[go: up one dir, main page]

JP2016075600A - Current and phase measurement system - Google Patents

Current and phase measurement system Download PDF

Info

Publication number
JP2016075600A
JP2016075600A JP2014206716A JP2014206716A JP2016075600A JP 2016075600 A JP2016075600 A JP 2016075600A JP 2014206716 A JP2014206716 A JP 2014206716A JP 2014206716 A JP2014206716 A JP 2014206716A JP 2016075600 A JP2016075600 A JP 2016075600A
Authority
JP
Japan
Prior art keywords
current
transmission line
phase
measurement system
reference time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014206716A
Other languages
Japanese (ja)
Inventor
英夫 等々力
Hideo Todoroki
英夫 等々力
清治 佐藤
Seiji Sato
清治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midori Anzen Co Ltd
Original Assignee
Midori Anzen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midori Anzen Co Ltd filed Critical Midori Anzen Co Ltd
Priority to JP2014206716A priority Critical patent/JP2016075600A/en
Publication of JP2016075600A publication Critical patent/JP2016075600A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current and phase measurement system that is easy to install while reducing the size and weight by a technique which does not take insulation into consideration.SOLUTION: Detection processing devices IR, IS, and IT each have reference time generation means 13, information processing means 12, and radio equipment 14, and are configured to send out a reference time signal for starting measuring current signals of different phase at the same time based upon time obtained by reference time generation means 13 so as to process a current and a current waveform. The information processing means 12 generates current signal data by processing the current and current waveform detected by a detection processing device installed for each power transmission line. The radio equipment 14 is configured to transmit the current signal data toward a ground-side data processing device, which is so configured to receive information sent over an arbitrary power distribution line from the data sent from the detection processing devices IR, IS, and IT so as to detect a current value of each power transmission line, a phase difference between phases, and waveform distortion.SELECTED DRAWING: Figure 3

Description

本発明は電流・位相測定システムに関し、特に高圧の送電線における電流とともに各電流間の位相を検出する場合に適用して有用なものである。   The present invention relates to a current / phase measurement system, and is particularly useful when applied to the case of detecting a phase between currents together with a current in a high-voltage transmission line.

高圧送電線の地絡、絶縁不良等を調べることを目的としたシステムにおいては、送電線を流れる電流を計測する必要がある。送電線を流れる電流を計測する場合、従来は、計測対象となる送電線に変流器を装着し、前記変流器で検出する電流信号を地上の計測部で計測している。この種の変流器には、例えば特許文献1に開示するような分割型変流器が用いられている。この場合、送電線に装着した変流器から計測部までは、計測ケーブルを介して所定の電流信号を伝送している。   In a system aimed at examining ground faults, insulation defects, etc. of high-voltage power transmission lines, it is necessary to measure the current flowing through the power transmission lines. When measuring a current flowing through a transmission line, conventionally, a current transformer is attached to the transmission line to be measured, and a current signal detected by the current transformer is measured by a measurement unit on the ground. For this type of current transformer, for example, a split-type current transformer as disclosed in Patent Document 1 is used. In this case, a predetermined current signal is transmitted from the current transformer attached to the power transmission line to the measurement unit via the measurement cable.

また、相間の位相差も含め、送電線を流れる電流を計測する電流計測装置としては、特許文献2が存在する。しかしながら、特許文献2の場合も、送電線に装着され、電流計測部となる磁性体コアに巻回されたコイルからは、計測ケーブルを介して地上の計測部に所定の電流信号を伝送している。かくして、送電線の各相を流れる電流とともに、各相間の位相も検出している。すなわち、この場合の所望の測定情報は計測ケーブルを介して送電線から伝送されてきた電流信号を地上で処理することにより得ている。   Further, Patent Document 2 exists as a current measurement device that measures a current flowing through a transmission line including a phase difference between phases. However, in the case of Patent Document 2, a predetermined current signal is transmitted from a coil mounted on a power transmission line and wound around a magnetic core serving as a current measurement unit to a measurement unit on the ground via a measurement cable. Yes. Thus, the phase between each phase is detected together with the current flowing through each phase of the transmission line. That is, the desired measurement information in this case is obtained by processing the current signal transmitted from the power transmission line via the measurement cable on the ground.

特開2002―71727号公報JP 2002-71727 A 特開平5−312846号公報Japanese Patent Laid-Open No. 5-312846

上述の如き従来技術においては、送電線に装着した変流器等の電流センサで検出した電流信号は、計測ケーブルを介して地上の計測部へ伝送している。このため、高所の送電線から地上の計測部まで長い計測ケーブルを引き回す必要がある。ここで、計測対象となる送電線の電圧が10kV以上の場合を想定すると、上述の変流器および計測ケーブルには高い絶縁性能が必要となる。このため、絶縁抵抗・沿面距離を考慮した大型の変流器および、同様に考慮された計測ケーブルを必要とする。この結果、計測ケーブルの大きさと重量が増大することにより、設置のための大掛かりな工事が必要となり、人手による簡易な設置での測定を行うことができない。要するに、ケーブルを使用することにより、測定すべき送電線の電圧に対応した絶縁を考慮しなければならないが、高い絶縁性を考慮した場合、計測ケーブル等が大きく重量も増大する結果、簡易な測定ができない。   In the prior art as described above, a current signal detected by a current sensor such as a current transformer attached to a power transmission line is transmitted to a measurement unit on the ground via a measurement cable. For this reason, it is necessary to route a long measurement cable from a high-level transmission line to a measurement unit on the ground. Here, assuming the case where the voltage of the transmission line to be measured is 10 kV or higher, the above-described current transformer and measurement cable require high insulation performance. For this reason, the large current transformer which considered the insulation resistance and creepage distance, and the measurement cable considered similarly are required. As a result, since the size and weight of the measurement cable increase, a large-scale construction for installation is required, and it is not possible to perform measurement by simple manual installation. In short, by using cables, it is necessary to consider the insulation corresponding to the voltage of the transmission line to be measured. However, when high insulation is taken into account, the measurement cables, etc. are large and the weight is increased. I can't.

本発明は、上記従来技術に鑑み、高圧送電線において電流および、電流位相波形を測定する場合であっても絶縁を考慮しない手法で、小型化、軽量化を図った上で、設置が容易な電流・位相測定システムを提供することを目的とする。   In view of the above prior art, the present invention is a method that does not consider insulation even when measuring current and current phase waveform in a high-voltage power transmission line, and is easy to install after reducing size and weight. An object is to provide a current / phase measurement system.

上記目的を達成する本発明の第1の態様は、
送電線に配設され、交流電流を送電する任意の送電線に流れる電流および電流波形を配設点にてそれぞれ検出する電流検出センサと、電流および電流波形を処理する機能を有し、地上側データ処理装置へ前記電流および電流波形に関する情報を無線送信する機能を持つ検出処理装置と、前記検出処理装置に駆動電力を供給する電源手段とを有する電流・位相測定システムであって、
前記検出処理装置は、基準時間発生手段、情報処理手段および無線送信手段を有し、
さらに前記基準時間発生手段は、電流および電流波形を処理するために計時手段により得た時間を基準として、位相が異なる各相の電流信号の計測開始時間を揃えるための基準時間を表す基準時間信号を送出するよう構成し、
前記情報処理手段は、各々の送電線に設置されている検出処理装置にて検出された電流および電流波形処理して電流信号データを生成するよう構成し、
前記無線送信手段は、前記電流信号データを前記地上側データ処理装置に向けて無線送信するように構成し、
前記地上側データ処理装置は、前記検出処理装置から送信されたデータから任意の送電線に流れる情報を受信し、各々の送電線の電流および電流波形、前記基準時間発生手段により得た時間を基に、電流値、相間の位相差および、波形のひずみを検出するように構成したことを特徴とする電流・位相測定システムにある。
The first aspect of the present invention for achieving the above object is as follows:
A current detection sensor that detects current and current waveform flowing in an arbitrary transmission line that transmits alternating current at the installation point, and a function for processing the current and current waveform. A current / phase measurement system comprising: a detection processing device having a function of wirelessly transmitting information on the current and current waveform to a data processing device; and power supply means for supplying driving power to the detection processing device,
The detection processing apparatus includes a reference time generation unit, an information processing unit, and a wireless transmission unit,
Further, the reference time generating means is a reference time signal representing a reference time for aligning the measurement start times of the current signals of the different phases with reference to the time obtained by the time measuring means for processing the current and the current waveform. Configured to send
The information processing means is configured to generate current signal data by processing current and current waveform detected by a detection processing device installed in each power transmission line,
The wireless transmission means is configured to wirelessly transmit the current signal data to the ground side data processing device,
The ground side data processing device receives information flowing in an arbitrary power transmission line from the data transmitted from the detection processing device, and based on the current and current waveform of each power transmission line and the time obtained by the reference time generating means. The current / phase measurement system is configured to detect a current value, a phase difference between phases, and a distortion of a waveform.

本態様によれば、送電線側から測定ケーブルを引き回すことなく、所定の電流信号データを送信することができるので、安全かつ迅速に所望の電流測定を実施することができる。ここで、各相R,S,Tの位相は、基準時間信号により揃えるとともに、所定の基準点を利用して測定期間を特定しているので、所望の相間の位相差も正確に検出することができる。   According to this aspect, the predetermined current signal data can be transmitted without routing the measurement cable from the power transmission line side, so that desired current measurement can be performed safely and quickly. Here, the phases of the phases R, S, and T are aligned with the reference time signal, and the measurement period is specified using a predetermined reference point, so that the phase difference between the desired phases can be accurately detected. Can do.

本発明の第2の態様は、
第1の態様に記載する電流・位相測定システムにおいて、
前記検出処理装置は、その基準時間発生手段、情報処理手段および無線送信手段が筐体内に収納されて前記電流検出センサおよび電源手段とともに一体的に前記送電線に配設されていることを特徴とする電流・位相測定システムにある。
The second aspect of the present invention is:
In the current / phase measurement system according to the first aspect,
The detection processing device is characterized in that reference time generating means, information processing means, and wireless transmission means are housed in a casing and are integrally disposed on the power transmission line together with the current detection sensor and power supply means. In the current / phase measurement system.

本態様によれば、測定に必要は機器を筐体にひとまとめにしているので、全体としてコンパクトで取り扱い性に優れるものとすることができる。   According to this aspect, since the devices are collectively required for the measurement in the housing, it can be made compact and excellent in handleability as a whole.

本発明の第3の態様は、
第1または第2の態様に記載する電流・位相測定システムにおいて、
前記基準時間信号は、GPSにおける時刻データ信号であることを特徴とする電流・位相測定システムにある。
The third aspect of the present invention is:
In the current / phase measurement system according to the first or second aspect,
In the current / phase measurement system, the reference time signal is a time data signal in GPS.

本態様によれば、既存のGPSを利用しているので、システム構成を合理的なものとすることができる。   According to this aspect, since the existing GPS is used, the system configuration can be rationalized.

本発明の第4の態様は、
第1〜第3の態様のいずれか一つに記載する電流・位相測定システムにおいて、
前記電源手段は、前記送電線に取り付けられた変流器であることを特徴とする電流・位相測定システムにある。
The fourth aspect of the present invention is:
In the current / phase measurement system according to any one of the first to third aspects,
In the current / phase measurement system, the power supply means is a current transformer attached to the power transmission line.

本態様によれば、変流器に流れる電流を利用して所望の電圧を発生させることができるので、容易に必要な電力を得ることができる。   According to this aspect, since a desired voltage can be generated using the current flowing through the current transformer, the necessary power can be easily obtained.

本発明によれば、送電線側から測定ケーブルを引き回すことなく、無線で位相情報を含む電流信号データを送信することができるので、安全かつ迅速に所望の電流測定を実施することができる。ここで、電流測定の際の送電線の各相の位相は、基準時間信号により揃えるとともに、所定の基準点を利用して測定期間を特定しているので、各相間の位相差も正確に検出することができる。   According to the present invention, since current signal data including phase information can be transmitted wirelessly without routing a measurement cable from the power transmission line side, desired current measurement can be performed safely and quickly. Here, the phase of each phase of the transmission line at the time of current measurement is aligned with the reference time signal and the measurement period is specified using a predetermined reference point, so the phase difference between each phase is also accurately detected can do.

本発明の実施の形態に係る電流・位相測定システムを送電線に装着した状態で概念的に示す説明図である。It is explanatory drawing shown notionally in the state which mounted | wore the power transmission line with the electric current and phase measurement system which concerns on embodiment of this invention. 本発明の実施の形態に係る電流・位相測定システムを示すブロック図である。1 is a block diagram showing a current / phase measurement system according to an embodiment of the present invention. 本発明の実施の形態に係る電流・位相測定システムの検出処理装置を抽出して詳細に示すブロック図である。It is a block diagram which extracts and shows the detection processing apparatus of the electric current and phase measurement system which concerns on embodiment of this invention in detail. 各相の電流信号の波形とともに、計測開始点および電流信号を取り込む所定の期間の概念を示す波形図である。It is a wave form diagram which shows the concept of the predetermined period which takes in a measurement start point and a current signal with the waveform of the current signal of each phase. 図4に示す各相の電流信号を地上側で合成した場合の波形を示す波形図である。It is a wave form diagram which shows a waveform at the time of synthesize | combining the electric current signal of each phase shown in FIG. 4 on the ground side.

以下、本発明の実施の形態を図面に基づき詳細に説明する。なお、各図において、同一部分には、同一番号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same number is attached to the same part, and duplicate explanation is omitted.

図1は本発明の実施の形態に係る電流・位相測定システムを送電線に装着した状態で概念的に示す説明図、図2は本形態に係る電流・位相測定システムを示すブロック図である。両図に示すように、三相交流電力を送電するよう鉄塔100に吊架されている3本の送電線1の各相R,S,Tには、電流検出センサである変流器2R,2S,2T、電源手段を構成する変流器3R,3S,3Tおよび検出処理装置IR,IS,ITが内部に収納された筐体18が一体となって固定されている。各相R,S,Tの検出処理装置IR,IS,ITからは、所定の処理をした電流信号データが電波15として地上17の受信手段IVに向けて送出される。   FIG. 1 is an explanatory diagram conceptually showing a current / phase measurement system according to an embodiment of the present invention mounted on a transmission line, and FIG. 2 is a block diagram showing the current / phase measurement system according to this embodiment. As shown in both figures, each of the phases R, S, T of the three transmission lines 1 suspended from the tower 100 so as to transmit three-phase AC power has a current transformer 2R, which is a current detection sensor. 2S, 2T, current transformers 3R, 3S, 3T constituting power supply means and a casing 18 in which detection processing devices IR, IS, IT are housed are fixed integrally. From the detection processing devices IR, IS, IT of the respective phases R, S, T, current signal data subjected to predetermined processing is transmitted as radio waves 15 toward the receiving means IV on the ground 17.

地上17側の受信手段IVは、本形態の場合、各相R,S,Tに対応する受信部IIR,IIS,IITと、受信部IIR,IIS,IITで受信した電流信号データを処理する端末IIIとを有する。端末IIIでは各相R,S,Tの電流信号データに基づき各相R,S,Tの電流と各電流に基づき各相間の位相差が検出される。   In the case of the present embodiment, the receiving means IV on the ground 17 side is a terminal that processes the current signal data received by the receiving units IIR, IIS, IIT corresponding to the phases R, S, T and the receiving units IIR, IIS, IIT. And III. The terminal III detects the phase difference between the phases based on the currents of the phases R, S, and T and the currents based on the current signal data of the phases R, S, and T.

図3は本実施の形態に係る電流・位相測定システムの検出処理装置を抽出して詳細に示すブロック図である。同図に示すように、電流検出センサである変流器2R,2S,2Tは、送電線1に直接固定されており、送電線1(図1または図2参照;以下同じ)に流れる電流をそれぞれ検出する。検出処理装置IR,IS,ITは、フィルター/アンプ/AD変換部11、情報処理手段12、基準時間発生手段13および無線機14からなる。ここで、フィルター/アンプ/AD変換部11は、変流器2R,2S,2Tで検出された送電線1を流れる電流を表す電流信号を入力して、フィルターによりノイズを除去するとともに所定の増幅を行なった後、デジタル信号に変換するものである。したがって、情報処理手段12にはデジタル信号に変換された電流信号が入力され、データーストレージ12Aにデジタル信号として記憶される。CPU12Bでは、基準時間発生手段13から供給される基準時間信号に基づきデーターストレージ12Aから供給される各相R,S,Tの電流信号における計測開始時点を揃えるための所定の処理(後に詳述する)を行なうとともに、前記基準時間を基準として所定の期間の電流信号を処理して電流信号データを生成する。さらに、本形態におけるCPU12Bでは、インターフェースIFを介して供給されるキャリブレーション信号SCに基づき変流器2R,2S,2TからCPU12Bに至る信号の遅れを校正する。このことにより前記基準時間に基づく計測開始時点をより正確なものとすることができ、前記基準時間を基準として生成する電流信号データをより高精度のものとすることができる。   FIG. 3 is a block diagram showing details of the detection processing device of the current / phase measurement system according to the present embodiment. As shown in the figure, current transformers 2R, 2S, and 2T, which are current detection sensors, are directly fixed to the transmission line 1, and the current flowing through the transmission line 1 (see FIG. 1 or 2; the same applies hereinafter) flows. Detect each. The detection processing devices IR, IS, and IT include a filter / amplifier / AD conversion unit 11, an information processing unit 12, a reference time generation unit 13, and a wireless device 14. Here, the filter / amplifier / AD converter 11 inputs a current signal representing the current flowing through the transmission line 1 detected by the current transformers 2R, 2S, 2T, removes noise by the filter, and performs predetermined amplification. Is performed and then converted into a digital signal. Therefore, a current signal converted into a digital signal is input to the information processing means 12 and stored as a digital signal in the data storage 12A. In the CPU 12B, a predetermined process for aligning the measurement start time points in the current signals of the phases R, S, T supplied from the data storage 12A based on the reference time signal supplied from the reference time generating means 13 (to be described in detail later). And current signal data of a predetermined period is processed with reference to the reference time to generate current signal data. Further, the CPU 12B in the present embodiment calibrates the delay of the signal from the current transformers 2R, 2S, 2T to the CPU 12B based on the calibration signal SC supplied via the interface IF. As a result, the measurement start point based on the reference time can be made more accurate, and the current signal data generated based on the reference time can be made more accurate.

本形態における基準時間発生手段13はGPSで構成している。したがって、基準時間信号はGPSにおける時刻データ信号である。ただ、基準時間発生手段13および基準時間信号をこれに限る必要はない。同様の機能を有して絶対的な時間の基準を与えるものであれば,それ以上の限定はない。他にも電波時計を適用し得る。無線送信手段を構成する無線機14は、CPU12Bで生成した電流信号データを地上側の受信手段IV(図2参照)に向けて無線送信するよう電波15を送出する。この場合の無線送信には、特定小電力無線を好適に適用し得る。   The reference time generating means 13 in this embodiment is composed of GPS. Therefore, the reference time signal is a time data signal in GPS. However, the reference time generating means 13 and the reference time signal need not be limited to this. There is no further limitation as long as it has the same function and gives an absolute time reference. Other radio clocks can be applied. The wireless device 14 constituting the wireless transmission means transmits a radio wave 15 so as to wirelessly transmit the current signal data generated by the CPU 12B to the reception means IV (see FIG. 2) on the ground side. In this case, the specific low power radio can be suitably applied to the radio transmission.

検出処理装置IR,IS,ITの上述の如き各機器は、電源回路16が発生する電圧を利用することで駆動される。電源回路16は、送電線1に配設されている変流器3R,3S,3Tにより取込んだ送電線1を流れる電流を、例えば電源回路16の負荷抵抗に供給することで、負荷抵抗の両端に所定の駆動電圧を生起するように構成したものである。   Each device as described above of the detection processing devices IR, IS, and IT is driven by using a voltage generated by the power supply circuit 16. The power supply circuit 16 supplies the current flowing through the power transmission line 1 taken in by the current transformers 3R, 3S, and 3T disposed in the power transmission line 1 to, for example, the load resistance of the power supply circuit 16, thereby reducing the load resistance. A predetermined drive voltage is generated at both ends.

CPU12における電流信号データの生成は、基準時間信号を基準として行われる。かかる電流信号データの生成態様を図4に基づき詳述する。図4は、各相R,S,Tの電流信号の波形とともに、計測開始点および電流信号を取り込む所定の期間の概念を示す波形図であり、(a)がR相、(b)がS相、(c)がT相の電流信号をそれぞれ示す。なお、各相R.S.Tの電流信号は、CPU12において、インターフェースIFを介して供給されるキャリブレーション信号SCに基づき変流器2R,2S,2TからCPU12Bに至る信号の遅れは既に校正されている。   The generation of the current signal data in the CPU 12 is performed with reference to the reference time signal. The manner of generating such current signal data will be described in detail with reference to FIG. FIG. 4 is a waveform diagram showing the concept of a measurement start point and a predetermined period for capturing a current signal, along with the waveforms of the current signals of the phases R, S, and T. (a) is the R phase, and (b) is the S phase. Phase (c) shows a T-phase current signal. Each phase R.D. S. The delay of the signal from the current transformers 2R, 2S, 2T to the CPU 12B is already calibrated in the CPU 12 based on the calibration signal SC supplied through the interface IF.

かかる状態でGPSの出力信号である基準時間信号に基づき各相R,S,T共通のスタートポイントSP(図中の黒三角点)を決定する。次に、各相R,S,TごとにスタートポイントSPの後の各相R,S,T毎時間軸において最初の基準点SR,SS,STを検出する。この結果,R相に関しては、スタートポイントSPから以降の電流信号のレベルで電流値を検出し、最初の基準点SRが基準位相となる。S相に関しては、スタートポイントSPから以降の電流信号のレベルで電流値を検出し、最初の基準点SSの基準点SRに対する位相差がR相−S相間の位相差となる。T相に関しては、スタートポイントSPから以降の電流信号のレベルで電流値を検出し、最初の基準点STの基準点SRに対する位相差がR相−T相間の位相差となる。ここで、本形態における電流信号データは、基準点SR,SS,ST以降の3周期の電流信号に基づき生成している。そして、当該電流信号データには、各相R,S,Tの電流信号に基づく電流値データのみならず、CPU12における所定の演算の結果により求まる正確な位相情報も含まれている。   In this state, a common start point SP (black triangle point in the figure) for each phase R, S, T is determined based on a reference time signal that is an output signal of GPS. Next, the first reference points SR, SS, ST are detected on the time axis of each phase R, S, T after the start point SP for each phase R, S, T. As a result, for the R phase, the current value is detected at the level of the current signal after the start point SP, and the first reference point SR becomes the reference phase. For the S phase, the current value is detected at the level of the current signal from the start point SP, and the phase difference between the first reference point SS and the reference point SR becomes the phase difference between the R phase and the S phase. For the T phase, the current value is detected at the level of the current signal from the start point SP, and the phase difference between the first reference point ST and the reference point SR becomes the phase difference between the R phase and the T phase. Here, the current signal data in this embodiment is generated based on current signals of three periods after the reference points SR, SS, ST. The current signal data includes not only current value data based on the current signals of the phases R, S, and T but also accurate phase information obtained from the result of a predetermined calculation in the CPU 12.

図5は、図4(a)〜(c)に示す各相の電流信号を地上側で合成した場合の波形図である。同図に示すように、図中の白三角の間隔でR相に関する、S相およびT相の位相を検出することができる。この関係を利用すれば、S相とT相との間の位相も検出することができる。本形態では、地上17側の受信手段IVの端末IIIで、送電線1側から無線伝送で送信されてきた位相情報に基づき、各相R,S,T間の所定の位相差を演算する。   FIG. 5 is a waveform diagram when the current signals of the respective phases shown in FIGS. 4A to 4C are combined on the ground side. As shown in the figure, the phases of the S phase and the T phase with respect to the R phase can be detected at intervals of white triangles in the figure. By utilizing this relationship, the phase between the S phase and the T phase can also be detected. In this embodiment, the terminal III of the receiving means IV on the ground 17 side calculates a predetermined phase difference between the phases R, S, and T based on the phase information transmitted by radio transmission from the power transmission line 1 side.

かくして本形態によれば、送電線1側から測定ケーブルを引き回すことなく、無線で位相情報を含む電流信号データを送信することができるので、安全かつ迅速に所望の電流測定を実施することができる。ここで、各相R,S,Tの位相は、基準時間信号により揃えるとともに、所定の基準点を利用して測定期間を特定しているので、各相間(R,S),(S,T),(T,R)の位相差も正確に検出することができる。   Thus, according to the present embodiment, current signal data including phase information can be transmitted wirelessly without routing the measurement cable from the transmission line 1 side, so that desired current measurement can be performed safely and quickly. . Here, the phases of the phases R, S, and T are aligned with the reference time signal, and the measurement period is specified using a predetermined reference point. Therefore, the phases (R, S), (S, T ) And (T, R) can also be detected accurately.

なお、位相差は各相間(R,S),(S,T),(T,R)の全てに関して求めるようにしたが、必要に応じ、必要な相間(R,S),(S,T),(T,R)に関してのみ求めるようにしても良い。例えば、地絡事故等が発生した場合、特定の2相に関して位相差を検出する場合があるからである。また、電流はR,S,T相の少なくとも一相に関して検出すれば良い。   The phase difference is obtained for all the phases (R, S), (S, T), (T, R). However, if necessary, the phase differences (R, S), (S, T ), (T, R). For example, when a ground fault or the like occurs, the phase difference may be detected for a specific two phase. The current may be detected for at least one of the R, S, and T phases.

上記実施の形態において電流センサは変流器で形成したが、必ずしもこれに限定する必要はない。また、電源手段も変流器に限定する必要はない。電源手段としては、他に、電磁誘導方式、環境磁界発電方式、太陽光エネルギー方式による電源が考えられる。   Although the current sensor is formed of a current transformer in the above embodiment, it is not necessarily limited to this. Further, the power supply means need not be limited to the current transformer. In addition, as a power source means, a power source by an electromagnetic induction system, an environmental magnetic field power generation system, or a solar energy system can be considered.

本発明は高電圧送電を行う電力業界や、この種の高電圧送電線の保守・点検等を行う産業分野において有効に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used in the electric power industry that performs high-voltage power transmission and the industrial field that performs maintenance and inspection of this type of high-voltage power transmission line.

IR,IS,IT 検出処理装置
IIR,IIS,IIT 受信部
III 端末
IV 受信手段
1 送電線
2R,2S,2T 変流器
3R,3S,3T 変流器
12 情報処理手段
13 基準時間発生手段
14 無線機
15 電波
16 電源回路
17 地上
18 筐体
100 鉄塔
R,S,T 相
IR, IS, IT detection processor
IIR, IIS, IIT receiver
III terminal
IV receiving means 1 power transmission line 2R, 2S, 2T current transformer 3R, 3S, 3T current transformer 12 information processing means 13 reference time generating means 14 radio equipment 15 radio wave 16 power supply circuit
17 Above ground 18 Case 100 Steel tower R, S, T phase

Claims (4)

送電線に配設され、交流電流を送電する任意の送電線に流れる電流および電流波形を配設点にてそれぞれ検出する電流検出センサと、電流および電流波形を処理する機能を有し、地上側データ処理装置へ前記電流および電流波形に関する情報を無線送信する機能を持つ検出処理装置と、前記検出処理装置に駆動電力を供給する電源手段とを有する電流・位相測定システムであって、
前記検出処理装置は、基準時間発生手段、情報処理手段および無線送信手段を有し、
さらに前記基準時間発生手段は、電流および電流波形を処理するために計時手段により得た時間を基準として、位相が異なる各相の電流信号の計測開始時間を揃えるための基準時間を表す基準時間信号を送出するよう構成し、
前記情報処理手段は、各々の送電線に設置されている検出処理装置にて検出された電流および電流波形を処理して電流信号データを生成するよう構成し、
前記無線送信手段は、前記電流信号データを前記地上側データ処理装置に向けて無線送信するように構成し、
前記地上側データ処理装置は、前記検出処理装置から送信されたデータから任意の送電線に流れる情報を受信し、各々の送電線の電流および電流波形、前記基準時間発生手段により得た時間を基に、電流値、相間の位相差および、波形のひずみを検出するように構成したことを特徴とする電流・位相測定システム。
A current detection sensor that detects current and current waveform flowing in an arbitrary transmission line that transmits alternating current at the installation point, and a function for processing the current and current waveform. A current / phase measurement system comprising: a detection processing device having a function of wirelessly transmitting information on the current and current waveform to a data processing device; and power supply means for supplying driving power to the detection processing device,
The detection processing apparatus includes a reference time generation unit, an information processing unit, and a wireless transmission unit,
Further, the reference time generating means is a reference time signal representing a reference time for aligning the measurement start times of the current signals of the different phases with reference to the time obtained by the time measuring means for processing the current and the current waveform. Configured to send
The information processing means is configured to generate current signal data by processing a current and a current waveform detected by a detection processing device installed in each power transmission line,
The wireless transmission means is configured to wirelessly transmit the current signal data to the ground side data processing device,
The ground side data processing device receives information flowing in an arbitrary power transmission line from the data transmitted from the detection processing device, and based on the current and current waveform of each power transmission line and the time obtained by the reference time generating means. And a current / phase measurement system configured to detect a current value, a phase difference between phases, and a waveform distortion.
請求項1に記載する電流・位相測定システムにおいて、
前記検出処理装置は、その基準時間発生手段、情報処理手段および無線送信手段が筐体内に収納されて前記電流検出センサおよび電源手段とともに一体的に前記送電線に配設されていることを特徴とする電流・位相測定システム。
In the current / phase measurement system according to claim 1,
The detection processing device is characterized in that reference time generating means, information processing means, and wireless transmission means are housed in a casing and are integrally disposed on the power transmission line together with the current detection sensor and power supply means. Current / phase measurement system.
請求項1または請求項2に記載する電流・位相測定システムにおいて、
前記基準時間信号は、GPSにおける時刻データ信号であることを特徴とする電流・位相測定システム。
In the current / phase measurement system according to claim 1 or 2,
The current / phase measurement system, wherein the reference time signal is a time data signal in GPS.
請求項1〜請求項3のいずれか一つに記載する電流・位相測定システムにおいて、
前記電源手段は、前記送電線に取り付けられた変流器であることを特徴とする電流・位相測定システム。
In the current / phase measurement system according to any one of claims 1 to 3,
The current / phase measurement system, wherein the power supply means is a current transformer attached to the power transmission line.
JP2014206716A 2014-10-07 2014-10-07 Current and phase measurement system Pending JP2016075600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206716A JP2016075600A (en) 2014-10-07 2014-10-07 Current and phase measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206716A JP2016075600A (en) 2014-10-07 2014-10-07 Current and phase measurement system

Publications (1)

Publication Number Publication Date
JP2016075600A true JP2016075600A (en) 2016-05-12

Family

ID=55951362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206716A Pending JP2016075600A (en) 2014-10-07 2014-10-07 Current and phase measurement system

Country Status (1)

Country Link
JP (1) JP2016075600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181133A (en) * 2020-01-09 2020-05-19 珠海格力电器股份有限公司 Overcurrent protection method and device, storage medium and air conditioner

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136184U (en) * 1975-04-25 1976-11-02
JPS63198879A (en) * 1986-11-14 1988-08-17 ナイアガラ モーホーク パワー コーポレーシヨン Magnetic shunt device for power feeder for transmission line sensor module
JPH039275A (en) * 1989-06-06 1991-01-17 Showa Electric Wire & Cable Co Ltd Leakage current detector for cable line
JPH0646527A (en) * 1992-07-23 1994-02-18 Chubu Electric Power Co Inc Accident section orientation device and its slave stations
JPH0726776U (en) * 1993-10-22 1995-05-19 横河電機株式会社 Electricity measuring device
JPH07284181A (en) * 1994-04-04 1995-10-27 Nissin Electric Co Ltd Remote supervisory controller
US5656931A (en) * 1995-01-20 1997-08-12 Pacific Gas And Electric Company Fault current sensor device with radio transceiver
JP2000341882A (en) * 1999-05-31 2000-12-08 Fuji Electric Co Ltd Data collection device in power system
JP2002131344A (en) * 2000-10-27 2002-05-09 Fuji Electric Co Ltd Current measuring device
US20040183522A1 (en) * 2003-03-19 2004-09-23 Power Measurement Ltd. Power line sensors and systems incorporating same
US20060087322A1 (en) * 2004-10-21 2006-04-27 Mccollough Norman D Jr Method and apparatus for a remote electric power line conductor faulted circuit current, conductor temperature, conductor potential and conductor strain monitoring and alarm system.
US20070059986A1 (en) * 2005-09-13 2007-03-15 Daniel Rockwell Monitoring electrical assets for fault and efficiency correction
WO2014125590A1 (en) * 2013-02-14 2014-08-21 三菱電機株式会社 Determining device, determining method, and program

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136184U (en) * 1975-04-25 1976-11-02
JPS63198879A (en) * 1986-11-14 1988-08-17 ナイアガラ モーホーク パワー コーポレーシヨン Magnetic shunt device for power feeder for transmission line sensor module
JPH039275A (en) * 1989-06-06 1991-01-17 Showa Electric Wire & Cable Co Ltd Leakage current detector for cable line
JPH0646527A (en) * 1992-07-23 1994-02-18 Chubu Electric Power Co Inc Accident section orientation device and its slave stations
JPH0726776U (en) * 1993-10-22 1995-05-19 横河電機株式会社 Electricity measuring device
JPH07284181A (en) * 1994-04-04 1995-10-27 Nissin Electric Co Ltd Remote supervisory controller
US5656931A (en) * 1995-01-20 1997-08-12 Pacific Gas And Electric Company Fault current sensor device with radio transceiver
JP2000341882A (en) * 1999-05-31 2000-12-08 Fuji Electric Co Ltd Data collection device in power system
JP2002131344A (en) * 2000-10-27 2002-05-09 Fuji Electric Co Ltd Current measuring device
US20040183522A1 (en) * 2003-03-19 2004-09-23 Power Measurement Ltd. Power line sensors and systems incorporating same
US20060087322A1 (en) * 2004-10-21 2006-04-27 Mccollough Norman D Jr Method and apparatus for a remote electric power line conductor faulted circuit current, conductor temperature, conductor potential and conductor strain monitoring and alarm system.
US20070059986A1 (en) * 2005-09-13 2007-03-15 Daniel Rockwell Monitoring electrical assets for fault and efficiency correction
WO2014125590A1 (en) * 2013-02-14 2014-08-21 三菱電機株式会社 Determining device, determining method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181133A (en) * 2020-01-09 2020-05-19 珠海格力电器股份有限公司 Overcurrent protection method and device, storage medium and air conditioner

Similar Documents

Publication Publication Date Title
CA2982565C (en) Enhanced optical condition monitoring system for power transformer and method for operating power transformer
JP2016529865A (en) Method and apparatus for detecting coil alignment error in wireless inductive power transmission
RU2008109491A (en) METHOD FOR DETERMINING PLACES OF SINGLE-PHASE SHORT TO EARTH IN A BRANCHED AIR LINE OF ELECTRIC TRANSMISSIONS, METHOD FOR DETERMINING PLACES OF AN INTERFASED SHORT CLOSING IN A BRANCHED ELECTRIC CIRCUIT
KR101763347B1 (en) Device for detection of fault location
WO2013136098A1 (en) Method for rotor winding damage detection in rotating alternating machines by differential measurement of magnetic field by using two measuring coils
WO2011029018A2 (en) Voltage conversion and/or electrical measurements from 400 volts upwards
CN105308840A (en) Method and device for identifying an arc
CN100489545C (en) Cable identifying method and cable identifying instrument
JP6298581B2 (en) Current detection device and substation equipment provided with the same
US20220294262A1 (en) Method for identifying asymmetrical vibrations when operating an electrical device connected to a high-voltage grid
CN105259397A (en) Electronic voltage transformer
CN107356895B (en) Error measurement system of high-voltage current transformer
JP2016075600A (en) Current and phase measurement system
JP5087120B2 (en) Corrosion detector and corrosion detection method for transmission lines
JP2019045315A (en) Partial discharge measurement device
JP6461698B2 (en) Electric leakage detection device and electric leakage detection method
JP2018031672A (en) Power measurement system, power measurement subsystem, and determination method
JP5256483B2 (en) Method and apparatus for detecting partial discharge of electrical equipment
JP6092519B2 (en) Ground fault detection device and ground fault detection method
WO2011033548A1 (en) Capacitive voltage sensor
CN108344927B (en) Power cable partial discharge monitoring device and method
Khrennikov Fault detection of electrical equipment. Diagnostic methods
JP3767748B2 (en) Transmission line current detector
JP2019012004A (en) Current detection device and measuring device
KR20160030745A (en) Apparatus, system and method for measuring dc leakage current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181107