[go: up one dir, main page]

JP2016069548A - Epoxy resin composition and cured article - Google Patents

Epoxy resin composition and cured article Download PDF

Info

Publication number
JP2016069548A
JP2016069548A JP2014201244A JP2014201244A JP2016069548A JP 2016069548 A JP2016069548 A JP 2016069548A JP 2014201244 A JP2014201244 A JP 2014201244A JP 2014201244 A JP2014201244 A JP 2014201244A JP 2016069548 A JP2016069548 A JP 2016069548A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
group
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201244A
Other languages
Japanese (ja)
Other versions
JP6429569B2 (en
Inventor
栄次郎 青柳
Eijiro Aoyagi
栄次郎 青柳
次俊 和佐野
Tsugutoshi Wasano
次俊 和佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2014201244A priority Critical patent/JP6429569B2/en
Publication of JP2016069548A publication Critical patent/JP2016069548A/en
Application granted granted Critical
Publication of JP6429569B2 publication Critical patent/JP6429569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Sealing Material Composition (AREA)
  • Adhesive Tapes (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition having excellent performance in low dielectric property, high thermostability and low hygroscopicity and useful for applications such as lamination, molding, casting and adhesion, and a cured article thereof.SOLUTION: There are provided an epoxy resin composition containing an epoxy resin having a structure obtained by reaction of a compound represented by the formula (1) and epihalohydrin and a curing agent as essential components, and a cured article thereof, where n is a repeating number and its average is a value of 0<n≤10, A is each independently a bivalent group having an aliphatic ring structure, B is each independently a bivalent hydrocarbon group, Ris each independently H, a halogen atom, or a C1 to 10 hydrocarbon group.SELECTED DRAWING: None

Description

本発明は、低誘電特性、高耐熱性、低吸湿性に優れた硬化物を与えるエポキシ樹脂組成物及びその硬化物に関するものである。 The present invention relates to an epoxy resin composition that provides a cured product excellent in low dielectric properties, high heat resistance, and low moisture absorption, and a cured product thereof.

近年、携帯電話などの情報通信機器の信号帯域、コンピュータのCPUクロックタイムはGHz帯に達し、高周波化が進行している。 In recent years, the signal band of information communication devices such as mobile phones and the CPU clock time of computers have reached the GHz band, and the frequency has been increasing.

電気信号の誘電損失は、回路を形成する絶縁体の比誘電率の平方根、誘電正接および使用される信号の周波数の積に比例する。そのため、使用される信号の周波数が高いほど誘電損失が大きくなる。 The dielectric loss of an electrical signal is proportional to the product of the square root of the dielectric constant of the insulator forming the circuit, the dielectric loss tangent and the frequency of the signal used. Therefore, the higher the frequency of the signal used, the greater the dielectric loss.

誘電損失は、電気信号を減衰させて信号の信頼性を損なうので、これを抑制するために絶縁体には誘電率、誘電正接の小さな材料を選定する必要がある(特許文献1)。 Dielectric loss attenuates the electrical signal and impairs the reliability of the signal. Therefore, in order to suppress this, it is necessary to select a material having a small dielectric constant and dielectric loss tangent for the insulator (Patent Document 1).

こうした特性を有する熱硬化性樹脂組成物を提供する材料そして、フェノールノボラック樹脂中のフェノール性ヒドロキシ基をアリールエステル化して得られる活性エステル化合物をエポキシ樹脂用硬化剤として用いる技術が知られているが、耐熱性が十分ではなかった(特許文献2、3)。また、特許文献4では、フェニルアルキルエーテル骨格を有する2官能エポキシ樹脂を含む樹脂組成物により、耐湿性と電気特性の改良が提示された。しかしながら、低誘電正接化効果は認められたが、低誘電率化の効果が不十分であり、耐熱性も満足できるものではなかった。 A material for providing a thermosetting resin composition having such characteristics and a technique using an active ester compound obtained by arylesterifying a phenolic hydroxy group in a phenol novolac resin as a curing agent for an epoxy resin are known. The heat resistance was not sufficient (Patent Documents 2 and 3). In Patent Document 4, improvement in moisture resistance and electrical characteristics was presented by a resin composition containing a bifunctional epoxy resin having a phenylalkyl ether skeleton. However, although the effect of lowering the dielectric loss tangent was recognized, the effect of lowering the dielectric constant was insufficient and the heat resistance was not satisfactory.

特開2012−221968号公報JP 2012-221968 A 特開平11−130939号公報JP-A-11-130939 特開平7−82348号公報JP 7-82348 A 特許4529234号公報Japanese Patent No. 4529234

従って、本発明が解決しようとする課題は、耐湿性と低誘電性と高耐熱性において、より優れた性能を有し、積層、成型、注型、接着などの用途に有用なエポキシ樹脂組成物及びその硬化物を提供するものである。 Therefore, the problem to be solved by the present invention is an epoxy resin composition having superior performance in moisture resistance, low dielectric property and high heat resistance, and useful for applications such as lamination, molding, casting and adhesion. And a cured product thereof.

すなわち、本発明は、下記一般式(1) That is, the present invention provides the following general formula (1)

Figure 2016069548
Figure 2016069548

(式中、nは繰り返し数でその平均値は0<n≦10の値であり、Aはそれぞれ独立に脂肪族環構造を有する2価の基を表し、Bはそれぞれ独立に2価の炭化水素基を表し、Rはそれぞれ独立に水素原子、ハロゲン原子または炭素数1〜10の炭化水素基を表す。)で表される化合物とエピハロヒドリンを反応させて得られる構造を有するエポキシ樹脂と、硬化剤とを必須成分とするエポキシ樹脂組成物である。 (In the formula, n is the number of repetitions and the average value is 0 <n ≦ 10, A represents a divalent group having an aliphatic ring structure, and B is independently a divalent carbonization. An epoxy resin having a structure obtained by reacting a compound represented by a hydrogen group, and R 1 independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 10 carbon atoms) and an epihalohydrin; An epoxy resin composition containing a curing agent as an essential component.

そして、前記一般式(1)中のAは、一般式(2) In the general formula (1), A represents the general formula (2).

Figure 2016069548
Figure 2016069548

(式中、Rはそれぞれ独立に水素原子または炭素数1〜10の炭化水素基を表し、2つのRが結合し環状になっていても良い。kは3〜12の整数を表し、pは0または1を表す。)、 (In the formula, each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and two R 2 may be bonded to each other to form a ring. K represents an integer of 3 to 12, p represents 0 or 1),

一般式(3) General formula (3)

Figure 2016069548
Figure 2016069548

(式中、pは0または1を表し、sは0または1を表し、tは0または1を表す。)、 (Wherein p represents 0 or 1, s represents 0 or 1, and t represents 0 or 1),

または一般式(4) Or general formula (4)

Figure 2016069548
Figure 2016069548

(式中、pは0または1を表す。)、 (Wherein p represents 0 or 1),

で表される骨格が好ましく、一般式(1)中のBはメチレン基が好ましい。 And B in the general formula (1) is preferably a methylene group.

そして、前記エポキシ樹脂のエポキシ当量は、250〜1000g/eq.の範囲が好ましく、前記エポキシ樹脂のエポキシ基1モルに対して、前記硬化剤の活性水素基が0.4〜1.2モルの範囲であることが好ましい。 And the epoxy equivalent of the said epoxy resin is 250-1000 g / eq. The active hydrogen group of the curing agent is preferably in the range of 0.4 to 1.2 mol with respect to 1 mol of the epoxy group of the epoxy resin.

また、本発明は、前記エポキシ樹脂組成物を用いるプリプレグ、接着シート、エポキシ樹脂積層板、エポキシ樹脂封止材またはエポキシ樹脂封止材であり、前記エポキシ樹脂組成物を硬化して得られる硬化物である。 Moreover, this invention is a prepreg using the said epoxy resin composition, an adhesive sheet, an epoxy resin laminated board, an epoxy resin sealing material, or an epoxy resin sealing material, and the hardened | cured material obtained by hardening | curing the said epoxy resin composition It is.

本発明のエポキシ樹脂組成物は低誘電性、高耐熱性、耐湿性に優れた硬化物を与え、積層、成型、注型、接着などの用途に好適に使用することが可能である。 The epoxy resin composition of the present invention provides a cured product excellent in low dielectric property, high heat resistance and moisture resistance, and can be suitably used for applications such as lamination, molding, casting and adhesion.

本発明は、前記一般式(1)で表される化合物とエピハロヒドリンを反応させて得られる構造を有するエポキシ樹脂と、硬化剤とを必須成分とするエポキシ樹脂組成物ある。 The present invention is an epoxy resin composition comprising an epoxy resin having a structure obtained by reacting the compound represented by the general formula (1) and epihalohydrin, and a curing agent as essential components.

前記一般式(1)で表される化合物において、nは繰り返し数であり、平均値は0<n≦10であり、好ましくは0.01<n<8であり、より好ましくは0.05<n<5であり、さらに好ましくは、0.1<n<3である。nが0ではヒドロキシ基量の低減が十分でなく、低誘電特性に効果がなく、nが10を超えると高粘度となる恐れがある。ここで、平均値は数平均である。 In the compound represented by the general formula (1), n is the number of repetitions, and the average value is 0 <n ≦ 10, preferably 0.01 <n <8, more preferably 0.05 <. n <5, and more preferably 0.1 <n <3. When n is 0, the amount of hydroxy groups is not sufficiently reduced, and there is no effect on low dielectric properties. When n exceeds 10, there is a risk of high viscosity. Here, the average value is a number average.

また、前記一般式(1)中のRはそれぞれ独立して、水素原子、ハロゲン原子または炭素数1〜10の炭化水素基のいずれかである。炭素数1〜10の炭化水素基の具体的な例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基などの炭素数1〜10の直鎖または分岐アルキル基や、シクロヘキシル基などの炭素数4〜10の環状アルキル基や、フェニル基、ナフチル基、トリル基、キシリル基、インダニル基などの炭素数6〜10の置換基を有していてもよいアリール基や、ベンジル基、フェネチル基、2−メチルベンジル基、3−メチルベンジル基、4−メチルベンジル基、2,6−ジメチルベンジル基、3,5−ジメチルベンジル基、α−メチルベンジル基などの炭素数7〜10の置換基を有していてもよいアラルキル基などの置換基が挙げられ、好ましい置換基はメチル基、エチル基、tert−ブチル基、シクロヘキシル基、フェニル基、α−メチルベンジル基である。 Moreover, the general formula (1) R 1 in each independently, a hydrogen atom, is either a halogen atom or a hydrocarbon group having 1 to 10 carbon atoms. Specific examples of the hydrocarbon group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n -A linear or branched alkyl group having 1 to 10 carbon atoms such as a pentyl group or an n-hexyl group, a cyclic alkyl group having 4 to 10 carbon atoms such as a cyclohexyl group, a phenyl group, a naphthyl group, a tolyl group, or a xylyl group. An aryl group optionally having a substituent having 6 to 10 carbon atoms such as an indanyl group, a benzyl group, a phenethyl group, a 2-methylbenzyl group, a 3-methylbenzyl group, a 4-methylbenzyl group, 2, And substituents such as an aralkyl group which may have a substituent having 7 to 10 carbon atoms such as a 6-dimethylbenzyl group, a 3,5-dimethylbenzyl group, and an α-methylbenzyl group. , Preferred substituents are methyl, ethyl, tert- butyl group, a cyclohexyl group, a phenyl group, a α- methylbenzyl group.

また、前記一般式(1)中のAはそれぞれ独立して、脂肪族環構造を有する二価の基であり、前記一般式(2)で表されるシクロヘキサン環、デカリン構造、スピロ環構造もしくはビシクロヘキシル構造などを有する基、前記一般式(3)で表されるノルボルナン構造、テトラヒドロジシクロペンタジエン構造もしくはテトラヒドロトリシクロペンタジエン構造を有する基または前記一般式(4)で表されるアダマンタン構造を有する基が好ましい。 A in the general formula (1) is independently a divalent group having an aliphatic ring structure, and a cyclohexane ring, a decalin structure, a spiro ring structure represented by the general formula (2) or A group having a bicyclohexyl structure, a norbornane structure represented by the general formula (3), a group having a tetrahydrodicyclopentadiene structure or a tetrahydrotricyclopentadiene structure, or an adamantane structure represented by the general formula (4) Groups are preferred.

前記一般式(2)で表される脂肪族環構造を有する二価の基は、例えば、下記構造式群(A1)〜(A28) Examples of the divalent group having an aliphatic ring structure represented by the general formula (2) include the following structural formula groups (A1) to (A28).

Figure 2016069548
Figure 2016069548

などが挙げられるがこれらに限定されるものではない。
また前記一般式(3)または(4)で表される脂肪族環構造を有する二価の基は、例えば、下記構造式群(A29)〜(A49)
However, it is not limited to these.
The divalent group having an aliphatic ring structure represented by the general formula (3) or (4) is, for example, the following structural formula groups (A29) to (A49).

Figure 2016069548
Figure 2016069548

などが挙げられるがこれらに限定されるものではない。
その他にも、前記一般式(1)中のAとしては、例えば、下記構造式群(A50)〜(A59)
However, it is not limited to these.
In addition, examples of A in the general formula (1) include, for example, the following structural formula groups (A50) to (A59):

Figure 2016069548
Figure 2016069548

などが挙げられるがこれらに限定されるものではなし、これらが単独でも2種類以上であってもよい。これらの中では、(A1)、(A2)、(A3)、(A4)、(A6)、(A7)、(A8)、(A9)、(A10)、(A11)、(A13)、(A14)、(A17)、(A18)、(A19)、(A20)、(A21)、(A25)、(A26)、(A27)、(A28)、(A29)、(A31)、(A34)、(A35)、(A36)、(A37)、(A40)、(A41)、(A42)、(A43)、(A44)、(A45)、(A46)、(A47)、(A48)、(A49)、(A51)、(A52)、(A53)、(A54)、(A55)、(A56)または(A59)から選ばれる構造が好ましく、(A1)、(A2)、(A3)、(A7)、(A9)、(A11)、(A13)、(A14)、(A17)、(A18)、(A21)、(A28)、(A29)、(A31)、(A34)、(A35)、(A36)、(A37)、(A40)、(A41)、(A42)、(A43)、(A44)、(A45)、(A46)、(A47)、(A48)、(A49)または(A53)から選ばれる構造がより好ましく、(A1)、(A2)、(A3)、(A9)、(A11)、(A13)、(A14)、(A17)、(A18)、(A29)、(A31)、(A34)、(A35)、(A36)、(A37)、(A40)、(A41)、(A42)、(A44)、(A46)または(A48)から選ばれる構造がさらに好ましくい。 However, it is not limited to these, and these may be used alone or in combination of two or more. Among these, (A1), (A2), (A3), (A4), (A6), (A7), (A8), (A9), (A10), (A11), (A13), ( A14), (A17), (A18), (A19), (A20), (A21), (A25), (A26), (A27), (A28), (A29), (A31), (A34) , (A35), (A36), (A37), (A40), (A41), (A42), (A43), (A44), (A45), (A46), (A47), (A48), ( A49), (A51), (A52), (A53), (A54), (A55), (A56) or (A59) is preferable, and (A1), (A2), (A3), (A A7), (A9), (A11), (A13), (A14), (A17), (A18) (A21), (A28), (A29), (A31), (A34), (A35), (A36), (A37), (A40), (A41), (A42), (A43), (A44) ), (A45), (A46), (A47), (A48), (A49) or (A53) is more preferred, and (A1), (A2), (A3), (A9), (A A11), (A13), (A14), (A17), (A18), (A29), (A31), (A34), (A35), (A36), (A37), (A40), (A41) , (A42), (A44), (A46) or (A48) is more preferred.

そして、前記Aが脂肪族環構造を有する二価の基ではない前記一般式(1)で表される化合物とエピハロヒドリンを反応させて得られる構造を有するエポキシ樹脂と硬化剤からなるエポキシ樹脂組成物では、低誘電正接になるが低誘電率の硬化物が得られない。 An epoxy resin composition comprising an epoxy resin having a structure obtained by reacting the compound represented by the general formula (1), which is not a divalent group having an aliphatic ring structure, and an epihalohydrin, and a curing agent. Then, a low dielectric constant tangent is obtained, but a cured product having a low dielectric constant cannot be obtained.

また、前記一般式(1)で表される化合物は、例えば、下記一般式(5) The compound represented by the general formula (1) is, for example, the following general formula (5).

Figure 2016069548
Figure 2016069548

(式中、A及びRは前記一般式(1)のA及びRとそれぞれ同義である。) (Wherein, A and R 1 are the same meanings as A and R 1 in the general formula (1).)

で表される脂肪族環構造を有するジヒドロキシ化合物(a)と下記一般式(6) A dihydroxy compound (a) having an aliphatic ring structure represented by the following general formula (6)

Figure 2016069548
Figure 2016069548

(式中、B及びRは前記一般式(1)のB及びRとそれぞれ同義であり、Xは塩素、臭素、ヨウ素から選ばれるハロゲン原子を表す。) (Wherein, B and R 1 have the same meanings as B and R 1 in the general formula (1), X represents chlorine, bromine, a halogen atom selected from iodine.)

で表されるハロゲン化アルキル基含有化合物(b)とを脱ハロゲン化水素縮合反応させることにより得ることができる。なお、一般式(1)中のnは前記ジヒドロキシ化合物(a)と前記ハロゲン化アルキル基含有化合物(b)のモル比からおよその計算が可能であり、モル比が1に近いほどnが大きくなる。 It can obtain by carrying out the dehydrohalogenation condensation reaction with the halogenated alkyl group containing compound (b) represented by these. Note that n in the general formula (1) can be roughly calculated from the molar ratio of the dihydroxy compound (a) and the halogenated alkyl group-containing compound (b). Become.

前記ハロゲン化アルキル基含有化合物(b)は、例えば、下記一般式(7) The halogenated alkyl group-containing compound (b) is, for example, the following general formula (7)

Figure 2016069548
Figure 2016069548

(式中、Rは前記一般式(1)のRと、Xは前記一般式(6)のXとそれぞれ同義である。)
が好ましい。
(In the formula, R 1 and R 1 in the general formula (1), X are each as X in the general formula (6) interchangeably.)
Is preferred.

また、使用できる前記一般式(5)で表される脂肪族環構造を有するジヒドロキシ化合物(a)としては、下記一般式(8) Moreover, as a dihydroxy compound (a) which has an aliphatic ring structure represented by the said General formula (5) which can be used, following General formula (8)

Figure 2016069548
Figure 2016069548

(式中、Rは前記一般式(1)のRと、R、k及びpは前記一般式(2)のR、k及びpとそれぞれ同義である。)、 (Wherein, R 1 and R 1 in the general formula (1), R 2, k and p are respectively R 2, k and p in the general formula (2) interchangeably.),

で表されるシクロヘキサン環、デカリン構造、スピロ環構造もしくはビシクロヘキシル構造などを有するジヒドロキシ化合物、
下記一般式(9)
A dihydroxy compound having a cyclohexane ring, a decalin structure, a spiro ring structure or a bicyclohexyl structure represented by:
The following general formula (9)

Figure 2016069548
Figure 2016069548

(式中、Rは前記一般式(1)のRと、p、s及びtは前記一般式(3)のp、s及びtとそれぞれ同義である。)、 (Wherein, R 1 and R 1 in the general formula (1), p, s and t is p, respectively s and t synonymous in the general formula (3).),

で表されるノルボルナン構造、テトラヒドロジシクロペンタジエン構造もしくはテトラヒドロトリシクロペンタジエン構造を有するジヒドロキシ化合物、
または下記一般式(10)
A dihydroxy compound having a norbornane structure, a tetrahydrodicyclopentadiene structure or a tetrahydrotricyclopentadiene structure represented by:
Or the following general formula (10)

Figure 2016069548
Figure 2016069548

(式中、Rは前記一般式(1)のRと、pは前記一般式(5)のpとそれぞれ同義である。)、 (Wherein, R 1 and R 1 in the general formula (1), p are each a p in the general formula (5) interchangeably.),

で表されるアダマンタン構造を有するジヒドロキシ化合物などが挙げられるがこれらに限定されるものではないし、これらを単独で使用しても2種類以上を併用してもよい。 Although the dihydroxy compound etc. which have adamantane structure represented by these are mentioned, it is not limited to these, These may be used individually or may use 2 or more types together.

前記一般式(8)で表されるで表されるシクロヘキサン環、デカリン構造、スピロ環構造もしくはビシクロヘキシル構造などを有するジヒドロキシ化合物としては、例えば、下記構造式群(B1)〜(B9) Examples of the dihydroxy compound having a cyclohexane ring, a decalin structure, a spiro ring structure, or a bicyclohexyl structure represented by the general formula (8) include the following structural formula groups (B1) to (B9).

Figure 2016069548
Figure 2016069548

などが挙げられるがこれらに限定されるものではないし、前記一般式(1)中のRで例示した置換基を有していても良い。
また前記一般式(9)で表されるノルボルナン構造、テトラヒドロジシクロペンタジエン構造もしくはテトラヒドロトリシクロペンタジエン構造を有するジヒドロキシ化合物、または前記一般式(10)で表されるアダマンタン構造を有するジヒドロキシ化合物としては、例えば、下記構造式群(B10)〜(B21)
However, it is not limited to these, and may have the substituents exemplified for R 1 in the general formula (1).
In addition, as a dihydroxy compound having a norbornane structure, a tetrahydrodicyclopentadiene structure or a tetrahydrotricyclopentadiene structure represented by the general formula (9), or a dihydroxy compound having an adamantane structure represented by the general formula (10), For example, the following structural formula groups (B10) to (B21)

Figure 2016069548
Figure 2016069548

などが挙げられるがこれらに限定されるものではないし、前記一般式(1)中のRで例示した置換基を有していても良い。
その他にも、前記一般式(5)で表される脂肪族環構造を有するジヒドロキシ化合物としては、例えば、下記構造式群(B22)〜(B25)
However, it is not limited to these, and may have the substituents exemplified for R 1 in the general formula (1).
In addition, examples of the dihydroxy compound having an aliphatic ring structure represented by the general formula (5) include the following structural formula groups (B22) to (B25).

Figure 2016069548
Figure 2016069548

などが挙げられるがこれらに限定されるものではないし、前記一般式(1)中のRで例示した置換基を有していても良い。 However, it is not limited to these, and may have the substituents exemplified for R 1 in the general formula (1).

本発明のエポキシ樹脂に適した前記一般式(1)で表される化合物を得るためには、前記で例示したジヒドロキシ化合物(a)と前記で例示したハロゲン化アルキル基含有化合物(b)とをどのように組み合わせてもよいが、前記ジヒドロキシ化合物(a)と前記ハロゲン化アルキル基含有化合物(b)とのより好ましい組み合わせは、前記一般式(7)と前記一般式(8)で表される化合物、前記一般式(7)と前記一般式(9)で表される化合物、前記一般式(7)と前記一般式(10)で表される化合物などが挙がられる。これらの中でもさらに好ましい組み合わせとして、接着性の点からビスクロロメチルビフェニルと前記一般式(8)で表される化合物、ビスクロロメチルビフェニルと前記一般式(9)で表される化合物が、耐熱性の点からビスクロロメチルビフェニルと前記一般式(9)で表される化合物、ビスクロロメチルビフェニルと前記一般式(10)で表される化合物が挙げられる。 In order to obtain the compound represented by the general formula (1) suitable for the epoxy resin of the present invention, the dihydroxy compound (a) exemplified above and the halogenated alkyl group-containing compound (b) exemplified above are used. Any combination may be used, but a more preferable combination of the dihydroxy compound (a) and the halogenated alkyl group-containing compound (b) is represented by the general formula (7) and the general formula (8). Examples thereof include compounds, compounds represented by the general formula (7) and the general formula (9), compounds represented by the general formula (7) and the general formula (10), and the like. Among these, as a more preferable combination, bischloromethylbiphenyl and the compound represented by the general formula (8) from the viewpoint of adhesiveness, bischloromethylbiphenyl and the compound represented by the general formula (9) are heat resistant. From this point, bischloromethylbiphenyl and the compound represented by the general formula (9), bischloromethylbiphenyl and the compound represented by the general formula (10) can be mentioned.

また、前記エポキシ樹脂に適した前記一般式(1)で表される化合物を得るためには、前記ジヒドロキシ化合物(a)1.0モルに対し、前記ハロゲン化アルキル基含有化合物(b)を0.001〜1.0モルの範囲で反応させることが必要であり、好ましい範囲は0.01〜0.9モルであり、より好ましい範囲は0.05〜0.8モルであり、さらに好ましい範囲は0.1〜0.7モルである。前記ハロゲン化アルキル基含有化合物(b)が1モルを超えると、前記一般式(1)で表される化合物の末端基がハロゲンになるため、本発明のエポキシ樹脂が得られない。 In addition, in order to obtain the compound represented by the general formula (1) suitable for the epoxy resin, the halogenated alkyl group-containing compound (b) is reduced to 0 with respect to 1.0 mol of the dihydroxy compound (a). It is necessary to make it react in the range of 0.001 to 1.0 mol, a preferable range is 0.01 to 0.9 mol, a more preferable range is 0.05 to 0.8 mol, and a further preferable range. Is 0.1 to 0.7 mol. When the halogenated alkyl group-containing compound (b) exceeds 1 mol, the terminal group of the compound represented by the general formula (1) becomes a halogen, so that the epoxy resin of the present invention cannot be obtained.

前記ジヒドロキシ化合物(a)と前記ハロゲン化アルキル基含有化合物(b)との反応には脱ハロゲン化水素剤を存在させることが好ましく、その脱ハロゲン化水素剤としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物やトリエチルアミンなどの3級アミンが使用できるが、水酸化ナトリウム、水酸化カリウムが反応速度の点から好ましい。これら脱ハロゲン化水素剤の使用量は特に限定されるものではないが、前記ジヒドロキシ化合物(a)1モルに対し1.8〜2.5モルが好ましく、2.0〜2.2モルがより好ましい。またその際、4級アンモニウム塩やクラウンエーテルなどの相関移動触媒を用いることによって反応速度を速めることができる。 It is preferable that a dehydrohalogenating agent is present in the reaction between the dihydroxy compound (a) and the halogenated alkyl group-containing compound (b). Examples of the dehydrohalogenating agent include sodium hydroxide and potassium hydroxide. Alkali metal hydroxides such as lithium hydroxide and tertiary amines such as triethylamine can be used, but sodium hydroxide and potassium hydroxide are preferred from the viewpoint of reaction rate. Although the usage-amount of these dehydrohalogenating agents is not specifically limited, 1.8-2.5 mol is preferable with respect to 1 mol of said dihydroxy compounds (a), and 2.0-2.2 mol is more. preferable. In this case, the reaction rate can be increased by using a phase transfer catalyst such as a quaternary ammonium salt or crown ether.

また、前記反応は溶剤の存在下で行うことが好ましい。溶剤を使用する場合の具体例としては、メタノール、エタノール、イソプロピルアルコール、メチルセロソルブ、エチルセロソルブ、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトンなどが挙げられるがこれらに限定されるものではないし、これらを単独で使用しても2種類以上を混合して用いてもよい。溶剤の使用量は仕込んだ原料の総量100質量部に対して通常50〜300質量部、好ましくは70〜250質量部である。 The reaction is preferably performed in the presence of a solvent. Specific examples in the case of using a solvent include methanol, ethanol, isopropyl alcohol, methyl cellosolve, ethyl cellosolve, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, etc., but are not limited thereto, and these may be used alone. You may use by mixing 2 or more types. The usage-amount of a solvent is 50-300 mass parts normally with respect to 100 mass parts of total amounts of the raw material prepared, Preferably it is 70-250 mass parts.

また、反応温度は通常20〜120℃、好ましくは30〜100℃、より好ましくは40〜80℃、さらに好ましくは50〜60℃である。20℃以下では反応が進行せず、100℃以上では副反応として親電子置換反応が起きる恐れがある。また、反応時間は通常1〜10時間であり、好ましくは2〜5時間である。 Moreover, reaction temperature is 20-120 degreeC normally, Preferably it is 30-100 degreeC, More preferably, it is 40-80 degreeC, More preferably, it is 50-60 degreeC. The reaction does not proceed at 20 ° C. or lower, and an electrophilic substitution reaction may occur as a side reaction at 100 ° C. or higher. Moreover, reaction time is 1 to 10 hours normally, Preferably it is 2 to 5 hours.

また、これらの反応は例えば適当な有機溶媒に前記ジヒドロキシ化合物(a)と前記ハロゲン化アルキル基含有化合物(b)を溶解し、それに脱ハロゲン化水素剤を滴下して反応が終結するまで撹拌を続ければよい。反応終了後、反応混合物の水洗浄液のpH値を3〜7になるようにリン酸ソーダなどの酸性化合物を添加して系内を中和する。その後、水洗処理を行って無機塩を系内から除去した後に、有機溶媒は蒸留回収することによって目的のエポキシ樹脂の中間体になる前記一般式(1)で表される化合物を得ることができる。 In addition, these reactions are carried out, for example, by dissolving the dihydroxy compound (a) and the halogenated alkyl group-containing compound (b) in a suitable organic solvent, and adding a dehydrohalogenating agent dropwise thereto, and stirring until the reaction is completed. You can continue. After completion of the reaction, an acidic compound such as sodium phosphate is added to neutralize the system so that the pH value of the water washing liquid of the reaction mixture is 3-7. Thereafter, after washing with water and removing the inorganic salt from the system, the organic solvent can be recovered by distillation to obtain the compound represented by the general formula (1) that becomes an intermediate of the target epoxy resin. .

本発明のエポキシ樹脂組成物に必須のエポキシ樹脂は、まず、前記ジヒドロキシ化合物(a)と前記ハロゲン化アルキル基含有化合物(b)を反応させて、前記一般式(1)で表される化合物を得た後、その化合物とエピハロヒドリンを反応させてヒドロキシ基をグリシジルエーテル化とすることで得られる下記一般式(11) The epoxy resin essential for the epoxy resin composition of the present invention is obtained by first reacting the dihydroxy compound (a) with the halogenated alkyl group-containing compound (b) to obtain a compound represented by the general formula (1). Then, the compound and epihalohydrin are reacted to convert the hydroxy group to glycidyl ether, and the following general formula (11)

Figure 2016069548
Figure 2016069548

(式中、A、B、R、nは、前記一般式(1)中のA、B、R、nとそれぞれ同義であり、mは繰り返し数で平均値は0≦m<10であり、Gはグリシジル基である。) (Wherein, A, B, R 1, n is, A in the general formula (1), B, are each and R 1, n synonymous, m has an average value in the number of repetitions at 0 ≦ m <10 And G is a glycidyl group.)

で表される化合物である。その反応の際に、エポキシ基が開環して重合した構造の成分や末端基がヒドロキシ基の成分などが少量生成することがあるが、このような成分が混入していても差し支えない。 It is a compound represented by these. In the reaction, a small amount of a component having a structure in which an epoxy group is opened and polymerized or a component having a hydroxyl group as a terminal group may be mixed, but such a component may be mixed.

前記一般式(11)のmは繰り返し数であり、その平均値は0≦m<10であり、0≦n<5が好ましく、0≦m<4がより好ましく、0≦m<3がさらに好ましい。mが10以上では高粘度となる恐れがある。また、エポキシ当量は特に規定がないが、2000g/eq.以下が好ましく、1000g/eq.以下がより好ましい。エポキシ当量が2000g/eq.より大きいと分子量が大きくなるために高粘度となる恐れがある。 In the general formula (11), m is the number of repetitions, and the average value is 0 ≦ m <10, preferably 0 ≦ n <5, more preferably 0 ≦ m <4, and further 0 ≦ m <3. preferable. If m is 10 or more, there is a risk of high viscosity. The epoxy equivalent is not particularly specified, but is 2000 g / eq. The following is preferable, and 1000 g / eq. The following is more preferable. Epoxy equivalent is 2000 g / eq. If it is larger, the molecular weight becomes large, so that there is a risk of high viscosity.

前記ジヒドロキシ化合物(a)と前記ハロゲン化アルキル基含有化合物(b)を反応させて得られた前記一般式(1)で表される化合物から本発明のエポキシ樹脂を得る方法としては例えばそれ自体公知の方法が採用できる。例えば、前記で得られた前記一般式(1)で表される化合物とエピクロルヒドリン、エピブロムヒドリンなどのエピハロヒドリンの溶解混合物に水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を添加しまたは添加しながら20〜120℃、好ましくは、30〜80℃の範囲で1〜10時間反応させることにより本発明で用いるエポキシ樹脂を得ることができる。 As a method for obtaining the epoxy resin of the present invention from the compound represented by the general formula (1) obtained by reacting the dihydroxy compound (a) and the halogenated alkyl group-containing compound (b), for example, it is known per se. This method can be adopted. For example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to a dissolved mixture of the compound represented by the general formula (1) obtained above and an epihalohydrin such as epichlorohydrin or epibromohydrin, or The epoxy resin used in the present invention can be obtained by reacting in the range of 20 to 120 ° C., preferably 30 to 80 ° C. for 1 to 10 hours while being added.

エピハロヒドリンの使用量は、原料の前記一般式(1)で表される化合物中のヒドロキシ基1モルに対して、通常0.3〜20モル、好ましくは1.5〜15モル、より好ましくは2〜10モルの範囲が用いられる。エピハロヒドリンが2.5モルよりも少ない場合、エポキシ基と未反応水酸基が反応しやすくなるため、エポキシ基と未反応水酸基が付加反応して生成する基(−CHCR(OH)CH−、R:水素原子又はアルキル基)を含んだ高分子量物が得られる。一方、2.5モルよりも多い場合、理論構造物の含有量が高くなる。所望の特性によってエピハロヒドリンの量を適宜調節すればよい。 The amount of epihalohydrin used is usually 0.3 to 20 mol, preferably 1.5 to 15 mol, more preferably 2 with respect to 1 mol of the hydroxy group in the compound represented by the general formula (1) of the raw material. A range of -10 mol is used. When the epihalohydrin is less than 2.5 moles, the epoxy group and the unreacted hydroxyl group are likely to react with each other. Therefore, a group formed by addition reaction of the epoxy group and the unreacted hydroxyl group (—CH 2 CR (OH) CH 2 —, A high molecular weight product containing R: a hydrogen atom or an alkyl group is obtained. On the other hand, when the amount is more than 2.5 mol, the content of the theoretical structure becomes high. The amount of epihalohydrin may be appropriately adjusted according to desired characteristics.

アルカリ金属水酸化物の使用量は、前記一般式(1)で表される化合物のヒドロキシ基1モルに対して、0.8〜2.5モル、好ましくは0.85〜2.0モル、より好ましくは0.9〜1.5モルの範囲である。 The amount of the alkali metal hydroxide used is 0.8 to 2.5 mol, preferably 0.85 to 2.0 mol, relative to 1 mol of the hydroxy group of the compound represented by the general formula (1). More preferably, it is the range of 0.9-1.5 mol.

本発明のエポキシ樹脂組成物に必須のエポキシ樹脂を得る反応において、アルカリ金属水酸化物はその水溶液を使用してもよく、その場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下または常圧下連続的に水及びエピハロヒドリンを留出させ、さらに分液し水は除去しエピハロヒドリンは反応系内に連続的に戻す方法でもよい。 In the reaction for obtaining an epoxy resin essential for the epoxy resin composition of the present invention, the alkali metal hydroxide may be used as an aqueous solution, and in that case, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system. And water and epihalohydrin may be continuously distilled off under reduced pressure or normal pressure, followed by liquid separation to remove water and epihalohydrin to be continuously returned to the reaction system.

また、前記一般式(1)で表される化合物とエピハロヒドリンの溶解混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライドなどの4級アンモニウム塩を触媒として添加し50〜150℃で1〜5時間反応させて得られる、前記一般式(1)の化合物のハロヒドリンエーテル化物に、アルカリ金属水酸化物の固体または水溶液を加え、再び20〜120℃で1〜10時間反応させて脱ハロゲン化水素(閉環)させる方法でもよい。さらに、反応を円滑に進行させるためにメタノール、エタノール、イソプロピルアルコール、ブタノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、ジオキサンなどのエーテル類、ジメチルスルホン、ジメチルスルホキシドなどの非プロトン性極性溶媒などを添加して反応を行うことが好ましい。溶媒を使用する場合のその使用量は、エピハロヒドリンの100質量部に対し通常5〜50質量部、好ましくは10〜30質量部である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリン100質量部に対し通常5〜100質量部、好ましくは10〜60質量部である。 Further, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide or trimethylbenzylammonium chloride is added to a dissolved mixture of the compound represented by the general formula (1) and epihalohydrin as a catalyst, and the mixture is 1 at 50 to 150 ° C. To the halohydrin etherified product of the compound of the general formula (1) obtained by reacting for ~ 5 hours, an alkali metal hydroxide solid or an aqueous solution is added and reacted again at 20 to 120 ° C for 1 to 10 hours. A method of dehydrohalogenation (ring closure) may be used. In addition, alcohols such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane, aprotic polar solvents such as dimethyl sulfone and dimethyl sulfoxide, etc. are used to facilitate the reaction. It is preferable to carry out the reaction by adding. The amount of the solvent used is usually 5 to 50 parts by mass, preferably 10 to 30 parts by mass with respect to 100 parts by mass of epihalohydrin. Moreover, when using an aprotic polar solvent, it is 5-100 mass parts normally with respect to 100 mass parts of epihalohydrins, Preferably it is 10-60 mass parts.

これらのエポキシ化反応の反応物を水洗後または水洗無しに、加熱減圧下、110〜250℃、圧力0.00133MPa(10mmHg)以下でエピハロヒドリンや他の添加溶媒などを除去する。またさらに加水分解性ハロゲンの少ないエポキシ樹脂とするために、エピハロヒドリンなどを回収した後に得られる粗エポキシ樹脂を再びトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行い閉環を確実なものにすることもできる。この場合、アルカリ金属水酸化物の使用量は粗エポキシ樹脂中に残存する加水分解性ハロゲン1モルに対して、通常0.5〜10モル、好ましくは1.2〜5モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜3時間である。反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテルなどの相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量は、粗エポキシ樹脂100質量部に対して0.1〜3質量部の範囲が好ましい。 The reaction product of these epoxidation reactions is removed from epihalohydrin and other added solvents at 110-250 ° C. and a pressure of 0.00133 MPa (10 mmHg) or less under reduced pressure by heating after washing with water or without washing. Furthermore, in order to obtain an epoxy resin with less hydrolyzable halogen, the crude epoxy resin obtained after recovering epihalohydrin and the like is dissolved again in a solvent such as toluene and methyl isobutyl ketone, and an alkali such as sodium hydroxide and potassium hydroxide is then obtained. An aqueous solution of a metal hydroxide can be added to further react to ensure ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.5 to 10 mol, preferably 1.2 to 5 mol, per 1 mol of hydrolyzable halogen remaining in the crude epoxy resin. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 3 hours. For the purpose of improving the reaction rate, a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present. When the phase transfer catalyst is used, the amount used is preferably in the range of 0.1 to 3 parts by mass relative to 100 parts by mass of the crude epoxy resin.

反応終了後、生成した塩を濾過、水洗などにより除去し、さらに、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより本発明のエポキシ樹脂組成物に必須のエポキシ樹脂が得られる。 After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and further, an epoxy resin essential for the epoxy resin composition of the present invention is obtained by distilling off a solvent such as toluene and methyl isobutyl ketone under heating and reduced pressure. .

また、本発明のエポキシ樹脂組成物に必須のエポキシ樹脂を得るより好ましい方法としては、前述した前記ジヒドロキシ化合物(a)と前記ハロゲン化アルキル基含有化合物(b)を反応した後、中和工程を経て前記一般式(1)で表される化合物として反応系外に取り出すという操作を行わないで、直ちにエピハロヒドリンと反応させる方法が挙げられる。この方法では、前記ジヒドロキシ化合物(a)と前記ハロゲン化アルキル基含有化合物(b)との反応において脱ハロゲン化水素剤としてアルカリ金属水酸化物を使用し、残存したアルカリ金属水酸化物もエポキシ化反応に使用するアルカリ金属水酸化物として加算して考える。 In addition, as a more preferable method for obtaining an epoxy resin essential for the epoxy resin composition of the present invention, a neutralization step is performed after reacting the dihydroxy compound (a) and the halogenated alkyl group-containing compound (b). A method of reacting with an epihalohydrin immediately without performing an operation of taking it out of the reaction system as the compound represented by the general formula (1) is mentioned. In this method, an alkali metal hydroxide is used as a dehydrohalogenating agent in the reaction between the dihydroxy compound (a) and the halogenated alkyl group-containing compound (b), and the remaining alkali metal hydroxide is also epoxidized. It adds and considers as an alkali metal hydroxide used for reaction.

本発明のエポキシ樹脂組成物に用いる前記硬化剤としては、各種フェノール樹脂類や酸無水物類、アミン類、ヒドラジッド類、活性エステル類などの通常使用されるエポキシ樹脂用硬化剤を使用することができ、これらの硬化剤は単独で使用しても2種類以上併用してもよい。また、低誘電正接化には硬化後に官能基濃度の低くなる硬化剤が好ましく、高ヒドロキシ基当量フェノール樹脂や活性エステル類が好ましい。 As said hardening | curing agent used for the epoxy resin composition of this invention, it is using the hardening | curing agent for epoxy resins normally used, such as various phenol resins, acid anhydrides, amines, hydrazides, and active esters. These curing agents may be used alone or in combination of two or more. In order to reduce the dielectric loss tangent, a curing agent having a lower functional group concentration after curing is preferable, and a high hydroxy group equivalent phenol resin and active esters are preferable.

前記フェノール樹脂類を具体的に例示すれば、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ジシクロペンタジエン型フェノール樹脂、フェノールアラルキル樹脂などに代表される3価以上のフェノール化合物、さらにはフェノール類、ナフトール類または、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオールなどの2価フェノール類とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール、p−キシリレングリコールジメチルエーテル、ジビニルベンゼン、ジイソプロペニルベンゼン、ジメトキシメチルビフェニル類、ジビニルビフェニル、ジイソプロペニルビフェニル類などの架橋剤との反応により合成される多価フェノール化合物、フェノール類とビスクロロメチルビフェニルなどから得られるビフェニルアラルキル型フェノール樹脂、ナフトール類とパラキシリレンジクロライドなどから合成されるナフトールアラルキル樹脂類などが挙げられる。 Specific examples of the phenol resins include tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolac, o-cresol novolak, naphthol novolak, Trivalent or higher valent phenolic compounds represented by dicyclopentadiene type phenol resin, phenol aralkyl resin and the like, and further phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, Divalent phenols such as 2,2′-biphenol, hydroquinone, resorcin, catechol, naphthalene diol, and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xy Polyhydric phenol compounds synthesized by reaction with crosslinkers such as lenglycol, p-xylylene glycol dimethyl ether, divinylbenzene, diisopropenylbenzene, dimethoxymethylbiphenyls, divinylbiphenyl, diisopropenylbiphenyls, and phenols Examples thereof include biphenyl aralkyl type phenol resins obtained from bischloromethylbiphenyl and the like, and naphthol aralkyl resins synthesized from naphthols and paraxylylene dichloride.

前記酸無水物類を具体的に例示すれば、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、メチルナジック酸無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物などが挙げられる。 Specific examples of the acid anhydrides include methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, methylnadic acid anhydride, benzophenonetetracarboxylic dianhydride Products, biphenyltetracarboxylic dianhydride and the like.

前記アミン類を具体的に例示すれば、ジエチレントリアミン、トリエチレンテトラミン、メタキシレンジアミン、イソホロンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジアミノジフェニルエーテル、ジシアンジアミドやダイマー酸などの酸類とポリアミン類との縮合物であるポリアミドアミンなどのアミン系化合物などが挙げられる。 Specific examples of the amines include condensates of acids such as diethylenetriamine, triethylenetetramine, metaxylenediamine, isophoronediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, dicyandiamide and dimer acid and polyamines. Examples thereof include amine compounds such as polyamide amine.

前記ヒドラジッド類を具体的に例示すれば、アジピン酸ヒドラジッド、セパチン酸ヒドラジッド、イソフタル酸ヒドラジッドなどが挙げられる。 Specific examples of the hydrazides include adipic hydrazide, sepatin hydrazide, isophthalic hydrazide, and the like.

前記活性エステル類を具体的に例示すれば、EPICLON HPC−8000−65T(DIC株式会社製)が挙げられる。 Specific examples of the active esters include EPICLON HPC-8000-65T (manufactured by DIC Corporation).

本発明のエポキシ樹脂組成物において、前記エポキシ樹脂のエポキシ基1モルに対して、前記硬化剤の活性水素基が0.4〜1.2モルの範囲が好ましく、0.5〜1.1モルがより好ましく、0.7〜1.0モルがさらに好ましい。 In the epoxy resin composition of the present invention, the active hydrogen group of the curing agent is preferably in the range of 0.4 to 1.2 mol, preferably 0.5 to 1.1 mol, with respect to 1 mol of the epoxy group of the epoxy resin. Is more preferable, and 0.7 to 1.0 mol is more preferable.

本発明のエポキシ樹脂組成物には必要に応じて硬化促進剤を使用することができる。使用できる硬化促進剤を具体的に例示すれば、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾールなどのイミダゾール類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7などの第3級アミン類、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィントリフェニルボランなどのホスフィン類、オクチル酸スズなどの金属化合物が挙げられる。これらの硬化促進剤は単独で使用しても2種類以上併用してもよい。これらの硬化促進剤は本発明のエポキシ樹脂組成物中の前記エポキシ樹脂100質量部に対して0.02〜5.0質量部が必要に応じて用いられる。これらの硬化促進剤を用いることにより、硬化温度を下げたり、硬化時間を短縮することができる。 A curing accelerator can be used in the epoxy resin composition of the present invention as necessary. Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, and 1,8-diaza. -Tertiary amines such as bicyclo (5,4,0) undecene-7, phosphines such as triphenylphosphine, tricyclohexylphosphine and triphenylphosphinetriphenylborane, and metal compounds such as tin octylate. These curing accelerators may be used alone or in combination of two or more. As for these hardening accelerators, 0.02-5.0 mass parts is used as needed with respect to 100 mass parts of said epoxy resins in the epoxy resin composition of this invention. By using these curing accelerators, the curing temperature can be lowered or the curing time can be shortened.

本発明のエポキシ樹脂組成物は、エポキシ樹脂成分として前記一般式(1)で表される化合物とエピハロヒドリンから得られる前記エポキシ樹脂を必須のエポキシ樹脂としているが、本発明の目的を損なわない範囲で他のエポキシ樹脂を併用することもできる。 The epoxy resin composition of the present invention uses the epoxy resin obtained from the compound represented by the above general formula (1) and epihalohydrin as an epoxy resin component as an essential epoxy resin, but does not impair the purpose of the present invention. Other epoxy resins can be used in combination.

併用できる他のエポキシ樹脂を具体的に例示すれば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールフルオレン、4,4’−ビフェノール、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニル、レゾルシン、ナフタレンジオール類などの2価のフェノール類のエポキシ化物、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラックなどの3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類から得られる共縮合樹脂のエポキシ化物、クレゾール類とホルムアルデヒドとアルコキシ基置換ナフタレン類から得られる共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライドなどから得られるフェノールアラルキル樹脂のエポキシ化物、フェノール類とビスクロロメチルビフェニルなどから得られるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライドなどから合成されるナフトールアラルキル樹脂類のエポキシ化物などが挙げられる。これらのエポキシ樹脂は単独で使用しても2種類以上併用してもよい。これらの配合量は、本発明の目的を損なわない範囲であればよいが、本発明の前記エポキシ樹脂と他のエポキシ樹脂の合計に対して、好ましくは50質量%未満であり、より好ましくは40質量%未満であり、さらに好ましくは25質量%未満である。 Specific examples of other epoxy resins that can be used in combination include bisphenol A, bisphenol F, bisphenol S, bisphenol fluorene, 4,4′-biphenol, 3,3 ′, 5,5′-tetramethyl-4,4 ′. -Epoxidized dihydric phenols such as dihydroxybiphenyl, resorcin, naphthalenediols, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolac, Epoxides of tri- or higher valent phenols such as o-cresol novolac, epoxidized products of co-condensation resins obtained from dicyclopentadiene and phenols, epoxides of co-condensation resins obtained from cresols, formaldehyde and alkoxy-substituted naphthalenes , Phenols Epoxy products of phenol aralkyl resins obtained from paraxylylene dichloride, epoxides of biphenyl aralkyl type phenol resins obtained from phenols and bischloromethylbiphenyl, naphthol aralkyl resins synthesized from naphthols and paraxylylene dichloride, etc. Epoxidized products and the like. These epoxy resins may be used alone or in combination of two or more. These blending amounts may be in a range that does not impair the object of the present invention, but are preferably less than 50% by mass, more preferably 40%, based on the total of the epoxy resin of the present invention and other epoxy resins. It is less than mass%, more preferably less than 25 mass%.

本発明のエポキシ樹脂組成物には、粘度調整用として溶剤も用いることができる。用いることができる溶剤を具体的に例示すれば、N,N−ジメチルホルムアミドなどのアミド類、エチレングリコールモノメチルエーテルなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類、メタノール、エタノールなどのアルコール類、ベンゼン、トルエンなどの芳香族炭化水素類が挙げられる。これらの溶剤は単独で使用しても2種類以上混合して使用してもよい。 In the epoxy resin composition of the present invention, a solvent can also be used for viscosity adjustment. Specific examples of solvents that can be used include amides such as N, N-dimethylformamide, ethers such as ethylene glycol monomethyl ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol and ethanol, benzene And aromatic hydrocarbons such as toluene. These solvents may be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物は、特性を損ねない範囲でエポキシ樹脂以外の硬化性樹脂や熱可塑性樹脂を配合してもよい。具体的に例示すれば、フェノール樹脂、アクリル樹脂、石油樹脂、インデン樹脂、インデンクマロン樹脂、フェノキシ樹脂、シアネート樹脂、エポキシアクリレート樹脂、ビニル化合物、ポリウレタン、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ビスマレイミドトリアジン樹脂、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリビニルホルマールなどが挙げられるが、これらに限定されるものではない。 The epoxy resin composition of the present invention may be blended with a curable resin or a thermoplastic resin other than the epoxy resin as long as the characteristics are not impaired. Specifically, phenol resin, acrylic resin, petroleum resin, indene resin, indene coumarone resin, phenoxy resin, cyanate resin, epoxy acrylate resin, vinyl compound, polyurethane, polyester, polyamide, polyimide, polyamideimide, polyether Examples thereof include, but are not limited to, imide, bismaleimide triazine resin, polyethersulfone, polysulfone, polyetheretherketone, polyphenylene sulfide, and polyvinyl formal.

本発明のエポキシ樹脂組成物には必要に応じてフィラーを用いることができる。具体的に例示すれば、水酸化アルミニウム、水酸化マグネシウム、タルク、焼成タルク、クレー、カオリン、水酸化チタン、ガラス粉末、シリカバルーンなどの無機フィラーが挙げられるが、有機系または無機系の耐湿顔料、鱗片状顔料など顔料などを配合してもよい。一般的無機充填剤を用いる理由として、耐衝撃性の向上が挙げられる。また、ガラス繊維、パルプ繊維、合成繊維、セラミック繊維などの繊維質充填剤や、微粒子ゴム、熱可塑性エラストマーなどの有機充填剤などを配合することができる。 A filler can be used for the epoxy resin composition of this invention as needed. Specific examples include inorganic fillers such as aluminum hydroxide, magnesium hydroxide, talc, calcined talc, clay, kaolin, titanium hydroxide, glass powder, silica balloon, etc., but organic or inorganic moisture-resistant pigments In addition, pigments such as scaly pigments may be blended. The reason for using a general inorganic filler is an improvement in impact resistance. Moreover, fibrous fillers, such as glass fiber, a pulp fiber, a synthetic fiber, a ceramic fiber, organic fillers, such as fine particle rubber and a thermoplastic elastomer, etc. can be mix | blended.

また、本発明のエポキシ樹脂組成物中には、必要に応じて、難燃剤、揺変性付与材、流動性向上剤などの添加剤を配合してもよい。揺変性付与材としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系などを挙げ類ことができる。さらに必要に応じて、本発明の樹脂組成物には、カルナバワックス、OPワックスなどの離型剤、カーボンブラックなどの着色剤、三酸化アンチモンなどの難燃剤、シリコンオイルなどの低応力化剤、ステアリン酸カルシウムなどの潤滑剤を配合できる。 Moreover, you may mix | blend additives, such as a flame retardant, a thixotropic agent, and a fluidity improver, in the epoxy resin composition of this invention as needed. Examples of the thixotropic agent include silicon, castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite. Further, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a colorant such as carbon black, a flame retardant such as antimony trioxide, a low stress agent such as silicone oil, A lubricant such as calcium stearate can be blended.

次に、本発明のエポキシ樹脂組成物を用いて得られるプリプレグについて説明する。シート状基材としては、ガラスなどの無機繊維や、ポリエステルなど、ポリアミン、ポリアクリル、ポリイミド、芳香族ポリアミドなどの有機質繊維の織布または不織布を用いることができるが、これに限定されるものではない。本発明のエポキシ樹脂組成物及び基材からプリプレグを製造する方法としては、特に限定するものではなく、例えば前記シート状基材を、前記エポキシ樹脂組成物を溶剤で粘度調整した樹脂ワニスに浸漬して含浸した後、加熱乾燥して樹脂成分を半硬化(Bステージ化)して得られるものであり、例えば100〜200℃で1〜40分間加熱乾燥することができる。ここで、プリプレグ中の樹脂量は、樹脂分30〜80質量%とすることが好ましい。 Next, the prepreg obtained by using the epoxy resin composition of the present invention will be described. As the sheet-like base material, inorganic fibers such as glass, and woven or non-woven fabrics of organic fibers such as polyamine, polyacryl, polyimide, and aromatic polyamide such as polyester can be used. Absent. The method for producing the prepreg from the epoxy resin composition and the substrate of the present invention is not particularly limited. For example, the sheet-like substrate is immersed in a resin varnish whose viscosity is adjusted with a solvent of the epoxy resin composition. After impregnation, the resin component is obtained by drying by heating and semi-curing (B-stage). For example, it can be dried by heating at 100 to 200 ° C. for 1 to 40 minutes. Here, the amount of resin in the prepreg is preferably 30 to 80% by mass.

次に、本発明のエポキシ樹脂組成物を用いて得られる接着シートについて説明する。接着シートを製造する方法としては、特に限定するものではないが、例えばポリエステルフィルム、ポリイミドフィルムなどのエポキシ樹脂組成物に溶解しないキャリアフィルム上に、本発明のエポキシ樹脂組成物を好ましくは5〜100μmの厚みに塗布した後、100〜200℃で1〜40分間加熱乾燥してシート状に成型する。一般にキャスティング法と呼ばれる方法で樹脂シートが形成されるものである。この時エポキシ樹脂組成物を塗布するシートにはあらかじめ離型剤にて表面処理を施しておくと、成型された接着シートを容易に剥離することができる。ここで接着シートの厚みは5〜80μmに形成することが望ましい。このようにして得られた接着シートは通常、絶縁を有する絶縁接着シートとなるが、前記エポキシ樹脂組成物に導電性を有する金属や金属コーティングされた微粒子を混合することで、導電性接着シートを得ることができる。 Next, an adhesive sheet obtained using the epoxy resin composition of the present invention will be described. Although it does not specifically limit as a method to manufacture an adhesive sheet, For example, on the carrier film which does not melt | dissolve in epoxy resin compositions, such as a polyester film and a polyimide film, Preferably the epoxy resin composition of this invention is 5-100 micrometers. After being applied to the thickness of the film, it is dried by heating at 100 to 200 ° C. for 1 to 40 minutes to form a sheet. A resin sheet is generally formed by a method called a casting method. At this time, if the sheet to which the epoxy resin composition is applied is previously surface-treated with a release agent, the molded adhesive sheet can be easily peeled off. Here, the thickness of the adhesive sheet is preferably 5 to 80 μm. The adhesive sheet thus obtained usually becomes an insulating adhesive sheet having insulation, but the conductive adhesive sheet is obtained by mixing conductive metal or metal-coated fine particles with the epoxy resin composition. Can be obtained.

次に、本発明のプリプレグや絶縁接着シートを用いて積層板を製造する方法を説明する。プリプレグを用いて積層板を形成する場合は、プリプレグを一枚または複数枚積層し、片側または両側に金属箔を配置して積層物を構成し、この積層物を加熱・加圧して積層一体化する。ここで金属箔としては、銅、アルミニウム、真鍮、ニッケルなどの単独、合金、複合の金属箔を用いることができる。積層物を加熱加圧する条件としては、エポキシ樹脂組成物が硬化する条件で適宜調整して加熱加圧すればよいが、加圧の圧力があまり低いと、得られる積層板の内部に気泡が残留し、電気的特性が低下する場合があるため、成型性を満足する条件で加圧することが望ましい。例えば温度を160〜220℃、圧力を0.49〜4.9MPa(5〜50kgf/cm)、加熱時間を40〜240分間にそれぞれ設定することができる。さらにこのようにして得られた単層の積層板を内層材として、多層板を作成することができる。この場合、まず積層板にアディティブ法やサブトラクティブ法などにて回路形成を施し、形成された回路表面を酸溶液で処理して黒化処理を施して、内層材を得る。この内層材の、片面または両側の回路形成面に、プリプレグや絶縁接着シートにて絶縁層を形成するとともに、絶縁層の表面に導体層を形成して、多層板を形成するものである。絶縁接着シートにて絶縁層を形成する場合は、複数枚の内層材の回路形成面に絶縁接着シートを配置して積層物を形成する。あるいは内層材の回路形成面と金属箔の間に絶縁接着シートを配置して積層物を形成する。そしてこの積層物を加熱加圧して一体成型することにより、絶縁接着シートの硬化物を絶縁層として形成するとともに、内層材の多層化を形成する。あるいは内層材と導体層である金属箔を絶縁接着シートの硬化物を絶縁層として形成するものである。ここで、金属箔としては、内層材として用いられる積層板に用いたものと同様のものを用いることができる。また加熱加圧成形は、内層材の成型と同様の条件にて行うことができる。積層板にエポキシ樹脂組成物を塗布して絶縁層を形成する場合は、内層材の最外層の回路形成面樹脂を前記エポキシ樹脂組成物を好ましくは5〜100μmの厚みに塗布した後、100〜200℃で1〜90分加熱乾燥してシート状に形成する。一般にキャスティング法と呼ばれる方法で形成されるものである。乾燥後の厚みは5〜80μmに形成することが望ましい。このようにして形成された多層積層板の表面に、さらにアディティブ法やサブストラクティブ法にてバイアホール形成や回路形成を施して、プリント配線板を形成することができる。またさらにこのプリント配線板を内層材として前記工法を繰り返すことにより、さらに多層の積層板を形成することができるものである。またプリプレグにて絶縁層を形成する場合は、内層材の回路形成面に、プリプレグを一枚または複数枚を積層したものを配置し、さらにその外側に金属箔を配置して積層物を形成する。そしてこの積層物を加熱加圧して一体成型することにより、プリプレグの硬化物を絶縁層として形成するとともに、その外側の金属箔を導体層として形成するものである。ここで、金属箔としては、内層板として用いられる積層板に用いたものと同様のものを用いることもできる。また加熱加圧成形は、内層材の成型と同様の条件にて行うことができる。このようにして成形された多層積層板の表面に、さらにアディティブ法やサブトラクティブ法にてバイアホール形成や回路形成を施して、プリント配線板を成型することができる。またさらにこのプリント配線板を内層材として前記工法を繰り返すことにより、さらに多層の多層板を形成することができるものである。 Next, a method for producing a laminate using the prepreg or insulating adhesive sheet of the present invention will be described. When forming a laminated board using prepreg, one or more prepregs are laminated, a metal foil is placed on one or both sides to form a laminate, and this laminate is heated and pressed to integrate the laminate. To do. Here, as the metal foil, a single, alloy, or composite metal foil of copper, aluminum, brass, nickel or the like can be used. Conditions for heating and pressurizing the laminate may be adjusted as appropriate under the conditions for curing the epoxy resin composition, but heating and pressurizing may be performed. However, if the pressure of the pressurization is too low, bubbles remain in the resulting laminate. However, since the electrical characteristics may deteriorate, it is desirable to apply pressure under conditions that satisfy the moldability. For example, the temperature can be set to 160 to 220 ° C., the pressure can be set to 0.49 to 4.9 MPa (5 to 50 kgf / cm 2 ), and the heating time can be set to 40 to 240 minutes. Furthermore, a multilayer board can be produced using the single-layer laminated board thus obtained as an inner layer material. In this case, first, a circuit is formed on the laminate by an additive method, a subtractive method, or the like, and the formed circuit surface is treated with an acid solution to be blackened to obtain an inner layer material. An insulating layer is formed by prepreg or an insulating adhesive sheet on one or both sides of the circuit forming surface of the inner layer material, and a conductor layer is formed on the surface of the insulating layer to form a multilayer board. When forming an insulating layer with an insulating adhesive sheet, an insulating adhesive sheet is arrange | positioned on the circuit formation surface of several inner-layer material, and a laminated body is formed. Alternatively, an insulating adhesive sheet is disposed between the circuit forming surface of the inner layer material and the metal foil to form a laminate. Then, the laminate is heated and pressed to be integrally molded, thereby forming a cured product of the insulating adhesive sheet as an insulating layer, and forming a multilayered inner layer material. Alternatively, the inner layer material and the metal foil as the conductor layer are formed by using the cured product of the insulating adhesive sheet as the insulating layer. Here, as a metal foil, the thing similar to what was used for the laminated board used as an inner layer material can be used. Further, the heat and pressure molding can be performed under the same conditions as the molding of the inner layer material. When an insulating layer is formed by applying an epoxy resin composition to a laminate, the outermost circuit-forming surface resin of the inner layer material is preferably applied to the epoxy resin composition to a thickness of 5 to 100 μm, and then 100 to 100- It is heated and dried at 200 ° C. for 1 to 90 minutes to form a sheet. It is generally formed by a method called a casting method. The thickness after drying is preferably 5 to 80 μm. A printed wiring board can be formed by performing via hole formation and circuit formation on the surface of the multilayer laminate formed as described above by an additive method or a subtractive method. Further, by repeating the above method using this printed wiring board as an inner layer material, a multilayer laminate can be formed. When an insulating layer is formed with a prepreg, a laminate is formed by placing one or a plurality of laminated prepregs on the circuit forming surface of the inner layer material, and further placing a metal foil on the outside thereof. . Then, this laminate is heated and pressed to be integrally formed, whereby a cured product of the prepreg is formed as an insulating layer, and the outer metal foil is formed as a conductor layer. Here, as a metal foil, the thing similar to what was used for the laminated board used as an inner layer board can also be used. Further, the heat and pressure molding can be performed under the same conditions as the molding of the inner layer material. A printed wiring board can be molded by further forming via holes or circuits by the additive method or subtractive method on the surface of the multilayer laminate thus formed. Further, by repeating the above method using the printed wiring board as an inner layer material, a multilayer board can be formed.

また、本発明のエポキシ樹脂組成物を加熱硬化させれば、エポキシ樹脂硬化物とすることができ、この硬化物は低誘電特性、耐熱性、低吸湿性などの点で優れたものとなる。また、この硬化物は、エポキシ樹脂組成物を注型、圧縮形成、トランスファー形成などの方法により、成型加工して得ることができる。この際の温度は通常、120〜250℃の範囲である。 Moreover, if the epoxy resin composition of the present invention is heat-cured, it can be made into a cured epoxy resin, and this cured product is excellent in terms of low dielectric properties, heat resistance, low hygroscopicity, and the like. Moreover, this hardened | cured material can be obtained by shape | molding an epoxy resin composition by methods, such as casting, compression formation, and transfer formation. The temperature at this time is usually in the range of 120 to 250 ° C.

本発明のエポキシ樹脂組成物とその組成物を使用して得られたプリプレグ、接着シート、積層板、封止剤、注型物、硬化物は、優れた低誘電特性、耐熱性、低吸湿性、接着性に優れた特性を示すものであった。 The epoxy resin composition of the present invention and the prepreg, adhesive sheet, laminate, sealant, cast product, and cured product obtained using the composition have excellent low dielectric properties, heat resistance, and low hygroscopicity. In addition, the material exhibited excellent adhesive properties.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれに限定されるものではない。実施例において、特に断りがない限り「部」は質量部を表し、「%」は質量%を表す。また、本発明では以下の試験方法を使用した。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to this. In Examples, unless otherwise specified, “part” represents part by mass, and “%” represents mass%. In the present invention, the following test method was used.

(1)エポキシ当量の測定
JIS K 7236規格に準拠して測定した。具体的には、電位差滴定装置を用い、溶媒としてメチルエチルケトンを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、0.1mol/L過塩素酸−酢酸溶液を用いた。
(1) Measurement of epoxy equivalent The epoxy equivalent was measured according to JIS K 7236 standard. Specifically, a potentiometric titrator was used, methyl ethyl ketone was used as a solvent, a brominated tetraethylammonium acetic acid solution was added, and a 0.1 mol / L perchloric acid-acetic acid solution was used.

(2)軟化点の測定
JIS K 7234規格、環球法に準拠して測定した。具体的には、自動軟化点装置(株式会社メイテック製、ASP−MG4)を用いた。
(2) Measurement of softening point Measured in accordance with JIS K 7234 standard and ring and ball method. Specifically, an automatic softening point apparatus (manufactured by Meitec Co., Ltd., ASP-MG4) was used.

(3)ガラス転移温度の測定
JIS K 7121、示差走査熱量測定に準拠して測定した。SII社製EXTER DSC6200を使用して、20℃から10℃/分の昇温速度により測定し、2サイクル目に得られたDSCチャートの補外ガラス転移開始温度(Tig)より求めた。
(3) Measurement of glass transition temperature It measured based on JISK7121 and differential scanning calorimetry. Using an EXTER DSC6200 manufactured by SII, the temperature was measured at a rate of temperature increase from 20 ° C. to 10 ° C./min, and obtained from the extrapolated glass transition start temperature (Tig) of the DSC chart obtained in the second cycle.

(4)比誘電率及び誘電正接の測定
空洞共振法(ベクトルネットワークアナライザー(VNA)E8363B(アジレント・テクノロジー製)、空洞共振器摂動法誘電率測定装置(関東電子応用開発製))によって、1GHzの値を測定した。
(4) Measurement of relative permittivity and dielectric loss tangent By cavity resonance method (vector network analyzer (VNA) E8363B (manufactured by Agilent Technologies), cavity resonator perturbation method dielectric constant measurement device (manufactured by Kanto Electronics Application Development)) The value was measured.

(5)接着力の測定
JIS K 6854−1に準拠し、島津製作所製オートグラフにて、25℃雰囲気下、50mm/min.により測定した。
(5) Measurement of adhesive strength In accordance with JIS K 6854-1, an autograph manufactured by Shimadzu Corporation under an atmosphere of 25 ° C. and 50 mm / min. It was measured by.

(6)耐水性の測定
耐水性の指標としてPCT後ハンダ耐熱を測定した。JIS C 6481に準じて作製した試験片を121℃、0.2MPaのオートクレーブ中に3時間処理した後、260℃のハンダ浴中につけて、20分以上膨れやはがれが生じなかったものを○とし、10分以内に膨れやはがれが生じたものを×とし、それ以外を△と評価した。
(6) Measurement of water resistance Solder heat resistance after PCT was measured as an index of water resistance. A test piece prepared according to JIS C 6481 was treated in an autoclave at 121 ° C. and 0.2 MPa for 3 hours, then placed in a 260 ° C. solder bath, and no swelling or peeling occurred for 20 minutes or more. The case where swelling or peeling occurred within 10 minutes was evaluated as x, and the others were evaluated as Δ.

(7)引張り強度
JIS K 7113に準じた。
(7) Tensile strength According to JIS K 7113.

(8)吸水率の測定
JIS K 7209、A法に準拠した。50mm角、1mm厚の試験片を用いて、23℃の水に24時間浸漬した測定値を吸水率とした。
(8) Measurement of water absorption rate compliant with JIS K 7209, Method A. Using a 50 mm square, 1 mm thick test piece, a measurement value immersed in water at 23 ° C. for 24 hours was defined as a water absorption rate.

合成例1
撹拌装置、温度計、窒素ガス導入装置、冷却管及び滴下装置を備えた4つ口のガラス製セパラブルフラスコに、2,6−キシレノール1220部、47%BFエーテルコンプレックス14.2部を仕込み、撹拌しながら115℃まで昇温した。同温度に保持しながらジシクロペンタジエン132部を6時間かけて滴下した。さらに120〜130℃の温度で4時間反応を継続した。その後、水酸化カルシウム2部を加えた後10%のシュウ酸水溶液4部を加え中和した後、メチルイソブチルケトン870部を加えた。約80℃の温水300部を用いて水洗、分液を3回繰り返した後、160℃まで昇温し脱水した後、減圧下でメチルイソブチルケトン及び未反応の2,6−キシレノールを蒸発除去して、下記一般式(12)
Synthesis example 1
Into a four-necked glass separable flask equipped with a stirrer, thermometer, nitrogen gas introducing device, cooling pipe and dropping device, was charged 1220 parts of 2,6-xylenol and 14.2 parts of 47% BF 3 ether complex. The temperature was raised to 115 ° C. with stirring. While maintaining the same temperature, 132 parts of dicyclopentadiene was added dropwise over 6 hours. Further, the reaction was continued at a temperature of 120 to 130 ° C. for 4 hours. Then, after adding 2 parts of calcium hydroxide and neutralizing by adding 4 parts of a 10% aqueous oxalic acid solution, 870 parts of methyl isobutyl ketone was added. Washing with 300 parts of hot water at about 80 ° C., repeating the liquid separation three times, raising the temperature to 160 ° C. to dehydrate, then evaporating and removing methyl isobutyl ketone and unreacted 2,6-xylenol under reduced pressure. The following general formula (12)

Figure 2016069548
Figure 2016069548

で表される黄褐色固形のテトラヒドロジシクロペンタジエン構造を有するジヒドロキシ化合物(a1)を362部得た。 362 parts of a dihydroxy compound (a1) having a tan solid tetrahydrodicyclopentadiene structure represented by the formula:

撹拌装置、温度計、窒素ガス導入装置、冷却管及び油水分離器を備えた4つ口のガラス製セパラブルフラスコに、メタノール330部と水酸化カリウム57部を仕込み撹拌しながら、前記ジヒドロキシ化合物(a1)188部を投入し、アルカリ金属塩とした。その後、4,4’−ビスクロロメチルビフェニル(以下、BCMBと略す)20部とビス(2−メトキシエチル)エーテル(以下、DEDMと略す)200部を投入し、撹拌しながら75℃まで昇温させ、同温度で2時間反応した。反応終了後、0.0067MPa(50mmHg)の減圧下100℃まで昇温し、メタノール全量を留去したのち、エピクロルヒドリン450部を仕込み撹拌溶解した。均一に溶解後、0.024MPa(180mmHg)の減圧下75℃に保ち、48%水酸化ナトリウム水溶液35部を2時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、さらに水洗を行った後、エピクロルヒドリン及びDEDMを減圧留去し、エポキシ樹脂(e1)を215部得た。得られたエポキシ樹脂(e1)のエポキシ当量は300g/eq.だった。 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a nitrogen gas introducing device, a cooling pipe and an oil / water separator, 330 parts of methanol and 57 parts of potassium hydroxide were charged and stirred while stirring the dihydroxy compound ( a1) 188 parts were added to obtain an alkali metal salt. Thereafter, 20 parts of 4,4′-bischloromethylbiphenyl (hereinafter abbreviated as BCMB) and 200 parts of bis (2-methoxyethyl) ether (hereinafter abbreviated as DEDM) were added, and the temperature was raised to 75 ° C. while stirring. And reacted at the same temperature for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 0.0067 MPa (50 mmHg), and after distilling out the total amount of methanol, 450 parts of epichlorohydrin was charged and dissolved by stirring. After being uniformly dissolved, maintained at 75 ° C. under a reduced pressure of 0.024 MPa (180 mmHg), 35 parts of a 48% sodium hydroxide aqueous solution was added dropwise over 2 hours, and water and epichlorohydrin refluxed during the addition were separated in a separation layer. After separation, epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin and DEDM were distilled off under reduced pressure to obtain 215 parts of an epoxy resin (e1). The epoxy equivalent of the obtained epoxy resin (e1) is 300 g / eq. was.

合成例2
撹拌装置、温度計、窒素ガス導入装置、冷却管、油水分離器及び滴下装置を備えた4つ口のガラス製セパラブルフラスコに、4,4’−シクロヘキシリデンビスフェノール(本州化学工業株式会社製、ビスフェノールZ、水酸基当量=134g/eq.)134部、DEDM67部及びp−トルエンスルホン酸0.21部を仕込み、撹拌しながら135℃まで昇温し、同温度を保持しながらスチレン52部を3時間かけて滴下した。滴下終了後さらに同温度にて7時間反応を継続した。その後、純水6部とDEDM133部を仕込み、撹拌しながら水酸化カリウム59部を少量ずつ仕込み、アルカリ金属塩とした後、BCMB10部を仕込し、撹拌しながら75℃まで昇温し、同温度で2時間反応した。反応終了後、エピクロルヒドリン550部を仕込み撹拌溶解した。均一に溶解後、0.024MPaの減圧下75℃に保ち、48%水酸化ナトリウム水溶液41部を2時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、エピクロルヒドリン及びDEDMを減圧留去し、トルエン600部に溶解した後、水洗により生成した塩を除いた。その後、溶媒であるトルエンを減圧留去し、エポキシ樹脂(e2)を210部得た。得られたエポキシ樹脂(e2)のエポキシ当量は270g/eq.だった。
Synthesis example 2
4,4'-cyclohexylidenebisphenol (manufactured by Honshu Chemical Industry Co., Ltd.) was added to a four-necked glass separable flask equipped with a stirrer, thermometer, nitrogen gas introducing device, cooling pipe, oil / water separator and dropping device. Bisphenol Z, hydroxyl group equivalent = 134 g / eq.) 134 parts, 67 parts of DEDM and 0.21 part of p-toluenesulfonic acid were added, the temperature was raised to 135 ° C. with stirring, and 52 parts of styrene was maintained while maintaining the same temperature. The solution was added dropwise over 3 hours. After completion of the dropwise addition, the reaction was further continued for 7 hours at the same temperature. Thereafter, 6 parts of pure water and 133 parts of DEDM were added, 59 parts of potassium hydroxide was added little by little with stirring to obtain an alkali metal salt, 10 parts of BCMB was added, and the temperature was raised to 75 ° C. while stirring. For 2 hours. After completion of the reaction, 550 parts of epichlorohydrin was charged and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 0.024 MPa, 41 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 2 hours, and water and epichlorohydrin distilled under reflux were separated in this dropping and separated into epichlorohydrin. Was returned to the reaction vessel, and water was removed from the system to react. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, epichlorohydrin and DEDM were distilled off under reduced pressure, dissolved in 600 parts of toluene, and then the salt produced by washing with water was removed. Thereafter, toluene as a solvent was distilled off under reduced pressure to obtain 210 parts of an epoxy resin (e2). The epoxy equivalent of the obtained epoxy resin (e2) is 270 g / eq. was.

合成例3
撹拌装置、温度計、窒素ガス導入装置、冷却管、油水分離器及び滴下装置を備えた4つ口のガラス製セパラブルフラスコに、メタノール350部と水酸化カリウム58部を仕込み撹拌しながら、4,4’−(3,3,5−トリメチルシクロヘキシリデン)ビスフェノール(本州化学工業株式会社製、BisP−TMC、水酸基当量=155g/eq.)155部を仕込み、アルカリ金属塩とした。その後、BCMB62部とDEDM200部を投入し、撹拌しながら75℃まで昇温し、同温度で2時間反応した。反応終了後、0.0067MPaの減圧下100℃まで昇温し、メタノール全量を留去した後、エピクロルヒドリン300部を仕込み撹拌溶解した。均一に溶解後、0.024MPaの減圧下75℃に保ち、48%水酸化ナトリウム水溶液20部を2時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、エピクロルヒドリン及びDEDMを減圧留去し、トルエン600部に溶解した後、水洗により生成した塩を除いた。その後、溶媒であるトルエンを減圧留去し、黄色固形のエポキシ樹脂(e3)を200部得た。得られたエポキシ樹脂(e3)のエポキシ当量は455g/eq.だった。
Synthesis example 3
A four-necked glass separable flask equipped with a stirrer, thermometer, nitrogen gas introducing device, cooling pipe, oil / water separator and dropping device was charged with 350 parts of methanol and 58 parts of potassium hydroxide while stirring. , 4 ′-(3,3,5-trimethylcyclohexylidene) bisphenol (BisP-TMC, hydroxyl equivalent = 155 g / eq., Manufactured by Honshu Chemical Industry Co., Ltd.) was added to prepare an alkali metal salt. Thereafter, 62 parts of BCMB and 200 parts of DEDM were added, the temperature was raised to 75 ° C. with stirring, and the reaction was performed at the same temperature for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 0.0067 MPa, and all the methanol was distilled off. Then, 300 parts of epichlorohydrin was charged and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 0.024 MPa, 20 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 2 hours, and water and epichlorohydrin distilled off during the addition were separated in a separation layer, and epichlorohydrin was separated. Was returned to the reaction vessel, and water was removed from the system to react. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, epichlorohydrin and DEDM were distilled off under reduced pressure, dissolved in 600 parts of toluene, and then the salt produced by washing with water was removed. Thereafter, toluene as a solvent was distilled off under reduced pressure to obtain 200 parts of a yellow solid epoxy resin (e3). The epoxy equivalent of the obtained epoxy resin (e3) is 455 g / eq. was.

合成例4
撹拌装置、温度計、窒素ガス導入装置、冷却管、油水分離器及び滴下装置を備えた4つ口のガラス製セパラブルフラスコに、メタノール350部と水酸化カリウム60部を仕込み撹拌しながら、合成例1で得られた前記ジヒドロキシ化合物(a1)188部を仕込み、アルカリ金属塩とした。その後、BCMB38部とDEDM200部を仕込み、撹拌しながら75℃まで昇温し、同温度で2時間反応した。反応終了後、0.0067MPaの減圧下100℃まで昇温し、メタノール全量を留去したのち、エピクロルヒドリン420部を仕込み撹拌溶解した。均一に溶解後、0.024MPaの減圧下75℃に保ち、48%水酸化ナトリウム水溶液27部を2時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、さらに水洗したのちエピクロルヒドリン及びDEDMを留去し、エポキシ樹脂(e4)220部を得た。得られたエポキシ樹脂(e4)のエポキシ当量は365g/eq.だった。
Synthesis example 4
A four-necked glass separable flask equipped with a stirrer, thermometer, nitrogen gas introduction device, cooling tube, oil / water separator and dropping device was charged with 350 parts of methanol and 60 parts of potassium hydroxide while stirring. 188 parts of the dihydroxy compound (a1) obtained in Example 1 was charged to obtain an alkali metal salt. Thereafter, 38 parts of BCMB and 200 parts of DEDM were charged, the temperature was raised to 75 ° C. with stirring, and the reaction was performed at the same temperature for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 0.0067 MPa, and after all the methanol was distilled off, 420 parts of epichlorohydrin was charged and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 0.024 MPa, 27 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 2 hours, and water and epichlorohydrin distilled under reflux were separated in this dropping and separated by a separated layer. Was returned to the reaction vessel, and water was removed from the system to react. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin and DEDM were distilled off to obtain 220 parts of an epoxy resin (e4). The epoxy equivalent of the obtained epoxy resin (e4) was 365 g / eq. was.

合成例5
撹拌装置、温度計、窒素ガス導入装置、冷却管、油水分離器及び滴下装置を備えた4つ口のガラス製セパラブルフラスコに、メタノール350部と水酸化カリウム57部を仕込み撹拌しながら、合成例1で得られた前記ジヒドロキシ化合物(a1)188部を仕込み、アルカリ金属塩とした。その後、BCMB75部とDEDM200部を仕込み、撹拌しながら75℃まで昇温し、同温度で2時間反応した。反応終了後、0.0067MPaの減圧下100℃まで昇温し、メタノール全量を留去したのち、エピクロルヒドリン300部を仕込み撹拌溶解した。均一に溶解後、0.024MPaの減圧下75℃に保ち、48%水酸化ナトリウム水溶液17部を2時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、さらに水洗したのちエピクロルヒドリン及びDEDMを留去し、エポキシ樹脂(e5)230部を得た。得られたエポキシ樹脂(e5)のエポキシ当量は660g/eq.だった。
Synthesis example 5
A four-necked glass separable flask equipped with a stirrer, thermometer, nitrogen gas introduction device, cooling tube, oil / water separator and dropping device was charged with 350 parts of methanol and 57 parts of potassium hydroxide while stirring. 188 parts of the dihydroxy compound (a1) obtained in Example 1 was charged to obtain an alkali metal salt. Thereafter, 75 parts of BCMB and 200 parts of DEDM were charged, the temperature was raised to 75 ° C. with stirring, and the reaction was performed at the same temperature for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 0.0067 MPa, and after all the methanol was distilled off, 300 parts of epichlorohydrin was charged and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 0.024 MPa, 17 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 2 hours, and water and epichlorohydrin refluxed during the addition were separated in a separation layer, and epichlorohydrin was separated. Was returned to the reaction vessel, and water was removed from the system to react. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin and DEDM were distilled off to obtain 230 parts of an epoxy resin (e5). The epoxy equivalent of the obtained epoxy resin (e5) is 660 g / eq. was.

比較合成例1
撹撹拌装置、温度計、窒素ガス導入装置、冷却管、油水分離器及び滴下装置を備えた4つ口のガラス製セパラブルフラスコに、合成例1で得られた前記ジヒドロキシ化合物(a1)188部、エピクロルヒドリン600部、DEDM200部を仕込み撹拌溶解させた。均一に溶解後、0.024MPaの減圧下75℃に保ち、48%水酸化ナトリウム水溶液125部を3時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、さらに水洗したのちエピクロルヒドリン及びDEDMを減圧留去し、エポキシ樹脂(e6)を205部得た。得られたエポキシ樹脂(e6)のエポキシ当量は250g/eq.だった。
Comparative Synthesis Example 1
188 parts of the dihydroxy compound (a1) obtained in Synthesis Example 1 in a four-necked glass separable flask equipped with a stirrer, a thermometer, a nitrogen gas introducing device, a cooling tube, an oil / water separator and a dropping device. Then, 600 parts of epichlorohydrin and 200 parts of DEDM were added and dissolved by stirring. After being uniformly dissolved, maintained at 75 ° C. under a reduced pressure of 0.024 MPa, 125 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 3 hours, and the water and epichlorohydrin distilled under reflux were separated in a separation layer, and epichlorohydrin was separated. Was returned to the reaction vessel, and water was removed from the system to react. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin and DEDM were distilled off under reduced pressure to obtain 205 parts of an epoxy resin (e6). The epoxy equivalent of the obtained epoxy resin (e6) is 250 g / eq. was.

比較合成例2
撹拌装置、温度計、窒素ガス導入装置、冷却管、油水分離器及び滴下装置を備えた4つ口のガラス製セパラブルフラスコに、メタノール320部と水酸化カリウム58部を仕込み撹拌しながら、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)スルホン153部を仕込み、アルカリ金属塩とした。その後、BCMB37部とDEDM200部を仕込み、撹拌しながら75℃まで昇温し、同温度で2時間反応した。反応終了後、0.0067MPaの減圧下100℃まで昇温し、メタノール全量を留去したのち、エピクロルヒドリン450部を仕込み撹拌溶解した。均一に溶解後、0.024MPaの減圧下75℃に保ち、48%水酸化ナトリウム水溶液30部を2時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、さらに水洗したのちエピクロルヒドリン及びDEDMを留去し、エポキシ樹脂(e7)185部を得た。得られたエポキシ樹脂(e7)のエポキシ当量は313g/eq.だった。
Comparative Synthesis Example 2
A four-necked glass separable flask equipped with a stirrer, thermometer, nitrogen gas introduction device, cooling pipe, oil / water separator and dropping device was charged with 320 parts of methanol and 58 parts of potassium hydroxide while stirring. 153 parts of (4-hydroxy-3,5-dimethylphenyl) sulfone was charged to obtain an alkali metal salt. Thereafter, 37 parts of BCMB and 200 parts of DEDM were charged, the temperature was raised to 75 ° C. with stirring, and the reaction was performed at the same temperature for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 0.0067 MPa, and after all the methanol was distilled off, 450 parts of epichlorohydrin was charged and dissolved by stirring. After uniformly dissolving, 30 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 2 hours while maintaining at 75 ° C. under a reduced pressure of 0.024 MPa, and the refluxed water and epichlorohydrin were separated in a separation layer to separate epichlorohydrin. Was returned to the reaction vessel, and water was removed from the system to react. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin and DEDM were distilled off to obtain 185 parts of an epoxy resin (e7). The epoxy equivalent of the obtained epoxy resin (e7) was 313 g / eq. was.

比較合成例3
撹拌装置、温度計、窒素ガス導入装置、冷却管、油水分離器及び滴下装置を備えた4つ口のガラス製セパラブルフラスコに、メタノール350部と水酸化カリウム60部を仕込み撹拌しながら、合成例1で得られた前記ジヒドロキシ化合物(a1)188部を仕込み、アルカリ金属塩とした。その後、α、α’−パラキシレンジクロライド26部とDEDM200部を仕込み、撹拌しながら75℃まで昇温し、同温度で2時間反応した。反応終了後、0.0067MPaの減圧下100℃まで昇温し、メタノール全量を留去したのち、エピクロルヒドリン480部を仕込み撹拌溶解した。均一に溶解後、0.024MPaの減圧下75℃に保ち、48%水酸化ナトリウム水溶液31部を2時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、エピクロルヒドリン及びDEDMを減圧留去し、トルエン600部に溶解した後、水洗により生成した塩を除いた。さらに水洗した後、溶媒であるトルエンを減圧留去し、エポキシ樹脂(e8)220部を得た。得られたエポキシ樹脂(e8)のエポキシ当量は318g/eq.だった。
Comparative Synthesis Example 3
A four-necked glass separable flask equipped with a stirrer, thermometer, nitrogen gas introduction device, cooling tube, oil / water separator and dropping device was charged with 350 parts of methanol and 60 parts of potassium hydroxide while stirring. 188 parts of the dihydroxy compound (a1) obtained in Example 1 was charged to obtain an alkali metal salt. Thereafter, 26 parts of α, α′-paraxylene dichloride and 200 parts of DEDM were charged, the temperature was raised to 75 ° C. with stirring, and the reaction was carried out at the same temperature for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 0.0067 MPa, and after all the methanol was distilled off, 480 parts of epichlorohydrin were charged and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 0.024 MPa, 31 parts of 48% aqueous sodium hydroxide solution was added dropwise over 2 hours, and water and epichlorohydrin distilled under reflux were separated in the dropping layer in a separation layer, and epichlorohydrin was separated. Was returned to the reaction vessel, and water was removed from the system to react. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, epichlorohydrin and DEDM were distilled off under reduced pressure, dissolved in 600 parts of toluene, and then the salt produced by washing with water was removed. After further washing with water, toluene as a solvent was distilled off under reduced pressure to obtain 220 parts of an epoxy resin (e8). The epoxy equivalent of the obtained epoxy resin (e8) was 318 g / eq. was.

実施例1〜5及び比較例1〜3
表1に示す配合処方によりエポキシ樹脂、硬化剤、硬化促進剤及び溶剤を配合し、不揮発分が50%のエポキシ樹脂組成物ワニスを得た。エポキシ樹脂、硬化剤及び硬化促進剤は予めメチルエチルケトン(以下、MEKと略す)に溶解して使用した。得られたエポキシ樹脂組成物ワニスをガラスクロス(日東紡株式会社製、IPC規格の2116)に含浸させた後、その含浸クロスを熱風循環オーブン中にて、150℃で8分間乾燥させ、Bステージ状のプリプレグを得た。さらに、得られたプリプレグ4枚と銅箔(三井金属鉱業株式会社製、3EC−III、厚み35μm)を重ね、130℃×15分+190℃×80分の温度条件で2MPaの真空プレスを行い、0.5mm厚の両面銅張積層板を得た。得られた両面銅張積層板を用いて、ガラス転移温度、接着力及び耐水性の評価を行った。また、Bステージ状のプリプレグのガラスクロスからBステージ状の樹脂組成物を分離し、190℃×80分の温度条件で2MPaの真空プレスを行い、比誘電率及び誘電正接評価用の硬化物を得た。評価結果を表2に示す。
Examples 1-5 and Comparative Examples 1-3
An epoxy resin, a curing agent, a curing accelerator and a solvent were blended according to the formulation shown in Table 1, and an epoxy resin composition varnish having a nonvolatile content of 50% was obtained. The epoxy resin, the curing agent, and the curing accelerator were used by dissolving in advance in methyl ethyl ketone (hereinafter abbreviated as MEK). After impregnating the obtained epoxy resin composition varnish into a glass cloth (Nittobo Co., Ltd., IPC standard 2116), the impregnated cloth was dried in a hot air circulating oven at 150 ° C. for 8 minutes, and B stage A prepreg was obtained. Furthermore, 4 sheets of the obtained prepreg and copper foil (Mitsui Metal Mining Co., Ltd., 3EC-III, thickness 35 μm) are stacked, and a vacuum press of 2 MPa is performed at a temperature condition of 130 ° C. × 15 minutes + 190 ° C. × 80 minutes, A double-sided copper-clad laminate with a thickness of 0.5 mm was obtained. Using the obtained double-sided copper-clad laminate, glass transition temperature, adhesive strength and water resistance were evaluated. Also, the B-stage resin composition is separated from the glass cloth of the B-stage prepreg and vacuum-pressed at 2 MPa under a temperature condition of 190 ° C. × 80 minutes to obtain a cured product for evaluation of relative dielectric constant and dielectric loss tangent. Obtained. The evaluation results are shown in Table 2.

なお、表1中のYD−903NはビスフェノールA型固形エポキシ樹脂(新日鉄住金化学株式会社製、エポトートYD−903N、エポキシ当量=812g/eq.、軟化点=96℃)を、PNはフェノールノボラック樹脂(昭和電工株式会社製、ショウノールBRG−557、フェノール性ヒドロキシ基当量=105g/eq.、軟化点=86℃)を、2E4MZは2−エチル−4−メチルイミダゾール(四国化成株式会社製)をそれぞれ表す。 In Table 1, YD-903N is a bisphenol A type solid epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., Epototo YD-903N, epoxy equivalent = 812 g / eq., Softening point = 96 ° C.), and PN is a phenol novolac resin. (Showa Denko Co., Ltd., Shounol BRG-557, phenolic hydroxy group equivalent = 105 g / eq., Softening point = 86 ° C.), 2E4MZ is 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd.) Represent each.

Figure 2016069548
Figure 2016069548

Figure 2016069548
Figure 2016069548

表2の結果より、比較例1は、脂肪族環構造を有するが一般式(1)で表されれる化合物ではないため、耐水性は良いが、接着力は弱く誘電特性が劣っている。比較例2は、ジヒドロキシ化合物とハロゲン化アルキル基含有化合物から得られた一般式(1)で表される化合物に類似しているが、脂肪族環構造を持たないため、誘電正接は低いが、比誘電率の低下が十分ではない。比較例3は、一般式的な中分子エポキシ樹脂の例であり、接着力は良いが、耐水性や誘電特性が劣っている。それに対し、実施例は、接着力、耐水性、誘電特性ともに優れている。 From the results shown in Table 2, Comparative Example 1 has an aliphatic ring structure but is not a compound represented by the general formula (1). Therefore, the water resistance is good, but the adhesive strength is weak and the dielectric properties are poor. Comparative Example 2 is similar to the compound represented by the general formula (1) obtained from the dihydroxy compound and the halogenated alkyl group-containing compound, but has no aliphatic ring structure, so the dielectric loss tangent is low. The relative dielectric constant is not sufficiently lowered. Comparative Example 3 is an example of a general medium molecular epoxy resin, which has good adhesion but is inferior in water resistance and dielectric properties. In contrast, the examples are excellent in adhesive strength, water resistance, and dielectric properties.

実施例6〜8及び比較例4〜5
表3に示す配合処方によりエポキシ樹脂、硬化剤及び硬化促進剤を配合し、加熱ニーダーに入れて加熱混合し、樹脂組成物を得た。次に高強度炭素繊維(東レ株式会社製、T700、引張り強さ4.8GPa、引張弾性率235GPa)を一方向に引き揃えた後に、得られた樹脂組成物を加熱溶融し、圧力を加えて含浸させて樹脂含有率35%の一方向炭素繊維プリプレグを得た。得られたプリプレグを長さ30cm、幅30cmに裁断したものを繊維方向が同一になるように17枚積層して積層体を形成し、リリースクロスを重ねた後、ブリーダークロスを重ね、さらにブリーダークロスを重ね、ナイロンパックで包み、成形用スタックを形成した。この形成用スタックを130℃、1時間の条件下でオートクレーブ成形して、繊維体積含有率60%の炭素繊維複合材料を得た。得られた炭素繊維複合材料を用いて、ガラス転移温度、曲げ強度及び曲げ弾性率の評価を行った。なお、プリプレグ中の樹脂含有率の測定法はJIS K 7071に、繊維体積含有率はJIS H 7401に準じて測定した。また、加熱ニーダーに入れて加熱混合した樹脂組成物を、190℃×80分の温度条件で2MPaの真空プレスを行い、比誘電率及び誘電正接評価用の硬化物を得た。評価結果を表4に示す。
Examples 6-8 and Comparative Examples 4-5
An epoxy resin, a curing agent and a curing accelerator were blended according to the blending formulation shown in Table 3, and the mixture was heated and mixed in a heating kneader to obtain a resin composition. Next, after aligning high-strength carbon fibers (Toray Industries, Inc., T700, tensile strength 4.8 GPa, tensile modulus 235 GPa) in one direction, the obtained resin composition is heated and melted, and pressure is applied. Impregnation was performed to obtain a unidirectional carbon fiber prepreg having a resin content of 35%. The obtained prepreg was cut into a length of 30 cm and a width of 30 cm to form a laminate by laminating 17 sheets so that the fiber directions are the same, and after stacking release cloths, stacking bleeder cloths, and further bleeder cloths And wrapped with a nylon pack to form a molding stack. This forming stack was autoclaved at 130 ° C. for 1 hour to obtain a carbon fiber composite material having a fiber volume content of 60%. Evaluation of glass transition temperature, bending strength, and bending elastic modulus was performed using the obtained carbon fiber composite material. In addition, the measurement method of the resin content rate in a prepreg was measured according to JISK7071, and the fiber volume content rate was measured according to JISH7401. Further, the resin composition that was heated and mixed in a heating kneader was vacuum-pressed at 2 MPa under a temperature condition of 190 ° C. × 80 minutes to obtain a cured product for evaluation of relative dielectric constant and dielectric loss tangent. The evaluation results are shown in Table 4.

なお、表3中のYD−011はビスフェノールA型固形エポキシ樹脂(新日鉄住金化学株式会社製、エポトートYD−011、エポキシ当量=475g/eq.、軟化点=68℃)を、DICYはジシアンジアミド(活性水素当量=21g/eq.)を、DCMUは3,4−ジクロロフェニル−1,1−ジメチルウレア(保土谷化学工業株式会社製)を、それぞれ表す。 In Table 3, YD-011 is a bisphenol A type solid epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., Epototo YD-011, epoxy equivalent = 475 g / eq., Softening point = 68 ° C.), and DICY is dicyandiamide (active Hydrogen equivalent = 21 g / eq.), DCMU represents 3,4-dichlorophenyl-1,1-dimethylurea (manufactured by Hodogaya Chemical Co., Ltd.).

Figure 2016069548
Figure 2016069548

Figure 2016069548
Figure 2016069548

表4の結果より、比較例では誘電特性が劣っているのに対し、実施例では強度的には有意差がなく誘電特性が向上している。 From the results shown in Table 4, the dielectric properties are inferior in the comparative example, whereas in the examples, there is no significant difference in strength and the dielectric properties are improved.

実施例9〜11及び比較例6〜8
表5に示す配合処方によりエポキシ樹脂、硬化剤及び硬化促進剤を配合し、120℃に加熱しながら、撹枠し均一化してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を減圧下で脱泡した後、金型に注型し、熱風循環オーブン中にて、150℃で2時間、次いで、180℃で3時間硬化して注型硬化物を得た。得られた注型硬化物を用いて、ガラス転移温度、比誘電率、誘電正接及び吸水率の評価を行った。評価結果を表6に示す。
Examples 9-11 and Comparative Examples 6-8
An epoxy resin, a curing agent and a curing accelerator were blended according to the blending formulation shown in Table 5, and the mixture was stirred and homogenized while heating to 120 ° C. to obtain an epoxy resin composition. The obtained epoxy resin composition was degassed under reduced pressure, then poured into a mold, and cured in a hot air circulating oven at 150 ° C. for 2 hours and then at 180 ° C. for 3 hours, to obtain a cast cured product. Got. Using the obtained cast cured product, glass transition temperature, relative dielectric constant, dielectric loss tangent, and water absorption were evaluated. The evaluation results are shown in Table 6.

なお、表5中の2E4MZは表1の2E4MZと同義である。また、表中のMHは4−メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸の混合物(新日本理化株式会社製、リカシッドMH−700、活性水素当量=164g/eq.)をそれぞれ表す。 2E4MZ in Table 5 is synonymous with 2E4MZ in Table 1. Further, MH in the table represents a mixture of 4-methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH-700, active hydrogen equivalent = 164 g / eq.).

Figure 2016069548
Figure 2016069548

Figure 2016069548
Figure 2016069548

表6の結果より、比較例6は、脂肪族環構造を有するが一般式(1)で表さられる化合物ではないため、吸水率は低いが、誘電特性が劣っている。比較例7は、ジヒドロキシ化合物とハロゲン化アルキル基含有化合物から得られた一般式(1)で表される化合物に類似しているが、ハロゲン化アルキル基含有化合物がビフェニル構造を持たないため、ガラス転移温度が低く、耐熱性が劣っている。それに対し、実施例では誘電特性が向上している。また、吸水率も低いことから耐水性に優れている。 From the results shown in Table 6, Comparative Example 6 has an aliphatic ring structure but is not a compound represented by the general formula (1), and thus has a low water absorption but is inferior in dielectric properties. Comparative Example 7 is similar to the compound represented by the general formula (1) obtained from the dihydroxy compound and the halogenated alkyl group-containing compound, but the halogenated alkyl group-containing compound does not have a biphenyl structure. Low transition temperature and poor heat resistance. On the other hand, in the embodiment, the dielectric characteristics are improved. Moreover, since the water absorption is low, it is excellent in water resistance.

Claims (11)

下記一般式(1)
Figure 2016069548
(式中、nは繰り返し数でその平均値は0<n≦10の値であり、Aはそれぞれ独立に脂肪族環構造を有する2価の基を表し、Bはそれぞれ独立に2価の炭化水素基を表し、Rはそれぞれ独立に水素原子、ハロゲン原子または炭素数1〜10の炭化水素基を表す。)で表される化合物とエピハロヒドリンを反応させて得られる構造を有するエポキシ樹脂と、硬化剤とを必須成分とするエポキシ樹脂組成物。
The following general formula (1)
Figure 2016069548
(In the formula, n is the number of repetitions and the average value is 0 <n ≦ 10, A represents a divalent group having an aliphatic ring structure, and B is independently a divalent carbonization. An epoxy resin having a structure obtained by reacting a compound represented by a hydrogen group, and R 1 independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 10 carbon atoms) and an epihalohydrin; An epoxy resin composition containing a curing agent as an essential component.
一般式(1)中のAが一般式(2)
Figure 2016069548
(式中、Rはそれぞれ独立に水素原子または炭素数1〜10の炭化水素基を表し、2つのRが結合し環状になっていても良い。kは3〜12の整数を表し、pは0または1を表す。)、
一般式(3)
Figure 2016069548
(式中、pは0または1を表し、sは0または1を表し、tは0または1を表す。)、
または一般式(4)
Figure 2016069548
(式中、pは0または1を表す。)
で表される骨格である請求項1記載のエポキシ樹脂組成物。
A in general formula (1) is general formula (2)
Figure 2016069548
(In the formula, each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and two R 2 may be bonded to each other to form a ring. K represents an integer of 3 to 12, p represents 0 or 1),
General formula (3)
Figure 2016069548
(Wherein p represents 0 or 1, s represents 0 or 1, and t represents 0 or 1),
Or general formula (4)
Figure 2016069548
(In the formula, p represents 0 or 1.)
The epoxy resin composition according to claim 1, wherein the skeleton is represented by the following formula.
一般式(1)中のBがメチレン基である請求項1または2記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein B in the general formula (1) is a methylene group. 前記エポキシ樹脂のエポキシ当量が、250〜1000g/eq.の範囲である請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy equivalent of the epoxy resin is 250 to 1000 g / eq. The epoxy resin composition according to any one of claims 1 to 3, which is in a range of 前記エポキシ樹脂のエポキシ基1モルに対して、前記硬化剤の活性水素基が0.4〜1.2モルの範囲である請求項1〜4のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4, wherein an active hydrogen group of the curing agent is in a range of 0.4 to 1.2 mol with respect to 1 mol of an epoxy group of the epoxy resin. 請求項1〜5のいずれか1項に記載のエポキシ樹脂組成物を用いることを特徴とするプリプレグ。 A prepreg using the epoxy resin composition according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のエポキシ樹脂組成物を用いることを特徴とする接着シート。 An adhesive sheet using the epoxy resin composition according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のエポキシ樹脂組成物を用いることを特徴とするエポキシ樹脂積層板。 The epoxy resin laminated board using the epoxy resin composition of any one of Claims 1-5. 請求項1〜5のいずれか1項に記載のエポキシ樹脂組成物を用いることを特徴とするエポキシ樹脂封止材。 An epoxy resin sealing material using the epoxy resin composition according to claim 1. 請求項1〜5のいずれか1項に記載のエポキシ樹脂組成物を用いることを特徴とするエポキシ樹脂注型材。 An epoxy resin casting material using the epoxy resin composition according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のエポキシ樹脂組成物を硬化させた硬化物。 Hardened | cured material which hardened the epoxy resin composition of any one of Claims 1-5.
JP2014201244A 2014-09-30 2014-09-30 Epoxy resin composition and cured product thereof Active JP6429569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201244A JP6429569B2 (en) 2014-09-30 2014-09-30 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201244A JP6429569B2 (en) 2014-09-30 2014-09-30 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2016069548A true JP2016069548A (en) 2016-05-09
JP6429569B2 JP6429569B2 (en) 2018-11-28

Family

ID=55866051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201244A Active JP6429569B2 (en) 2014-09-30 2014-09-30 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP6429569B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206641A (en) * 2016-05-20 2017-11-24 新日鉄住金化学株式会社 Epoxy resin composition and cured product thereof
WO2018131567A1 (en) * 2017-01-10 2018-07-19 住友精化株式会社 Epoxy resin composition
JP2020050793A (en) * 2018-09-27 2020-04-02 日立化成株式会社 Sealing resin composition, electronic component device and method for producing electronic component device
WO2020262061A1 (en) * 2019-06-27 2020-12-30 住友精化株式会社 Epoxy resin composition
US11066510B2 (en) 2015-07-10 2021-07-20 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition, process for producing same, and uses of said composition
US11091627B2 (en) 2017-01-10 2021-08-17 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US11111382B2 (en) 2017-01-10 2021-09-07 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US11603466B2 (en) 2017-01-10 2023-03-14 Sumitomo Seika Chemicals Co.. Ltd. Epoxy resin composition
CN117242119A (en) * 2021-05-04 2023-12-15 高新特殊工程塑料全球技术有限公司 End-capped bisphenol polyether oligomers and compositions, methods of preparation and articles prepared therefrom

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109334A (en) * 1993-08-18 1995-04-25 Nippon Kayaku Co Ltd Epoxy rein, epoxy resin composition and cured product thereof
JP2001240654A (en) * 2000-02-28 2001-09-04 Dainippon Ink & Chem Inc Resin composition for circuit board used in semiconductor device provided with grid-like conducting terminals, circuit board for semiconductor device provided with grid-like conducting terminals, and semiconductor device provided with grid-like conducting terminals
JP2001329044A (en) * 2000-05-19 2001-11-27 Dainippon Ink & Chem Inc Epoxy resin composition and cured product thereof
JP2002105166A (en) * 2000-09-27 2002-04-10 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and cured product thereof
JP2007254579A (en) * 2006-03-23 2007-10-04 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and cured material thereof
JP2011001447A (en) * 2009-06-18 2011-01-06 Nippon Kayaku Co Ltd Epoxy resin composition
WO2014069612A1 (en) * 2012-10-29 2014-05-08 新日鉄住金化学株式会社 Epoxy resin and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109334A (en) * 1993-08-18 1995-04-25 Nippon Kayaku Co Ltd Epoxy rein, epoxy resin composition and cured product thereof
JP2001240654A (en) * 2000-02-28 2001-09-04 Dainippon Ink & Chem Inc Resin composition for circuit board used in semiconductor device provided with grid-like conducting terminals, circuit board for semiconductor device provided with grid-like conducting terminals, and semiconductor device provided with grid-like conducting terminals
JP2001329044A (en) * 2000-05-19 2001-11-27 Dainippon Ink & Chem Inc Epoxy resin composition and cured product thereof
JP2002105166A (en) * 2000-09-27 2002-04-10 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and cured product thereof
JP2007254579A (en) * 2006-03-23 2007-10-04 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and cured material thereof
JP2011001447A (en) * 2009-06-18 2011-01-06 Nippon Kayaku Co Ltd Epoxy resin composition
WO2014069612A1 (en) * 2012-10-29 2014-05-08 新日鉄住金化学株式会社 Epoxy resin and manufacturing method therefor
JP2014111712A (en) * 2012-10-29 2014-06-19 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin and method for producing the epoxy resin

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11066510B2 (en) 2015-07-10 2021-07-20 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition, process for producing same, and uses of said composition
KR102351752B1 (en) 2016-05-20 2022-01-14 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Epoxy resin composition and cured product thereof
KR20170131267A (en) * 2016-05-20 2017-11-29 신닛테츠 수미킨 가가쿠 가부시키가이샤 Epoxy resin composition and cured product thereof
JP2017206641A (en) * 2016-05-20 2017-11-24 新日鉄住金化学株式会社 Epoxy resin composition and cured product thereof
US11292872B2 (en) 2017-01-10 2022-04-05 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US11091627B2 (en) 2017-01-10 2021-08-17 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US11111382B2 (en) 2017-01-10 2021-09-07 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
JPWO2018131567A1 (en) * 2017-01-10 2019-04-25 住友精化株式会社 Epoxy resin composition
WO2018131567A1 (en) * 2017-01-10 2018-07-19 住友精化株式会社 Epoxy resin composition
US11603466B2 (en) 2017-01-10 2023-03-14 Sumitomo Seika Chemicals Co.. Ltd. Epoxy resin composition
JP2020050793A (en) * 2018-09-27 2020-04-02 日立化成株式会社 Sealing resin composition, electronic component device and method for producing electronic component device
WO2020262061A1 (en) * 2019-06-27 2020-12-30 住友精化株式会社 Epoxy resin composition
CN114008104A (en) * 2019-06-27 2022-02-01 住友精化株式会社 epoxy resin composition
CN114008104B (en) * 2019-06-27 2023-12-29 住友精化株式会社 Epoxy resin composition
CN117242119A (en) * 2021-05-04 2023-12-15 高新特殊工程塑料全球技术有限公司 End-capped bisphenol polyether oligomers and compositions, methods of preparation and articles prepared therefrom

Also Published As

Publication number Publication date
JP6429569B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP6429569B2 (en) Epoxy resin composition and cured product thereof
JP6452335B2 (en) Epoxy resin composition and cured product thereof
JP5655284B2 (en) Soluble imide skeleton resin, soluble imide skeleton resin solution composition, curable resin composition, and cured product thereof
JPWO2006098329A1 (en) Epoxy resin, epoxy resin composition, prepreg and laminate using the same
JP6022230B2 (en) High molecular weight epoxy resin, resin composition and cured product using the same
JP2009001787A (en) Polyphenylene ether resin composition and electronic member
TWI739976B (en) Alkenyl-containing resin, curable resin composition and hardened product
JP6429570B2 (en) Epoxy resin composition and cured product thereof
JP6228799B2 (en) Epoxy resin composition and cured product thereof
JP5192198B2 (en) Polyfunctional epoxidized polyphenylene ether resin and method for producing the same
JP6183918B2 (en) Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JP2009073889A (en) Epoxy resin composition, cured product thereof, and resin composition for build-up film
JP6715249B2 (en) Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof
JP6335562B2 (en) Method for producing epoxy resin, and composition and cured product containing epoxy resin obtained by the method
JP5195107B2 (en) Imide skeleton resin, curable resin composition, and cured product thereof
TWI641628B (en) Epoxy resin composition and cured article thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP5504553B2 (en) Epoxy resin composition, cured product thereof, resin composition for build-up film insulating layer, and novel epoxy resin
JP5130951B2 (en) Epoxy resin composition, cured product thereof, resin composition for insulating film for build-up film, novel phenol resin, and novel epoxy resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181030

R150 Certificate of patent or registration of utility model

Ref document number: 6429569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250