吐出側軸受 7…吸込口 8…吐出ポート 9…吐出端面すき間 10…雄ロータ軸 11…雌ロータ軸 12…雄ロータ軸すき間 13…雌ロータ軸すき間 14…軸受室 15…吐出ポート近傍領域 16…雄側封止溝 17…雌側封止溝 18…雄側給油孔 19…雌側給油孔 20…雄ロータ2の吐出開始位置 21…吐出完了時における雌雄両ロータの最終接触点 22…雄側軸封溝16の溝深さが最も小さい位置 23…雌ロータ3の吐出開始位置 24…雌側軸封溝17の溝深さが最も小さい位置 25…吐出完了直前における作動空間 DESCRIPTION OF SYMBOLS 1 ... Screw compressor 2 ... Male rotor 3 ... Female rotor 4 ... Casing 5 ... Suction side bearing 6 ... Discharge side bearing 7 ... Suction port 8 ... Discharge port 9 ... Clearance at discharge end surface 10 ... Male rotor shaft 11 ... Female rotor shaft 12 ... male rotor shaft gap 13 ... female rotor shaft gap 14 ... bearing chamber 15 ... discharge port vicinity region 16 ... male side sealing groove 17 ... female side sealing groove 18 ... male side oil supply hole 19 ... female side oil supply hole 20 ... male Discharge start position of rotor 2 21. Final contact point of both male and female rotors upon completion of discharge 22 Position where groove depth of male side shaft sealing groove 16 is smallest 23 ... Discharge start position of female rotor 3 24 ... Female side shaft seal Position where groove depth of groove 17 is the smallest 25. Working space immediately before completion of discharge
Claims (2)
雌雄ロータ軸の少なくともいずれか一方を収納するケーシングの内面に環状の溝を有し、ロータ軸中心と吐出ポートの吐出開始位置を結ぶ線分から、ロータ軸中心と雌雄ロータの最終接触点を結ぶ線分までの範囲において、溝深さが最少となる部分が存在することを特徴とするスクリュー圧縮機。 In a screw compressor comprising a pair of rotating male and female rotors and a casing for storing them, and having a function of supplying a liquid between the rotor shaft and the casing,
A line that has an annular groove on the inner surface of the casing that houses at least one of the male and female rotor shafts, and that connects the rotor shaft center and the final contact point of the male and female rotors from the line connecting the rotor shaft center and the discharge start position of the discharge port A screw compressor characterized in that there is a portion where the groove depth is minimum in the range up to a minute.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014211312A JP2016079877A (en) | 2014-10-16 | 2014-10-16 | Screw compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014211312A JP2016079877A (en) | 2014-10-16 | 2014-10-16 | Screw compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016079877A true JP2016079877A (en) | 2016-05-16 |
Family
ID=55956015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014211312A Pending JP2016079877A (en) | 2014-10-16 | 2014-10-16 | Screw compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016079877A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110199089A (en) * | 2017-01-25 | 2019-09-03 | 爱德华兹有限公司 | Pump assembly with stator splice seal |
WO2021088482A1 (en) * | 2019-11-06 | 2021-05-14 | 珠海格力电器股份有限公司 | Zero-clearance screw rotor and preparation method therefor |
-
2014
- 2014-10-16 JP JP2014211312A patent/JP2016079877A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110199089A (en) * | 2017-01-25 | 2019-09-03 | 爱德华兹有限公司 | Pump assembly with stator splice seal |
WO2021088482A1 (en) * | 2019-11-06 | 2021-05-14 | 珠海格力电器股份有限公司 | Zero-clearance screw rotor and preparation method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6622527B2 (en) | Scroll fluid machinery | |
JP5904961B2 (en) | Screw compressor | |
JP6377839B2 (en) | Gas compressor | |
JP5447149B2 (en) | Vane pump | |
US9638190B2 (en) | Oil pump | |
CN105332911B (en) | scroll compressor | |
TWI636190B (en) | Oil-free screw compressor and design method therefor | |
JPWO2005113984A1 (en) | Screw rotor and screw fluid machine | |
JP2016079877A (en) | Screw compressor | |
JP6677515B2 (en) | Oil-free screw compressor | |
WO2016052297A1 (en) | Oil-free screw compressor | |
JP2010249045A (en) | Screw compressor | |
JP2011236823A (en) | Screw compressor | |
WO2018117276A1 (en) | Screw compressor | |
JP5207822B2 (en) | Screw compressor | |
JP6430718B2 (en) | Vacuum pump device | |
KR101803273B1 (en) | Lubrication Structure For Oil Pump | |
JP6109344B2 (en) | Scroll compressor | |
JP5389833B2 (en) | 2-axis rotor pump | |
US9765773B2 (en) | Pump having an inner and outer rotor | |
JP2019173956A5 (en) | Centrifugal compressor and mechanical seal | |
JP4670854B2 (en) | Shaft seal structure in vacuum pump | |
JP5759125B2 (en) | Structure of suction part of screw compressor body | |
JP2016113957A (en) | Scroll fluid machine | |
JP2007278274A (en) | Positive-displacement type fluid machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170117 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170124 |