[go: up one dir, main page]

JP2016070530A - Environmentally-friendly underground water heat utilization system - Google Patents

Environmentally-friendly underground water heat utilization system Download PDF

Info

Publication number
JP2016070530A
JP2016070530A JP2014197596A JP2014197596A JP2016070530A JP 2016070530 A JP2016070530 A JP 2016070530A JP 2014197596 A JP2014197596 A JP 2014197596A JP 2014197596 A JP2014197596 A JP 2014197596A JP 2016070530 A JP2016070530 A JP 2016070530A
Authority
JP
Japan
Prior art keywords
heat
groundwater
underground water
utilization system
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014197596A
Other languages
Japanese (ja)
Inventor
将文 川添
Masafumi Kawazoe
将文 川添
庄人 篠崎
Masato Shinozaki
庄人 篠崎
浩明 大岡
Hiroaki Ooka
浩明 大岡
山本 健太郎
Kentaro Yamamoto
健太郎 山本
亮介 中村
Ryosuke Nakamura
亮介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geo Energy Co Ltd
OTAKA KENSETSU KK
Original Assignee
Geo Energy Co Ltd
OTAKA KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geo Energy Co Ltd, OTAKA KENSETSU KK filed Critical Geo Energy Co Ltd
Priority to JP2014197596A priority Critical patent/JP2016070530A/en
Publication of JP2016070530A publication Critical patent/JP2016070530A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an environmentally-friendly underground water utilization system capable of minimizing impact on an underground environment in terms of both a water temperature and water quality when sending underground water which is pumped up from the ground and used for heat exchange back to the ground.SOLUTION: An environmentally-friendly underground water utilization system comprises: a production well 1 to pump up underground water from the ground; a heating and cooling facility which uses thermal energy of the underground water pumped up through the production well 1; a heat regulator which brings a temperature of the underground water after being used in the heating and cooling facility close to an original temperature thereof; and a reflux pipe 18 to send the underground water which passes through the heat regulator back to the production well. A heating and cooling system mounted with a water-heat type heat pump 16 which uses the underground water as a heat source is best for the heating and cooling facility in terms of convenience. The heat regulator preferably has: a heat regulation hole 9 with a heat exchanger 11 installed therein; or heat exchange pipes horizontally arranged in the ground. Also, the reflux pipe 18 may have a plurality of discharge ports to allow the used underground water to be sent immediately below an underground water surface in the production well 1.SELECTED DRAWING: Figure 1

Description

この発明は、環境に配慮した地下水から汲み上げた地下水の熱エネルギーを冷暖房のために利用する地下水熱利用システムに関する。   The present invention relates to a groundwater heat utilization system that uses the thermal energy of groundwater pumped from environment-friendly groundwater for air conditioning.

現在、省エネの観点から空気を熱源とした空冷式ヒートポンプが我が国おいて広く普及している。しかし、空冷式ヒートポンプでは、屋外の空気を熱源とし、夏季には30度以上の外気を用いて室内の空気を冷却し、冬季には氷点下程度の外気を用いて室内の空気を加熱する。一方、地下水熱利用システムは、年間を通じて平均気温と同程度の安定した地下水を熱源として利用することにより、効率的に室内の空気を夏は冷却、冬は加温することが可能であり、環境負荷の少ない再生可能エネルギーとして注目されている。   Currently, air-cooled heat pumps using air as a heat source are widely used in Japan from the viewpoint of energy saving. However, the air-cooled heat pump uses outdoor air as a heat source, cools indoor air using outside air of 30 ° C. or more in summer, and heats indoor air using outside air at a temperature below freezing in winter. On the other hand, the groundwater heat utilization system can efficiently cool indoor air in summer and warm in winter by using stable groundwater as the heat source throughout the year. It is attracting attention as a renewable energy with a low load.

そして、地下水資源に恵まれた地域では、熱交換で利用した後の地下水を、そのまま排水することも多いが、一般的には地下水資源保全の観点から、地下水を汲み上げるための井戸(揚水井)に加えて、別途地下の帯水層に達する井戸(還元井)を掘削し、排水を帯水層に戻す方式が採用されている(非特許文献1)。   And in areas blessed with groundwater resources, the groundwater used for heat exchange is often drained as is, but generally from the viewpoint of conserving groundwater resources, a well (pump well) for pumping up groundwater is used. In addition, a method of excavating a well (reduction well) reaching the underground aquifer and returning the drainage to the aquifer has been adopted (Non-Patent Document 1).

そして、還元井を利用した地下水熱利用システムでは、還元井の目詰まり防止等の観点から特許文献1などで様々なシステムが提案されている。   And in the groundwater heat utilization system using a reduction well, various systems are proposed by patent document 1 etc. from viewpoints, such as prevention of clogging of a reduction well.

特開2011−21804号公報JP 2011-21804 A

「地中熱ヒートポンプシステム」、環境省 平成25年3月"Geothermal heat pump system", Ministry of the Environment, March 2013

非特許文献1に示された従来からの地下水熱利用システムでは、熱交換を行なった後の地下水の温度が、夏季には5度程度上昇、冬季には5度程度低下する。これほどの温度差が生じた水を帯水層に直接戻すことは、地中環境に大きな熱衝撃(サーマルショック)を与えることとなり、化学的、物理的並びに生物的に影響が地中に生じることが懸念されるケースも多い。しかし、地下環境への影響を評価する手法が確立されておらず、懸念を払拭することが困難なため、計画が頓挫するケースも多く、我が国における地下水熱利用システムを普及する上での大きな課題の一つとなっている。   In the conventional groundwater heat utilization system shown in Non-Patent Document 1, the temperature of groundwater after heat exchange increases about 5 degrees in summer and decreases about 5 degrees in winter. Returning water with such a temperature difference directly to the aquifer will cause a large thermal shock to the underground environment, causing chemical, physical and biological effects in the ground. There are many cases where this is a concern. However, since there is no established method for assessing the impact on the underground environment and it is difficult to dispel concerns, there are many cases where the plan is neglected, which is a major issue in spreading the groundwater heat utilization system in Japan. It has become one of the.

また、還元井を用いて排水を帯水層に戻す場合でも、近接しているとはいえ、揚水地点と還元地点が異なるため、既存井戸への水量的な影響を懸念して、地域住民等から同意が得られないケースも多く、我が国における地下水熱利用システムを普及する上での大きな課題の一つとなっている。   Also, even if the drainage is returned to the aquifer using the reduction well, although it is close, the pumping point and the reduction point are different. In many cases, no consent can be obtained from the project, which is one of the major issues in spreading groundwater heat utilization systems in Japan.

上記事情に鑑み、本発明は、地中より汲み上げた地下水を地下水熱利用システムで熱交換に利用した後に、極力元の地下水温に近い状態に戻した上で、元の揚水地点から地中に戻すことにより、地中環境への熱衝撃(サーマルショック)を最小限に抑えるとともに、揚水井設置地点での地下水の量的収支を0にし、周辺の既存井戸への水量的な影響を解消することを可能とする環境に配慮した地下水熱利用システムを提供することを目的とする。   In view of the above circumstances, the present invention uses the groundwater pumped up from the ground for heat exchange in the groundwater heat utilization system, and then returns it to the state close to the original groundwater temperature as much as possible. By returning, the thermal shock to the underground environment (thermal shock) is minimized, and the quantitative balance of groundwater at the pumping well installation point is reduced to zero, eliminating the impact of water volume on the surrounding existing wells. The purpose is to provide an environment-friendly groundwater heat utilization system that enables this.

請求項1記載の発明の地下水熱利用システムは、地中より地下水を汲み上げるための揚水井と、前記揚水井から汲み上げた地下水の熱エネルギーを利用して冷暖房を行なう冷暖房設備と、前記冷暖房設備により利用した後の地下水の温度を元の地下水温に近づけるための熱緩衝装置と、前記熱緩衝装置を通過した利用後の地下水を揚水井に戻す還元流路を有することを特徴とする。   The groundwater heat utilization system according to the invention of claim 1 includes a pumping well for pumping up groundwater from the ground, a heating / cooling facility for cooling / heating using the thermal energy of the groundwater pumped from the pumping well, and the cooling / heating facility. It has a heat buffer device for bringing the temperature of the groundwater after use close to the original groundwater temperature, and a reduction channel for returning the groundwater after use that has passed through the heat buffer device to the pumping well.

請求項2記載の発明は、請求項1記載の地下水熱利用システムであって、前記冷暖房設備は、地下水を熱源とする水熱源ヒートポンプによるヒートポンプ冷暖房システムを有することを特徴とする。   Invention of Claim 2 is the groundwater heat utilization system of Claim 1, Comprising: The said air conditioning equipment has the heat pump air conditioning system by the water heat source heat pump which uses groundwater as a heat source.

請求項3記載の発明は、請求項1または請求項2記載の地下水熱利用システムであって、前記熱緩衝装置として地中に熱交換パイプを平面的に設置した熱交換器を有することを特徴とする。   Invention of Claim 3 is a groundwater heat utilization system of Claim 1 or Claim 2, Comprising: It has a heat exchanger which installed the heat exchange pipe planarly in the ground as said heat buffering device. And

請求項4記載の発明は、請求項1〜3のいずれか1項に記載の地下水熱利用システムであって、前記熱緩衝装置として熱交換器を設置した熱緩衝孔を有することを特徴とする。   Invention of Claim 4 is a groundwater heat utilization system of any one of Claims 1-3, Comprising: It has the heat buffer hole which installed the heat exchanger as said heat buffer apparatus, It is characterized by the above-mentioned. .

請求項5記載の発明は、請求項1〜4のいずれか1項に記載の地下水熱利用システムであって、利用後の地下水を揚水井の地下水面直下に戻すことを可能とするための複数の吐出口を前記還元流路に有することを特徴とする。   Invention of Claim 5 is a groundwater heat utilization system of any one of Claims 1-4, Comprising: Plural for making it possible to return the groundwater after utilization to just under the groundwater surface of a pumping well The discharge passage is provided in the reduction flow path.

本発明の地下水熱利用システムによれば、熱交換後の地下水を熱緩衝装置により元の地下水温に近づけて地中に戻すことができ、還元水による地中への熱衝撃(サーマルショック)を最小限に抑えることが可能である。   According to the groundwater heat utilization system of the present invention, the groundwater after heat exchange can be returned to the ground close to the original groundwater temperature by the thermal buffer, and the thermal shock (thermal shock) to the ground by the reduced water can be reduced. It can be minimized.

また、本発明の地下水熱利用システムによれば、揚水井より汲み上げた地下水を再び揚水井に全量戻すことにより、地下水の量的収支が0となり、周辺井戸の地下水位への影響を解消することが可能である。   In addition, according to the groundwater heat utilization system of the present invention, by returning the entire amount of groundwater pumped from the pumping well to the pumping well again, the quantitative balance of groundwater becomes zero, and the influence on the groundwater level of the surrounding wells is eliminated. Is possible.

加えて、本発明の地下水熱利用システムによれば、揚水井の地下水位変動に追従して地下水面直下にて熱交換後の地下水を揚水井に戻すことにより、冷房時に地下水に吸熱させる場合には、元の地下水と比較して高温で軽い還元水を地下水面付近に滞留させて温度躍層(サーモクライン)を形成させることで、汲み上げる地下水の水温上昇を最小限に止め、冷房効率の低下を防止すると同時に、温度躍層が冷えて元の地下水との温度差が僅かになった後に温度躍層が消滅し、揚水井内で混合が進むため、地下水への熱衝撃(サーマルショック)を最小限に止めることが可能である。   In addition, according to the groundwater heat utilization system of the present invention, when groundwater after heat exchange is returned to the pumping well immediately following the groundwater surface following the fluctuation of the groundwater level of the pumping well, the groundwater absorbs heat during cooling. Compared to the original groundwater, it reduces the cooling efficiency by minimizing the rise in the temperature of the groundwater to be pumped by making the hot water, which is light and hot, stay near the groundwater surface to form a thermocline. At the same time, after the temperature layer has cooled down and the temperature difference from the original groundwater has become slight, the temperature layer disappears and mixing proceeds in the pumping well, thus minimizing thermal shock to the groundwater. It is possible to limit it to the limit.

また、暖房時に地下水から採熱する場合には、元の地下水と比較して低温で重い還元水を地下水面付近から還元井内に流入させることで冷水塊の沈降による還元井内での熱的擾乱を引き起こし、揚水井内での混合効率を高め、揚水井底部での冷水溜りの形成を防止し、地下水の水温低下を最小限に止めることができる。したがって、暖房効率の低下を防止すると同時に、地下水への熱衝撃(サーマルショック)を最小限に止めることが可能である。   In addition, when collecting heat from groundwater during heating, thermal disturbance in the reduction well due to sedimentation of cold water mass is caused by flowing reduced water that is heavier at a lower temperature than the original groundwater into the reduction well from near the groundwater surface. This increases the mixing efficiency in the pumping well, prevents the formation of cold water pools at the bottom of the pumping well, and minimizes groundwater temperature drop. Therefore, it is possible to prevent a decrease in heating efficiency and at the same time to minimize a thermal shock to the groundwater.

本発明の地下水熱利用システムの概要を示す図である。It is a figure which shows the outline | summary of the groundwater heat utilization system of this invention. 地下水位に追従して還元管吐出口を切り替える実施例を示す図である。It is a figure which shows the Example which switches a reduction pipe discharge port following a groundwater level. 温度躍層の冷却過程の説明図である。It is explanatory drawing of the cooling process of a thermocline. 熱緩衝装置の別実施形態の概要を示す図である。It is a figure which shows the outline | summary of another embodiment of a thermal shock absorber.

以下に本発明の実施の形態を図面に基づいて説明する。
本発明は図1に示すように、揚水井1は地下水熱利用のため井戸であって、取水用ストレーナ付きのケーシング2が挿入されている。
Embodiments of the present invention will be described below with reference to the drawings.
In the present invention, as shown in FIG. 1, the pumping well 1 is a well for use of groundwater heat, and a casing 2 with a water intake strainer is inserted therein.

さらに、図1に示すように、ケーシング2内には、水位計測用の水位センサー19並びに揚水ポンプ3が設置され、揚水管4と接続し、地上まで地下水を揚水できるようになっている。揚水ポンプ3は制御回路によりヒートポンプ16と連動し、ヒートポンプ16が稼動すると同時に運転を開始し、ヒートポンプ16が運転を停止すると同時に運転を停止する構成となっている。なお、揚水ポンプは地上に揚水用のポンプを設置することもできる。   Further, as shown in FIG. 1, a water level sensor 19 for measuring the water level and a pumping pump 3 are installed in the casing 2 and connected to the pumping pipe 4 so that groundwater can be pumped up to the ground. The pump 3 is interlocked with the heat pump 16 by a control circuit, and starts operating as soon as the heat pump 16 operates, and stops operating as soon as the heat pump 16 stops operating. In addition, a pump for water pumping can also be installed on the ground.

汲み上げた地下水は熱交換器5で地下水と熱媒流路(往き)13の熱媒との間で熱交換を行なった後、排水管6を通じて排水される。排水管6には送水ポンプ7が設置され、熱緩衝装置の熱緩衝孔9内に設置された熱交換器11へと導かれる。また、熱緩衝孔9には、ストレーナ付きのケーシング10が設置され、送水ポンプ7と熱緩衝孔9の間には、逆止弁8が設置されており、サイホン作用等による逆流を防止する構成としている。   The groundwater pumped up is subjected to heat exchange between the groundwater and the heat medium in the heat medium flow path (outward) 13 by the heat exchanger 5 and then drained through the drain pipe 6. A water pump 7 is installed in the drain pipe 6 and led to a heat exchanger 11 installed in a heat buffer hole 9 of the heat buffer device. Further, a casing 10 with a strainer is installed in the heat buffer hole 9, and a check valve 8 is installed between the water pump 7 and the heat buffer hole 9 to prevent backflow due to siphon action or the like. It is said.

本実施例では、熱交換器11は内径20から30mm程度の高密度ポリエチレン等の樹脂性の熱交換パイプとし、熱交換パイプ内に送水ポンプ7で圧送された熱交換後の排水を流すことにより、熱緩衝孔内の地下水と混合することなく熱交換を行い、元の地下水との温度差を縮小させる構成としている。なお、排水との熱交換により熱緩衝孔内の地下水温は冷房時には上昇、暖房時には低下するが、熱緩衝孔内の多量の地下水は熱容量が非常に大きいため、温度変化は僅かである。なお、扇状地内で地下水熱利用システムを導入する場合には、地下水の流動が早く、熱緩衝孔内に地下水が滞留している時間が短いため、温度変化が更に生じにくく、特に有効である。また、事前に熱応答試験(TRT試験)を実施し、熱交換量と熱緩衝孔内の地下水の温度変化の関係を把握することが可能なため、熱応答試験結果を基に熱衝撃(サーマルショック)が小さい範囲で設計するとよい。   In this embodiment, the heat exchanger 11 is a resin heat exchange pipe such as high-density polyethylene having an inner diameter of about 20 to 30 mm, and the waste water after heat exchange pumped by the water pump 7 is allowed to flow into the heat exchange pipe. The heat exchange is performed without mixing with the groundwater in the heat buffer hole, and the temperature difference from the original groundwater is reduced. Note that the groundwater temperature in the heat buffer hole rises during cooling and decreases during heating due to heat exchange with the waste water, but a large amount of groundwater in the heat buffer hole has a very large heat capacity, so the temperature change is slight. In addition, when a groundwater heat utilization system is introduced in an alluvial fan, since the flow of groundwater is fast and the time during which the groundwater stays in the heat buffer hole is short, the temperature change is less likely to occur and is particularly effective. In addition, a thermal response test (TRT test) is performed in advance, and it is possible to grasp the relationship between the amount of heat exchange and the temperature change of groundwater in the heat buffer hole. It is better to design in a range where the shock is small.

熱交換器11で熱緩衝を行った後、排水は還元管18を通って揚水井1に戻される。還元管18には電磁弁12が設置されており、揚水ポンプ停止時には還元管を閉じて逆流を防止する構成としている。   After heat buffering by the heat exchanger 11, the waste water is returned to the pumping well 1 through the reduction pipe 18. An electromagnetic valve 12 is installed in the reduction pipe 18, and the reduction pipe is closed to prevent backflow when the pump is stopped.

熱媒流路(往き)13は熱交換器5と接続され、熱媒(25%エチレングリコール溶液の不凍液等)を熱交換器5へと導き、熱交換器5の熱媒側流出部には熱媒流路(戻り)14が接続されており、熱媒流路の他方末端はヒートポンプ16と接続され、熱交換器5にて地下水との熱交換を行った後の熱媒がヒートポンプ16に戻る構成となっている。また、熱媒流路(戻り)14には循環ポンプ15を設置し、本実施例では、ヒートポンプ16、熱媒流路(往き)13、熱交換器5、熱媒流路(戻り)14の閉鎖回路内を熱媒が循環する構成としている。   The heat medium flow path (outward) 13 is connected to the heat exchanger 5 to guide a heat medium (such as an antifreeze solution of 25% ethylene glycol solution) to the heat exchanger 5, and to the heat medium side outflow portion of the heat exchanger 5. A heat medium flow path (return) 14 is connected, the other end of the heat medium flow path is connected to the heat pump 16, and the heat medium after heat exchange with the ground water is performed in the heat pump 16 by the heat exchanger 5. The configuration is back. In addition, a circulation pump 15 is installed in the heat medium flow path (return) 14. In this embodiment, the heat pump 16, the heat medium flow path (outward) 13, the heat exchanger 5, and the heat medium flow path (return) 14 are provided. The heat medium circulates in the closed circuit.

熱交換器5を介して地下水との間で採放熱した熱はヒートポンプ16により、二次側の冷温水回路17へと導かれ、冷温水回路17に接続されたファンコイルユニットなどの空調機により冷暖房を行なう構成となっている。なお、図1の実施例はインバータ制御を行なうヒートポンプ16を想定したものであるが、オンオフ制御を行なうタイプのヒートポンプを使用する場合など、必要に応じて冷温水回路17の途中にバッファータンクを設置する構成とする。   The heat collected from the groundwater through the heat exchanger 5 is guided to the secondary cold / hot water circuit 17 by the heat pump 16, and by an air conditioner such as a fan coil unit connected to the cold / hot water circuit 17. It is configured to perform air conditioning. The embodiment shown in FIG. 1 assumes a heat pump 16 that performs inverter control. However, a buffer tank may be installed in the middle of the hot / cold water circuit 17 as necessary, such as when using a heat pump that performs on / off control. The configuration is as follows.

図2は、地下水位に追従して還元管18吐出口を切り替える実施例を示す図である。
本実施例では、市販の水中用電磁弁(SV1〜SV4)を用いて地下水位変化に追従させる構成としている。図1の揚水井1内に設置した水位センサー19により計測した地下水位を基に、図2に示したどの地下水位帯に現在の地下水位が位置しているかを同定し、制御回路により各地下水位帯に対応する電磁弁を開放して還元管18から揚水井内に地下水を戻すことで、吐出する位置を地下水位変化に追従させて切り替える。なお、電磁弁の設置間隔と地下水位帯の設定については、地下水流動の早さや地下水揚水量などの影響を受けるため、事前に現地試験を実施し、その結果を踏まえて決定するとよい。
FIG. 2 is a diagram showing an embodiment in which the outlet of the reduction pipe 18 is switched following the groundwater level.
In this embodiment, a commercially available underwater solenoid valve (SV1 to SV4) is used to follow changes in the groundwater level. Based on the groundwater level measured by the water level sensor 19 installed in the pumping well 1 in FIG. 1, it is identified which groundwater level is located in the groundwater level zone shown in FIG. By opening the solenoid valve corresponding to the zone and returning the groundwater from the reduction pipe 18 into the pumping well, the discharge position is switched in accordance with the change in the groundwater level. In addition, the installation interval of the solenoid valve and the setting of the groundwater level zone are affected by the speed of groundwater flow and the amount of groundwater pumped. Therefore, it is recommended to carry out field tests in advance and decide based on the results.

図3は、温度躍層の冷却過程の説明図である。
地下水熱利用システムによる冷房設備では、対象施設を所定の温度まで冷却した後は、熱放射等による新たに加わる熱量分だけを冷却すればいいため、常時地下水を汲み上げて熱交換を行なう必要はなく、図3に示すように間欠運転となるのが通常である。したがって、冷房設備が運転し、汲み上げた地下水に吸熱させて対象施設を冷却させた場合には、揚水井1の地下水位直下に還元管18から使用後の暖かくて軽い地下水が戻されるため、地下水面付近に温度躍層(サーモクライン)が形成される。その後、対象施設が所定の温度まで冷却され揚水ポンプ3が停止すると、温度躍層が躍層の下の地下水等により冷やされて次第に縮小し、最終的には消失する。
FIG. 3 is an explanatory diagram of the cooling process of the thermal stratum.
In the cooling system using the groundwater heat utilization system, after the target facility has been cooled to the specified temperature, it is only necessary to cool the amount of heat added by heat radiation, etc., so there is no need to constantly pump up the groundwater and exchange heat. Normally, intermittent operation is performed as shown in FIG. Accordingly, when the cooling facility is operated and the target facility is cooled by absorbing heat into the pumped-up groundwater, the warm and light groundwater after use is returned from the reduction pipe 18 directly below the groundwater level of the pumping well 1. A thermocline (thermocline) is formed near the surface. Thereafter, when the target facility is cooled to a predetermined temperature and the pumping pump 3 is stopped, the temperature climbing layer is cooled by groundwater or the like under the climbing layer and gradually shrinks, and finally disappears.

なお、上記開示された本発明の実施形態は、あくまで例示である。本発明の技術的範囲は、特許請求の範囲によって示されるとともに、当該記載と均等と評価される技術的構成まで含むものである。例えば、本発明の実施例では、ヒートポンプ16を用いているが、穀物倉庫の冷房などの用途によっては、ヒートポンプを使用せずに、熱交換器5で地下水と熱交換を行なった熱媒をそのまま冷温水回路17に導いて熱利用しても構わない。   The embodiment of the present invention disclosed above is merely an example. The technical scope of the present invention is shown by the claims, and includes a technical configuration evaluated as equivalent to the description. For example, in the embodiment of the present invention, the heat pump 16 is used. However, depending on the use such as cooling of the grain warehouse, the heat medium that has exchanged heat with the ground water in the heat exchanger 5 is used without using the heat pump. You may guide to the cold / hot water circuit 17 and use heat.

また、本発明の実施例では、熱交換器5を通じて地下水と熱媒間で熱交換を行なう構成としているが、地下水の水質が冷凍空調機器用水質ガイドライン(社団法人日本冷凍空調工業会)に定める水質基準に適合し、地下水水質に起因する配管等の設備の腐食やスケール生成の心配がない場合には、熱交換器5を省略し、地下水を直接、熱媒流路(往き)13並びに熱媒流路(戻り)14に流しても問題ない。   Moreover, in the Example of this invention, although it is set as the structure which heat-exchanges between groundwater and a heat medium through the heat exchanger 5, the quality of groundwater is determined in the water quality guidelines for refrigeration air conditioning equipment (Japan Refrigeration and Air Conditioning Industry Association). If the water quality standards are met and there is no concern about the corrosion of pipes or other equipment due to the quality of groundwater or the generation of scale, the heat exchanger 5 is omitted and the groundwater is directly supplied to the heat medium flow path (outward) 13 and heat. There is no problem even if it flows through the medium flow path (return) 14.

また、本発明の実施例では、熱緩衝装置として熱緩衝孔を設置し、樹脂性の熱交換パイプを用いて熱交換し熱緩衝を行う構成としているが、熱緩衝装置としては、冷房時に熱交換後の排水を元の地下水温近くまで冷却、暖房時に元の地下水温近くまで加温できればよく、例えば温泉排水や太陽熱を加温に、表流水を冷却に利用しても構わない。また、十分な敷地が確保可能な場合には、図4に示すように地中に樹脂製の熱交換パイプを平面的に設置し地中との間で熱交換を行ない熱緩衝させる構成としてもよい。また、熱交換器11についても、樹脂性の熱交換パイプのほか、ステンレスやチタンなどを用いたコイル式の熱交換器などを使用してもよい。   In the embodiment of the present invention, a heat buffering hole is installed as a heat buffering device, and heat is buffered by heat exchange using a resin heat exchange pipe. It is only necessary to cool the drainage water after replacement to near the original groundwater temperature and to warm to the original groundwater temperature at the time of heating. For example, hot spring drainage or solar heat may be heated and surface water may be used for cooling. In addition, when a sufficient site can be secured, as shown in FIG. 4, it is possible to install a resin heat exchange pipe in the ground and exchange heat with the ground to buffer the heat. Good. In addition to the resin heat exchange pipe, a coil-type heat exchanger using stainless steel, titanium, or the like may be used as the heat exchanger 11.

さらには、本発明の実施例では、地下水位の変化に併せて還元管18の吐出位置を地下水面直下になるよう切り替えるために、水中センサー19と図2に示した水中用電磁弁による構成としたが、水位に応じて吐出口を切り替え可能な構成であればよく、例えば水位センサーの変わりにフロートスイッチや電極棒を使用しても構わない。また、還元管18の吐出口についても水中用電磁弁の代わりに地上に電磁弁を設置し、流路を切り替える構成としても問題ない。   Furthermore, in the embodiment of the present invention, in order to switch the discharge position of the reduction pipe 18 so as to be directly below the groundwater surface in accordance with the change in the groundwater level, the underwater sensor 19 and the underwater electromagnetic valve shown in FIG. However, any configuration is possible as long as the discharge port can be switched according to the water level. For example, a float switch or an electrode rod may be used instead of the water level sensor. In addition, the discharge port of the reduction pipe 18 may be configured so as to switch the flow path by installing an electromagnetic valve on the ground instead of the underwater electromagnetic valve.

1 揚水井
2 ケーシング
3 揚水ポンプ
4 揚水管
5 熱交換器
6 排水管
7 送水ポンプ
8 逆止弁
9 熱緩衝孔
10 ケーシング
11 熱交換器
12 電磁弁
13 熱媒流路(往き)
14 熱媒流路(戻り)
15 循環ポンプ
16 ヒートポンプ
17 冷温水回路
18 還元管
19 水位センサー
DESCRIPTION OF SYMBOLS 1 Pumping well 2 Casing 3 Pumping pump 4 Pumping pipe 5 Heat exchanger 6 Drain pipe 7 Water pump 8 Check valve 9 Heat buffer hole
10 Casing
11 Heat exchanger
12 Solenoid valve
13 Heat transfer channel (outward)
14 Heat transfer channel (return)
15 Circulation pump
16 Heat pump
17 Cold / hot water circuit
18 Reduction tube
19 Water level sensor

Claims (5)

地中より地下水を汲み上げるための揚水井と、前記揚水井から汲み上げた地下水の熱エネルギーを利用して冷暖房を行なう冷暖房設備と、前記冷暖房設備により利用した後の地下水の温度を元の地下水温に近づけるための熱緩衝装置と、前記熱緩衝装置を通過した利用後の地下水を揚水井に戻す還元流路を有することを特徴とする地下水熱利用システム。   A pumping well for pumping groundwater from the ground, a heating / cooling facility that uses the thermal energy of the groundwater pumped from the pumping well, and a temperature of the groundwater after using the cooling / heating facility to the original groundwater temperature. A groundwater heat utilization system comprising: a heat buffer device for approaching, and a reduction passage for returning groundwater after passing through the heat buffer device to a pumping well. 請求項1記載の地下水熱利用システムであって、
前記冷暖房設備は、地下水を熱源とする水熱源ヒートポンプによるヒートポンプ冷暖房システムを有することを特徴とする地下水熱利用システム。
The groundwater heat utilization system according to claim 1,
The air conditioning system includes a heat pump air conditioning system using a water heat source heat pump that uses groundwater as a heat source.
請求項1または2記載の地下水熱利用システムであって、
前記熱緩衝装置として地中に熱交換パイプを平面的に設置した熱交換器を有することを特徴とする地下水熱利用システム。
A groundwater heat utilization system according to claim 1 or 2,
A groundwater heat utilization system comprising a heat exchanger in which a heat exchange pipe is installed in the ground as the heat buffer.
請求項1〜3のいずれか1項に記載の地下水熱利用システムであって、
前記熱緩衝装置として熱交換器を設置した熱緩衝孔を有することを特徴とする地下水熱利用システム。
The groundwater heat utilization system according to any one of claims 1 to 3,
A groundwater heat utilization system having a heat buffering hole provided with a heat exchanger as the heat buffering device.
請求項1〜4のいずれか1項に記載の地下水熱利用システムであって、利用後の地下水を揚水井の地下水面直下に戻すことを可能とするための複数の吐出口を前記還元流路に有することを特徴とする地下水熱利用システム。   It is a groundwater heat utilization system of any one of Claims 1-4, Comprising: The several discharge port for enabling return of the groundwater after utilization to the underground water surface of a pumping well is said reduction | restoration flow path A groundwater heat utilization system characterized by comprising:
JP2014197596A 2014-09-26 2014-09-26 Environmentally-friendly underground water heat utilization system Pending JP2016070530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014197596A JP2016070530A (en) 2014-09-26 2014-09-26 Environmentally-friendly underground water heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014197596A JP2016070530A (en) 2014-09-26 2014-09-26 Environmentally-friendly underground water heat utilization system

Publications (1)

Publication Number Publication Date
JP2016070530A true JP2016070530A (en) 2016-05-09

Family

ID=55866579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014197596A Pending JP2016070530A (en) 2014-09-26 2014-09-26 Environmentally-friendly underground water heat utilization system

Country Status (1)

Country Link
JP (1) JP2016070530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664271C2 (en) * 2016-05-24 2018-08-15 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Ground heat exchanger of geothermal heat pump system with moistening of ground and method for its application
JP2020176745A (en) * 2019-04-16 2020-10-29 三菱マテリアルテクノ株式会社 Geo hybrid system
JP2022077246A (en) * 2020-11-11 2022-05-23 サンポット株式会社 Heat collection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664271C2 (en) * 2016-05-24 2018-08-15 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Ground heat exchanger of geothermal heat pump system with moistening of ground and method for its application
JP2020176745A (en) * 2019-04-16 2020-10-29 三菱マテリアルテクノ株式会社 Geo hybrid system
JP2022077246A (en) * 2020-11-11 2022-05-23 サンポット株式会社 Heat collection system
JP7203072B2 (en) 2020-11-11 2023-01-12 株式会社長府製作所 Heat extraction system

Similar Documents

Publication Publication Date Title
US20130037236A1 (en) Geothermal facility with thermal recharging of the subsoil
JP6529151B2 (en) Groundwater heat utilization system
Spitler et al. Surface water heat pump systems
JP2016070531A (en) Underground water heat utilization system with infiltration inlet
JP2013181676A (en) Air conditioning system and air conditioning method
JP2016070530A (en) Environmentally-friendly underground water heat utilization system
JP6443783B2 (en) Heat exchange device control method, heat exchange device, and water-cooled heat pump air conditioner
KR101715752B1 (en) Geothermal heating and cooling systems using underground water
CN204574340U (en) Subterranean heat exchanger of earth source heat pump water collecting and diversifying device system
JP2007183023A (en) Heating/cooling method and device utilizing geothermal heat
KR101569316B1 (en) The standing column well type geothermal system with breakdown protection device for deep well pump
CN104596007B (en) Natural energy source central air-conditioning
KR101658407B1 (en) Thermal energy storage tank and Heating and cooling and hot water supplying apparatus using geothermy
JP2016023914A (en) Multistage type ground water heat utilization system
CN103062958B (en) Back washing system
JP7359361B2 (en) heat pump equipment
KR101579458B1 (en) Hybrid cooling and warming system having complex heat source
KR101234014B1 (en) Polyethylene header for ground heat system
KR20170052119A (en) Hot and cool water supply apparatus using geothermal
CN101315228A (en) Heat dissipation and/or energy storage method, heat exchange device and heat pump system
US20130081780A1 (en) Geothermal heat exchange system for water supply
CN102368026A (en) Underwater high-efficiency heat exchange coil for still water areas
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure
KR20110041394A (en) Hybrid geothermal heat pump system for using heat of water heat source
KR102646377B1 (en) Geothermal heat pump cooling and heating system with make-up water supply tank